学法大视野·数学·九年级上册(湘教出版)·规范标准答案
学法大视野·数学·九年级上册·答案
课时参考答案(课前预习、课堂探究、课堂训练、课后提升) 第1章 反比例函数反比例函数 课前预习=k x≠ 零 课堂探究【例1】 探究答案:-1 k ≠0 B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x 与y ,而要看它能否化为y=k x (k 为常数,k ≠0)的形式. 所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得12xy=36,于是y=72x .所以,y 是x 的反比例函数.(2)由圆锥的体积公式,得13xy=60,于是y=180x . 所以y 是x 的反比例函数.【例2】 探究答案:=k x (k ≠0) 2.(√2,-√2)解:设反比例函数的解析式为y=k x (k ≠0),因为图象过点(√2,-√2),将x=√2,y=-√2代入,得-√2=√2,解得k=-2. 因此,这个反比例函数的解析式为y=-2x ,将x=-6,y=13代入,等式成立. 所以函数图象经过-6,13.变式训练2-1:B变式训练2-2:解:(1)设y 1=k 1x ,y 2=k 2x (k 1,k 2为常数,且k 1≠0,k 2≠0),则y=k 1x+k 2x. ∵x=1,y=4;x=2,y=5,∴{k 1+k 2=4,2k 1+k 22=5.解得{k 1=2,k 2=2.∴y 与x 的函数表达式为y=2x+2x .(2)当x=4时,y=2×4+24=812. 课堂训练5.解:设大约需要工人y 个,每人每天生产纪念品x 个.∴xy=100,即y=100x (x>0) ∵5≤x ≤8,∴1008≤y ≤1005, 即1212≤y ≤20,∵y 是整数,∴大约需工人13至20人. 课后提升9.解:(1)∵y 是x 的正比例函数, ∴m 2-3=1, m 2=4, m=±2. ∵m=2时,m-2=0, ∴舍去. ∴m=-2. (2)∵y 是x 的反比例函数, ∴m 2-3=-1, m 2=2,m=±√2.10.解:(1)由S=12xy=30,得y=60x, x 的取值范围是x>0.(2)由y=60x可知,y 是x 的反比例函数,系数为60. 反比例函数的图象与性质第1课时 反比例函数的图象课前预习3.(1)一、三 (2)二、四课堂探究 【例1】 探究答案:第一、三象限 > 解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m -5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4).又∵点A 在反比例函数y=m -5x的图象上, ∴4=m -52,即m-5=8. ∴反比例函数的解析式为y=8x .变式训练1-1:C变式训练1-2:-52【例2】 探究答案:1.(1,5) 2.{y =k x ,y =3x +m解:(1)∵点(1,5)在反比例函数y=k x的图象上, ∴5=k 1,即k=5,∴反比例函数的关系式为y=5x .又∵点(1,5)在一次函数y=3x+m 的图象上, ∴5=3+m , ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得{y =5x ,y =3x +2,解得{x 1=1,y 1=5或{x 2=-53,y 2=-3. ∴这两个函数图象的另一个交点的坐标为-53,-3.变式训练2-1:A 变式训练2-2:解:(1)将A (-1,a )代入y=-x+2中, 得a=-(-1)+2,解得a=3.(2)由(1)得,A (-1,3),将A (-1,3)代入y=k x中,得到3=k -1,即k=-3,即反比例函数的表达式为y=-3x .(3)如图:过A 点作AD ⊥x 轴于D , ∵A (-1,3),∴AD=3, 在直线y=-x+2中,令y=0,得x=2, ∴B (2,0),即OB=2, ∴△AOB 的面积 S=12×OB ×AD=12×2×3=3. 课堂训练>15.解:(1)∵反比例函数y=k x与一次函数y=x+b 的图象,都经过点A (1,2), ∴将x=1,y=2代入反比例函数解析式得, k=1×2=2, 将x=1,y=2代入一次函数解析式得, b=2-1=1,∴反比例函数的解析式为y=2x ,一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1. ∴一次函数图象与x 轴,y 轴的交点坐标分别为(-1,0),(0,1). 课后提升8.解:m 2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=m x的图象位于第一、三象限,∴m>0,∴m=6.9.解:(1)∵y=m -5x 的一支在第一象限内,∴ m-5>0. ∴m>5. 对直线y=kx+k 来说,令y=0,得kx+k=0,即k (x+1)=0. ∵k ≠0,∴x+1=0,即x=-1. ∴点A 的坐标为(-1,0). (2)过点M 作MC ⊥AB 于点C , ∵点A 的坐标为(-1,0),点B 的坐标为(3,0), ∴AB=4,AO=1.∵S △ABM =12×AB ×MC=12×4×MC=8, ∴MC=4. 又AM=5,∴AC=3, 又OA=1,∴OC=2.∴点M 的坐标为(2,4).把M (2,4)代入y=m -5x , 得4=m -52,则m=13,∴y=8x. 第2课时 反比例函数的性质 课前预习1.在每一象限内 减小 在每一象限内 增大 =±x 坐标原点课堂探究 【例1】 探究答案:1.一、三 >0 2.减小 > 解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2.(2)把点(3,1)代入y=2n -4x,得2n-4=3, 解得n=72.(3)因为在每个象限内,y 随x 的增大而减小,所以由a 1<a 2,得b 1>b 2. 变式训练1-1: A 变式训练1-2:<【例2】 探究答案:|k| |k|2 解:设点A 的坐标为a ,2a ,则点B 的坐标为-a ,-2a,∵BC ∥x 轴,AC ∥y 轴,∴AC ⊥BC ,又由题意可得BC=2a ,AC=4a,S △ABC =12BC ·AC=12·2a ·4a=4.变式训练2-1:1变式训练2-2:解:设A 的坐标是(m ,n ),则n=k ,即k=mn , ∵OB=-m ,AB=n ,S 长方形ABOC =OB ·AB=(-m )n=-mn=3,∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3. 课堂训练5.解:设一次函数的解析式为y=kx+b (k ≠0).∵点A 是直线与反比例函数y=2x 的交点,∴把A (1,a )代入y=2x ,得a=2.∴A (1,2).把A (1,2)和C (0,3)代入y=kx+b ,得{k +b =2,b =3. 解得k=-1,b=3.所以一次函数的解析式为:y=-x+3. 课后提升<-2或0<x<19.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0,∴m<52.(2)b 1<b 2.理由如下: ∵m<52,∴m -4<m-3<0,∴b 1<b 2. 反比例函数的应用课堂探究【例1】 探究答案:1.反比例 v=P 2.减小解:(1)设反比例函数解析式为v=P F ,把(3000,20)代入上式,得20=P 3000,P=3000×20=60000, ∴v=60000F. (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时),即当它所受的牵引力为1200牛时,汽车的速度为180千米/时.(3)由v=60000F≤30,得F ≥2000. 所以,若限定汽车的速度不超过30米/秒,则F 应不小于2000牛. 变式训练1-1:C 变式训练1-2: 【例2】 探究答案: -2 2.图象解:(1)∵双曲线y=k 2x经过点A (1,2),∴k 2=2. ∴双曲线的解析式为y=2x .∵点B (m ,-1)在双曲线y=2x 上,∴m=-2,则B (-2,-1). 由点A (1,2),B (-2,-1)在直线y=k 1x+b 上,得{k 1+b =2,-2k 1+b =-1,解得{k 1=1,b =1.∴直线的解析式为y=x+1. (2)y 2<y 1<y 3. (3)x>1或-2<x<0. 变式训练2-1:C变式训练2-2:解:(1)直线y=12x+b 经过第一、二、三象限,与y 轴交于点B , ∴OB=b , ∵点A (2,t ),△AOB 的面积等于1.∴12×2×b=1,可得b=1,即直线为y=12x+1.(2)由点A (2,t )在直线y=12x+1上,可得t=2,即点A 坐标为(2,2),反比例函数y=k x (k 是常量,k ≠0)的图象经过点A ,可得k=4,所求反比例函数解析式为y=4x . 课堂训练4.(1,-2)5.解:(1)将A (2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y 2=8x,将B (-4,n )代入反比例函数解析式得n=-2, 即B (-4,-2), 将A 与B 坐标代入一次函数解析式得,{2k +b =4,-4k +b =-2,解得{k =1,b =2.则一次函数解析式为y 1=x+2. (2)联立两函数解析式得{y =x +2,y =8x ,解得{x =2,y =4或{x =-4,y =-2,则y 1=y 2时,x 的值为2或-4. (3)利用题图象得,y 1>y 2时, x 的取值范围为-4<x<0或x>2. 课后提升<0或1<x<4 7.(3,2)9.解:(1)∵反比例函数y=k x的图象过B (4,-2)点, ∴k=4×(-2)=-8,∴反比例函数的解析式为y=-8x.∵反比例函数y=-8x 的图象过点A (-2,m ),∴m=-8-2=4,即A (-2,4). ∵一次函数y=ax+b 的图象过A (-2,4),B (4,-2)两点, ∴{-2a +b =4,4a +b =-2,解得{a =-1,b =2. ∴一次函数的解析式为y=-x+2. (2)∵直线AB :y=-x+2交x 轴于点C , ∴C (2,0). ∵AD ⊥x 轴于D ,A (-2,4), ∴CD=2-(-2)=4,AD=4,∴S △ADC =12·CD ·AD=12×4×4=8.10.解:(1)把A (m ,2)代入反比例函数解析式y=2x 得2=2m ,所以m=1. ∴A (1,2). (2)把A (1,2)代入正比例函数解析式y=kx 得2=k ,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x ,当x=2时,y ≠3,所以点B (2,3)不在正比例函数图象上. 第2章 一元二次方程一元二次方程课前预习1.一个 2 整式 3.相等课堂探究 【例1】 探究答案: =2 2.≠0 解:根据题意,得m 2-2=2,且m-2≠0. 解得m=±2,且m ≠2.所以m=-2. 则m 2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C变式训练1-2:≠±1 =12【例2】 探究答案:1.移项 合并同类项 2.符号 0 解:(1)去括号,得 4t 2+12t+9-2(t 2-10t+25)=-41, 去括号、移项、合并得2t 2+32t=0, 所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x 2-x+12=3x+13,移项、合并,得12x 2-4x+16=0,所以二次项系数、一次项系数和常数项分别为12,-4,16.变式训练2-1:B 变式训练2-2:解:{m 2-2=2,m +2≠0,?解得m=±2且m ≠-2. ∴m=2. 【例3】 探究答案:1.根 2.≠0 解:根据题意,得(m-2)×12+(m 2-3)×1-m+1=0, 即m 2-4=0,故m 2=4, 解得m=2或m=-2. ∵方程(m-2)x 2+(m 2-3)x-m+1=0是关于x 的一元二次方程, ∴m -2≠0,即m ≠2.故m=-2. 变式训练3-1:1 变式训练3-2:解:把x=0代入方程得a 2-1=0, ∴a=±1, ∵a -1≠0,∴a ≠1, ∴a=-1. 课堂训练5.解:去括号,得9x 2+12x+4=4x 2-24x+36. 移项、合并同类项得,5x 2+36x-32=0. ∴它的二次项为5x 2 二次项系数为5, 一次项为36x , 一次项系数为36,常数项为-32. 课后提升(x+5)=300 x 2+5x-300=0 1 5 -300 8.≠1 =19.解:(1)去括号,得x 2-4=3x 2+2x , 移项,得-2x 2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4. (2)去括号,移项合并,得(1-2a )x 2-2ax=0,二次项系数为1-2a ,一次项系数为-2a ,常数项为0. 10.解:小明的话有道理. 理由:若方程为一元二次方程,则m+1=2,m=1. 而m=1时,m 2+m-2=0, 所以此方程不可能为一元二次方程.一元二次方程的解法配方法 第1课时 用配方法解简单的一元二次方程 课前预习1.(1)平方根2.(1)a 2±2ab+b 2 (2)完全平方式课堂探究 【例1】 探究答案:-a ±√b 没有解:移项,得2(x+1)2=92,两边同时除以2,得(x+1)2=9, ∴x+1=±32,∴x 1=-1+32=12,x 2=-1-32=-52.变式训练1-1:m ≥7 变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5, 解这两个方程得:x 1=3,x 2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x -2=2或x-2=-2. 解这两个方程,得x 1=4,x 2=0. 【例2】 探究答案:一次项系数一半的平方解:移项,得x 2-12x=12,配方,得x 2-12x+(14)2=916,(x -14)2=916, ∴x -14=34或x-14=-34,∴x 1=1,x 2=-12.变式训练2-1:±43变式训练2-2:解:移项,得x 2-2x=2,配方,得(x-1)2=3,解得x=1±√3.∴x 1=1+√3,x 2=1-√3.课堂训练3.±324.±85.解:(1)移项得x 2-2x=1,配方,得x 2-2x+1=2,即(x-1)2=2,开方,得x-1=±√2,则x 1=1+√2,x 2=1-√2.(2)移项,得x 2-4x=-1, 配方,得x 2-4x+4=-1+4,即(x-2)2=3,开方,得x-2=±√3, ∴原方程的解是x 1=2+√3,x 2=2-√3.课后提升cm 28.解:(1)直接开平方得,x-1=±√3,即x-1=√3或x-1=-√3,∴x 1=1+√3,x 2=1-√3.(2)配方,得x 2-2x+1=4+1,即(x-1)2=5.∴x -1=±√5,即x-1=√5或x-1=-√5∴x 1=1+√5,x 2=1-√5.(3)方程两边都除以2,得x 2-32=-52x ,移项,得x 2+52x=32.配方,得x 2+52x+542=32+542, 即x+542=4916. 开平方得,x+54=±74,∴x 1=12,x 2=-3.9.解:用配方法解方程a 2-10a+21=0,得a 1=3,a 2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x 2+px=-q ,配方得x 2+px+p22=-q+p22,即x+p 22=p 2-4q 4. ∵p 2≥4q , ∴p 2-4q ≥0,∴x+p 2=±√p 2-4q 2. ∴x 1=-p+√p 2-4q2,x 2=-p -√p 2-4q2.第2课时 用配方法解复杂的一元二次方程课前预习 (1)1 (2)二次项和一次项 常数项 (3)一次项系数一半的平方课堂探究【例1】 探究答案: 2.完全平方式解:两边同时除以2,得x 2-32x+12=0,移项,得x 2-32x=-12,配方,得x 2-32x+(-34)2=-12+(-34)2, 即(x -34)2=116, 两边开平方,得x-34=±14,x-34=14或x-34=-14, ∴原方程的解为x 1=1,x 2=12.变式训练1-1:D 变式训练1-2:解:(1)二次项系数化为1,得x 2-16x-2=0,移项,得x 2-16x=2,配方,得x 2-16x+1144=2+1144, 即x-1122=289144, ∴x -112=±1712,∴x 1=32,x 2=-43.(2)二次项系数化为1,得x 2-12x-12=0.移项,得x 2-12x=12. 配方得x 2-12x+142=12+142,即x-142=916, ∴x -14=±34,∴x 1=1,x 2=-12.【例2】 探究答案: 2.减去 解:2x 2-4x+5=2(x 2-2x )+5 =2(x 2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0, ∴代数式2x 2-4x+5的值总是一个正数.变式训练2-1:13 变式训练2-2:解:x 2-4x+5=x 2-4x+22-22+5 =(x-2)2+1. ∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时, 代数式x 2-4x+5的值最小,最小值为1. 课堂训练=-2,x 2=12或-7 或3 6.解:由题意得2x 2-x=x+6,∴2x 2-2x=6, ∴x 2-x=3,∴x 2-x+14=3+14, ∴x-122=134,∴x -12=±√132, ∴x 1=1+√132,x 2=1-√132. ∴x=1+√132或1-√132时,整式2x 2-x 与x+6的值相等. 课后提升=1+√3,x 2=1-√3±2√29.解:去括号,得4x 2-4x+1=3x 2+2x-7, 移项,得x 2-6x=-8,配方,得(x-3)2=1, ∴x -3=±1,∴x 1=2,x 2=4. 10.解:由题意,得2x 2+x-2+(x 2+4x )=0, 化简,得3x 2+5x-2=0.系数化为1,得x 2+53x=23, 配方,得x+562=4936,∴x+56=±76, ∴x 1=-2,x 2=13.公式法课前预习=-b±√b 2-4ac2a (b 2-4ac ≥0)2.求根公式 课堂探究【例1】 探究答案:1.一般形式 、b 、c 解:原方程可化为x 2+2x-1=0, ∵a=1,b=2,c=-1. b 2-4ac=22-4×1×(-1)=8>0,∴x=-2±√82×1=-2±2√22=-1±√2. ∴x 1=-1+√2,x 2=-1-√2.