各省高中数学竞赛预赛试题汇编

合集下载

(整理)全国各省高中数学竞赛预赛试题汇编含答案

(整理)全国各省高中数学竞赛预赛试题汇编含答案

2012各省数学竞赛汇集2012高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

高中数学联赛之历年真题分类汇编(2015-2021):专题14三角函数与解三角形第一缉(解析版)

高中数学联赛之历年真题分类汇编(2015-2021):专题14三角函数与解三角形第一缉(解析版)
备战 2022 年高中数学联赛之历年真题分类汇编(2015-2021)
专题 14 三角函数与解三角形第一缉
1.【2021 年江西预赛】△ 퐴�
72° ,则∠� =
.
中,AB= �, � = �, 퐴 = � ,且�4 + �4 + �4 = 2�2 �2 + �2 ,若∠퐴 =
【答案】63
【解析】cos2
3

52 4
.
7.【2021 年浙江预赛】已知△ 퐴� 三个顶点的坐标为퐴(0,0), �(7,0), (3,4) ,过点(6 − 2 2, 3 − 2) 的
直线分别与线段 AC,BC 交于 P,Q。若�훥��
=
14 3
,则|
�| + |
�| =
.
【答案】4
+
42 3
【解析】如下图所示,

(6 − 2 2, 3 −
,
sin(�
+
�)
=−
3 5
, sin
�−�
4
=
12 13
.则 cos

+
� 4
的值为
.
【答案】−
56 65
【解析】因为�, � ∈
3� 4
,

.所以� + � ∈
3� 2
,
2�
,


� 4

� 2
,
3� 4
.
因为
sin(�
+
�)
=−
3 5
,
sin
�−�
4
=
12 13
,
所以

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 1/3D. -3.142. 若函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。

A. -1B. 3C. 5D. 73. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 11B. 13C. 15D. 175. 以下哪个是二次方程x^2 - 5x + 6 = 0的根?A. 2B. 3C. -2D. -3二、填空题(每题4分,共20分)6. 一个三角形的内角和为______度。

7. 若a,b,c是三角形的三边,且a^2 + b^2 = c^2,则此三角形是______三角形。

8. 一个正六边形的内角为______度。

9. 将一个圆分成4个扇形,每个扇形的圆心角为______度。

10. 若sinθ = 1/2,且θ在第一象限,则cosθ = ______。

三、解答题(每题10分,共65分)11. 证明:对于任意实数x,等式e^x ≥ x + 1成立。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 已知数列{an}的通项公式为an = 3n - 2,求前n项和Sn。

14. 求函数y = x^3 - 3x^2 + 2x的极值点。

15. 已知椭圆的方程为x^2/a^2 + y^2/b^2 = 1(a > b > 0),求椭圆的焦点坐标。

四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。

答案一、选择题1. A2. B3. B4. C5. A二、填空题6. 1807. 直角8. 1209. 9010. √3/2三、解答题11. 证明:设g(x) = e^x - (x + 1),则g'(x) = e^x - 1。

当x < 0时,g'(x) < 0,当x > 0时,g'(x) > 0。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛试题

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛试题

暨2023年全国高中数学联合竞赛一试试题(模拟4)一、填空题:本大题共8小题,每小题8分,满分64分.1.已知11sin(),cos sin 36αβαβ-==,则cos(22)αβ+的值为.2.等比数列{}n a 的前n 项和为n S ,若246215,S S S ==-,则8S =.3.从圆内接正八边形的8个顶点中任取3个顶点构成三角形,则所得的三角形是直角三角形的概率是.4.已知定义域为R 的偶函数()f x 满足(2)()f x f x +=-,若20231()1k f k ==-∑,则(0)f 的值为.5.已知z 为复数,且关于x 的方程243i 0x zx +++=有实数解,则z 的最小值为.6.在平面直角坐标系中,直线l 与双曲线2222:1(0,0)x y a b a bΓ-=>>的左右两支交于,A B 两点,与Γ的渐近线交于,C D 两点,且,,,A C D B 在l 上顺次排列.若OA OB ⊥,,,AC CD DB 成等差数列,则Γ的离心率的取值范围是.7.已知在四棱锥P ABCD -中,60APB BPC CPD DPA ∠=∠=∠=∠=︒,,APC BPD PB PD ∠=∠=.若该四棱锥存在半径为1的内切球,且PA =PC 的长为.8.令实数集123456}{,,,,,S a a a a a a =,定义函数:f S S ®,使得234561())()()(()())())()()((()f f a f f a f f a f f a f f a f f a =====,则满足条件的f 的个数为.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设实数,,x y z 满足0,,1x y z <<,求S的最小值,其中S =.10.(本题满分20分)已知函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数,,b c d ,满足(,()),(,()),(,()),(,())a f a b f b c f c d f d 恰好为一个矩形的四个顶点,求a 的取值范围.11.(本题满分20分)在平面直角坐标系xOy 中,拋物线2:4C y x =的焦点为F ,过点F 的直线交C 于,A B 两点(其中点A 在第一象限),过点A 作C 的切线交x 轴于点P ,直线PB 交C 于另一点Q ,直线QA 交x 轴于点T .(1)证明:AF AT BF QT ×=×;(2)记,,AOP AFT BQT D D D 的面积分别为123,,S S S ,当点A 的横坐标大于2时,求321S S S -的最小值.暨2023年全国高中数学联合竞赛一试(模拟4)参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.已知11sin(),cos sin 36αβαβ-==,则cos(22)αβ+的值为..角形是直角三角形的概率是.4.已知定义域为R 的偶函数()f x 满足(2)()f x f x +=-,若1()1k f k ==-∑,则(0)f 的值为.答案:1.解:因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,所以()f x 的周期为4,所以()()20f f =-,()()31f f =-,()()()420=-=f f f ,即()()()()()()()()123410100+++=--+=f f f f f f f f .若20231()1k f k ==-∑,则()()()()()123420231+++++=- f f f f f ,即()()()()()()()50512341231f f f f f f f ⎡⎤⨯++++++=-⎣⎦,可得()()()()()()1231011++=--=-f f f f f f ,所以()01f =.5.已知z 为复数,且关于x 的方程243i 0x zx +++=有实数解,则z 的最小值为.6.在平面直角坐标系中,直线l 与双曲线22:1(0,0)a b a bΓ-=>>的左右两支交于,A B 两点,与Γ的渐近线交于,C D 两点,且,,,A C D B 在l 上顺次排列.若OA OB ⊥,,,AC CD DB 成等差数列,则Γ的离心率的取值范围是.60APB BPC CPD DPA ∠=∠=∠=∠=︒,,APC BPD PB PD ∠=∠=.⎫⎪⎭123456234561())()()(()())())()()((()f f a f f a f f a f f a f f a f f a =====,二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设实数,,x y z 满足0,,1x y z <<,求的最小值.10.(本题满分20分)已知函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数,,b c d ,满足(,()),(,()),(,()),(,())a f a b f b c f c d f d 恰好为一个矩形的四个顶点,求a 的取值范围.解:已知3()22f x x x =-,若正实数a 使得存在三个两两不同的实数b ,c ,d ,满足(,())a f a ,(,())b f b ,(,())c f c ,(,())d f d 恰好为一个矩形的四个顶点,因为3()22f x x x =-是奇函数,所以若存在一个矩形,则矩形的中心在原点,则…………12分…………16分为F ,过F 的直线交C 于,A B 两点(其中点A 在第一象限),过点A 作C 的切线交x 轴于点P ,直线PB 交C 于另一点Q ,直线QA 交x 轴于点T .(1)证明:AF AT BF QT ×=×;(2)记,,AOP AFT BQT D D D 的面积分别为123,,S S S ,当点A 的横坐标大于2时,求321S S S -的最小值.。

