静定结构受力分析习题参考答案.doc
(工程力学)第11章静定结构受力分析
q
ql
l l 2l q
ql
ql ql
2 ql 2
q
ql 2
A
B
Q AB
Q BA
MA0 QBA1q1/l4
FY0 QAB5q/l4
4l
2l l l
1 ql
2
ql
1 ql 2
例: 作内力图 ql
q
ql
l l 2l
4l
2l l l
ql
q
1 ql
2
ql
内力计ql q算l 的关键在于: 正确区分ql 2 基本部分和ql 2 附
例:求跨中截面内力
q
A
FAx
C
l
F Ay
解: FAx 0,FAy ql/2(),
FBy ql/2()BFra bibliotekFx 0, NC 0
F By
Fy
0,Q C
0
Mc 0, MC ql2 / 8
(下侧受拉)
3.作内力图的基本方法 内力方程式:
M M ( x ) 弯矩方程式
例:作图示粱内力图
q A
Q Q ( x ) 剪力方程式 N N ( x ) 轴力方程式 B 解: FAx 0,FAy ql/2(),
NdN
微分关系: dQ(x) / dx q(x)
Q(x)
Q dQ
截面弯矩dx等于该截面一
dM(x) / dx Q(x) 侧的所有外力对该截面
的力矩之和
d 2M(x) / dx2 q(x)
1.无荷载分布段(q=0),Q图 Pl 为水平线,M图为斜直线. M图
自由端无外力偶
则无弯矩.
Q图
例: 作内力图
Q图 力偶
结构力学 静定结构的受力分析
第1节 静定平面桁架一、桁架的内力计算方法1、结点法取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。
该法最适用于计算简单桁架。
根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化:(1)两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a )。
(2)三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力)(图2-2-1b)。
(3)四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c )。
推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d )。
F N3F N3=0F N1=F N2=0F N3=F N4(a)(b)(c)F N4(d)F N3=F PF PN1F F N2F N1F N2F N1F N2F N1F N2F N3F N3F N1=F N2,F N1=F N2,F N1=F N2,图2-2-1(4)对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。
例如图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。
1A2F PF PAF PF PBF PF PBA(b)(a)X =0图2-2-2 图2-2-3(5)对称结构在反对称荷载作用下,对称轴处正对称的未知力为零。
如图2-2-3a 中AB 杆为零杆,因为若将结构从对称轴处截断,则AB 杆的力是一组正对称的未知力,根据上述结论可得。
(6)对称结构在反对称荷载作用下,对称轴处的竖杆为零杆。
如图2-2-4a 中AB 杆和B 支座的反力均为零。
其中的道理可以这样理解:将图a 结构取左右两个半结构分析,对中间的杆AB 和支座B 的力,若左半部分为正,则根据反对称,右半部分必定为相同大小的负值,将半结构叠加还原回原结构后正负号叠加,结果即为零。
结构力学--超静定问题典型习题解析
3
代入变形协调方程 wB = wC + ∆BC ,得
3 F a3 F a q(2a )4 FN (2a ) − = N + N 8EI 3EI 3EI EA
解得 FN =
2 qa 2 qa 3 A = 2 1 3a A + I 3+ 2 Aa
4
图示梁的右端为弹性转动约束,设弹簧常量为 k。AB 段可视为刚性,并与梁刚性连接。
()
3 结构如图示,设梁 AB 和 CD 的弯曲刚度 EI 相同。拉杆 BC 的拉压刚度 EA 已知,求拉杆 BC 的轴力。
C
a q A 2a B FN FN B FN C a FN a D a D
解题分析:将杆 CB 移除,则 AB、CD 均为静 定结构。杆 CB 的未知轴力 FN 作用在 AB,CD 梁上。为一度静不定问题。 解: 1、写出变形协调方程
2⎡
2
=
FR 3 EI
⎛ 3π 2 − 8 π − 4 ⎞ ⎜ ⎟ ⎜ ⎟ 8π ⎝ ⎠
6 结构如图 a 所示, AC = AD = BC = BD = a ,已知各杆弯曲刚度 EI 相同。A、B 点为刚 性连接,C、D 点为铰连接。将 C、D 点用一弹簧相连,弹簧常数为 2k。但由于弹簧短了 ∆ , 强行相连后,在 A、B 点加力 F。试问:当 F 为多大时,弹簧回复到其原长?