变式训练1-1:D 变式训练1-2:解:(1)移项,得2x 2+3x-1=0, ∵a=2,b=3,c=-1,∴b 2-4ac=17>0,∴x=-3±√174, ∴x 1=-3+√174,x 2=-3-√174. (2)化简得,x 2+5x+5=0, ∴a=1,b=5,c=5, ∴b 2-4ac=5>0,∴x=-5±√5,∴x 1=-5+√52,x 2=-5-√52. 【例2】 探究答案:1.一元二次方程有实数根 2.相等 解:原方程可化为2x 2+2√2x+1=0,∵a=2,b=2√2,c=1,∴b 2-4ac=(2√2)2-4×2×1=0,∴x=-2√2±√02×2=-√22. ∴x 1=x 2=-√22. 变式训练2-1:解:(1)b 2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根. (2)b 2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C 课堂训练4.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=-b±√b 2-4ac 2a =4±√242×2=4±2√64=2±√62. ∴x 1=2+√62,x 2=2-√62. (2)整理,得4x 2+12x+9=0, 所以a=4,b=12,c=9. 因为b 2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根,所以x=-b±√b 2-4ac 2a =-12±√02×4=-128=-32. ∴x 1=x 2=-32.课后提升5.-1+√32,-1-√32=1,x 2=12或16 8.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=-2±√82×1=-2±2√22=-1±√2,∴x 1=-1+√2,x 2=-1-√2.9.解:(1)x 2-4x-1=0, ∵a=1,b=-4,c=-1, ∴Δ=(-4)2-4×1×(-1)=20,∴x=4±√202×1=2±√5,∴x 1=2+√5,x 2=2-√5.(2)∵3x (x-3)=2(x-1)(x+1), ∴x 2-9x+2=0, ∵a=1,b=-9,c=2, ∴Δ=(-9)2-4×1×2=73>0,∴x=-b±√b 2-4ac =9±√73,∴x 1=9+√732,x 2=9-√732.10.解:由题意得,m 2+1=2, 且m+1≠0, 解得m=1. 所以原方程为2x 2-2x-1=0, 这里a=2,b=-2,c=-1. b 2-4ac=(-2)2-4×2×(-1)=12.∴x=2±2√34=1±√32,∴x 1=1+√32,x 2=1-√32.因式分解法 课前预习1.(2)(a-b )(a+b ) (a ±b )22.一次因式 0 0课堂探究【例1】 探究答案:x [(x+2)-4] 3(x-5)2-2(5-x )=0(x-5)(3x-13) 解:(1)x (x+2)-4x=0,x [(x+2)-4]=0, 即x (x-2)=0, ∴x=0或x-2=0, ∴x 1=0,x 2=2. (2)3(x-5)2=2(5-x ), 3(x-5)2-2(5-x )=0, (x-5)[3(x-5)+2]=0, ∴x -5=0或3x-15+2=0,∴x 1=5,x 2=133.变式训练1-1:C 变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0, ∴x 1=43,x 2=73.(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0, ∴x 1=-2,x 2=-4.【例2】 探究答案:直接开平方法 配方法 公式法 因式分解法 解:(1)公式法:∵a=1,b=-3,c=1, ∴b 2-4ac=(-3)2-4×1×1=5>0, ∴x=-(-3)±√52×1, ∴x 1=3+√52,x 2=3-√52. (2)因式分解法:原方程可化为x (x-3)=0, ∴x=0或x-3=0 ∴x 1=0,x 2=3. (3)配方法:配方,得x 2-2x+1=4+1, 即(x-1)2=5,∴x -1=±√5,∴x 1=1+√5,x 2=1-√5.变式训练2-1:C 变式训练2-2:解:(1)用直接开平方法:原方程可化为 (x-3)2=4, ∴x -3=±2, ∴x 1=5,x 2=1. (2)用配方法:移项,得x 2-4x=7. 配方,得x 2-4x+4=7+4, 即(x-2)2=11,∴x -2=±√11∴x -2=√11或x-2=-√11,∴x 1=2+√11,x 2=2-√11.(3)用因式分解法:方程两边分别分解因式,得 (x-3)2=2(x-3)(x+3), 移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x -3=0或-x-9=0. ∴x 1=3,x 2=-9. 课堂训练或45.解:(1)∵a=3,b=1,c=-1, ∴b 2-4ac=12-4×3×(-1)=13>0,∴x=-1±√132×3∴x 1=-1+√136,x 2=-1-√136. (2)移项,得(3x-2)2-4(3-x )2=0, 因式分解, 得[(3x-2)+2(3-x )][(3x-2)-2(3-x )]=0, 即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0,∴x 1=-4,x 2=85.(3)将原方程整理,得x 2+x=0, 因式分解,得x (x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1. 课后提升=3,x 2=9 9.解:(1)用求根公式法解得y 1=3,y 2=-8.(2)用分解因式法解得x 1=52,x 2=-1.(3)用求根公式法解得 y 1=-2+√22,y 2=-2-√22. 10.解:解方程x (x-7)-10(x-7)=0, 得x 1=7,x 2=10. ∵4<第三边长<10, ∴x 2=10(舍去).第三边长为7. 这个三角形的周长为3+7+7=17.一元二次方程根的判别式课前预习≠0 2.(1)> (2)= (3)<课堂探究 【例1】 探究答案:1.一般形式 、b 、c b 2-4ac 解:(1)原方程可化为x 2-6x+9=0, ∵Δ=b 2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根.(2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x2-2√6x+3=0.∵Δ=b2-4ac=(-2√6)2-4×3×3=-12<0,∴原方程无实数根.变式训练1-1:A变式训练1-2:B【例2】探究答案:1.≥解:由题意知:b2-4ac≥0,即42-8k≥0,解得k≤2.∴k的非负整数值为0,1,2.变式训练2-1:B变式训练2-2:解:∵a=2,b=t,c=2.∴Δ=t2-4×2×2=t2-16,令t2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练<-15.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根.(2)当m=-3时,x2+2x-3=0,x2+2x=3,x2+2x+1=3+1,(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.课后提升>1<2且m≠1或12或109.解:由题意,得{b2-4ac=(-2√k+1)2-4(1-2k)(-1)>0①1-2k≠0②k+1≥0③由①,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由②得,k≠12,由③得,k≥-1.∴-1≤k<2且k≠12. 10.解:(1)Δ=b2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根,∴20-8k>0,∴k<52.(2)∵k 为正整数, ∴0<k<52(且k 为整数),即k 为1或2,∴x=-1±√5-2k . ∵方程的根为整数,∴5-2k 为完全平方数. 当k=1时,5-2k=3;当k=2时,5-2k=1. ∴k=2. * 一元二次方程根与系数的关系课前预习-b a c a课堂探究【例1】 探究答案: a+b ab解:因为方程x 2-x-1=0的两实根为a 、b. 所以(1)a+b=1; (2)ab=-1; (3)a 2+b 2=(a+b )2-2ab=12-2×(-1)=3;(4)1a +1b =a+b ab=-1. 变式训练1-1:-2变式训练1-2:-658【例2】 探究答案:(m+1) 2.>0 解:∵方程有两个不相等的实数根, ∴Δ=b 2-4ac=[-2(m+1)]2-4×1×(m 2-3) =16+8m>0, 解得m>-2; 根据根与系数的关系可得x 1+x 2=2(m+1), ∵(x 1+x 2)2-(x 1+x 2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0,解得m 1=1或m 2=-52. ∵m>-2,∴m 2=-52(舍去),∴m=1. 变式训练2-1:1 变式训练2-2:解:∵x 1+x 2=2,∴m=2. ∴原方程为x 2-2x-3=0,即(x-3)(x+1)=0, 解得x 1=3,x 2=-1. 课堂训练5.解:设x 1,x 2是方程的两个实数根,∴x 1+x 2=-32,x 1x 2=1-m 2. 又∵1x 1+1x 2=3,∴x 1+x 2x 1x 2=3, ∴-3=3, ∴-3=3-3m ,∴m=2, 又∵当m=2时,原方程的Δ=17>0, ∴m 的值为2. 课后提升9.解:将-2代入原方程得:(-2)2-2+n=0, 解得n=-2, 因此原方程为x 2+x-2=0, 解得x 1=-2,x 2=1, ∴m=1. 10.解:(1)根据题意得m ≠1 Δ=(-2m )2-4(m-1)(m+1)=4,∴x 1=2m+22(m -1)=m+1m -1, x 2=2m -22(m -1)=1. (2)由(1)知x 1=m+1m -1=1+2m -1 又∵方程的两个根都是正整数,∴2m -1是正整数, ∴m -1=1或2. ∴m=2或3.一元二次方程的应用第1课时 增长率与利润问题 课前预习(1±x ) 2.(1)单件售价 (2)单件利润课堂探究 【例1】探究答案:(1)10000(1+x ) 10000(1+x )2(2)12100(1+x ) 解:(1)设捐款增长率为x ,根据题意列方程得, 10000(1+x )2=12100, 解得x 1=,x 2=(不合题意,舍去); 答:捐款增长率为10%. (2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 变式训练1-1:A变式训练1-2:B【例2】探究答案:200+40x3-2-x0.1解:设应将每千克小型西瓜的售价降低x元.-24=200.根据题意,得(3-2-x)200+40x0.1解这个方程,得x1=,x2=.答:应将每千克小型西瓜的售价降低元或元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练%5.解:设每千克核桃应降价x元.×20)=2240根据题意得(60-x-40)(100+x2解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升%(1+x)2=%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=,整理,得x2+=0,解之,得x1=,x2=(舍去)所以每年市政府投资的增长率为50%.=38(万平方米).(2)到2013年年底共建廉租房面积=×82第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x2.1(6-x)·2x=82解:设经过x秒钟后,△PBQ的面积等于8cm2.根据题意得1(6-x)·2x=8.解这个方程得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.变式训练1-1:解:(1)由勾股定理:AC=5cm,设x秒钟后,P、Q之间的距离等于5cm,这时PC=5-x,CQ=2x,则(5-x)2+(2x)2=52,即x2-2x=0.解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去.答:再运动2秒钟后,P、Q间的距离又等于5cm.(2)设y秒钟时,可使△PCQ的面积等于4cm2.1×(5-y)×2y=4,2即y2-5y+4=0,解得y1=1,y2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ的面积等于4cm2.变式训练1-2:解:设应移动x米.OA=√AB2-OB2=3米.则由题意得(3+x)2+(4-x)2=52.解这个方程得x1=1,x2=0(不合题意,舍去).答:应移动1米.【例2】探究答案:(100-2x)(50-2x)解:设正方形观光休息亭的边长为x米.依题意,有(100-2x)(50-2x)=3600.整理,得x2-75x+350=0.解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得,(40-2x)(60-3x)=60×40×14解之,得x1=10,x2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米.课堂训练5.解:设花边的宽为x米,根据题意,得(2x+6)(2x+3)=40..解得x1=1,x2=-112不合题意,舍去.但x2=-112答:花边的宽为1米. 课后提升459.解:(1)设小货车原计划每辆每次运送帐篷x 顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得 2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m )1+12m +8(800-300)(1+m )=14400, 化简为m 2-23m+42=0,解得m 1=2,m 2=21.∵1000-200m 不能为负数,且12m 为整数,∴m 2=21(不符合实际,舍去),故m 的值为2.10.解:设x 秒后四边形APQB 的面积是△ABC 面积的23,在Rt △ABC 中,AB=10,AC=8, 由勾股定理,得 BC 2=AB 2-AC 2=102-82=36, ∴BC=6.则12(8-2x )(6-x )=13×12×6×8,解得x 1=2,x 2=8(不合题意,舍去), ∴2秒后四边形APQB 的面积是△ABC 面积的23. 第3章 图形的相似比例线段比例的基本性质课前预习1.(1)比值 比值 (2)比例内项2.(1)bc课堂探究 【例1】 探究答案:1.3x 3y =2y3y x y =23 =4x 7∶4 解:(1)∵3x=2y ,∴3x 3y =2y 3y,即x y =23.(2)∵7x =4y, ∴7y=4x ,x y =74. 变式训练1-1:D 变式训练1-2:4【例2】 探究答案:1.23解:∵AD AB =AE AC =DE BC =23, ∴AD+AE+DE =2, 即△ADE 的周长△ABC 的周长=23. 设△ADE 和△ABC 的周长分别为2x cm 和3x cm,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm,△ADE 的周长为30 cm . 变式训练2-1:D变式训练2-2:解:设x 3=y 5=z 7=k ,则x=3k ,y=5k ,z=7k , ∴x -y+z x+y -z =3k -5k+7k 3k+5k -7k =5k k=5. 课堂训练∶3=4∶6(答案不唯一) 4.135.解:因为m -n n =23, 所以3(m-n )=2n , 化简得3m=5n ,所以m n =53,则3m+2n n =3m n +2=m n ×3+2=53×3+2=7. 课后提升6.52 72 √3 或-19.解:∵a∶b∶c=1∶2∶4, 设a=k ,b=2k , c=4k ,则a+2b+3c a -b+c =k+4k+12k k -2k+4k =17k 3k =173. 10.解:∵a b =c d =e f =23,∴2a 2b =-c -d =-5e -5f =23. ∴2a -c -5e 2b -d -5f =23. 成比例线段课前预习∶n AB =m 2.a b =c d3.BC AC 黄金比 √5-12≈ 课堂探究【例1】探究答案:1.(12-x ) x 12-x =64 2.DB AB =EC AC 解:(1)设AD=x cm,则DB=(12-x )cm .则有x 12-x =64,解这个方程得x=, 所以AD= cm .(2)DB AB =12-7.212=25,EC AC =46+4=25, 所以DB AB =EC AC , 所以线段DB 、AB 、EC 、AC 是成比例线段. 变式训练1-1:B变式训练1-2:解:利用比例线段的定义, ∵a=1 mm = cm,b= cm, c= cm,d=4 cm,∴d>b>a>c ,而d b =40.8=5,a c =0.10.02=5, ∴d b =a c,∴d 、b 、a 、c 四条线段是成比例线段.【例2】 探究答案:1.AC AB =CB AC 2.3x+3=x 3 解:设CB=x ,∵点C 为线段AB 的黄金分割点,∴AC AB =CB AC ,即3x+3=x 3,得9=x (x+3), 解得x 1=3√5-32,x 2=-3√5-32(舍去). 故CB 的长为3√5-32.变式训练2-1:C 变式训练2-2:解:因为点C 是AB 的黄金分割点,所以当AC>BC 时,AC =√5-1. 又因为AB=10 cm,所以AC=√5-12×10=(5√5-5)(cm),当AC<BC 时,BC =√5-1, 所以BC=√5-12×10=(5√5-5)(cm),所以AC=AB-BC=10-(5√5-5)=(15-5√5)(cm), 所以AC 的长为(5√5-5)cm 或(15-5√5)cm .课堂训练2.45 35 √5 4.=5.解:(1)a∶b=c∶d ,即a∶=∶1, 则a=×=. (2)a∶b=c∶d ,即3∶7=c∶21,则7c=21×3,得c=9. 课后提升8.√5-12或3-√529.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5, CE=1,CF=4,AF=3. 在直角三角形ABD 中,AB=√AD 2+BD 2=√22+52=√29,在直角三角形BCE 中,BC=√BE 2+CE 2=√52+12=√26,在直角三角形ACF 中,AC=√CF 2+AF 2=√42+32=5,所以AB =√29,BC =√26. 10.