高中数学竞赛一试模拟题汇编

高中数学竞赛一试模拟题汇编

高中数学竞赛一试模拟题汇编高中数学竞赛一试,是评估学生数学能力和思维水平的重要方式,也是培养优秀的数学人才的必要手段。

以下是数学竞赛一试的模拟题目,希望对学生加深对数学知识的理解和巩固数学基础有所帮助。

一、选择题1.已知曲线y=2x²-3x+5,求曲线在点(1,4)的切线方程的斜率。

A. -1B. 0C. 1D. 2答案:D2.函数y=f(x)的导函数为y=x(x-2),且f(1)=3,求f(2)的值。

A. 1B. 2C. 3D. 4答案:D3.已知函数f(x)和g(x)都在区间[0,1]上单调递增且满足f(0)=0,f(1)=1,g(0)=1,g(1)=0,在这个区间内的任意点x,交点f(x)和g(x)的坐标为(x,f(x))和(x,g(x)),求这两条曲线之间的面积。

A. 1/2B. 1/4C. 1/8D. 1/16答案:B二、填空题1.若f(-1)=2,f'(x)=3x²+2x-1,则f(x)=______。

答案:x³+x²-x+32.已知函数y=ln(7x-8)的反函数为f(x),则f'(4)的值为______。

答案:1/273.已知函数y=cos(x),则当0°≤x≤45°时,y从最大值变为最小值的增量的绝对值为______。

答案:√2/2三、解答题1.已知直角三角形ABC中,角A=90°,BC=a, AB=b,以BC为底画一高为AD,则已知两边AD和AB之比是5:12,求a与b之比。

解:连接BD,设AD=5k, BD=12k,则AB=√(BC²+AC²)=√(a²+b²),同时有BC²=AD²+BD²,即a²=(5k)²+(12k)²,b²=AB²-BC²=144k²-(5k)²=119k²,所以有a/b=5k/√(119k²-25k²)=5/√(119-25)=5/√94,所以a/b=5√94/94。

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。

若A B ⊆,则实数m 的取值范围为 。

2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。

3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。

4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。

5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。

6.已知复数z 满足24510(1)1zz =−=,则z =__________________。

7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。

8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。

9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。

10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。

直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。

则当1OAF ∠最大时,实数r =_____________________。

各省高中数学竞赛试题汇编——函数小题目

各省高中数学竞赛试题汇编——函数小题目

各省数学竞赛试题汇编——函数小题目1.【2018年湖南预赛】函数的定义城为_________.【答案】【解析】由得,所以函数的定义城为.故答案为2.【2018年湖南预赛】已知函数对任意的实数满足:,且当时,,当时,,则象与的图象的交点个数为___________。