C
D
A
B
A
B
(c-1) 题 1 图(c)
1
(c-2)
大家论坛
(d) 解:图示结构为一封闭的圆圈,在任意截面截开后,有三个未知内力分量,故为三 度静不定。沿对称轴将圆环截开,由于对称性,轴力等于
F ,剪力等于零,只剩 2
第三章3静定结构受力分析(平面刚架)
2
YA
解: YB P / 2()
2
B
l
XB
2
YB
YA P / 2()
X B P / 4() X A P / 4()
P/4
P/4
M 2 Pl / 4(右侧受拉) M1 Pl / 4(上侧受拉) M1 M 2 (外侧受拉)
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
另外,根据这些关系,常可不经计算直观检查 M 图的轮廓是否正确。 ①M图与荷载情况不符。 ②M图与结点性质、约束情况不符。 ③作用在结点上的各杆端弯矩及结点集中力偶不满足平衡条件。
内力图形状特征
Q图 M图
1.无何载区段 2.均布荷载区段 3.集中力作用处
平行轴线
↓↓↓↓↓↓
+ -
发生突变
+P -
斜直线
2.三铰刚架(三铰结构)的支座反力(约束力)计算
方法:取两次隔离体,每个隔离体包含一或两个刚片,建立六
个平衡方程求解--双截面法.
例1: 求图示刚架的支座反力
解:1)取整体为隔离体
P
XA YA
XC
C
A
B
l
l
l 2
l 2
MA Fy
0, P 0,YA
l 2
YB
l
0,
YB
YB 0,YA YB
对O点取矩可求出B点水平反力,由B支座开始做弯矩图。
2、集中力偶作用处,弯矩图发生突变,突变前后弯矩两条线平行。
3、三铰刚架绘制弯矩图时,关键是求出一水平反力!!
4、主从结构绘制弯矩图 可以利用弯矩图与荷载、支承及连结之
间的对应关系,不求或只求部分约束力。
第三章 静定结构的受力分析
第三章静定结构的受力分析学习目的和要求不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。
所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。
通过本章学习要求达到:1、练掌握截面内力计算和内力图的形状特征。
2、练掌握截绘制弯矩图的叠加法。
3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和受力特点。
4、了解桁架的受力特点及按几何组成分类。
熟练运用结点法和截面法及其联合应用,会计算简单桁架、联合桁架既复杂桁架。
5、掌握对称条件的利用;掌握组合结构的计算。
6、熟练掌握截三铰拱的反力和内力计算。
了解三铰拱的内力图绘制的步骤。
掌握三铰拱合理拱轴的形状及其特征学习内容梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。
静定梁的弯矩图和剪力图绘制。
桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。
三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。
§3.1梁的内力计算回顾一、截面法1、平面杆件的截面内力分量及正负规定:轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。
剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。
弯矩M (bending moment) 截面上应力对截面中性轴的力矩。
不规定正负,但弯矩图画在拉侧。
2、截面内力计算的基本方法:截面法:截开、代替、平衡。
内力的直接算式:直接由截面一边的外力求出内力。
1、轴力=截面一边的所有外力沿轴切向投影代数和。
2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。
3、弯矩=截面一边的所有外力对截面形心的外力矩之和。
弯矩及外力矩产生相同的受拉边。
第3章 静定结构的受力分析
θ qlcosθ
qlsinθ
θ A (qlcosθ)/2
B (qlcosθ)/2
【例3.5】求图示简支斜梁的内力图。
解:(1) 求A、B截面剪力和轴力
q
MA 0
ql2 cos
FQBA 2 l
1 ql cos
2
s
qlcosθ r