解:设每一份为k , 由(a-c )∶(a+b )∶(c-b )=(-2)∶7∶1,得{a -c =-2k,a +b =7k,c -b =k,解得{a =3k,b =4k,c =5k,而(3k )2+(4k )2=(5k )2, 即a 2+b 2=c 2, 所以△ABC 是直角三角形.平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等 (2)对应线段 (3)成比例课堂探究 【例1】探究答案:1.35 2.DE DF 解:∵l 1∥l 2∥l 3,∴AB AC =DE DF , ∵AB BC =32,∴AB AC =35, ∴DE DF =35, 由DF=20 cm,得DE=3DF=12 cm,∴EF=DF -DE=8 cm . 变式训练1-1:D变式训练1-2:12【例2】 探究答案:1.AE AC x-4 x -4x -3=4x D 变式训练2-1:B 变式训练2-2:A 课堂训练5.解:∵DE ⊥AB ,CB ⊥AB , ∴DE ∥BC ,∴AD AB =AE AC ,即35=5AC, ∴AC=253.∴BC=√AC 2-AB 2=√(253)?2-52=203. 课后提升9.解:∵DE ∥BC ,DF ∥AC , ∴四边形EDFC 为平行四边形, ∴DE=FC=5, 又∵DF ∥AC ,∴AD BD =CF BF ,即48=5BF,得BF=10. 10.解:∵DE ∥BC ,∴AD AB =AE AC. 又∵EF ∥CD ,∴AF AD =AE AC , ∴AD AB =AF AD, ∴AD 2=AB ·AF=36, ∴AD=6 cm .相似图形课前预习1.(1)对应相等 对应成比例 (2)∽ △ABC 相似于△A'B'C'(3)相等 成比例 2.(1)对应角 成比例 (2)相等 等于相似比 课堂探究【例1】 探究答案:1.∠A' ∠B' ∠C' °-∠A-∠B 解:∵△ABC ∽△A'B'C', ∴∠B=∠B'=60°, 在△ABC 中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50 变式训练1-2:1∶2 【例2】探究答案:(1)CD CB (2)77° 83° 解:因为四边形ABCD ∽四边形EFGH , ∴∠F=∠B=77°,∠G=∠C=83°,EF AB =GH CD =FG BC =418=29, ∴∠H=360°-(∠E+∠F+∠G )=83°,BC=FG ÷29=6×92=27,CD=GH ÷29=7×92=.变式训练2-1:B 变式训练2-2:解:由四边形ABCD 与四边形A'B'C'D'相似得, x =12=10, ∠A=∠A'=120°,∴x=21×1015=14,y=12÷1015=12×32=18,∠α=360°-(∠A+∠B+∠C )=80°. 课堂训练或25 5.解:因为梯形AEFD ∽梯形EBCF ,所以AD EF =EF BC =AE EB, 又因为AD=4,BC=9, 所以EF 2=AD ·BC=4×9=36,所以EF=6,所以AE EB =AD EF =46=23. 课后提升30° ° 140° 1 8.√5+129.解:∵四边形ABCD 与四边形EFGH 相似, ∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵AB EF =AD EH, ∴AB=EF ·AD EH =5×86=203. ∵BC FG =AD EH, ∴BC=FG ·AD EH =7×86=566=283. 10.解:∵△ABC ∽△APQ ,∴AB AP =BC PQ, 即4040+60=30PQ , 解得PQ=75. 答:PQ 的长为75 cm .相似三角形的判定与性质相似三角形的判定 第1课时 两角对应相等或平行判定相似课前预习 (1)相似 (2)相等课堂探究【例1】 探究答案: 3.△EDA △DFC 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC , ∴△BEF ∽△CDF ,△BEF ∽△AED , ∴△BEF ∽△CDF ∽△AED.当△BEF ∽△CDF 时,相似比k 1=BE CD =13; 当△BEF ∽△AED 时,相似比k 2=BE AE =14; 当△CDF ∽△AED 时,相似比k 3=CD AE =34. 变式训练1-1:3变式训练1-2:1∶2 【例2】 探究答案:1.∠DAE 2.∠D 解:△ABC ∽△ADE ,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC , 即∠BAC=∠DAE , 又∵在△AOB 与△COD 中, ∠AOB=∠COD ,∠1=∠3, ∴∠B=∠D , ∴△ABC ∽△ADE. 变式训练2-1:C 变式训练2-2:证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD , ∴∠ADF=∠CED ,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B , ∴∠AFD=∠C , ∴△ADF ∽△DEC. 课堂训练4.∠ADE=∠C (答案不唯一)5.解:(1)在△ABC 中, ∵∠A=90°,∠B=50°, ∴∠C=40°. ∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似).(2)在△ABC 中, ∵∠A=∠B=∠C , ∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似). 课后提升解:∵∠A=36°,AB=AC ,∴∠ABC=∠ACB=72°, ∵BD 平分∠ABC , ∴∠CBD=∠ABD=36°, ∠BDC=72°,∴AD=BD ,BC=BD , ∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CD AD, ∴AD 2=AC ·CD , 设AD=x ,则CD=1-x , ∴x 2=1×(1-x ), x 2+x-1=0,x=-1±√1+42=-1±√52, x 1=-1+√52,x 2=-1-√52(舍去), ∴AD=√5-12,∴AD 的长是√5-12.8.解:(1)△ABC ∽△FOA ,理由如下:在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l 垂直平分AC , ∴∠OFC+∠BCA=90°, ∴∠BAC=∠OFC=∠OFA , 又∵∠ABC=∠FOA=90°, ∴△ABC ∽△FOA. (2)四边形AFCE 是菱形,理由如下: ∵AE ∥FC , ∴∠AEO=∠OFC ,∠EAO=∠OCF , ∴△AOE ∽△COF , ∵OC=OA ,∴OE=OF , 即AC 、EF 互相垂直平分, ∴四边形AFCE 是菱形.第2课时 两边成比例夹角相等或 三边成比例判定相似 课前预习(1)成比例 夹角 (2)成比例 课堂探究【例1】探究答案:1.45 45 2.△DCA解:因为AB CD =45,BC AC =45, 所以AB CD =BC AC, 又因为∠B=∠ACD , 所以△ABC ∽△DCA ,所以AB DC =AC AD, 所以AD=DC ·AC =152×5=25. 变式训练1-1:B 变式训练1-2:证明:∵四边形ABCD 是正方形, ∴AD=DC=BC ,∠D=∠C=90°, ∵M 是CD 的中点,∴AD∶DM=2∶1, ∵BP=3PC ,∴CM∶PC=2∶1,即AD DM =CM PC,且∠D=∠C , ∴△ADM ∽△MCP.【例2】探究答案:1.√5 √10 5 √2 2 √102.√102 √102 √102解:相似.理由如下:AB=√5,AC=√10,BC=5,DE=√2,DF=2,EF=√10,∵AB DE =√102,AC DF =√102,BC EF =√102, 即AB DE =AC DF =BC EF , ∴△ABC ∽△DEF. 变式训练2-1:A 变式训练2-2:证明:∵D 、E 、F 分别为AB 、AC 、BC 的中点, ∴DE 、DF 、EF 分别为△ABC 的中位线,∴DE=12BC ,DF=12AC ,EF=12AB ,∴DE CB =DF CA =EF BA =12, ∴△DEF ∽△CBA. 课堂训练5.解:由题知AC=√2,BC=√12+32=√10,AB=4,DF=√22+22=2√2,EF=√22+62=2√10,ED=8,∴AC DF =BC EF =AB DE =12, ∴△ABC ∽△DEF.课后提升° 7.(4,0)或(3,2)8.解:(1)△ABC ∽△EBD ,理由如下:∵BD ·AB=BE ·BC ,∴BD BC =BE AB ,又∵∠B 为公共角,∴△ABC ∽△EBD. (2)ED ⊥AB ,理由如下: 由△ABC ∽△EBD 可得∠EDB=∠C , ∵∠C=90°,∴∠EDB=90°,即ED ⊥AB.9.解:△A'B'C'∽△ABC ,理由如下:∵OA'OA =OC'OC =3,∠AOC=∠A'OC',∴△AOC ∽△A'OC',∴A'C'AC =OA'OA =3,同理B'C'BC =3,A'B'AB =3,∴A'C'=B'C'=A'B',∴△A'B'C'∽△ABC.相似三角形的性质 课前预习1.相似比2.(1)相似比 相似比的平方 (2)相似比 相似比的平方课堂探究【例1】 探究答案:1.△ADE 解:∵BC ∥DE , ∴∠ABC=∠ADE ,∠ACB=∠AED , ∴△ABC ∽△ADE ,所以MC NE =BC DE ,设DE 高为x m,则0.630=0.24x ,x=12.故旗杆大致高12 m . 变式训练1-1:C变式训练1-2:1∶2【例2】 探究答案:1.相似比的平方 2.916解:(1)∵△ABC ∽△ADE ,∴AB =AC ,∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD ·AC AB =20×915=12.即AE 的长为12.(2)∵△ABC ∽△ADE ,∴S △ABC S △ADE =AB 2AD 2=916, ∴S △ADE =16×279=48, ∴S 四边形BDEC =48-27=21. 变式训练2-1:A 变式训练2-2:D 课堂训练∶2 ∶2 1∶45.解:因为DE ∥BC ,所以∠ADE=∠ABC ,∠AED=∠ACB , 所以△ADE ∽△ABC.又DE BC =13,△ADE 的周长是10 cm, 所以△ABC 的周长是30 cm, 所以梯形BCED 的周长为30-8+2=24(cm). 课后提升∶9 7.60379.(1)证明:∵E 是AB 的中点, ∴AB=2EB , ∵AB=2CD ,∴CD=EB , 又∵AB ∥CD , ∴四边形CBED 是平行四边形, ∴DE ∥CB , ∴∠EDM=∠MBF ,∠DEM=∠MFB , ∴△EDM ∽△FBM.(2)解:∵△EDM ∽△FBM ,∴DM BM =DE BF , 又∵F 是BC 的中点, ∴DE=2BF , ∴DM=2BM. ∴BM=13DB=3. S △EDM S △FBM =DE BF 2=4.相似三角形的应用课堂探究【例1】 探究答案:1.△ABF △EFG2.DF BF FG BG解:∵CD ∥EF ∥AB , ∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴CD AB =DF BF ,EF AB =FG BG, 又∵CD=EF ,∴DF =FG , ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3DB+3=4BD+7, ∴BD=9,BF=9+3=12,∴1.6AB =312,解得,AB= m . 变式训练1-1:A 变式训练1-2:【例2】 探究答案:1.△EDC 2.△EDC BC DC解:(1)DE=AB ,理由如下: ∵AB ⊥BF ,ED ⊥BF , ∴∠ABC=∠EDC. ∵∠ACB=∠ECD ,BC=CD , ∴△ABC ≌△EDC (ASA), ∴AB=DE ,即DE 的长就是A 、B 的距离. (2)能,∵∠ABC=∠EDC=90°,∠ACB=∠ECD , ∴△ABC ∽△EDC ,∴AB DE =BC CD ,AB=DE ·BC CD =30×1020=15(米). 即A 、B 之间的距离为15米. 变式训练2-1:C 变式训练2-2:解:设AB=x 米, 因为BC ∥DE ,所以∠ABC=∠D , 又∠A=∠A ,所以△ABC ∽△ADE ,则AB BC =AD DE ,即x 70=20+x 90, 解得x=70.答:A 、B 两村相距70米. 课堂训练3.87米 5.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP. ∵SA ⊥AC ,PC ⊥AC ,∴∠SAB=∠PCB=90°, ∴△ASB ∽△CPB.∴SA PC =AB CB,∴SA=AB ·PC CB =10×2420=12(cm). 答:点光源S 与平面镜的距离SA 的长是12 cm . 课后提升m 解:∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB ,∴BC EF =DC DE, ∵DE=40 cm = m,EF=20 cm = m,AC= m,CD=10 m .∴BC 0.2=100.4, ∴BC=5(m), ∴AB=AC+BC=+5=(m),∴树高为 m .位 似课前预习1.同一个点O 位似中心 相似比2.位似 坐标原点课堂探究 【例1】 探究答案:∶2 ∶4 解:(1)△ABC 与△A'B'C'的周长之比为AB A'B'=36=12. 设S △ABC 周长为x cm,△A'B'C'周长为2x cm, 则2x-x=12,解得x=12, 所以△ABC 的周长为12 cm .(2)△ABC 与△A'B'C'的面积之比为AB AB 2=14, 设S △ABC =y cm 2,则S △A'B'C'=4y cm 2, 则y+4y=25,解得y=5, 所以△A'B'C'的面积为20 cm 2. 变式训练1-1:B 变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A 、O ;(2)中的两个图形不是位似图形. 【例2】 探究答案:1.位似中心 2.位似中心解:(1)如图所示.(2)A'C'=√22+22=2√2,AC=4√2, ∴四边形AA'C'C 的周长为AA'+A'C'+C'C+CA=2+2√2+2+4√2=4+6√2.变式训练2-1:B 变式训练2-2:解:作法:(1)连接OA ,并延长OA 到A',使得AA'=OA ; (2)连接OB ,并延长OB 到B',使得BB'=OB ; (3)连接OC ,并延长OC 到C',使得CC'=OC ; (4)连接OD ,并延长OD 到D',使得DD'=OD ; (5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD 关于O 点的位似图形, 且四边形A'B'C'D'与四边形ABCD 的相似比为2.【例3】 探究答案:1.位似中心 ∶(-2) 解:(1)延长BO 到B',使B'O=2BO ,延长CO 到C',使C'O=2CO ,连接B'C'.则△OB'C'即为△OBC 的位似图形(如图所示). (2)观察图形可知,B'(-6,2)、C'(-4,-2). (3)M'(-2x ,-2y ). 变式训练3-1:C 变式训练3-2:6 课堂训练4.(-4,-4)5.解:(1)OAE 与△OBF 相似.理由:∵AC ∥BD ,∴OA OB =OC OD. 又CE ∥DF ,∴OE OF =OC OD , ∴OA OB =OE OF, ∴AE ∥BF , ∴△OAE ∽△OBF. △OAE 与△OBF 位似.理由: 已证△OAE ∽△OBF ,又△OAE 和△OBF 对应点的连线都经过点O , ∴△OAE 与△OBF 位似. (2)△ACE 与△BDF 位似.理由:由(1)得AE ∥BF ,∴AE BF =OA OB , 又AC ∥BD ,∴AC BD =OA OB =OC OD . 又CE ∥DF ,∴CE DF =OC OD. ∴AC BD =CE DF =AE BF, ∴△ACE ∽△BDF. 又△ACE 和△BDF 对应点的连线都经过点O , ∴△ACE 与△BDF 位似. 课后提升,32或-2,-32 8.解:∵矩形ABCD 与矩形AB'C'D'是位似图形,且点A 为位似中心, ∴AB AB'=AD AD', 即AB AB+4=AD AD+2, ∴2AB=4AD ,即AB AD =21, 又∵矩形ABCD 的周长为24,即AB+AD=12, ∴AB=8,AD=4. 第4章 锐角三角函数正弦和余弦第1课时 正 弦 课前预习1.大小2.对边 斜边 sin A∠A 的对边斜边 3.12 √22 √32课堂探究【例1】 探究答案:1.直角 2.对 斜 角的大小 无关 解:∵BC 2+AC 2=62+82=102=AB 2, ∴△ABC 是直角三角形,∠C=90°,∴sin A=BC AB =610=35,sin B=AC AB =810=45. 变式训练1-1:√55 变式训练1-2:34【例2】 探究答案: 12.倒数 正 311 3。
湘教版九年级上册数学第2章 一元二次方程含答案(完美版)