【答案】10【解析】由题意知,f(x)=且周期是6,,且此函数是偶函数,在同一个直角坐标系中画出两个函数的图象如下图所示:由图可得,两个函数图象的交点个数是10个.3.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 4.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 5.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 6.【2018年贵州预赛】若方程有两个不等实根,则实数的取值范围是_____________. 【答案】【解析】由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.7.【2018年安徽预赛】设点P、Q分别在函数的图象上,则的最小值=_________. 【答案】【解析】设P(),Q()使最小.由互为反函数,知点P、Q处的切线斜率都是1,直线PQ的斜率都是-1.故.故答案为:8.【2018年广东预赛】函数的值域为_____________.【答案】当时,的值域为();当时,的值域为().【解析】,因为,所以当时,的值域为();当时,的值域为().故答案为:当时,的值域为();当时,的值域为().9.【2018年广东预赛】已知方程在区间(-2,2)内恰有两个实根,则k的取值范围是__________. 【答案】【解析】记,令,得.当时,在()上为增函数.当时,在()上为减函数.所以在点处取得最大值,当且仅当时,在区间(-2,2)内恰有两个实根,故k的取值范围是.故答案为:10.【2018年贵州预赛】方程组的实数解为___________.【答案】【解析】因为,所以,即,代入,得.由.11.【2018年湖北预赛】设是定义在上的单调函数,若对任意的,都有,则不等式的解集为______.【答案】【解析】由题设,存在正常数,使得,且对任意的,有.当时,有,由单调性知此方程只有唯一解.所以.不等式,即,解得.故不等式的解集为.12.【2018年甘肃预赛】关于的方程有唯一实数解,则实数的取值范围是______.【答案】【解析】解法一原方程化为.(1).(2)时,的两根分别为1、3,不符合题意.(3)时,的两根分别为2,.因此,符合题意要求.(4),即时,若,不符合要求;若,因此,符合要求.解法二,因为,所以.上单调递增,在上单调递减.又,所以的取值范围是.13.【2018年吉林预赛】函数的定义域为__________.【答案】(1,2)(4,5)【解析】由题得,解之得x∈(1,2)(4,5).故答案为:(1,2)(4,5)14.【2018年山东预赛】对任意的实数的最小值为______.【答案】【解析】设,则①+②+③得.解得.又当时,有解.故当时,取到最小值.15.【2018年山东预赛】已知,且为方程的一个根,则的最大可能值为______.【答案】9【解析】由题设,则.因为,则必为完全平方数.设,则.所以.解得,8,,0.所以的最大可能值为9.16.【2018年山东预赛】设为最接近的整数,则______.【答案】【解析】设,则,即.而,因此满足个.注意到,从而或7.由于,所以.因此.17.【2018年天津预赛】已知函数的定义域都是,它们的图象围成的区域面积是_____________【答案】【解析】将的图象补充为完整的圆,则由中心对称性易知答案是圆面积的一半,为.故答案为:18.【2018年天津预赛】若为正实数,且是奇函数,则不等式的解集是_____________【答案】【解析】由可得即也即,所以.由于在(0,+)上递增,所以在(0,+)上是增函数,结合是奇函数可知在R上是增函数.解不等式,只需找到的解.方程等价于也即两边平方,解得.因此,不等式的解集是.故答案为:19.【2018年河南预赛】已知函数,若的定义域为,值域为,则的值为______.【答案】0【解析】因为,所以有,得,故上是增函数,进而.解得(舍)或.故填0.20.【2018年河北预赛】若,且满足那么. 【答案】1【解析】把已知条件变形为函数上为增函数且是奇函数,另,故,所以.21.【2018年四川预赛】设函数上的最大值为,最小值为,那么的值为______. 【答案】4【解析】因为上单调递减,在上单调递增,所以的最小值为.又的最大值为故故答案为:422.【2018年四川预赛】的值为______.【答案】1【解析】令,则从而,化简为.所以,原式故答案为:123.【2018年浙江预赛】已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.24.【2018年浙江预赛】设,则有________个不同的解. 【答案】3【解析】因为由得到,或.由,得一个解;由得两个解,共3个解.25.【2018年浙江预赛】设满足,则x的取值范围为________. 【答案】【解析】由.令,,所以.26.【2018年江西预赛】函数的值域是区间______.【答案】【解析】显然函数定义域为,在此区间内,由于,即,故有角使得.于是,因为,则.在此范围内,则有.因此.(当时,;当时,)故答案为:27.【2018年山西预赛】函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.28.【2018年湖南预赛】如图,A与P分别是单位圆O上的定点与动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数,则=__________.【答案】【解析】对角度x进行简单的分类,然后根据三角函数的定义得到利用函数的周期性得到.故答案为:29.【2018年湖南预赛】如图放置的边长为1的正方形ABCD沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B为中心顺时针旋转,如此继续,设顶点C滚动时的轨迹方程为,则上的表达式为__________.【答案】【解析】①由于是以4为周期的周期函数,所以当时此时由周期性及①式的结果得到故答案为:30.【2018年湖南预赛】设,函数(其中表示对于,当时表达式的最大值),则的最小值为_____.【答案】【解析】对于每一个,函数是线性函数.因此,在任意有限闭区间上,函数的最大值与最小值均在区间端点处达到,从而有由于函数图像交点的横坐标c满足,得到其图像为两条折线组成,且故答案为:31.【2018年福建预赛】已知定义在上的奇函数,它的图象关于直线对称.当时,,则______.【答案】2【解析】由为奇函数,且其图象关于直线对称,知,且,所以.是以8为周期的周期函数.又,所以.32.【2018年福建预赛】已知整系数多项式,若,则______.【答案】24【解析】设,则,于是.所以.所以是多项式的一个根.又不可能是三次整系数多项式、二次整系数多项式的零点.所以整除.故为整数.所以.由,得.所以.33.【2018年福建预赛】已知函数满足:对任意实数,都有成立,且,则______.【答案】【解析】在中,令,得.令,得.又,所以,即.又,,所以.故.34.【2016年上海预赛】若x∈(-1,1)时,恒为正值,则实数a的取值范围是____________。