FNAB A
θ FQAB
ql θ
l/cosθ
l
B FQBA
Fr 0
7
4
4
4
16)
1 8
136
17kN ()
Fy 0 FyF (8 4 4 17) 7kN()
(2)选控制截面A、C、D、F并求弯矩值
已知 MA=0, MF=0。
取右图AC段为隔离体:
MC 0
MC 8117 2 0 MC 34 8 26kN.m(下拉)
8kN
A 1m
17kN
MC C
五、斜梁受力分析
以下图示斜梁为例进行讨论。 q B
FxA=0 A FyA=ql/2
x
ql FyB=ql/2 l tgθ
C
θ
θ
qlcosθ
qlsinθ
l
1.求支座反力
2.求任一截面C的MC、FQC、FNC
取右图AC段为隔离体:
q
MC Aθ
ql/2 x
s C FNC
FQC r
(qlsinθ )/2 (qlcosθ)/2
从几何组成上,静定多跨梁由两部分组成,即基本部 分和附属部分。组成的次序是先基本后附属,见下图。
A
B
C
D
B A
基本部分
附属部分1 C 附属部分2 D
《结构力学》龙驭球-静定结构的受力分析
3 ql() 8
FxB
ql 8
()
(b)
B ql/8
l /2
ql/8
注意:三铰刚架构造中,支座反力旳计算是内力计算旳关键所在。
(2) 作M 图
AD杆:
M DA
ql 2 16
(内侧受拉)
D ql2/16 ql2/16
C
ql2/16 E
AD杆中点弯矩为:
ql2/16
l /2
M中
1 ql2 2 16
④ 校核
16
14
D
1
-1
2 -30
24 D 28
4
1 C
D
E
1
30
2
A
B
FN 图(kN)
FBx=1kN
FAy=30kN
FBy=2kN
例3-3.3: 作图(a)示三铰刚架内力图。
解:⑴ 支座反力
C
三铰刚架有四个支座反力,
q
l /2
可利用三个整体平衡条件和中间
铰结点C 处弯矩等于零旳局部平 FxA
A
(a)
B
FxB
衡条件,共四个平衡方程就能够
l /2
l /2
求出这四个支座反力。
FyA
FyB
M A 0,
FyB
l
(
ql 2
l 4
)
0
FyB
ql 8
()
Fy 0,
FyA
ql 8
()
C
l /2
由CEB部分平衡 (图b) 示:
MC 0,
FxB
l 2
( ql 8
l) 2
0
由整体平衡:
Fx 0,
二建:建筑结构与建筑设备讲义. 第五章第三节 静定结构的受力分析、剪力图与弯矩图
第三节静定结构的受力分析、剪力图与弯矩图静定结构包括静定桁架、静定梁、多跨静定梁、静定刚架、三铰刚架、三铰拱等。
一、多跨静定梁多跨静定梁是由若干根梁用铰相连,并与基础用若干个支座连接而成的静定结构。
例如图5-41中所示的多跨静定梁,AB部分(在竖向荷载作用下)不依赖于其他部分的存在就能独立维持其自身的平衡,故称为基本部分;BC部分则必须依赖于基本部分才能维持其自身的平衡,故称为附属部分。
受力分析时要从中间铰链处断开,首先分析比较简单的附属部分,然后分别按单跨静定梁处理,如图5-41~图5-44所示。
图5-41图5-42图5-43图5-44二、静定刚架静定平面刚架的常见形式有悬臂刚架、简支刚架、外伸刚架,它们是由单片刚接杆件与基础直接相连,各有三个支座反力。
弯矩M画在受拉一侧,剪力V、轴力N要标明+、-号。
实际上,如果观察者站在刚架内侧,把正弯矩画在刚架内侧,把负弯矩画在刚架外侧,那么与弯矩画在受拉一侧是完全一致的。
如图5-45、图5-46所示。
校核:利用刚结点C的平衡。
图5-45图5-46三、三铰刚架三铰刚架由两片刚接杆件与基础之间通过三个铰两两铰接而成,有4个支座反力(图5-47);三铰刚架的一个重要受力特性是在竖向荷载的作用下会产生水平反力(即推力)。
多跨(或多层)静定刚架则与多跨静定梁类似,其各部分可以分为基本部分[如图5-48(a)中的ACD部分]和附属部分[如图5-48 (a)中的BC部分]。
图5-47图5-58如图5-49(a)所示的三铰刚架。
可先取整体研究平衡:图5-49再取AC平衡:最后取BC,平衡:,令V(x)=,得:四、三铰拱三铰拱是一种静定的拱式结构,它由两片曲杆与基础间通过三个铰两两铰接而成,与三铰刚架的组成方式类似,都属于推力结构。
拱结构与梁结构的区别,不仅在于外形不同,更重要的还在于在竖向荷载作用下是否产生水平推力。