湘教版九年级上册数学第2章一元二次方程含答案一、单选题(共15题,共计45分)1、已知a,b是方程x2+(m+2)x+1=0的两根,则(a2+ma+1)(b2+mb+1)的值()A.4B.1C.-1D.与m有关,无法确定2、以﹣2和3为两根的一元二次方程是()A.x 2+x﹣6=0B.x 2﹣x﹣6=0C.x 2+6x﹣1=0D.x 2﹣6x+1=03、关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是()A.a≤0B.a≥0C.a<0D.a>04、关于的一元二次方程的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有且只有一个实数根D.没有实数根5、某树主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支总数是43.若设主干长出x个支干,则可列方程()A.(x+1) 2=43B.x 2+2x+1=43C.x 2+x+1=43D.x(x+1)=436、设a,b为整数,方程的一根是,则的值为()A.2B.0C.-2D.-17、已知一元二次方程有一个根为2,则另一根为()A.2B.3C.4D.88、方程x2﹣9=0的两个根为()A.x1=﹣3,x2=3 B.x1=﹣9,x2=9 C.x1=﹣1,x2=9 D.x1=﹣9,x2=19、已知一元二次方程x2+x﹣1=0,下列判断正确是()A.该方程有两个相等的实数根B.该方程有一个根为1C.该方程没有实数根D.该方程有一个根为负数10、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1B.1C.1或﹣1D.﹣1或011、小华在解一元二次方程x2-x=0时,只得出一个根x=1,则被漏掉的一个根是()A.x=4B.x=3C.x=2D.x=012、若二次函数的图象与轴有两个交点,则关于的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定13、如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是()A. B. C. D.14、设,是方程x2+ x﹣2018=0的两个实数根,则的值为()A.0B.1C.4036D.201815、下列方程中,有两个不相等的实数根的是()A. B. C. D.二、填空题(共10题,共计30分)16、三角形两边的长分别是8和6,第3边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是________17、为迎接G20杭州峰会的召开,某校八年级(1)(2)班准备集体购买一种T恤衫参加一项社会活动.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60件(含60件)以上时,一律每件80元.如果八(1)(2)班共购买了100件T恤衫,由于某种原因需分两批购买,且第一批购买数量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,则第一批T恤衫的购买________件.18、已知,则该方程两根之积=________ .19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.20、若α、β是一元二次方程x2+2x﹣3=0的两个不相等的根,则α2﹣2β的值是________.21、三角形的两边长分别是3和9,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为________.22、方程x2-2x=0的根是________.23、关于x的一元二次方程有两个实数根,则实数m的取值范围是________.24、如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是________.25、关于x的方程有一个根为2,则另一个根是________.三、解答题(共5题,共计25分)26、解方程:27、如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m.(1)若养鸡场面积为200,求鸡场靠墙的一边长;(2)养鸡场面积能达到250吗?如果能,请给出设计方案,如果不能,请说明理由.28、在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.29、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?30、关于x的一元二次方程,其根的判别式的值为1,求m的值及方程的根.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、A5、C6、C7、C8、A9、D10、A12、A13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
2023学法大视野九年级上册数学湘教版
一、2023学法大视野九年级上册数学湘教版从简到繁,由浅入深地探讨2023学法大视野九年级上册数学湘教版,是我们深入了解这一主题的首要任务。
2023学法大视野九年级上册数学湘教版是九年级学生学习数学的教材,涵盖了丰富的数学知识和技能,是学生学习数学的重要工具和资源。
本文将从多个角度全面评估这一教材,以期帮助读者更全面、深刻地理解这一主题。
1.2023学法大视野九年级上册数学湘教版的内容2023学法大视野九年级上册数学湘教版的内容包括数与代数、函数与方程、几何与变换、统计与概率等多个模块。
其中,数与代数模块介绍了有理数与整式、一元一次方程与一元一次不等式等知识;函数与方程模块介绍了平面直角坐标系、一元二次函数等知识;几何与变换模块介绍了平面直角坐标系、平面向量等知识;统计与概率模块介绍了事件与概率、统计图与数据等知识。
这些内容涵盖了数学的基本概念和方法,对学生的数学学习起着重要的指导和支持作用。
2.2023学法大视野九年级上册数学湘教版的教学特点2023学法大视野九年级上册数学湘教版的教学特点主要表现在以下几个方面:注重培养学生的数学思维和解决问题的能力,通过一些启发式的问题设计和解决方法引导学生探索和发现数学知识;注重联系实际、贴近生活,通过举一反三和例题设计引导学生将数学知识运用到实际生活中去;再次,注重综合性和灵活性,通过跨学科和综合性案例设计引导学生将数学知识与其他学科进行整合和应用。
这些教学特点有利于培养学生的综合素质和创新精神,对学生成长和发展具有重要意义。
3.个人观点和理解2023学法大视野九年级上册数学湘教版是一份优秀的教材,具有丰富的内容和严谨的体系。
通过学习这份教材,学生可以系统地掌握数学的基本知识和技能,培养良好的数学思维和解决问题的能力。
这份教材在教学特点上也具有很多值得肯定的地方,能够有效地激发学生学习的兴趣和动力,培养学生的综合素质和创新精神。
我认为2023学法大视野九年级上册数学湘教版是一份非常优秀的数学教材,值得学生和教师们的认真学习和借鉴。
湘教版九年级上册数学第2章 一元二次方程 含答案
湘教版九年级上册数学第2章一元二次方程含答案一、单选题(共15题,共计45分)1、若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为()A.a=2B.a≠﹣2C.a≠±2D.a≠22、下列关于x的一元二次方程有实数根的是( )A.x 2+2=0B.2x 2+x+1=0C.x 2-x+3=0D.x 2-2x-1=03、方程x2-2x+3=0的根的情况是().A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4、已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A.-7B.-3C.7D.35、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1或-1B.-1C.1D.06、代数式的最小值为().A.-1B.0C.3D.57、下列方程属于一元二次方程的是( )A.3x-1=0B.x 3-4x=3C.x 2+2x-1=0D.8、设a、b是一元二次方程x2-2x-1=0的两个根,则a2+a+3b的值为,()A.5B.6C.7D.89、方程x2﹣8x+2=0,经过配方后,结果正确的是()A.(x+4)2=8B.(x+4)2=21C.(x﹣4)2=14D.(x﹣4)2=510、已知α,β是△ABC的两个角,且sinα,tanβ是方程2x2﹣3x+1=0的两根,则△ABC是()A.锐角三角形B.直角三角形或钝角三角形C.钝角三角形D.等边三角形11、直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A.a=2B.a=10C.a=2或a=﹣10D.a=2或a=1012、一元二次方程x2﹣9=0的两根分别是a,b,且a>b,则2a﹣b的值为()A.3B.﹣3C.6D.913、一元二次方程x2﹣mx﹣2=0的一个根为2,则m的值是()A.1B.2C.3D.414、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1-2x)=256B.256(1+x) 2=289C.289(1-x)2=256 D.289-289(1-x)-289(1-x) 2=25615、若关于x的一元二次方程x2+2x-k=0有实数根,则k的取值范围为()A.k=-1B.k>-1C.k≥-1D.k≤-1二、填空题(共10题,共计30分)16、如果关于x的一元二次方程有两个相等的实数根,那么实数k的值是________.17、某药品原价每盒25元,.经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是________18、将方程x(x﹣2)=x+3化成一般形式后,二次项系数,一次项系数和常数项分别是________.19、若关于x的一元二次方程(m﹣1)x2﹣4x+1=0有两个不相等的实数根,则m的取值范围为________.20、已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为________.21、已知关于x的方程x2+3x+k2=0的一个根是﹣1,则k=________.22、方程(x+3)(x+2)=x+3的解是________.23、如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k 的取值范围是________.24、已知关于x的方程是一元二次方程,则m的值为________.25、若关于x的一元二次方程有两个相等的实数根,则c的值是________.26、解方程:(x﹣2)2=3(x﹣2).27、设x1、x2是方程2x2+4x﹣3=0的两个根,利用根与系数关系,求下列各式的值:(1)(x1﹣x2)2;(2).28、阅读下面的例题.解方程:.解:(1)当时,原方程化为,解得,(不合题意,舍去).( 2 )当时,原方程化为,解得,(不合题意,舍去).∴原方程的解是,.请参照上述方法解方程.29、已知﹣3x2+mx﹣6=0的一个根是1,求m及另一个根.30、关于x的方程有两个不相等的实数根(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m 的值;若不存在,请说明理由.参考答案1、D2、A3、C4、D5、B6、A7、C8、C9、C10、B11、C12、D13、A14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
九年级数学上册全册教案(湘教版)
九年级数学上册全册教案(湘教版)本资料为woRD文档,请点击下载地址下载全文下载地址第1章反比例函数.1反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知.复习小学已学过的反比例关系,例如:当路程s一定,时间t与速度v成反比例,即vt=s当矩形面积一定时,长a和宽b成反比例,即ab=S2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v与所用时间t之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解.见教材P3例题.2.下列函数关系中,哪些是反比例函数?已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;压强p一定时,压力F与受力面积S的关系;功是常数w时,力F与物体在力的方向上通过的距离s 的函数关系.某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y 与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=.所以此题必须先写出函数解析式,后解答.解:a=12/h,是反比例函数;F=pS,是正比例函数;F=w/s,是反比例函数;y=m/x,是反比例函数.3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3(1)求p与V的函数关系式,并指出自变量的取值范围.(2)求V=9m3时,二氧化碳的密度.解:略5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点、、等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;可以通过探索函数y=与y=-之间的关系,画出y=-的图象.【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解.教材P9例1.2.如果函数y=2xk+1的图象是双曲线,那么k=.【答案】-23.如果反比例函数y=的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=的图象在第象限.【答案】二、四5.反比例函数y=的图象大致是图中的.解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限.【答案】c6.下列反比例函数图象一定在第一、三象限的是【答案】c7.已知函数为反比例函数.求m的值;它的图象在第几象限内?在各象限内,y随x的增大如何变化?当-3≤x≤-时,求此函数的最大值和最小值.8.作出反比例函数y=的图象,并根据图象解答下列问题:当x=4时,求y的值;当y=-2时,求x的值;当y>2时,求x的范围.解:列表:由图知:y=3;x=-6;0<x<69.作出反比例函数y=-的图象,结合图象回答:(1)当x=2时,y的值;当1<x≤4时,y的取值范围;当1≤y<4时,x的取值范围.解:列表:由图知:y=-2;-4<y≤-1;-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知.思考:已知反比例函数y=的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A,B是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.因为点A,B是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解.若点A,B在双曲线y=-上,则y1、y2中较小的是.【答案】y22.已知点A,B是反比例函数y=的图象上的两点,若x1<0<x2,则有.A.y1<0<y2B.y2<0<y1c.y1<y2<0D.y2<y1<0【答案】A3.若A,B是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是A.b1<b2B.b1=b2c.b1>b2D.大小不确定【答案】D4.函数y=-的图象上有两点A,B,若0<x1<x2,则A.y1<y2B.y1>y2c.y1=y2D.y1、y2的大小不确定【答案】A5.已知点P在反比例函数y=的图象上,当x=-3时,求y的值;当1<x<3时,求y的取值范围.6.已知y=过三个点A,B,c.求反比例函数的表达式;求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-;(2)将B(4,b)代入反比例解析式得:b=-4;将c(a,2)代入反比例解析式得:2=-,即a=-8.7.已知反比例函数的图象过点.求这个函数的解析式,并画出图象;若点A在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析:反比例函数的图象过点,即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.解:设:反比例函数的解析式为:y=.而反比例函数的图象过点,即当x=1时,y=-2.所以-2=,k=-2.即反比例函数的解析式为:y=-.点A在反比例函数y=-图象上,所以m==,点A的坐标为.点A关于x轴的对称点不在这个图象上;点A关于y轴的对称点不在这个图象上;点A关于原点的对称点在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知.已知一个正比例函数与一个反比例函数的图象交于P (-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y=,其中,k1,k2是常数,且均不为0.由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1×,4=解得,k1=k2=-12所以,正比例函数解析式为y=x,反比例函数解析式为y=-.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1=;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2=;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=(k≠0)中比例系数k的几何意义:过双曲线y=(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解.已知如图,A是反比例函数y=kx的图象上的一点,AB 丄x轴于点B,且△ABo的面积是3,则k的值是A.3B.-3c.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S =|k|.解:根据题意可知:S△AoB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.【答案】c2.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接oA、oB,则△AoB的面积为A.B.2c.3D.1分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作Bc⊥y轴,点c为垂足,再根据反比例函数系数k的几何意义分别求出四边形oEAc、△AoE、△Boc的面积,进而可得出结论.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作Bc⊥y轴,点c为垂足,∵由反比例函数系数k的几何意义可知,S四边形oEAc=6,S△AoE=3,S△Boc=1,∴S△AoB=S四边形oEAc-S△AoE-S△Boc=6-3-1=2.【答案】B3.已知直线y=x+b经过点A,并与双曲线y=的交点为B和c,求k、b的值.解:点A在直线y=x+b上,所以0=3+b,b=-3.一次函数的解析式为:y=x-3.又因为点B也在直线y=x-3上,所以m=-2-3=-5,即B.而点B又在反比例函数y=上,所以k=-2×=10.4.已知反比例函数y=的图象与一次函数y=k2x-1的图象交于A.分别求出这两个函数的解析式;试判断A点关于坐标原点的对称点与两个函数图象的关系.分析:因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值.把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式中,可知A′是否在这两个函数图象上.解:因为点A在反比例函数和一次函数的图象上,所以k1=2×1=2.