各省市高中数学竞赛预赛试题汇编——概率与统计

各省市高中数学竞赛预赛试题汇编——概率与统计

各省市高中数学竞赛预赛试题汇编——概率与统计1.【2018年广西预赛】若定义在R上的函数满足,则不等式的解为___________.【答案】【解析】构造函数,则.由可知在()内单调递增,从而有.故.2.【2018年甘肃预赛】已知函数),函数满足),若函数恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数为奇函数,从而的图象关于点对称.函数,可知的图象也关于点对称.由此的图象关于点对称,从而这2019个零点关于点(1,0)对称,由于的一个零点,其余2018个零点首尾结合,两两关于点对称,和为2018,故所有这些零点之和为2019.3.【2018年四川预赛】设直线与曲线有三个不同的交点,且,则的值为______.【答案】1【解析】曲线关于点对称,且,所以直线必过原点,从而设,则由此得,代入得即解得故答案为:14.【2016年福建预赛】函数f(x) =x2ln x+x2-2零点的个数为________.【答案】1 【解析】 由条件知.当时,<0;当时,>0.于是,f (x )在区间(0,)上为减函数,在区间(,+∞)上为增函数.又时, f (x )=x 2(lnx +1)-2<0,注意到,故函数f (x )零点的个数为1.5.【2018年陕西预赛】已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: k R ∀∈,直线()y g x =都不是曲线()y f x =的切线;(2)若2,x e e ⎡⎤∃∈⎣⎦,使()()1+2f x g x ≤成立,求实数k 的取值范围. 【答案】(1)见解析;(2)k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)若直线()y g x =与曲线()y f x =相切,因直线()y g x =过定点()1,0,若设切点000,ln x x x ⎛⎫⎪⎝⎭则可得00ln 10x x +-=①,又()ln 1h x x x =+-, ()0,+∞上单调递增,当且仅当01x =时,①成立,这与01x ≠矛盾,结论得证. (2)()()12f x g x ≤+可转化为()11ln 2x k x x --≤,令()()1ln x x k x xϕ=--, 2,x e e ⎡⎤∈⎣⎦, ()min 12x ϕ≤,分类讨论求()x ϕ的最小值即可.试题解析: (1)()f x 的定义域为()()0,11,⋃+∞, ()()2ln 1ln x f x x -'=,直线()y g x =过定点()1,0,若直线()y g x =与曲线()y f x =相切于点000,ln x x x ⎛⎫ ⎪⎝⎭(00x >且01x ≠),则()000200ln 1ln 1ln x x x k x x -==-,即00ln 10x x +-=①,设()ln 1h x x x =+-, ()0,x ∈+∞,则()110h x x+'=>,所以()h x 在()0,+∞上单调递增,又()10h =,从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以, k R ∀∈,直线()y g x =都不是曲线()y f x =的切线;(2)()()12f x g x ≤+即()11ln 2x k x x --≤,令()()1ln x x k x xϕ=--, 2,x e e ⎡⎤∈⎣⎦, 则2,x e e ⎡⎤∃∈⎣⎦,使()()12f x g x ≤+成立()min 12x ϕ⇔≤, ()()222ln 111111ln ln ln 24ln x x k k k x x x x ϕ-⎛⎫⎛⎫=-=-+-=--+- ⎪⎪⎝⎭⎝⎭'. (i )当14k ≥时, ()0x ϕ'≤, ()x ϕ在2,e e ⎡⎤⎣⎦上为减函数,于是()()()222min 12e x e k e ϕϕ==--,由()221122e k e --≤得12k ≥,满足14k ≥,所以12k ≥符合题意;(ii )当14k <时,由21124y t k ⎛⎫=--+- ⎪⎝⎭及1ln t x =的单调性知()111ln 24x k x ϕ⎛⎫=--+- ⎪⎝⎭'在2,e e ⎡⎤⎣⎦上为增函数,所以()()()2e x e ϕϕϕ≤≤''',即()14k x k ϕ-≤'≤-. ①若0k -≥,即0k ≤,则()0x ϕ'≥,所以()x ϕ在2,e e ⎡⎤⎣⎦为增函数,于是()()()min 112x e e k e e ϕϕ==--≥>,不合题意;②若0k -<,即104k <<,则由()0e k ϕ'=-<, ()2104e k ϕ='->及()x ϕ'的单调性知存在唯一()20,x e e ,使()00x ϕ'=,且当()0,x e x ∈时, ()0x ϕ'<, ()x ϕ为减函数;当()20,x x e ∈时,()0x ϕ'>, ()x ϕ为增函数;所以()()()000min 01ln x x x k x x ϕϕ==--,由()00011ln 2x k x x --≤得000001111111ln 212224x x k x x x ⎛⎫⎛⎫≥->-=> ⎪ ⎪--⎝⎭⎝⎭,这与104k <<矛盾,不合题意. 综上可知, k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.6.【2018年陕西预赛】已知函数.(1)证明:,直线都不是曲线的切线;(2)若,使成立,求实数的取值范围.【答案】(Ⅰ)见解析; (Ⅱ).【解析】试题分析:(1)若直线与曲线相切,因直线过定点,若设切点则可得①,又上单调递增,当且仅当时,①成立,这与矛盾,结论得证.(2)可转化为,令,分类讨论求的最小值即可.试题解析:(1)的定义域为,直线过定点,若直线与曲线相切于点),则,即①,设,则,所以上单调递增,又,从而当且仅当时,①成立,这与矛盾.所以,,直线都不是曲线的切线;(2),令,则,使成立,.(i)当时,上为减函数,于是,由,满足,所以符合题意;(ii)当时,由的单调性知上为增函数,所以,即.①若,即,则,所以为增函数,于是,不合题意;②若,即,则由的单调性知存在唯一,使,且当时,为减函数;当时,为增函数;所以,由,这与矛盾,不合题意.综上可知,的取值范围是.7.【2018年陕西预赛】已知函数.(1)证明:,直线都不是曲线的切线;(2)若,使成立,求实数的取值范围.【答案】(Ⅰ)见解析; (Ⅱ).【解析】试题分析:(1)若直线与曲线相切,因直线过定点,若设切点则可得①,又上单调递增,当且仅当时,①成立,这与矛盾,结论得证.(2)可转化为,令,分类讨论求的最小值即可.试题解析:(1)的定义域为,直线过定点,若直线与曲线相切于点),则,即①,设,则,所以上单调递增,又,从而当且仅当时,①成立,这与矛盾.所以,,直线都不是曲线的切线;(2),令,则,使成立,.(i)当时,上为减函数,于是,由,满足,所以符合题意;(ii)当时,由的单调性知上为增函数,所以,即.①若,即,则,所以为增函数,于是,不合题意;②若,即,则由的单调性知存在唯一,使,且当时,为减函数;当时,为增函数;所以,由,这与矛盾,不合题意.综上可知,的取值范围是.8.【2018年广东预赛】设函数.⑴求在区间(n为正整数)上的最大值;⑵令(n、k为正整数).求证:.【答案】(1)(2)见解析【解析】⑴因为,所以当时,,即上是增函数,故上的最大值为.⑵由⑴知.因为,所以.又容易证明.所以所以. 即.9.【2018年甘肃预赛】设函数).(1)讨论的单调性;(2)如果有两个极值点,我们记过点的直线斜率为.问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.【答案】(1)见解析(2)不存在【解析】(1)f(x)的定义域为,。

2023年全国中学生数学奥林匹克竞赛(预赛)一试预测卷二(含解析)

2023年全国中学生数学奥林匹克竞赛(预赛)一试预测卷二(含解析)