为避免产生水平推力,有时在三铰拱的两个拱脚间设置拉杆来消除所承受的推力,这就是所谓的带拉杆的三铰拱。
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】
第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。
结构力学(2.1.2)--静定结构内力分析习题及参考答案
Fp
Fp
4×d
(d)
3-7 试求图示抛物线( y 4 fx(l x) / l 2 ) 三铰拱距左支座 5m 的截面内力。
4m 4m 3d
4m
5 kNF P 1
d
10 kN 1 F3(Pf×)d F2P
2
NN N
习题 3-6 图
2
d
N
15 kN
1
d2/02kN/md d/2
40 kN·m
y
A
B 20 kN
8×1 m
习题 3-5 图
杆件的内力。
80 kN
1 N
2 N
4m 2m
4m
2m
(a)
2m 2m 2×d
20 kN
3.6 试 用 较 简单的 方法求 图示桁 架指定
4
3
1
N 2
NN
Fp
Fp
Fp Fp 8×d
Fp
Fp N
Fp N
(b)
3×2 m d
60 kN
1
N
2
N
4×2 m (c)
Fp 1
2m
6m
6m
2m
(b)
习题 3-16 图
l
3m
4m 4m
3-17 试作图示组合结构的弯矩图和轴力图。
20 kN/m
B
C
A 4m 4m 4m 4m
(a)
习题 3-17 图
20 kNA 20 kN/m
BCD源自4m4m4m(b)
3-1 略
参考答案
3-2 (a) FNAB 25kN (b) FNAB 2.5FP
A
3m
(a) C
结构力学第2章 静定结构受力分析(理论力学和材料力学复习).
l
M A ql 2 / 2 M FByl M A 0
B
FBy
FBy ql
Fy ql FBy 0
理力、材力相关内容复习
M A ql 2 / 2 M M
MA
q
A
FAx
FAx 0
xC l
M
B
C
切、取
B
M
FBy ql FBy
FBy ql FBy
理力、材力相关内容复习
简支梁AB受图示荷载作用,试求A、B
的支座反力。
M
q
B
Fx FAx 0
MB 0
A FAx
FAy ql / 2 M / l
FAy
FBy l
MA 0
FBy ql / 2 M / l
理力、材力相关内容复习
外伸梁AB受图示荷载作用,试求A、B
的支座反力。
理力、材力相关内容复习
FP
FP
FP
FP
M
O
作用效果O等价
O
要平移的力 平移到的点
FP
等值反向平行 力构成力偶M
O处加等值反向一对力
刚体上一个力的等效平移
理力、材力相关内容复习
FP 结果得到什么?
FP
最终得到什么?
M
作用效果等价
O
O
一汇交力系
要平移的力 平移到的点
和力偶系 等值反向平行 主矢和主矩 力构成力偶M
Mq
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
dM dx
静定结构的受力分析(一)
静定结构的受力分析(一)(总分:90.00,做题时间:90分钟)一、{{B}}判断题{{/B}}(总题数:7,分数:4.00)1.除荷载外,其他因素例如支座移动、温度变化等也会使结构产生位移,因而也就有可能使静定结构产生内力。
(分数:2.00)A.正确B.错误√解析:2.下图所示桁架杆件AB、AF、AG内力都不为零。
A.正确B.错误√解析:本题为静定结构,根据静定结构的性质:在荷载作用下,如果仅靠结构某一局部就能够平衡外荷载时,则仅此局部受力,其余部分没有内力。
知杆件A、AF、AG内力都为零。
3.下图所示桁架,各杆EA为常数,仅AB杆有轴力,其他杆的轴力为零。
A.正确B.错误√解析:本题是一对平衡力作用在超静定部分ADBC上,故整个超静定部分ADBC都会产生内力。
倘若本题为静定桁架,则只有AB杆受力。
4.若某直杆段的弯矩为0,则剪力必定为0;反之,若剪力为0,则弯矩必定为0。
(分数:2.00)A.正确B.错误√解析:由弯矩和剪力的微分关系[*]可知,剪力为零,但弯矩不一定必为零。
比如,受纯弯曲的杆段。
5.下图所示桁架结构杆1的轴力为零。
A.正确√B.错误解析:将原荷载分成正对称和反对称(见下图),两图中杆1轴力均为零,答案正确。
[*]6.下图所示三铰拱,轴线方程为,受均布竖向荷载q作用,则拱内任一截面的弯矩等于零。