=2k2-1,k2=1.所以反比例函数的解析式为:y=;一次函数解析式为:y=x-1.点A关于坐标原点的对称点是A′.把A′点的横坐标代入反比例函数解析式得,y==-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A和点B,a<0,且点B在反比例函数的y=-的图象上.求a的值.求一次函数的解析式,并画出它的图象.利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.如果P、Q是这个一次函数图象上的两点,试比较y1与y2的大小.分析:由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.由求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.和都是利用函数的图象进行解题.一次函数和反比例函数的图象为:从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×+1=-2m-1所以y1-y2=-=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.利用图象中的条件,求反比例函数和一次函数的解析式;根据图象写出使一次函数的值大于反比例函数值的x的取值范围.分析:把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?根据压力F、压强p与受力面积S之间的关系式p=,请你判断:当F一定时,p是S的反比例函数吗?如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa 当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数k,即pV=k)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=;x>03.若梯形的下底长为x,上底长为下底长的,高为y,面积为60,则y与x的函数关系是.【答案】y=4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y与宽x之间的函数关系的图象大致是【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是A.小明完成百米赛跑时,所用时间t与他的平均速度v 之间的关系B.长方形的面积为24,它的长y与宽x之间的关系c.压力为600N时,压强p与受力面积S之间的关系D.一个容积为25L的容器中,所盛水的质量m与所盛水的体积V之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是.A.y=3000xB.y=6000xc.y=D.y=【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是【答案】A8.一个长方体的体积是100cm3,它的长是y,宽是5cm,。
2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页
2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页概述本文档是关于2023版初中数学九年级下册同步训练《学法大视野》(湘教版)含答案62页的详细介绍。
该教材是针对初中九年级学生编写的数学同步训练教材,在学生学习过程中起到辅助和巩固知识点的作用。
本文档将逐一介绍该教材的目录结构和内容特点,以及一些学生在使用该教材时应注意的事项。
同时,为了帮助学生更好地使用该教材,我们还将提供一些学习方法和解题技巧。
目录结构《学法大视野》(湘教版)含答案62页的目录结构如下:•Unit 1: 分析推理与证明–Section 1: 数列的前后关系–Section 2: 函数的概念–Section 3: 合成函数与反函数–Section 4: 不等式与绝对值•Unit 2: 线性方程与一次函数–Section 1: 一元一次方程–Section 2: 配方法与分式方程–Section 3: 一次函数的图象与性质•Unit 3: 二次根式与二次函数–Section 1: 二次根式的运算–Section 2: 二次函数的概念与图象–Section 3: 初等函数的图象与性质内容特点《学法大视野》(湘教版)含答案62页作为初中九年级数学的同步训练教材,具有以下内容特点:1.有机结合知识点:教材通过合理的章节划分,将数学知识点进行了有机组合,帮助学生更好地理解数学知识的内在联系。
2.着重培养思维能力:教材中的习题涵盖了不同难度和类型的题目,旨在培养学生的分析和推理能力,提高解决问题的能力。
3.强调实用应用:教材中的习题不仅涵盖了基本的数学理论和概念,还包括大量实际应用题,帮助学生将数学知识应用到实际生活中。
4.强调题目解析:教材中每个习题都配有详细的解析过程和答案解释,帮助学生理解解题思路和方法,从而更好地掌握数学知识。
5.高质量的练习题:教材中的习题经过精心编选,保证了题目的准确性和丰富性,适合学生进行系统性的练习。
湘教版九年级上册数学第1章 反比例函数含答案(含解析)
湘教版九年级上册数学第1章反比例函数含答案一、单选题(共15题,共计45分)1、对于反比例函数y= ,下列说法正确的是()A.图象经过点(﹣1,5)B.图象分布在第二、四象限C.当x>0时,y随x增大而增大D.当x<0时,y随x增大而减小2、下列函数中,属于反比例函数的是()A. B. C. D.3、若函数为反比例函数,则m的值为()A. B.1 C. D.-14、如图,平行四边形的顶A在x轴的正半轴上,点在对角线上,反比例函数的图像经过C、D两点.已知平行四边形的面积是,则点B的坐标为()A. B. C. D.5、如图,在x轴上方,∠BOA=90°且其两边分别与反比例函数y=﹣、y= 的图象交于B、A两点,则∠OAB的正切值为()A. B. C. D.6、已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y17、如图,在同一直角坐标系中,函数y= 与y=kx+k2的大致图象是()A. B. C. D.8、如图,在平面直角坐标系中,矩形的边、分别在x轴和y轴上,,,点是边上一动点,过点D的反比例函数与边交于点E.若将沿折叠,点B的对应点F恰好落在对角线上.则反比例函数的解析式是()A. B. C. D.9、已知反比例函数y=-,下列结论不正确的是( )A.图象必经过点(-1,2)B. y随x的增大而增大C.图象在第二、四象限内D.当x>1时,-2<y<010、如图,菱形ABCD的两个顶点B,D在反比例函数y= 的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣211、下列结论中,不正确的有()①反比例函数y=的函数值y随x的增大而减小;②任意三点确定一个圆;③圆既是轴对称图形又是中心对称图形;④二次函数y=x2-2x-3(x≥1)的函数值y随x的增大而减小;⑤平分弦的直径垂直于弦;⑥相等的圆周角所对的弧相等.A.2个B.3个C.4个D.5个12、已知反比例函数的解析式为y=,且图象位于第一、三象限,则a 的取值范围是()A.a=1B.a≠1C.a>1D.a<113、如果反比例函数的图象经过点(1,-2),那么k的值是()A.-2B.-1C.2D.114、已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②点C的坐标是(6,8);③sin∠COA=;④AC+OB=6.其中正确的结论有()A.1个B.2个C.3个D.4个15、下列关系式中,y是x反比例函数的是()A.y=B.y= -1C.y=-D.y=二、填空题(共10题,共计30分)16、已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为________ .17、已知点A(a,b)既在一次函数y=﹣x+3的图象上,又在反比例函数的图象上,则代数式a2+b2的值为________.18、如图,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且点A 在反比例函数(k>0)的图像上,若OB2-AB2=10,则k的值为________.19、如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为________.20、如图,点A是反比例函数y= (k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与Y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E。
湘教版九年级数学上册知识点总结
九(上)数学知识点答案第一章一元二次方程一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a≠0)的形式。
(2)一元二次方程的一般式及各系数含义一般式:ax2+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项。
2、分解因式法(1)分解因式的概念当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。
(2)分解因式法解一元二次方程的一般步骤一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。
3、配方法(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。
(2)配方法的步骤和方法一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;三、直接用开平方法求出它的解。
4、公式法(1)求根公式b2-4ac≥0时,x=a acb b24 2-±-(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2-4ac 的值,当b2-4ac≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
命题与证明二、知识要点梳理知识点一:定义要点诠释:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.知识点二:命题要点诠释:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.(句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.)知识点三:命题的结构要点诠释:命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.知识点四:公理要点诠释:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。
学法大视野·数学·九年级(上册)(湘教版)·第1章-反比例函数
1.反比例函数概念一般地,如果两个变量x ,y 之间的对应关系可以表示成 (k 为常数,k 0)的形式,那么称y 是x 的反比例函数.反比例函数的自变量x 不能为 . 2.反比例函数的等价形式y 是x 的反比例函数⇔y=kk (k ≠0)⇔y=kx -1(k ≠0)⇔xy=k (k ≠0).探究一:反比例函数的概念 【例1】 若函数y=(m+1)k k 2+3k +1是反比例函数,则m 的值为( )(A)m=1 (B)m=-2(C)m=-2或m=-1 (D)m=2或m=1 【导学探究】判断形如y=kk (k ≠0)的反比例函数时,要特别注意:①自变量x 的指数是 ,②k 的取值范围是 .反比例函数y=k k(k ≠0)中应注意三点:(1)k ≠0;(2)x ≠0;(3)其解析式的另外两种写法是xy=k ,y=kx -1(k ≠0),其中(1)是最容易被忽视的.变式训练1-1:下列各式中的两个字母都表示变量,哪些式子中的两个变量可以成反比例函数关系?每一个反比例函数相应的常数“k ”值是多少? (1)y=k3;(2)xy=-6; (3)s=-3k ;(4)y=3k +1.变式训练1-2:写出下列问题中y 与x 之间的函数关系式,并判断是否为反比例函数. (1)三角形的面积为36 cm 2,底边长y (cm)与该边上的高x (cm); (2)圆锥的体积为60 cm 3,它的高y (cm)与底面的面积x (cm 2).探究二:求反比例函数解析式【例2】 已知y 是x 的反比例函数,(√2,-√2)是它图象上的一点,该图象是否经过点-6,13?【导学探究】1.设函数关系式为 .2.把点 代入关系式.确定反比例函数的关系式:(1)设:设出关系式y=k k(k ≠0);(2)代:把一组x 、y 的值代入;(3)写:写出函数关系式.变式训练2-1:已知y 与x 成反比例,并且当x=-1时,y=3,那么该函数的表达式为( )(A)y=-3x(B)y=-3k(C)y=-13x (D)y=13x变式训练2-2:已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y 与x 的函数表达式; (2)当x=4时,求y 的值.1.(2013温州)已知点P(1,-3)在反比例函数y=kk(k≠0)的图象上,则k的值是()(A)3 (B)-3 (C)13(D)-132.下列函数中,能表示y是x的反比例函数的是()(A)y=2x (B)y=1k+1(C)y=13k (D)y=√k3.(2013邵阳)下列四个点中,在反比例函数y=-6k的图象上的是() (A)(3,-2) (B)(3,2)(C)(2,3) (D)(-2,-3)4.已知函数y=(m-2)k k 2-5是反比例函数,则m的值为.5.某市举办“珍珠节”,需要生产4000个珍珠纪念品,一名工人一天的产量为5至8个,若要在40天内完成任务,那么大约需要多少工人?1.下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是()(A)直角三角形中,30°角所对的直角边y与斜边x之间的关系(B)等腰三角形,顶角y与底角x之间的关系(C)圆的面积S与它的直径d之间的关系(D)面积为20的菱形,其中一条对角线y与另一条对角线x的关系2.在函数①y=3x;②y=2k;③y=-5x;④y=-5k ;⑤s=vt;⑥v=kk;⑦S=πR2;⑧t=100k ;⑨I=220k 中.反比例函数有( )(A)4个 (B)3个 (C)5个 (D)6个3.(2013遂宁)已知反比例函数y=kk 的图象经过点(2,-2),则k 的值为( ) (A)4(B)-12(C)-4 (D)-24.已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间( ) (A)成正比例 (B)成反比例(C)既成正比例又成反比例 (D)既不成正比例也不成反比例5.已知反比例函数y=-2k 的图象经过点(a ,-a ),则a 的值为( ) (A)√2 (B)-√2 (C)±√2 (D)±2 6.已知函数y=(m+2)x|m|-3是反比例函数,则m 的值为 .7.(2013扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V=200时,p=50,则当p=25时,V= .8.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数y=6k 的图象上.若x 1x 2=-3,则y 1y 2的值为 . 9.已知函数y=(m-2)kk 2-3.(1)若y 是x 的正比例函数,求m 的值. (2)若y 是x 的反比例函数,求m 的值.10.生物学习小组欲建一个一边长为x m,面积是30 m 2的三角形生物养殖区.若这条边上的高为y m,(1)求y 关于x 的函数表达式及自变量x 的取值范围.(2) y 关于x 的函数是不是反比例函数?如果是,请说出它的比例系数.第1课时反比例函数的图象1.反比例函数的图象(k≠0)的图象是双曲线.反比例函数y=kk2.反比例函数图象画法的注意事项(1)反比例函数的图象不是直线,“两点法”是不能画的;(2)选取的点越多,画的图越准确.3.反比例函数图象的性质(1)当k>0时,两支曲线分别位于第象限内.(2)当k<0时,两支曲线分别位于第象限内.探究一:反比例函数图象性质(m为常数)图象的一支.【例1】已知如图所示的曲线是函数y=k-5k(1)求常数m的取值范围;(2)若该函数的图象与正比例函数y=2x的图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.【导学探究】的两个分支分别位于.可判断m-5由题中图象可知反比例函数y=k-5k0.反比例函数y=kk图象的位置决定于k的符号.变式训练1-1:已知反比例函数y=1-kk的图象如图所示,则实数m的取值范围是() (A)m>1 (B)m>0(C)m<1 (D)m<0变式训练1-2:反比例函数y=m k2k 2+3k-6图象在第二、四象限,那么m= .探究二:反比例函数与一次函数的结合【例2】已知反比例函数y=kk的图象与一次函数y=3x+m的图象相交于点(1,5).(1)求这两个函数的关系式;(2)求这两个函数图象的另一个交点的坐标.【导学探究】1.把点代入y=kk和y=3x+m.2.两函数图象的交点坐标,即求方程组的解.变式训练2-1:(2013汕头)已知k1<0<k2,则函数y=k1x-1和y=k2k的图象大致是()变式训练2-2:如图,已知直线y=-x+2与反比例函数y=k的图象相交于点A(-1,a),并且与xk轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积.的图象在()1.(2013兰州)当x>0时,函数y=-5k(A)第四象限 (B)第三象限(C)第二象限 (D)第一象限的图象可能是()2.(2013沈阳)在同一平面直角坐标系中,函数y=x-1与函数y=1k与直线y=2x+1的一个交点的横坐标为-1,则k的值为()3.若双曲线y=kk(A)-1 (B)1 (C)-2 (D)2的图象的一支位于第一象限,则常数m的取值范围4.(2013厦门)已知反比例函数y=k-1k是.与一次函数y=x+b的图象,都经过点A(1,2)5.(2013岳阳)如图,反比例函数y=kk(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.1.(2013随州)正比例函数y=kx和反比例函数y=-k 2+1k(k是常数且k≠0)在同一平面直角坐标系中的图象可能是()2.(2013铜仁)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()3.