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试仿真模拟卷(二)一、填空题(每题8分,共64分)1.若sin cos sin 222θθα⋅=,sin sin cos θβθ、、成等比数列,则2cos cos2αβ-=________. 2.已知正实数列{}n a 满足:11a =,27a =,21214(2,3,)12n n nn n a a a a n a +-+==+,则2018a =________.3.已知定义在R 上的函数()y f x =(x ),对任意满足222p q r +=的p 、q 、r 均有()f p +()()0f q f r +=,M 、m 分别为函数()()tan 3g x f x x =++,在(),22x ππ∈-上的最大值和最小值,则M m +=________.4.在直三棱柱111ABC A B C -中,已知1AB BC ==,1BB =90ABC ∠=︒,E 、F 分别为边111AA B C 、的中点,则点E 沿棱柱的表面到点F 的最短路径的长度为________.5.设复数123z z z 、、满足1232018z z z ===.则123123111z z z z z z ++++的值为________.6.已知:211111()11121212n n a n +-=++++∈++++N ,则[]20181k k a ==∑________. 7.已知1F 、2F 为椭圆和双曲线的公共焦点,P 为其中的一个公共点,且123F PF π∠=,设椭圆和双曲线的离心率分别为1e 和2e ,则2212e e +的最小值为________.8.用1、2、3、4、5、6、7这七个数字组成没有重复数字的七位数,使其恰好是11的倍数的概率为________. 二、解答题(共56分)9.(16分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11112111n n n a a a n n ++++<<-+12na +.求数列{}n a 的通项n a .10.(20分)如图,设动点P 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使0OM ON ⋅=,其中点O 为坐标原点.11.(20分)已知函数()f x =(0,)x ∈+∞. (1)当8a =时,求()f x 的单调区间; (2)对任意正数a ,证明:1()2f x <<.2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试仿真模拟卷(二)详细解析1.1-.解:由题意得:sin sin cos αθθ=+,2sin sin cos βθθ=⋅. 故222222cos cos21sin (12sin )sin 2sin (sin cos )2sin cos 1.αβαβαβθθθθ-=---=-+=-++⋅=-2.201832-.解:由题意得,()2111112222722(2,3,)3222212n n n n n n n n n a a a a a n a a a a +++--+++++=-⇒==⇒==+++++. 故数列{}2n a +是以123a +=为首项,3q =为公比的等比数列. 从而,1332n n a -=⨯-.故2018201832a =-.3.6.解:令0p q r ===,则(0)0f =.令0q =,p x =,r x =-,则()(0)()0()()f x f f x f x f x ++-=⇒=--. 所以()f x 为奇函数.故()3y g x =-也为奇函数.因此,6M m +=.4.32.解:比较以下三种情形下的线段EF 的长度:分别将以下三个二面角11111111A A B C A BB C A AC B ------、、展成平面, 利用余弦定理计算即可. 5.14072324.解:因为2018(1,2,3)i z i ==,所以22018i i z z =.从而,212018i i z z =.故原式12312322221231231120182018201820184072324z z z z z z z z z z z z ++++===++++. 6.2016.解:一方面,211111112212222n n n a --<++++=-<. 另一方面,当3n ≥时,11111111123512235n n a -=++++≥++>+.所以当3n ≥时,[]1n a =.又112a =,256a =,从而12[][]0a a ==.故[]201812016k k a ==∑.7.12+.解: 设1PF x =,2PF y =(不妨x y >),椭圆的长轴长为2m ,双曲线的实轴长为2n ,122F F c =.则2x y m +=,2x y n -=,2224x y xy c +-=.故22234m n c+=,所以2212134e e +=. 于是,222212122212134()()4e e e e e e ⎛⎫+=++≥+ ⎪⎝⎭.所以221212e e +≥+. 当221222213e e e e =,且2212134e e +=,即2114e =,2234e =时,2212min ()12e e +=+. 8.435.解:注意到,一个正整数被11整除当且仅当其奇数位上的数字之和与偶数位上的数字之和的差被11整除.记七位数为7654321a a a a a a a .则满足题意的七位数共有7!个. 又()()75316420(mod11)a a a a a a a +++-++≡. 而()()7531642max 456712316a a a a a a a +++-++=+++---=.故只能是7531642a a a a a a a +++=++, 即:753164214a a a a a a a +++=++=.于是,分组只能是:{2,3,4,5}和{1,6,7},{1,2,4,7}和{3,5,6},{1,2,5,6}和{3,4,7},{1,3,4,6}和{2,5,7}.和共四种情形.每种情形可以组成4!3!⨯个被11整除的七位数.故所求的概率为44!3!47!35⨯⨯=. 9.解法一:易得:11a =,24a =,39a =,猜想:n a n =. 下面用数学归纳法证明.(1)当1n =,2时,易知2n a n =均成立; (2)假设(2)n k k =≥成立,则2k a k =,且满足1111122111k k k ka a a a k k ++++<<+-+ ①当1n k =+时, 由①得221122122221211112(1)2(1)(1)11(1)1(1)(1).11k k k k k k a ka k k k k k k a k k k k k a k k k ++++⎛⎫+<++<+ ⎪⎝⎭++-⇒<<-+-+⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以22(1)(0,1]1k k +∈+. 又11k -≥,所以1(0,1]1k ∈-. 又*1k a +∈N ,所以221(1)(1)k k a k ++≤≤+. 故21(1)k a k +=+,即1n k =+时,2n a n =成立.由(1),(2)知,对任意*n ∈N ,2n a n =.解法二:易得:11a =,24a =,39a =,猜想:2n a n =.. 下面用数学归纳法证明(1)当1n =,2时,易知2n a n =均成立; (2)假设(2)n k k =≥成立,则2k a k =,且满足1111122111k k k ka a a a k k ++++<<+-+ ①当1n k =+时, 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭. ①即21111(1)122k k k k k a k a k+++++<+<+. ②由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-≤+--=+-于是21(1)k a k +≤+.③又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+≥++,所以4321221(1)11k k k ka k k k k k +++≥=+--+-+.又因2k ≥时,1k a +为正整数,则21(1)k a k +≥+.④据③④得,21(1)k a k +=+,即1n k =+时,2n a n =成立. 由(1),(2)知,对任意*n ∈N ,2n a n =.10.解法一:(1)在△P AB 中,||2AB =,即222121222cos2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A 、B为焦点,实轴长2a =的双曲线,方程为:2211x y λλ-=-. (2)设11(,)M x y ,22(,)N x y①当MN 垂直于x 轴时,MN 的方程为1x =,(1,1)M 和(1,1)N -在双曲线上.即111λλ-=-211102λλλ-⇒+-=⇒=,因为01λ<<,所以12λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩,得:2222[(1)]2(1)(1)()0k x k x k λλλλλ--+---+=, 由于该方程有两个不同的解,故2[(1)]0k λλ--≠,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是,22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0OM ON ⋅=,且M 、N 在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+==⎧-⎧⎪>⇒<<⎪⎪+-+>⇒⇒⎨⎨⎨+--⎪⎪⎪>+->>⎩⎩⎩-.由①②知,1223λ-≤<. 解法二:(1)同解法一(2)设11(,)M x y ,22(,)N x y ,MN 的中点为()00,E x y ①当121x x ==时,22||1101MB λλλλλ=-=⇒+-=-,因为01λ<<.所以λ=②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⋅⎨-⎪-=⎪⎩-. 又001MN BE y k k x ==-所以22000(1)y x x λλλ-=-; 由2MON π∠=得()2220||2MN x y +=,第二定义得()()221220200||2221(1)21.MN e x x a x x x λλ+-⎡⎤=⎢⎥⎣⎦=-=+---所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ-=-⎧⎨-=--+-⎩ 得20(1)23x x λ-=-.因为01x >,所以2(1)123x x ->-,又01λ<<,解得:1223λ-<<由①②知1223λ≤<. 11.(1)当8a =时,11()33f x =+=+.则(1)(1()1x f x x+⋅=+=='''令()0f x '>,结合0x >,解得01x <<.故()f x 在(0,1)单调递增,同理()f x 在(1,)+∞单调递减.所以8a =时,()f x 单调递增区间为(0,1),单调递减区间为(1,)+∞.(2)对任意给定的0a >,0x >因()f x =,若令8b ax=,则8abx =. ①则()f x =②先证()1f x >:因为11x >+11a >+11b >+.又由28a b x +++≥=,从而6a b x ++≥.所以111()11132()9()()(1)(1)(1)(1)(1)(1)1()() 1.(1)(1)(1)f x x a ba b x ab bx ax a b x ab bx ax x a b x a b a b x ab bx ax abx x a b =+>+++++++++++++++++=≥+++++++++++++==+++ 再证:()2f x <:由①、②的关于x 、a 、b 的对称性,不妨设x a b ≥≥,则02b <≤,1°当7a b +≥,则5a ≥,从而5x a ≥≥,1<1≤=<.所以()2f x =++<. 2°若7a b +<,由①得8x ab=,则=因为222111114()2(1)b b b b b a b b ⎛⎫<-+=- ⎪++++⎝⎭.12(1)bb <-+.12(1)a a <-+,于是1()2211a b f x a b ⎛<-+- ++⎝.现证明11a b a b +>++因为11a b a b +>++> 只要(1)(1)8a b ab ++<+,即证18a b ab ab +++<+,即7a b +<,由假设知该式成立.综上,对任意正数a ,1()2f x <<.。