A.正确√B.错误解析:7.如下图所示拱在荷载作用下,N DE为30kN。
A.正确B.错误√解析:二、{{B}}填空题{{/B}}(总题数:17,分数:34.00)8.内力M与F Q的微分关系是 1。
(分数:2.00)填空项1:__________________ (正确答案:[*])解析:9.静定结构满足平衡方程的内力解答有 1种。
(分数:2.00)填空项1:__________________ (正确答案:一)解析:10.在跨度不变的前提下,对应某竖向荷载的三铰拱的合理拱轴线有 1。
(完整版)建筑力学(习题答案)
建筑力学复习题一、判断题(每题1分,共150分,将相应的空格内,对的打“√”,错的打’“×”)第一章静力学基本概念及结构受力分析1、结构是建筑物中起支承和传递荷载而起骨架作用的部分。
(√)2、静止状态就是平衡状态。
(√)3、平衡是指物体处于静止状态。
(×)4、刚体就是在任何外力作用下,其大小和形状绝对不改变的物体。
(√)5、力是一个物体对另一个物体的作用。
(×)6、力对物体的作用效果是使物体移动。
(×)7、力对物体的作用效果是使物体的运动状态发生改变。
(×)8、力对物体的作用效果取决于力的人小。
(×)9、力的三要素中任何一个因素发生了改变,力的作用效果都会随之改变。
(√)10、既有大小,又有方向的物理量称为矢量。
(√)11、刚体平衡的必要与充分条件是作用于刚体上两个力大小相等,方向相反。
(×)12、平衡力系就是合力等于零的力系。
(√)13、力可以沿其作用线任意移动而不改变对物体的作用效果。
(√)14、力可以在物体上任意移动而作用效果不变。
(×)15、合力一定大于分力。
(×)16、合力是分力的等效力系。
(√)17、当两分力的夹角为钝角时,其合力一定小于分力。
(√)18、力的合成只有唯一的结果。
(√)19、力的分解有无穷多种结果。
(√)20、作用力与反作用力是一对平衡力。
(×)21、作用在同一物体上的三个汇交力必然使物体处于平衡。
(×)22、在刚体上作用的三个相互平衡力必然汇交于一点。
(√)23、力在坐标轴上的投影也是矢量。
(×)24、当力平行于坐标轴时其投影等于零。
(×)25、当力的作用线垂直于投影轴时,则力在该轴上的投影等于零。
(√)26、两个力在同一轴的投影相等,则这两个力相等。
(×)27、合力在任意轴上的投影,等于各分力在该轴上投影的代数和。
(√)28、力可使刚体绕某点转动,对其转动效果的度量称弯矩。
土木工程师-专业基础(水利水电)-结构力学-静定结构的受力分析与特性
土木工程师-专业基础(水利水电)-结构力学-静定结构的受力分析与特性[单选题]1.图3-2-1所示结构,MEG和QBA值为()。
[2014年真题]图3-2-1A.MEG=16kN·m(上侧受拉),QBA=8kNB.MEG=16kN·m(下侧受拉),QBA=0C.MEG=16kN·m(下侧受拉),QBA=-8kND.MEG=16kN·m(上侧受拉),QBA=16kN正确答案:B参考解析:图示结构由基本部分和附属部分组成。
分析附属部分,对G点取矩∑MG=0:4×6+FyC×2=0,得:FyC=-12kN(FyC向下为正),由竖向受力平衡∑Y=0:FQG-FyC-4=0,解得:FQG=-8kN(FQG使结构顺时针转动为正)。
再分析基本部分,基本部分G端受到附属部分剪力作用,且FQG=8kN,方向向上;那么MEG=FQG×2=8×2=16kN·m(下侧受拉),MBA=FQG×2-16=8×2-16=0,因此QBA=0。
[单选题]2.图3-2-2所示结构弯矩图为()。
[2013年真题]图3-2-2A.B.C.D.正确答案:A参考解析:此处的弹性支座与链杆支座产生的支座反力相同,先取附属部分即右半部分分析,由铰结点处弯矩为零可得弹性支座处支座反力为2P(竖直向上)。
因此,固定支座端弯矩为:Pl-2P×2l+P×3l=0;铰结点处弯矩为零;铰结点的两侧弯矩为Pl(均上侧受拉)。
[单选题]3.图3-2-3所示A端弯矩为()。
[2017年真题]图3-2-3A.2M,上侧受拉B.2M,下侧受拉C.M,上侧受拉D.M,下侧受拉正确答案:A参考解析:图示为多跨静定梁结构,BC段为附属部分,AB段为基本部分。
设LAB=LBC=L,先由静定梁可求得支座C的竖向反力:FyC=M/L(方向向下),再根据整体平衡求A端弯矩:MA=FyC×2L+M-M=2M(顺时针方向),因此A 端上侧受拉。