(2013大理)若ab>0,则一次函数y=ax+b与反比例函数y=kkk在同一坐标系中的大致图象是()4.关于反比例函数y=4k的图象,下列说法正确的是()(A)必经过点(1,1)(B)两个分支分布在第二、四象限(C)两个分支关于x轴成轴对称(D)两个分支关于原点成中心对称5.(2013毕节)一次函数y=kx+b与反比例函数y=kk在同一直角坐标系下的大致图象如图所示;则k、b的取值范围是()(A)k>0,b>0(B)k<0,b>0(C)k<0,b<0(D)k>0,b<06.(2013无锡)已知双曲线y=k+1k经过点(-1,2),那么k的值等于.7.(2013陕西)如果一个正比例函数的图象与反比例函数y=-6k的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为.8.已知反比例函数y=k 2k 的图象过点(-4,-9),且反比例函数y=kk的图象位于第一、三象限,求m的值.9.如图,直线y=kx+k(k≠0)与双曲线y=k-5k在第一象限内相交于点M,与x轴交于点A.(1)求m的取值范围和点A的坐标;(2)若点B的坐标为(3,0),AM=5,S△ABM=8,求双曲线的函数表达式.第2课时反比例函数的性质1.反比例函数的增减性反比例函数y=k(k≠0)的图象,当k>0时,,y的值随x值的增大而;当kk<0时,,y的值随x值的增大而.2.反比例函数图象的对称性反比例函数的图象双曲线既是轴对称图形,也是中心对称图形.(对称轴为直线,对称中心为).探究一:反比例函数的增减性【例1】如图是反比例函数y=2k-4的图象的一支,根据图象回答下列问题:k(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数的图象经过点(3,1),求n的值.(3)在这个函数图象的某一支上任取点A(a1,b1)和点B(a2,b2),如果a1<a2,试比较b1和b2的大小.【导学探究】1.函数过象限,所以2n-4.2.在每个分支上,y随x的增大而,由a1<a2可得b1b2.反比例函数的增减性要注意:(1)前提是在每个象限内,(2)与一次函数增减性相反.变式训练1-1:(2013凉山州)如图,正比例函数y1与反比例函数y2相交于点E(-1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()变式训练1-2:(2013海南)点(2,y1),(3,y2)在函数y=-2k的图象上,则y1y2(填“>”或“<”或“=”).探究二:反比例函数的几何意义【例2】如图所示,A、B是函数y=2k的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,且交x轴于D,求△ABC的面积.【导学探究】从反比例函数y=kk(k≠0)的图象上任一点向两坐标轴作垂线(如图所示),与两坐标轴围成的矩形的面积等于,三角形面积(S△AOB)等于.变式训练2-1:(2013永州)如图,两个反比例函数y=4k 和y=2k在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.变式训练2-2:如图所示,设A为反比例函数y=kk图象上一点,且长方形ABOC的面积为3,求这个反比例函数的解析式.1.(2013义乌)已知两点P1(x1,y1)、P2(x2,y2)在反比例函数y=3k的图象上,当x1>x2>0时,下列结论正确的是()(A)0<y1<y2(B)0<y2<y1(C)y1<y2<0 (D)y2<y1<02.(2013滨州)若点A(1,y1)、B(2,y2)都在反比例函数y=kk(k>0)的图象上,则y1、y2的大小关系为()(A)y1<y2 (B)y1≤y2(C)y1>y2 (D)y1≥y23.如图,已知A点是反比例函数y=kk(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.4.如图,点A在双曲线y=3k 上,点B在双曲线y=5k上,C,D在x轴上,若四边形ABCD为矩形,则它的面积为.5.(2013郴州)已知:如图,一次函数的图象与y轴交于点C(0,3),且与反比例函数y=2k的图象在第一象限内交于A、B两点,其中A(1,a),求这个一次函数的解析式.1.(2013兰州)已知A (-1,y 1),B (2,y 2)两点在双曲线y=3+2kk上,且 y 1>y 2,则m 的取值范围是( )(A)m>0 (B)m<0 (C)m>-32 (D)m<-322.反比例函数y=2k 图象上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( ) (A)y 1>y 2 (B)y 1<y 2 (C)y 1=y 2 (D)不能确定3.(2013潍坊)设点A (x 1,y 1)和B (x 2,y 2)是反比例函数y=kk 图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y=-2x+k 的图象不经过的象限是( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.如图所示,两个反比例函数y=1k 和y=-2k 的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为( ) (A)3 (B)4(C)92 (D)55.如图,点A 是反比例函数y=-6k (x<0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )(A)1 (B)3 (C)6 (D)126.(2013内江)如图,反比例函数y=k(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、kBC相交于点D、E,若四边形ODBE的面积为9,则k的值为()(A)1 (B)2 (C)3 (D)47.如图所示,一次函数y1=-x-1与反比例函数y2=-2的图象交于点A(-2,1),B(1,-2),则使ky1>y2的x的取值范围是.在第一象限的图象如图所示,点A在其图象上,点B为x 8.(2013黄冈)已知反比例函数y=6k轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= .图象的一支.根据图象回答下列问题:9.如图是反比例函数y=5-2kk(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.1.反比例函数的应用主要体现在三个方面(1)根据图象或其他信息,写出函数的解析式.(2)由已知条件画出函数的图象.(3)运用反比例函数的性质解决实际问题.2.应用反比例函数解决问题的注意事项(1)设出函数表达式,不要忘记系数的取值范围.(2)在求解中注意自变量的取值范围.(3)有些问题也可借助于图象或图表来解决,使问题更直观、条理.探究一:反比例函数的应用【例1】某汽车的功率P(瓦)为一定值,汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.(1)这辆汽车的功率是多少?请写出v关于F的函数表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30 米/秒,那么F在什么范围内?【导学探究】1.由题图象知,v与F是函数,所以可设.2.v随F的增大而.变式训练1-1:近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数关系式为()(A)y=400k (B)y=14k(C)y=100k (D)y=1400k变式训练1-2:在对物体做功W一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米.探究二:反比例函数与一次函数的综合应用【例2】相交于A(1,2),B(m,-1)两点.如图所示,直线y=k1x+b与双曲线y=k2k(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;的解集.(3)观察图象,请直接写出不等式k1x+b>k2k【导学探究】1.由A点的坐标,可求出,从而可求出m= .2.借助求出不等式的解集.反比例函数与一次函数的综合应用的常见类型:(1)求关系式;(2)求交点坐标;(3)求三角形面积;(4)比较函数值大小.变式训练2-1:(2013天水)函数y1=x和y2=1的图象如图所示,则y1>y2的x取值范围是()k(A)x<-1或x>1(B)x<-1或0<x<1(C)-1<x<0或x>1(D)-1<x<0或0<x<1变式训练2-2:x+b经过第一、二、三象限,与y轴交于点B,点A(2,t)在已知平面直角坐标系xOy,直线y=12x+b上,连接AO,△AOB的面积等于1.直线y=12(1)求b的值;(2)如果反比例函数y=k(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.k1.(2013泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()的一个交点坐标为(3,4),则它们的另一个2.(2013三明)如图,已知直线y=mx与双曲线y=kk交点坐标是()(A)(-3,4) (B)(-4,-3)(C)(-3,-4) (D)(4,3)3.(2013荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是()(A)1 (B)2 (C)3 (D)44.(2013枣庄)若正比例函数y=-2x与反比例函数y=k图象的一个交点坐标为(-1,2),则另一k个交点的坐标为.5.(2013新疆)如图,已知一次函数y1=kx+b与反比例函数y2=k的图象交于A(2,4)、B(-4,n)k两点.(1)分别求出y1和y2的解析式;(2)写出y1=y2时,x的值;(3)写出y1>y2时,x的取值范围.1.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10 m3时,气体的密度是()(A)5 kg/m3(B)2 kg/m3(C)100 kg/m3(D)1 kg/m32.三角形的面积为8 cm2,这时底边上的高y(cm)与底边长x(cm)之间的函数关系用图象来表示是()与y2=k2x的图象相交于点A(1,2)和点B,当y1<y2时,自变量x 3.(2013南充)如图,函数y1=k1k的取值范围是()(A)x>1(B)-1<x<0(C)-1<x<0或x>1(D)x<-1或0<x<1在第一象限的交点为A,过点A作AB⊥x轴4.(2013黔东南州)如图,直线y=2x与双曲线y=2k于B,将△ABO绕点O旋转90°,得到△A'B'O,则点A'的坐标为()(A)(1,0)(B)(1,0)或(-1,0)(C)(2,0)或(0,-2)(D)(-2,1)或(2,-1)(k≠0)的图象交于A(1,4)、B(4,1) 5.如图所示,一次函数y1=ax+b(a≠0)与反比例函数y2=kk两点,若y1>y2,则x的取值范围是.6.兰州是拉面的故乡.在做拉面的过程中渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.若工人师傅将面团拉成160根,每根长0.5 m时为成品,则此时拉面粗mm2.于点D,DC⊥x轴于点C 7.如图所示,直线y=2x-4交y轴于点A,交x轴于点B,交双曲线y=kk且S△OAB=4S△BCD,则D点坐标为.8.(2013宿迁)在平面直角坐标系xOy 中,一次函数y=13x+2与反比例函数y=5k (x>0)图象交点的横坐标为x 0.若k<x 0<k+1,则整数k 的值是 .9.(2013钦州)如图,一次函数y=ax+b 的图象与反比例函数y=k k的图象交于A (-2,m ),B (4,-2)两点,与x 轴交于C 点,过A 作AD ⊥x 轴于D. (1)求这两个函数的解析式: (2)求△ADC 的面积.10.(2013湘西)如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=2k 的图象有一个交点A (m ,2). (1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B (2,3)是否在正比例函数图象上,并说明理由.。
学法大视野·数学·九年级上册(湘教出版)·规范标准答案
课时参考答案(课前预习、课堂探究、课堂训练、课后提升)第1章 反比例函数1.1 反比例函数课前预习1.y=k x≠ 零 课堂探究【例1】 探究答案:-1 k ≠0B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x 与y ,而要看它能否化为y=k x (k 为常数,k ≠0)的形式.所以(2)是反比例函数,其中k=-6;(3)是反比例函数,其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得12xy=36,于是y=72x .所以,y 是x 的反比例函数.(2)由圆锥的体积公式,得13xy=60,于是y=180x . 所以y 是x 的反比例函数.【例2】 探究答案:1.y=k x (k ≠0) 2.(√2,-√2)解:设反比例函数的解析式为y=k x (k ≠0),因为图象过点(√2,-√2),将x=√2,y=-√2代入,得-√2=√2,k=-2. 因此,这个反比例函数的解析式为y=-2x ,将x=-6,y=13代入,等式成立.所以函数图象经过-6,13. 变式训练2-1:B变式训练2-2:解:(1)设y 1=k 1x ,y 2=k 2x (k 1,k 2为常数,且k 1≠0,k 2≠0),则y=k 1x+k 2x .∵x=1,y=4;x=2,y=5,∴{k 1+k 2=4,2k 1+k 22=5.解得{k 1=2,k 2=2.∴y 与x 的函数表达式为y=2x+2x .(2)当x=4时,y=2×4+24=812. 课堂训练1.B2.C3.A4.-25.解:设大约需要工人y 个,每人每天生产纪念品x 个.∴xy=100,即y=100x (x>0) ∵5≤x ≤8,∴1008≤y ≤1005, 即1212≤y ≤20,∵y 是整数,∴大约需工人13至20人. 课后提升1.D2.A3.C4.B5.C6.27.4008.-129.解:(1)∵y 是x 的正比例函数,∴m 2-3=1,m 2=4,m=±2.∵m=2时,m-2=0, ∴舍去. ∴m=-2.(2)∵y 是x 的反比例函数, ∴m 2-3=-1,m 2=2,m=±√2.10.解:(1)由S=12xy=30,得y=60x,x 的取值范围是x>0.(2)由y=60x可知,y 是x 的反比例函数,系数为60. 1.2 反比例函数的图象与性质第1课时 反比例函数的图象课前预习3.(1)一、三 (2)二、四 课堂探究【例1】 探究答案:第一、三象限 >解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4).又∵点A 在反比例函数y=m -5x的图象上, ∴4=m -52,即m-5=8. ∴反比例函数的解析式为y=8x .变式训练1-1:C变式训练1-2:-52【例2】 探究答案:1.(1,5) 2.{y =k x ,y =3x +m解:(1)∵点(1,5)在反比例函数y=k x 的图象上, ∴5=k 1,即k=5,∴反比例函数的关系式为y=5x .又∵点(1,5)在一次函数y=3x+m 的图象上, ∴5=3+m , ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得{y =5x ,y =3x +2,解得{x 1=1,y 1=5或{x 2=-53,y 2=-3.∴这两个函数图象的另一个交点的坐标为-53,-3.变式训练2-1:A变式训练2-2:解:(1)将A (-1,a )代入y=-x+2中,得a=-(-1)+2,解得a=3.(2)由(1)得,A (-1,3),将A (-1,3)代入y=k x 中,得到3=k -1,即k=-3,即反比例函数的表达式为y=-3x .(3)如图:过A 点作AD ⊥x 轴于D , ∵A (-1,3),∴AD=3,在直线y=-x+2中,令y=0,得x=2, ∴B (2,0),即OB=2, ∴△AOB 的面积 S=12×OB ×AD=12×2×3=3. 课堂训练1.A2.C3.B4.m>15.解:(1)∵反比例函数y=kx与一次函数y=x+b 的图象,都经过点A (1,2), ∴将x=1,y=2代入反比例函数解析式得,k=1×2=2,将x=1,y=2代入一次函数解析式得,b=2-1=1,∴反比例函数的解析式为y=2x ,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1. ∴一次函数图象与x 轴,y 轴的交点坐标分别为(-1,0),(0,1). 课后提升1.C2.B3.A4.D5.C6.-37.-248.解:m 2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=m x的图象位于第一、三象限,∴m>0,∴m=6.9.解:(1)∵y=m -5的一支在第一象限内,∴ m-5>0. ∴m>5.对直线y=kx+k 来说,令y=0,得kx+k=0,即k (x+1)=0. ∵k ≠0,∴x+1=0,即x=-1. ∴点A 的坐标为(-1,0).(2)过点M 作MC ⊥AB 于点C , ∵点A 的坐标为(-1,0),点B 的坐标为(3,0), ∴AB=4,AO=1. ∵S △ABM =12×AB ×MC=1×4×MC=8,∴MC=4.又AM=5,∴AC=3,又OA=1,∴OC=2.∴点M 的坐标为(2,4).把M (2,4)代入y=m -5x , 得4=m -52,则m=13,∴y=8x. 第2课时 反比例函数的性质 课前预习1.在每一象限内 减小 在每一象限内 增大2.y=±x 坐标原点课堂探究 【例1】 探究答案:1.一、三 >0 2.减小 >解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2.(2)把点(3,1)代入y=2n -4x,得2n-4=3, 解得n=72.(3)因为在每个象限内,y 随x 的增大而减小,所以由a 1<a 2,得b 1>b 2.变式训练1-1: A变式训练1-2:<【例2】 探究答案:|k| |k|解:设点A的坐标为a,2a ,则点B的坐标为-a,-2a,∵BC∥x轴,AC∥y轴,∴AC⊥BC,又由题意可得BC=2a,AC=4a,S△ABC=12BC·AC=12·2a·4a=4.变式训练2-1:1变式训练2-2:解:设A的坐标是(m,n),则n=k,即k=mn,∵OB=-m,AB=n,S长方形ABOC=OB·AB=(-m)n=-mn=3,∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x.课堂训练1.A2.C3.64.25.