全国高中数学联赛预赛试题汇编

全国高中数学联赛预赛试题汇编

函数值域与最值1、 (20XX 年江西省预赛试题)函数21)(2+-=x x x f 的值域是2、 (20XX 年安徽省预赛试题)函数242)(x x x x f --=的值域是3、 (20XX 年山西省预赛试题)若],0[π∈x ,函数xx xx y cos sin 1cos sin ++=的值域是4、 (20XX 年辽宁省预赛试题)函数|cos |3|sin |2)(x x x f +=的值域是5、 (20XX 年全国联赛一试试题)函数x x x f 3245)(---=的值域是6、(20XX 年河北省预赛试题)已知关于x 的不等式k x x ≥-+2有实数解,则实数k 的取值范围是7、(20XX 年江西省预赛试题)设多项式)(x f 满足:对R x ∈∀,都有x x x f x f 42)1()1(2-=-++,则)(x f 的最小值是8、(20XX 年四川省预赛试题)已知函数424)42()(24224+++-++=x x x k k x x f 的最小值是0,则非零实数k 的值是9、(20XX 年全国联赛一试试题)已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是10、(20XX 年全国联赛一试试题)函数)1,0(23)(2≠>-+=a a a a x f x x 在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是11、(20XX 年福建省预赛试题)已知函数|2|)(a x x x f -=,试求)(x f 在区间]1,0[上的最大值)(a g12、(20XX 年辽宁省预赛试题)已知131≤≤a ,若12)(2+-=x ax x f 在]3,1[上的最大值为)(a M ,最小值为)(a N ,令)()()(a N a M a g -=(1)求)(a g 的函数表达式; (2)求证:21)(≥a g 恒成立。

1、(20XX 年河北省预赛试题)函数)1(+=x f y 的反函数是)1(1+=-x f y ,且4007)1(=f ,则=)1998(f2、(20XX 年山西省预赛试题) 函数2)(2-=ax x f ,若2))2((-=f f ,则=a3、(20XX 年辽宁省预赛试题)不等式x x 256log )1(log >+的整数解的个数为4、(20XX 年吉林省预赛试题)已知1)1,1(=f ,),(),(**N n m N n m f ∈∈,且对任意*,N n m ∈都有:①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+,则)2008,2010(f 的值为5、(20XX 年山东省预赛试题)若函数x e ex x f -=ln )(,则=∑=)2011(20101k kef6、(20XX 年山东省预赛试题)函数432)(23+++=x x x x f 的图像的对称中心为7、(20XX 年山东省预赛试题)已知函数)0(4321)(2>--=a x ax x f ,若在任何长度为2的闭区间上总存在两点21,x x ,使41|)()(|21≥-x f x f 成立,则a 的最小值为 8、(20XX 年福建省预赛试题)函数)(cos sin )(*22N k x x x f k k ∈+=的最小值为 9、(20XX 年河南省预赛试题)设11)(+-=x x x f ,记)()(1x f x f =,若))(()(1x f f x f n n =+,则=)(2010x f10、(20XX 年湖北省预赛试题)对于一切]21,2[-∈x ,不等式0123≥++-x x ax 恒成立,则实数a 的取值范围为11、(20XX 年甘肃省预赛试题)设0>a ,函数|2|)(a x x f +=和||)(a x x g -=的图像交于C 点且它们分别与y 轴交于A 和B 点,若三角形ABC 的面积是1,则=a 12、(20XX 年甘肃省预赛试题)函数R R f →:对于一切R z y x ∈,,满足不等式)2(3)()()(z y x f x z f z y f y x f ++≥+++++,则=-)0()1(f f13、(20XX 年黑龙江省预赛试题)设)(x f 是连续的偶函数,且当0>x 时是严格单调函数,14、(20XX 年贵州省预赛试题)已知函数2232)(a ax x x f --=,且方程8|)(|=x f 有三个不同的实根,则实数=a15、(20XX 年安徽省预赛试题)函数=y 的图像与x e y =的图像关于直线1=+y x 对称16、(20XX 年浙江省预赛试题)设442)1()1()(x x x x k x f --+-=,如果对任何]1,0[∈x ,都有0)(≥x f ,则k 的最小值为17、(20XX 年湖南省预赛试题)设函数x xx x f 2cos )24(sin sin 4)(2++⋅=π,若2|)(|<-m x f 成立的充分条件是326ππ≤≤x ,则实数m 的取值范围是 18、(20XX 年新疆维吾尔自治区预赛试题)已知函数221)(x x x f +=,若)1011()1001(...)31()21(),101(...)2()1(f f f f n f f f m ++++=+++=,则=+n m19、(20XX 年河北省预赛试题)已知函数)1)(1ln(1221)(2≥+++-=m x x mx x f(1)若曲线)(:x f y C =在点)1,0(P 处的切线l 与C 有且只有一个公共点,求m 的值; (2)求证:函数)(x f 存在单调递减区间],[b a ,并求出单调递减区间的长度a b t -=的取值范围。

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编 立体几何与空间向量(省赛试题汇编)(原卷版)

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编  立体几何与空间向量(省赛试题汇编)(原卷版)

全国高中数学历届(2009-2019)联赛与各省市预赛试题汇编专题17立体几何与空间向量强化训练(省赛试题汇编) 1.【2018年河北预赛】若的三边长分别为8、10、12,三条边的中点分别是B、C、D,将三个中点两两连结得到三条中位线,此时所得图形是三棱锥A-BCD的平面展开图,则此三棱锥的外接球的表面积是________.2.【2018年四川预赛】在三棱锥中,三条棱两两垂直,且.若点为三棱锥的外接球球面上任意一点,则到面距离的最大值为______.3.【2018年浙江预赛】四面体P-ABC,,则该四面体外接球的半径为________.4.【2018年辽宁预赛】四面体ABCD中,已知,则异面直线AC与BD 所成角的正弦值是_____.5.【2018年江西预赛】四棱锥的底面是一个顶角为的菱形,每个侧面与底面的夹角都是,棱锥内有一点到底面及各侧面的距离皆为1,则棱锥的体积为______.6.【2018年山西预赛】四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为___ _.7.【2018年湖南预赛】已知二面角为60°,动点P、Q分别在面内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.8.【2018年湖南预赛】四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为_____ _____.9.【2018年福建预赛】如图,在三棱锥中,都是边长为6的等边三角形.若二面角的大小为,则三棱锥的外接球的面积为______.10.【2016年吉林预赛】一个几何体的三视图如图.则此几何体的体积为_____11.【2016年浙江预赛】已知两个底面重合的正四面体、正四边形分别为的重心。