静定结构的内力分析习题解答
3静定结构的内力分析习题解答(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 静定结构的内力分析习题解答习题 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( )(4) 习题(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( )(6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( )(7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( ) 【解】(1)正确; (2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题 填空(1)习题(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题(1)图(2) 习题(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN ·m ,____侧受拉;左柱B 截面弯矩M B =______kN ·m ,____侧受拉。
习题(2)图(3) 习题(3)图所示三铰拱的水平推力F H等于。
习题(3)图(4) 习题(4)图所示桁架中有根零杆。
习题(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
结构力学I-第三章 静定结构的受力分析(拱、隔离体法、虚位移法)
特点: 杆件都是二力杆;
分类:简单桁架、联合桁架、复杂桁架;
简单桁架 联合桁架 复杂桁架
Page
9
14:33
LOGO
回顾
桁架
内力计算:结点法、截面法、联合法;
结点法:结点为隔离体,2个平衡方程,适用于简单桁架; 截面法:隔离体包含两个以上几点,非交汇力系,3个平衡方程; 联合法:结点法和截面法的结合应用;
三铰拱受力分析
内力计算: K点
⑴ 弯矩 MK = MK 0 - FH y 拱的弯矩等于等代梁相应截面 的弯矩再减去推力引起的弯矩 ⑵ 截面力分量 Fx = - FH - Fy = FVA - F1 - F2 = FQK0 ⑶ 剪力和轴力 FQ = FQK0 cosθ - FH sinθ FN = - FQK0 sinθ - FH cosθ
FHA FHB FH 1 FH f l l l F F a F a yA 1 1 2 2 2 2 2
Page 20
FV0 A
a1 a2 a3
FVB
0
等代梁
14:33
LOGO
三铰拱
y F F K A x l/ 2 FVA x l/ 2 FVB C f B FHB F
A
三铰拱
F1 F2 K C F3 B
同跨度、同荷载的简支梁。 其反力、内力记为
0 0 0 0 M F FV F 、 、 、 VB A S
FV0 A
a1 a2 a3
FVB
0
等代梁
Page 19
14:33
LOGO
三铰拱
y F F K A F HA x l/ 2 FVA x l/ 2 FVB C f B FHB F
第2章 静定结构受力分析 结构力学
2-1 桁架受力分析
例题2-4 试求图2-7(a)所示桁架各杆件的轴力。 解:应用上述有关零杆的判断结论,依此类推(图2-7(c) 、(d)、(e)、(f))得到图2-7(f)所示体系。取C结 点为隔离体,很容易求出CB杆和CA杆的轴力
2-1 桁架受力分析
2-1-3 截面法
所谓截面法,就是截取桁架的一部分为隔离体,求解杆件
2-2 静定梁受力分析
(3)绘制内力图 在结构力学中,通常先求出指定截面
取D点为隔离体,如图2-10(c)所示。求1杆轴力
2-1 桁架受力分析
2)用Ⅱ-Ⅱ截面从第三节间将桁架截开,取左边部分隔离 体如图 2-10 ( d )所示。注意,结点 E 同样为“ K ”结点, 即FN3=-FN4,二者对F点的力矩等值反向。求2杆轴力
求5杆轴力 求3杆和4杆轴力
考虑 得
2-1 桁架受力分析
2-1 桁架受力分析
解法二 (1)求支座反力,同解法一。
(2)截取各结点做为隔离体,求解杆件内力。
结点A:隔离体如图2-3(j)所示,求AF杆的竖向分力.