解:设一次函数的解析式为y=kx+b(k≠0).∵点A是直线与反比例函数y=2x的交点,∴把A(1,a)代入y=2x,得a=2.∴A(1,2).把A(1,2)和C(0,3)代入y=kx+b,得{k+b=2,b=3.解得k=-1,b=3.所以一次函数的解析式为:y=-x+3.课后提升1.D2.D3.A4.C5.C6.C7.x<-2或0<x<18.69.解:(1)图象的另一支在第三象限,∵图象在一、三象限,∴5-2m>0,∴m<52.(2)b1<b2.理由如下:∵m<52,∴m-4<m-3<0,∴b 1<b 2. 1.3 反比例函数的应用课堂探究【例1】 探究答案:1.反比例 v=P F2.减小解:(1)设反比例函数解析式为v=P F ,把(3000,20)代入上式,得20=P 3000,P=3000×20=60000, ∴v=60000F. (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时), 即当它所受的牵引力为1200牛时,汽车的速度为180千米/时.(3)由v=60000F≤30,得F ≥2000. 所以,若限定汽车的速度不超过30米/秒,则F 应不小于2000牛.变式训练1-1:C变式训练1-2:0.5【例2】 探究答案:1.k 2 -2 2.图象解:(1)∵双曲线y=k 2x经过点A (1,2),∴k 2=2. ∴双曲线的解析式为y=2x .∵点B (m ,-1)在双曲线y=2x 上,∴m=-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y=k 1x+b 上,得{k 1+b =2,-2k 1+b =-1,解得{k 1=1,b =1.∴直线的解析式为y=x+1.(2)y 2<y 1<y 3.(3)x>1或-2<x<0.变式训练2-1:C变式训练2-2:解:(1)直线y=12x+b 经过第一、二、三象限,与y 轴交于点B , ∴OB=b , ∵点A (2,t ),△AOB 的面积等于1.∴12×2×b=1,可得b=1,即直线为y=12x+1.(2)由点A (2,t )在直线y=12x+1上,可得t=2,即点A 坐标为(2,2),反比例函数y=k x (k 是常量,k ≠0)的图象经过点A ,可得k=4,所求反比例函数解析式为y=4x . 课堂训练1.C2.C3.B4.(1,-2)5.解:(1)将A (2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y 2=8x,将B (-4,n )代入反比例函数解析式得n=-2,即B (-4,-2),将A 与B 坐标代入一次函数解析式得, {2k +b =4,-4k +b =-2,解得{k =1,b =2.则一次函数解析式为y 1=x+2. (2)联立两函数解析式得{y =x +2,y =8x, 解得{x =2,y =4或{x =-4,y =-2,则y 1=y 2时,x 的值为2或-4.(3)利用题图象得,y 1>y 2时,x 的取值范围为-4<x<0或x>2.课后提升1.D2.D3.C4.D5.x<0或1<x<46.1.67.(3,2)8.19.解:(1)∵反比例函数y=k x的图象过B (4,-2)点, ∴k=4×(-2)=-8,∴反比例函数的解析式为y=-8x.∵反比例函数y=-8的图象过点A (-2,m ),∴m=-8=4,即A (-2,4). ∵一次函数y=ax+b 的图象过A (-2,4),B (4,-2)两点,∴{-2a +b =4,4a +b =-2,解得{a =-1,b =2. ∴一次函数的解析式为y=-x+2.(2)∵直线AB :y=-x+2交x 轴于点C , ∴C (2,0). ∵AD ⊥x 轴于D ,A (-2,4), ∴CD=2-(-2)=4,AD=4,∴S △ADC =12·CD ·AD=12×4×4=8.10.解:(1)把A (m ,2)代入反比例函数解析式y=2x得2=2m ,所以m=1. ∴A (1,2).(2)把A (1,2)代入正比例函数解析式y=kx 得2=k ,所以k=2,因此正比例函数的解析式为y=2x.(3)因为正比例函数的解析式为y=2x ,当x=2时,y ≠3,所以点B (2,3)不在正比例函数图象上. 第2章 一元二次方程2.1 一元二次方程课前预习1.一个 2 整式 3.相等课堂探究【例1】 探究答案:1.2 =2 2.≠0解:根据题意,得m 2-2=2,且m-2≠0.解得m=±2,且m ≠2.所以m=-2.则m 2+2m-4=(-2)2+2×(-2)-4=-4.变式训练1-1:C变式训练1-2:≠±1 =12【例2】 探究答案:1.移项 合并同类项 2.符号 0解:(1)去括号,得4t 2+12t+9-2(t 2-10t+25)=-41,去括号、移项、合并得2t 2+32t=0,所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x 2-x+12=3x+13, 移项、合并,得12x 2-4x+16=0, 所以二次项系数、一次项系数和常数项分别为1,-4,1.变式训练2-1:B变式训练2-2:解:{m2-2=2, m+2≠0,解得m=±2且m≠-2.∴m=2.【例3】探究答案:1.根2.≠0解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0,即m2-4=0,故m2=4,解得m=2或m=-2.∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程,∴m-2≠0,即m≠2.故m=-2.变式训练3-1:1变式训练3-2:解:把x=0代入方程得a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a=-1.课堂训练1.C2.A3.-104.-25.解:去括号,得9x2+12x+4=4x2-24x+36.移项、合并同类项得,5x2+36x-32=0.∴它的二次项为5x2二次项系数为5,一次项为36x,一次项系数为36,常数项为-32.课后提升1.D2.D3.C4.C5.D6.x(x+5)=300x2+5x-300=015-3007.18.≠1=19.解:(1)去括号,得x2-4=3x2+2x,移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4.(2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0.10.解:小明的话有道理.理由:若方程为一元二次方程,则m+1=2,m=1.而m=1时,m2+m-2=0,所以此方程不可能为一元二次方程.2.2一元二次方程的解法2.2.1配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±√b没有解:移项,得2(x+1)2=92,两边同时除以2,得(x+1)2=94,∴x+1=±32,∴x 1=-1+32=12,x 2=-1-32=-52.变式训练1-1:m ≥7变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5,解这两个方程得:x 1=3,x 2=-2.(2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2.解这两个方程,得x 1=4,x 2=0.【例2】 探究答案:一次项系数一半的平方 解:移项,得x 2-12x=12,配方,得x 2-12x+(14)2=916,(x -14)2=916,∴x-14=34或x-14=-34,∴x 1=1,x 2=-12.变式训练2-1:±43变式训练2-2:解:移项,得x 2-2x=2,配方,得(x-1)2=3,解得x=1±√3.∴x 1=1+√3,x 2=1-√3.课堂训练1.D2.B3.±324.±85.解:(1)移项得x 2-2x=1,配方,得x 2-2x+1=2,即(x-1)2=2,开方,得x-1=±√2,则x 1=1+√2,x 2=1-√2.(2)移项,得x 2-4x=-1,配方,得x 2-4x+4=-1+4,即(x-2)2=3,开方,得x-2=±√3,∴原方程的解是x 1=2+√3,x 2=2-√3.课后提升1.D2.B3.D4.B5.36.-37.900 cm 28.解:(1)直接开平方得,x-1=±√3,即x-1=√3或x-1=-√3,∴x 1=1+√3,x 2=1-√3.(2)配方,得x 2-2x+1=4+1,即(x-1)2=5. ∴x-1=±√5,即x-1=√5或x-1=-√5 ∴x 1=1+√5,x 2=1-√5.(3)方程两边都除以2,得x 2-32=-52x ,移项,得x 2+52x=32.配方,得x 2+52x+542=32+542,即x+542=4916.开平方得,x+54=±74,∴x 1=12,x 2=-3.9.解:用配方法解方程a 2-10a+21=0,得a 1=3,a 2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17.10.解:移项得x 2+px=-q ,配方得x 2+px+p 22=-q+p 22,即x+p 22=p 2-4q4.∵p 2≥4q , ∴p 2-4q ≥0,∴x+p 2=±√p 2-4q 2.∴x 1=-p+√p 2-4q2,x 2=-p -√p 2-4q2.第2课时 用配方法解复杂的一元二次方程课前预习(1)1(2)二次项和一次项 常数项 (3)一次项系数一半的平方课堂探究【例1】 探究答案:1.1 2.完全平方式 解:两边同时除以2,得x 2-32x+12=0,移项,得x 2-32x=-12,配方,得x 2-32x+(-34)2=-12+(-34)2,即(x -34)2=116,两边开平方,得x-34=±14,x-34=14或x-34=-14,∴原方程的解为x 1=1,x 2=12.变式训练1-1:D变式训练1-2:解:(1)二次项系数化为1, 得x 2-16x-2=0,移项,得x 2-16x=2,配方,得x 2-16x+1144=2+1144, 即x-1122=289144, ∴x-112=±1712,∴x 1=32,x 2=-43.(2)二次项系数化为1,得x 2-12x-12=0.移项,得x 2-12x=12.配方得x 2-12x+142=12+142,即x-142=916,∴x-14=±34, ∴x 1=1,x 2=-12.【例2】 探究答案:1.1 2.减去解:2x 2-4x+5=2(x 2-2x )+5 =2(x 2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0,∴代数式2x 2-4x+5的值总是一个正数. 变式训练2-1:13变式训练2-2:解:x 2-4x+5=x 2-4x+22-22+5 =(x-2)2+1.∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时,代数式x 2-4x+5的值最小,最小值为1.课堂训练1.A2.B3.x 1=-2,x 2=124.3或-75.-3或36.解:由题意得2x 2-x=x+6,∴2x 2-2x=6,∴x 2-x=3,∴x 2-x+14=3+14,∴x-122=134,∴x-12=±√132,∴x 1=1+√132,x 2=1-√132. ∴x=1+√132或1-√132时,整式2x 2-x 与x+6的值相等. 课后提升1.D2.D3.B4.D5.x 1=1+√3,x 2=1-√36.87.38.1±2√29.解:去括号,得4x 2-4x+1=3x 2+2x-7,移项,得x 2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x 1=2,x 2=4.10.解:由题意,得2x 2+x-2+(x 2+4x )=0,化简,得3x 2+5x-2=0. 系数化为1,得x 2+53x=23,配方,得x+562=4936,∴x+56=±76,∴x 1=-2,x 2=13.2.2.2 公式法课前预习1.x=-b±√b 2-4ac2a(b 2-4ac ≥0)2.求根公式课堂探究【例1】 探究答案:1.一般形式 2.a 、b 、c解:原方程可化为x 2+2x-1=0, ∵a=1,b=2,c=-1.b 2-4ac=22-4×1×(-1)=8>0,∴x=-2±√82×1=-2±2√22=-1±√2. ∴x 1=-1+√2,x 2=-1-√2.变式训练1-1:D变式训练1-2:解:(1)移项,得2x 2+3x-1=0, ∵a=2,b=3,c=-1,∴b 2-4ac=17>0,∴x=-3±√174, ∴x 1=-3+√174,x 2=-3-√174. (2)化简得,x 2+5x+5=0, ∴a=1,b=5,c=5, ∴b 2-4ac=5>0,∴x=-5±√52, ∴x 1=-5+√52,x 2=-5-√52. 【例2】 探究答案:1.一元二次方程有实数根 2.相等 解:原方程可化为2x 2+2√2x+1=0,∵a=2,b=2√2,c=1, ∴b 2-4ac=(2√2)2-4×2×1=0, ∴x=-2√2±√02×2=-√22. ∴x 1=x 2=-√22.变式训练2-1:解:(1)b 2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根. (2)b 2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练1.D2.C3.24.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=-b±√b 2-4ac 2a =4±√242×2=4±2√64=2±√62. ∴x 1=2+√62,x 2=2-√62. (2)整理,得4x 2+12x+9=0,所以a=4,b=12,c=9.因为b 2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根,所以x=-b±√b 2-4ac 2a =-12±√02×4=-128=-32. ∴x 1=x 2=-32.课后提升1.C2.A3.D4.D5.-1+√32,-1-√326.x 1=1,x 2=127.25或168.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=-2±√82×1=-2±2√22=-1±√2, ∴x 1=-1+√2,x 2=-1-√2.9.解:(1)x 2-4x-1=0, ∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20,∴x=4±√202×1=2±√5, ∴x 1=2+√5,x 2=2-√5.(2)∵3x (x-3)=2(x-1)(x+1),∴x 2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0,∴x=-b±√b 2-4ac 2a =9±√732,∴x 1=9+√732,x 2=9-√732. 10.解:由题意得,m 2+1=2,且m+1≠0, 解得m=1.所以原方程为2x 2-2x-1=0, 这里a=2,b=-2,c=-1.b 2-4ac=(-2)2-4×2×(-1)=12.∴x=2±2√34=1±√32, ∴x 1=1+√32,x 2=1-√32. 2.2.3 因式分解法课前预习1.(2)(a-b )(a+b ) (a ±b )22.一次因式 0 0课堂探究【例1】 探究答案:x [(x+2)-4] 3(x-5)2-2(5-x )=0 (x-5)(3x-13)解:(1)x (x+2)-4x=0,x [(x+2)-4]=0, 即x (x-2)=0, ∴x=0或x-2=0, ∴x 1=0,x 2=2.(2)3(x-5)2=2(5-x ),3(x-5)2-2(5-x )=0, (x-5)[3(x-5)+2]=0, ∴x-5=0或3x-15+2=0,∴x 1=5,x 2=133.变式训练1-1:C变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0,∴x 1=4,x 2=7.(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0, ∴x 1=-2,x 2=-4.【例2】 探究答案:直接开平方法 配方法 公式法 因式分解法 解:(1)公式法:∵a=1,b=-3,c=1, ∴b 2-4ac=(-3)2-4×1×1=5>0,∴x=-(-3)±√52×1, ∴x 1=3+√52,x 2=3-√52. (2)因式分解法:原方程可化为x (x-3)=0,∴x=0或x-3=0 ∴x 1=0,x 2=3.(3)配方法:配方,得x 2-2x+1=4+1,即(x-1)2=5,∴x-1=±√5, ∴x 1=1+√5,x 2=1-√5.变式训练2-1:C变式训练2-2:解:(1)用直接开平方法:原方程可化为(x-3)2=4, ∴x-3=±2, ∴x 1=5,x 2=1.(2)用配方法:移项,得x 2-4x=7.配方,得x 2-4x+4=7+4,即(x-2)2=11,∴x-2=±√11∴x-2=√11或x-2=-√11, ∴x 1=2+√11,x 2=2-√11.(3)用因式分解法:方程两边分别分解因式,得(x-3)2=2(x-3)(x+3),移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得 (x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0. ∴x 1=3,x 2=-9.课堂训练1.C2.D3.74.-1或45.解:(1)∵a=3,b=1,c=-1, ∴b 2-4ac=12-4×3×(-1)=13>0,∴x=-1±√132×3∴x 1=-1+√136,x 2=-1-√136. (2)移项,得(3x-2)2-4(3-x )2=0, 因式分解,得[(3x-2)+2(3-x )][(3x-2)-2(3-x )]=0, 即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0,∴x 1=-4,x 2=85.(3)将原方程整理,得x 2+x=0, 因式分解,得x (x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1.课后提升1.A2.D3.B4.B5.B6.x 1=3,x 2=97.68.-19.解:(1)用求根公式法解得y 1=3,y 2=-8. (2)用分解因式法解得x 1=52,x 2=-1. (3)用求根公式法解得y 1=-2+√22,y 2=-2-√22. 10.解:解方程x (x-7)-10(x-7)=0, 得x 1=7,x 2=10. ∵4<第三边长<10,∴x 2=10(舍去).第三边长为7.这个三角形的周长为3+7+7=17.2.3 一元二次方程根的判别式课前预习1.a ≠02.