记。

若点满足,则实数__________,__________,__________。

全国各省省高中数学竞赛试题及参考答案汇编

全国各省省高中数学竞赛试题及参考答案汇编

1、浙江省高中数学竞赛试题2、河北省高中数学竞赛试题3、全国高中数学联赛广东省预赛4、全国高中数学联赛江苏赛区初赛题5、浙江省高中数学竞赛试题6、湖北省高中数学竞赛试题7、全国高中数学联合竞赛一试试题8、二O一一年全国高中数学联赛甘肃省预赛试题9、全国高中数学联赛陕西赛区预赛试卷10、全国高中数学联赛山东省预赛试题11、全国高中数学联赛江西省预赛试题12、全国高中数学联赛山西省预赛13、全国高中数学联赛甘肃省预赛试题14、全国高中数学联合竞赛(四川初赛)15、全国高中数学联赛安徽省预赛试题16、新知杯上海市高中数学竞赛试题17、湖南省高中数学竞赛试卷A卷浙江省高中数学竞赛试题一、选择题(本大题共有10小题,每题只有一个正确答案,将正确答案的序号填入题干后的括号里,多选、不选、错选均不得分,每题5分,共50分) 1. 已知53[,]42ππθ∈) A .2sin θ B. 2sin θ- C. 2cos θ- D. 2cos θ2.如果复数()()21a i i ++的模为4,则实数a 的值为( )A. 2B. C. 2±D. ±3. 设A ,B 为两个互不相同的集合,命题P :x A B ∈⋂, 命题q :x A ∈或x B ∈,则p 是q 的( )A. 充分且必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分且非必要条件4. 过椭圆2212x y +=的右焦点2F 作倾斜角为45弦AB ,则AB 为( ) A.B.C. 3D.21243400,3x x x x AB -=⇒==⇒==。

正确答案为C 。

5. 函数150()51xxx f x x -⎧-≥=⎨-<⎩,则该函数为( )A. 单调增加函数、奇函数B. 单调递减函数、偶函数C. 单调增加函数、偶函数D. 单调递减函数、奇函数 6. 设有一立体的三视图如下,则该立体体积为( )正视图 侧视图 俯视图(圆和正方形)2212231A. 4+52π B. 4+32π C. 4+2π D. 4+π 7.某程序框图如右图所示,现将输出(,)x y 值依 次记为:1122(,),(,),,(,),;n n x y x y x y 若程序运行中输出的一个数组是 (,10),x -则数组中的x =( ) A .64 B .32 C .16 D .88. 在平面区域{}(,)||1,||1x y x y ≤≤上恒有22ax by -≤,则动点(,)P a b 所形成平面区域的面积为( )A. 4B.8C. 16D. 32 9. 已知函数()sin(2)6f x x m π=--在0,2π⎡⎤⎢⎥⎣⎦上有两个零点,则m 的取值范围为( ) A. 1, 12⎛⎫⎪⎝⎭ B 1, 12⎡⎤⎢⎥⎣⎦C. 1, 12⎡⎫⎪⎢⎣⎭D. 1, 12⎛⎤⎥⎝⎦10. 已知[1,1]a ∈-,则2(4)420x a x a +-+->的解为( )A. 3x >或2x <B. 2x >或1x <C. 3x >或1x <D. 13x <<二、填空题(本大题共有7小题,将正确答案填入题干后的横线上,每空7分,共49分)11. 函数()2sin2xf x x =的最小正周期为______ ____。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。

全国各省高中数学竞赛预赛试题汇编含答案

全国各省高中数学竞赛预赛试题汇编含答案

2012各省数学竞赛汇集2012高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编 集合(解析版)

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编 集合(解析版)

全国高中数学历届(2009-2019)联赛与各省市预赛试题汇编专题18集合真题汇编与预赛典型例题1.【2019年全国联赛】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为.【答案】【解析】由题意知,x为负值,.2.【2018年全国联赛】设集合A={1,2,3…,99},B={2x|x∈A},C={x|2x∈A},则B∩C的元素个数为【答案】24【解析】由条件知,.故B∩C的元素个数为24.3.【2013年全国联赛】设集合.则集合中所有元素的和为______. 【答案】-5【解析】易知,.当时,;当时,.因此,集合.从而,集合中所有元素的和为.4.【2011年全国联赛】设集合.若中所有三元子集的三个元素之和组成的集合为,则集合______.【答案】【解析】显然,在集合的所有三元子集中每个元素均出现了3次.于是,.从而,集合的四个元素分别为.因此,集合.故答案为:5.【2019年全国联赛】设V是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E为这些线段构成的集合.试求最小的正整数n,满足条件:若E至少有n个元素,则E一定含有908个二元子集.其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.【答案】【解析】我们来证明一个更为一般的引理:简单连通图H有n个顶点,m条边,则一定可以将其边集划分为个二元子集,二元子集之间不交且每个二元子集内的边有公共端点。