2-1 桁架受力分析
然后,由比例关系求其水平分力和合力
求AC杆的轴力
结点C:隔离体如图2-3(k)所示,求CD杆和FC杆的轴力
2-1 桁架受力分析
2-1-5 各类平面梁式桁架的比较
通过对桁架的内力分析可知,弦杆的外形对桁架的内力分
布影响很大。下面就常用的四种梁式桁架(平行弦桁架、
三角形桁架、抛物线形桁架、折线形桁架)的内力分布情 况加以说明。
FP/2
FP
FP
FP
FP
FP
FP/2
(a)简支梁 -4.0 -2.5 -3.0 -4.5 d 3.54 -2.5 2.12 -1.5 0.71 -1.0 2.5 4.0 (b)平行弦桁架
二章静定结构的受力分析
二章静定结构的受力分析第二章静定结构的受力分析一判断题1. 图示梁上的荷载P将使CD杆产生内力。
(×)题1图2. 按拱的合理拱轴线制成的三铰拱在任意荷载作用下能使拱各截面弯矩为零。
(×)3. 若有一竖向荷载作用下的等截面三铰拱,所选的截面尺寸正好满足其抗弯强度的要求。
则改用相应简支梁结构形式(材料、截面尺寸、外因、跨度均相同)也一定满足其设计要求(×)4. 静定结构在支座移动、变温及荷载作用下,均产生位移和内力。
(×)5. 两个弯矩图的叠加不是指图形的简单拼合,而是指两图对应的弯矩纵矩叠加。
(√)6. 计算位移时,对称静定结构是:杆件几何尺寸、约束、刚度均对称的结构。
(√)7. 静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
(√)8. 在静定结构中,当荷载作用在基本部分时,附属部分将引起内力(×)9. 多跨静定梁仅当基本部分承受荷载时,其它部分的内力和反力均为零(√)10. 几何不变体系一定是静定结构。
(×)11. 静定结构在荷载作用下产生的内力与杆件弹性系数、截面尺寸无关(√)12. 直杆结构,当杆上弯矩图为零时,其剪力图也为零。
(√)13. 温度改变,支座移动和制造误差等因素在静定结构中引起内力。
(×)14.图示结构的反力R=)cos。
(√)(2/ql题14图题15图15. 图示结构中的反力H=2kN.( √)16. 图示结构的M图一定是对称的。
(√)题16图题17图题18图17. 图示结构的反力R=0。
(√)18. 图示刚桁架由于制造误差AB杆短了3cm,装配后AB杆将被拉长。
(×)19. 图示体系是拱结构。
(×)题19图题24图20. 静定结构的“解答的唯一性"是指无论反力、内力、变形都只用静力平衡条件即可确(×)21. 当外荷载作用在基本部分时,附属部分不受力;当外荷载作用在某一附属部分时,整个结构必定都受力。
第二章静定结构的受力分析
第二章静定结构的受力分析第一节静定结构的特性一、静定结构的性质( )( )2-1-7 图2-1-7所示结构 B 。
( ) 2-1-8 图2-1-8示结构中|(二)选择题2-2-1 A .C .有内力、无位移、无应变; D .无内力、无位移、有应变。
2-2-2 对于一个静定结构,下列说法错误的有哪些:( ) A .只有当荷载作用于结构时,才会产生内力; B .环境温度的变化,不会产生内力;C .杆件截面尺寸及截面形状的任意改变均不会引起内力改变;D .制造误差与支座沉降可能使得结构形状发生变化,因此可能产生内力。
2-2-3 静定结构由于支座沉降(位移)或制造误差,结构内部将:( ) A .有内力、有位移; B .无内力、有位移; C .有内力、无位移; D.无内力、无位移。
2-2-4 静定结构由于支座沉降(位移),结构内部将:( ) A .有应变、有位移; B .无应变、有位移; C .有应变、无位移; (D)无应变、无位移。
(三)填空题2-3-12-3-2 。
2-3-3 已知AB 梁的值为__________ kN ·m2-3-7 比较图2-3-3a、b三、习题答案2-1-1 O2-1-2 X2-1-3 O;2-1-4 O。
提示:ACB为附属部分,根据性质7。
2-1-5 X。
提示:静定结构在温度变化时不产生内力。
2-1-7 X。
提示:附属部分上无荷载,因此附属部分无内力和反力。
2-1-8 O。
提示:静定结构内力图与杆件刚度无关,因此该结构为对称结构受反对称荷载。
2-2-1 B;2-2-2 D;2-2-3 B;2-2-4 B;2-3-1 支座移动,位移,支座移动;2-3-2 静力平衡条件;2-3-3 20。
提示:静定结构内力与刚度无关,因此无论刚度怎样变化,并不影响内力图。
2-3-6 相同,不同。
第二节多跨静定梁和刚架一、基本概念1、分段叠加法作弯矩图(1)选定外力的不连续点(如集中力作用点、集中力偶作用点、分布荷载的起点和终点等)为控制截面,求出控制截面的弯矩值。