证明:归纳对m,m=1,2,3,显然成立.设结论对m≤k成立,k≥3,则m=k+1时,考虑所有叶子顶点,若有两片叶子连在同一顶点B上,则将A i B与A j B分为二元子集,对其余m-2条边由归纳假设,可分为个二元子集且两两不相交,结论成立,否则设分别接在顶点上,若存在度为2,设B i与A i,C相连,将与B i C取下,同理由归纳假设结论成立,否则对任意,将去掉,得图,则在中没有叶子结点,连通,则为一个环,此时设B1在环上与C,D相连,在H中把与B1C去掉,图依然连通,由归纳假设同理可证,引理证毕.故原命题成立.6.【2015年全国联赛】设为四个有理数,使得.求的值.【答案】【解析】由条件知为六个互不相同的数,且其中没有两个为相反数.于是的绝对值互不相等. 不妨设.则中最小的、次小的两个数分别为.故.结合,只可能.由此易知.经检验,两组解均满足条件.从而,.7.【2015年全国联赛】设,其中,个互不相同的有限集合,满足对任意,均有.若表示有限集合的元素个数),证明:存在,使得属于中的至少个集合.【答案】见解析【解析】不妨设.设在中与不相交的集合有个,重新记为;设包含的集合有个,重新记为.由已知条件,得,即.于是,得到一个映射.显然,为单射.从而,.设.在中除去后,在剩下的个集合中,设包含的集合有个,由于剩下的个集合中,设包含的集合有个,由于剩下的个集合中每个集合与的交非空,即包含某个,从而,. ①不妨设.则由式①知,即在剩下的个集合中,包含的集合至少有个.又由于,故均包含.因此,包含的集合个数至少为.8.【2014年全国联赛】设.求最大的整数,使得集合S有k个互不相同的非空子集,具有性质:对这k个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.【答案】【解析】对有限非空实数集A,用分别表示集合A的最小元素与最大元素.考虑集合S的所有包含1且至少有两个元素的子集.注意到,,故.于是,这样的子集一共个.显然满足要求.接下来证明:当时,不存在满足要求的k个子集.用数学归纳法证明:对整数,在集合的任意个不同非空子集中,存在两个子集,满足,且. ①显然,只需对的情形证明上述结论.当时,将的全部七个非空子集分成三组,第一组:{3},{1,3},{2,3};第二组:{2},{1,2};第三组:{1},{1,2,3}.由抽屉原理,知任意四个非空子集必有两个在同一组中,取同组中的两个子集分别记为,在排在前面的记为,则满足结论①.假设结论在时成立.考虑时的情形.若中至少有个子集不含,对其中的个子集用归纳假设,知存在两个子集满足结论①.若至多有-1个子集不含,则至少有+1个子集含,将其中+1个子集均去掉,得到{1,2,…,n}的+1个子集.由于{1,2,…,n}的全体子集可分为组,每组两个子集互补,故由抽屉原理,知在上述+1个子集中一定有两个属于同一组,即互为补集.因此,相应地有两个子集满足,这两个集合显然满足结论①.于是,时结论成立.综上,.9.【2013年全国联赛】一次考试共有道试题,名学生参加,其中为给定的整数.每道题的得分规则是:若该题恰有名学生没有答对,则每名答对该题的学生得分,未答对的学生得零分.每名学生的总分为其道题的得分总和.将所有学生总分从高到低排列为.求的最大可能值.【答案】m(n-1)【解析】对,设第题没有答对者有人.则第题答对者有人.由得分规则,知这个人在第题均得分.设名学生的得分之和为.则.因为每一个人在第道题上至多得分,所以,.由,知.则.由柯西不等式得.故.另一方面,若有一名学生全部答对,其他名学生全部答错,则.综上,的最大值是.10.【2012年全国联赛】试证明:集合满足(1)对每个,若,则一定不是的倍数;(2)对每个表示中的补集),且,必存在,使的倍数.【答案】(1)见解析(2)见解析【解析】(1)对任意,设.则.若是任意一个小于的正整数,则.由于中,一个为奇数,它不含质因子2,另一个为偶数,它含质因子2的幂的次数最多为,因此,一定不是的倍数.(2)若,且,设,其中,为大于1的奇数.则.下面给出三种证明方法.方法1 令.消去.由,知方程必有整数解其中,为方程的特解.记最小的正整数解为.则.故,使得的倍数.方法2 注意到,,由中国剩余定理,知同余方程组在区间上有解,即存在,使得的倍数.方法3 由,总存在,使得.取,使得.则.存在,使得.此时,.从而的倍数.1.【2018年江苏】在1,2,3,4,…,1000中,能写成的形式,且不能被3整除的数有________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012各省数学竞赛汇集目录1.2012高中数学联赛江苏赛区初赛试卷------第3页2. 20XX年高中数学联赛湖北省预赛试卷(高一年级)---第7页3. 20XX年高中数学联赛湖北省预赛试卷(高二年级)---第10页4. 20XX年高中数学联赛陕西省预赛试卷------第16页5. 20XX年高中数学联赛上海市预赛试卷------第21页6. 20XX年高中数学联赛四川省预赛试卷------第28页7. 20XX年高中数学联赛福建省预赛试卷(高一年级)---第35页8. 20XX年高中数学联赛山东省预赛试卷---第45页9. 20XX年高中数学联赛甘肃省预赛试卷---第50页10. 20XX年高中数学联赛河北省预赛试卷---第55页11. 20XX年高中数学联赛浙江省预赛试卷---第62页12. 20XX年高中数学联赛辽宁省预赛试卷---第72页13. 20XX年高中数学联赛新疆区预赛试卷(高二年级)---第77页14. 20XX年高中数学联赛河南省预赛试卷(高二年级)---第81页15. 20XX年高中数学联赛北京市预赛试卷(高一年级)---第83页2012高中数学联赛江苏赛区初赛试卷一、填空题(70分)1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____. 6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为_____8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n-+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明:(1)cos cos b C c B a +=(2)22sin cos cos 2CA B a b c+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+.(1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.20XX 年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

)1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 .2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则=++++963741a a a a a a 35-.3.函数741)(2+++=x x x x f 的值域为6[0,6. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 5.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n nn a a a a a 如果29321=++a a a ,则=1a 5 .6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=A sin 7.7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则qp 的值为32. 8.设321,,x x x 是方程013=+-x x 的三个根,则535251x x x ++的值为 -5 .二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a , 所以11)=. ------------------------------------------4分 令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以nn n b b 4411=⋅=-.------------------------------------------8分所以n nn a a 4111=+++,即 n n n a a ]1)14[(21--=+. ------------------------------------------12分 于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令θθsin cos +=x ,则]2,1()4sin(2∈+=πθx ,且21sin cos 2-=x θθ.------------------------------10分 于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.因此,m 的最小值为2423)2(-=f . ------------------------------------------20分11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上1)(≤x f 恒成立,求a 的取值范围.解 22225()log (56)log [()]24a a a a f x x ax a x =-+=--.由⎩⎨⎧>->-,03,02a x a x 得a x 3>,由题意知a a 33>+,故23<a ,从而53(3)(2)022a a a +-=->,故函数225()()24a a g x x =--在区间]4,3[++a a 上单调递增.------------------------------------------5分(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥a 或275-≤a . 结合10<<a 得10<<a . ------------------------------------------10分(2)若231<<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得4411344113+≤≤-a .易知2344113>-,所以不符合. ------------------------------------------15分综上可知:a 的取值范围为(0,1). ------------------------------------------20分20XX 年全国高中数学联合竞赛湖北省预赛试题(高二年级)说明:评阅试卷时,请依据本评分标准。

相关文档
最新文档