(1)> (2)= (3)<课堂探究【例1】 探究答案:1.一般形式 2.a 、b 、c b 2-4ac解:(1)原方程可化为x 2-6x+9=0, ∵Δ=b 2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根.(2)原方程可化为x 2+3x+1=0, ∵Δ=b 2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x 2-2√6x+3=0.∵Δ=b 2-4ac=(-2√6)2-4×3×3=-12<0, ∴原方程无实数根.变式训练1-1:A 变式训练1-2:B【例2】 探究答案:1.≥解:由题意知:b 2-4ac ≥0, 即42-8k ≥0,解得k ≤2. ∴k 的非负整数值为0,1,2. 变式训练2-1:B变式训练2-2:解:∵a=2,b=t ,c=2. ∴Δ=t 2-4×2×2=t 2-16, 令t 2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练1.D2.A3.D4.k<-15.解:(1)当m=3时,Δ=b 2-4ac=22-4×1×3=-8<0, ∴原方程没有实数根.(2)当m=-3时,x 2+2x-3=0, x 2+2x=3, x 2+2x+1=3+1,(x+1)2=4, ∴x+1=±2, ∴x 1=1,x 2=-3.课后提升1.D2.A3.C4.C5.D6.m>17.m<2且m ≠18.6或12或109.解:由题意,得{b 2-4ac =(-2√k +1)2-4(1-2k)(-1)>0 ①1-2k ≠0 ②k +1≥0 ③由①,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由②得,k ≠12,由③得,k ≥-1. ∴-1≤k<2且k ≠1.10.解:(1)Δ=b 2-4ac=4-4(2k-4)=20-8k.∵方程有两个不等的实根, ∴20-8k>0,∴k<52.(2)∵k 为正整数, ∴0<k<52(且k 为整数),即k 为1或2,∴x=-1±√5-2k . ∵方程的根为整数,∴5-2k 为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1. ∴k=2.*2.4 一元二次方程根与系数的关系课前预习-b a c a课堂探究【例1】 探究答案:1.-1 2.2aba+b ab 解:因为方程x 2-x-1=0的两实根为a 、b.所以(1)a+b=1;(2)ab=-1;(3)a 2+b 2=(a+b )2-2ab=12-2×(-1)=3;(4)1a +1b =a+b ab=-1. 变式训练1-1:-2变式训练1-2:-658【例2】 探究答案:1.2(m+1) 2.>0解:∵方程有两个不相等的实数根, ∴Δ=b 2-4ac=[-2(m+1)]2-4×1×(m 2-3)=16+8m>0,解得m>-2;根据根与系数的关系可得x 1+x 2=2(m+1),∵(x 1+x 2)2-(x 1+x 2)-12=0,∴[2(m+1)]2-2(m+1)-12=0,解得m 1=1或m 2=-52.∵m>-2,∴m 2=-52(舍去),∴m=1.变式训练2-1:1变式训练2-2:解:∵x 1+x 2=2,∴m=2.∴原方程为x 2-2x-3=0,即(x-3)(x+1)=0,解得x 1=3,x 2=-1. 课堂训练1.B2.A3.-24.55.解:设x 1,x 2是方程的两个实数根,∴x 1+x 2=-32,x 1x 2=1-m 2. 又∵1x 1+1x 2=3,∴x 1+x 2x 1x 2=3, ∴-31-m=3, ∴-3=3-3m ,∴m=2,又∵当m=2时,原方程的Δ=17>0, ∴m 的值为2. 课后提升1.B2.B3.D4.B5.B6.-20147.68.20149.解:将-2代入原方程得:(-2)2-2+n=0,解得n=-2,因此原方程为x 2+x-2=0,解得x 1=-2,x 2=1,∴m=1.10.解:(1)根据题意得m ≠1Δ=(-2m )2-4(m-1)(m+1)=4,∴x 1=2m+22(m -1)=m+1m -1, x 2=2m -22(m -1)=1. (2)由(1)知x 1=m+1m -1=1+2m -1 又∵方程的两个根都是正整数,∴2m -1是正整数, ∴m-1=1或2. ∴m=2或3.2.5 一元二次方程的应用第1课时 增长率与利润问题 课前预习1.a (1±x )2.(1)单件售价 (2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2(2)12100(1+x)解:(1)设捐款增长率为x,根据题意列方程得,10000(1+x)2=12100,解得x1=0.1,x2=-2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.变式训练1-1:A变式训练1-2:B3-2-x【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元.根据题意,得(3-2-x)200+40x-24=200.0.1解这个方程,得x1=0.2,x2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练1.B2.D3.B4.20%5.解:设每千克核桃应降价x元.根据题意得(60-x-40)(100+x×20)=2240解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升1.C2.C3.D4.B5.10%6.30007.40(1+x)2=48.48.10%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得x2+3x-1.75=0,解之,得x 1=0.5, x 2=-0.35(舍去)所以每年市政府投资的增长率为50%.(2)到2013年年底共建廉租房面积=9.5×82=38(万平方米). 第2课时 面积与动点问题 课堂探究【例1】探究答案:1.(6-x ) 2x 2.12(6-x )·2x=8解:设经过x 秒钟后,△PBQ 的面积等于8 cm 2. 根据题意得12(6-x )·2x=8.解这个方程得x 1=2,x 2=4.答:经过2秒或4秒后,△PBQ 的面积等于8 cm 2.变式训练1-1:解:(1)由勾股定理:AC=5 cm ,设x 秒钟后,P 、Q 之间的距离等于5 cm ,这时PC=5-x ,CQ=2x ,则(5-x )2+(2x )2=52,即x 2-2x=0.解这个方程,得x 1=0,x 2=2,其中x 1=0不合题意,舍去.答:再运动2秒钟后,P 、Q 间的距离又等于5 cm .(2)设y 秒钟时,可使△PCQ 的面积等于4 cm 2.12×(5-y )×2y=4, 即y 2-5y+4=0,解得y 1=1,y 2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ 的面积等于4 cm 2. 变式训练1-2:解:设应移动x 米.OA=√AB 2-OB 2=3米.则由题意得(3+x )2+(4-x )2=52.解这个方程得x 1=1,x 2=0(不合题意,舍去).答:应移动1米.【例2】 探究答案:(100-2x ) (50-2x )解:设正方形观光休息亭的边长为x 米.依题意,有(100-2x )(50-2x )=3600.整理,得x 2-75x+350=0.解得x 1=5,x 2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P 、Q 两块绿地周围的硬化路面的宽都为x 米,根据题意,得(40-2x )(60-3x )=60×40×14,解之,得x 1=10,x 2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米. 课堂训练1.B2.C3.D4.15.解:设花边的宽为x 米,根据题意,得(2x+6)(2x+3)=40.解得x 1=1,x 2=-112.但x 2=-112不合题意,舍去.答:花边的宽为1米. 课后提升1.D2.C3.C4.B5.D6.97.24 458.10009.解:(1)设小货车原计划每辆每次运送帐篷x 顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得 2[8x+2(x+200)]=16800,解得x=800,x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m )1+12m +8(800-300)(1+m )=14400,化简为m 2-23m+42=0,解得m 1=2,m 2=21. ∵1000-200m 不能为负数,且12m 为整数,∴m 2=21(不符合实际,舍去),故m 的值为2.10.解:设x 秒后四边形APQB 的面积是△ABC 面积的23,在Rt △ABC 中,AB=10,AC=8,由勾股定理,得BC 2=AB 2-AC 2=102-82=36,∴BC=6.则12(8-2x )(6-x )=13×12×6×8,解得x 1=2,x 2=8(不合题意,舍去), ∴2秒后四边形APQB 的面积是△ABC 面积的23. 第3章 图形的相似3.1 比例线段3.1.1 比例的基本性质课前预习1.(1)比值 比值 (2)比例内项2.(1)bc课堂探究【例1】 探究答案:1.3x 3y =2y 3yx y =232.7y=4x 7∶4解:(1)∵3x=2y , ∴3x =2y , 即x y =23.(2)∵7x =4y, ∴7y=4x ,x y =74. 变式训练1-1:D变式训练1-2:4【例2】 探究答案:1.23解:∵AD AB =AE AC =DE BC =23, ∴AD+AE+DE =2, 即△ADE 的周长△ABC 的周长=23. 设△ADE 和△ABC 的周长分别为2x cm 和3x cm ,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm ,△ADE 的周长为30 cm .变式训练2-1:D变式训练2-2:解:设x 3=y 5=z 7=k ,则x=3k ,y=5k ,z=7k , ∴x -y+z x+y -z =3k -5k+7k 3k+5k -7k =5k k=5. 课堂训练1.C2.A3.2∶3=4∶6(答案不唯一)4.135.解:因为m -n n =23, 所以3(m-n )=2n ,化简得3m=5n ,所以m n =53,则3m+2n n =3m n +2=m n ×3+2=53×3+2=7. 课后提升1.C2.C3.D4.C5.A6.52 727.3√38.2或-19.解:∵a ∶b ∶c=1∶2∶4,设a=k ,b=2k ,c=4k ,则a+2b+3ca -b+c =k+4k+12kk -2k+4k =17k 3k =173.10.解:∵a b =c d =e f =23,∴2a 2b =-c-d =-5e -5f =23.∴2a -c -5e2b -d -5f =23.3.1.2成比例线段课前预习1.m ∶n AB CD =m n2.a b =c d3.BC AC 黄金比 √5-12≈0.618课堂探究【例1】探究答案:1.(12-x ) x12-x =64 2.DB AB =EC AC解:(1)设AD=x cm ,则DB=(12-x )cm .则有x12-x =64,解这个方程得x=7.2,所以AD=7.2 cm .(2)DB AB =12-7.212=25,EC AC =46+4=25,所以DB AB =EC AC ,所以线段DB 、AB 、EC 、AC 是成比例线段. 变式训练1-1:B变式训练1-2:解:利用比例线段的定义, ∵a=1 mm =0.1 cm ,b=0.8 cm ,c=0.02 cm ,d=4 cm ,∴d>b>a>c ,而d b =40.8=5,a c =0.10.02=5,∴d b =a c ,∴d 、b 、a 、c 四条线段是成比例线段.【例2】 探究答案:1.AC AB =CB AC 2.3x+3=x 3 解:设CB=x ,∵点C 为线段AB 的黄金分割点, ∴AC AB =CB AC ,即3x+3=x 3,得9=x (x+3), 解得x 1=3√5-32,x 2=-3√5-32(舍去). 故CB 的长为3√5-32. 变式训练2-1:C变式训练2-2:解:因为点C 是AB 的黄金分割点, 所以当AC>BC 时,AC AB =√5-12. 又因为AB=10 cm ,所以AC=√5-12×10=(5√5-5)(cm ),当AC<BC 时,BC AB =√5-12, 所以BC=√5-12×10=(5√5-5)(cm ),所以AC=AB-BC=10-(5√5-5)=(15-5√5)(cm ), 所以AC 的长为(5√5-5)cm 或(15-5√5)cm . 课堂训练1.D2.45 353.6-2√54.=5.解:(1)a ∶b=c ∶d ,即a ∶0.2=0.5∶1,则a=0.2×0.5=0.1.(2)a ∶b=c ∶d ,即3∶7=c ∶21,则7c=21×3,得c=9. 课后提升1.B2.D3.C4.B5.B6.6.987.168.√5-12或3-√529.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5,CE=1,CF=4,AF=3.在直角三角形ABD 中,AB=√AD 2+BD 2=√22+52=√29,在直角三角形BCE 中,BC=√BE2+CE2=√52+12=√26,在直角三角形ACF中,AC=√CF2+AF2=√42+32=5,所以ABAC =√295,BCAC=√265.10.解:设每一份为k,由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1,得{a-c=-2k,a+b=7k,c-b=k,解得{a=3k,b=4k,c=5k,而(3k)2+(4k)2=(5k)2,即a2+b2=c2,所以△ABC是直角三角形.3.2平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.352.DE DF解:∵l1∥l2∥l3,∴AB AC = DE DF,∵AB=3,∴AB=3,∴DE DF = 3 5 ,由DF=20 cm,得DE=35DF=12 cm,∴EF=DF-DE=8 cm.变式训练1-1:D变式训练1-2:12【例2】探究答案:1.AE2.x-4x-4x-4=4D变式训练2-1:B变式训练2-2:A课堂训练1.B2.A3.A4.55.解:∵DE⊥AB,CB⊥AB,∴DE ∥BC ,∴AD AB =AE AC ,即35=5AC, ∴AC=25.∴BC=√AC 2-AB 2=√(253) 2-52=203. 课后提升1.C2.C3.A4.D5.D6.97.68.149.解:∵DE ∥BC ,DF ∥AC ,∴四边形EDFC 为平行四边形, ∴DE=FC=5,又∵DF ∥AC ,∴AD BD =CF BF ,即48=5BF,得BF=10. 10.解:∵DE ∥BC ,∴AD AB =AE AC. 又∵EF ∥CD ,∴AF AD =AE AC , ∴AD AB =AF AD, ∴AD 2=AB ·AF=36,∴AD=6 cm .3.3 相似图形课前预习1.(1)对应相等 对应成比例 (2)∽ △ABC 相似于△A'B'C'(3)相等 成比例2.(1)对应角 成比例 (2)相等 等于相似比 课堂探究【例1】 探究答案:1.∠A' ∠B' ∠C' 2.180°-∠A-∠B解:∵△ABC ∽△A'B'C', ∴∠B=∠B'=60°,在△ABC 中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50变式训练1-2:1∶2【例2】探究答案:(1)CD CB (2)77° 83° 解:因为四边形ABCD ∽四边形EFGH , ∴∠F=∠B=77°,∠G=∠C=83°,EF AB =GH CD =FG BC =418=29, ∴∠H=360°-(∠E+∠F+∠G )=83°,BC=FG ÷29=6×92=27,CD=GH ÷29=7×92=31.5.变式训练2-1:B变式训练2-2:解:由四边形ABCD 与四边形A'B'C'D'相似得,x 21=12y =1015, ∠A=∠A'=120°,∴x=21×1015=14, y=12÷10=12×3=18, ∠α=360°-(∠A+∠B+∠C )=80°. 课堂训练1.C2.B3.6 1.54.9或255.解:因为梯形AEFD ∽梯形EBCF ,所以AD EF =EF BC =AE EB, 又因为AD=4,BC=9,所以EF 2=AD ·BC=4×9=36,所以EF=6,所以AE EB =AD EF =46=23. 课后提升1.B2.D3.D4.D5.D6.2 30°7.60° 140° 18.√5+129.解:∵四边形ABCD 与四边形EFGH 相似,∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵AB EF =AD EH, ∴AB=EF ·AD EH =5×86=203. ∵BC FG =AD EH, ∴BC=FG ·AD EH =7×86=566=283. 10.解:∵△ABC ∽△APQ ,∴AB AP =BC PQ,即4040+60=30PQ, 解得PQ=75.答:PQ 的长为75 cm .3.4 相似三角形的判定与性质3.4.1 相似三角形的判定 第1课时 两角对应相等或平行判定相似 课前预习(1)相似 (2)相等课堂探究 【例1】 探究答案:1.EDA 2.DFC 3.△EDA △DFC解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC , ∴△BEF ∽△CDF ,△BEF ∽△AED , ∴△BEF ∽△CDF ∽△AED.当△BEF ∽△CDF 时,相似比k 1=BE CD =13; 当△BEF ∽△AED 时,相似比k 2=BE AE =14; 当△CDF ∽△AED 时,相似比k 3=CD AE =34. 变式训练1-1:3变式训练1-2:1∶2【例2】 探究答案:1.∠DAE 2.∠D解:△ABC ∽△ADE ,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠DAE ,又∵在△AOB 与△COD 中,∠AOB=∠COD ,∠1=∠3, ∴∠B=∠D , ∴△ABC ∽△ADE.变式训练2-1:C变式训练2-2:证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD , ∴∠ADF=∠CED ,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B , ∴∠AFD=∠C , ∴△ADF ∽△DEC. 课堂训练1.D2.C3.A4.∠ADE=∠C (答案不唯一)5.解:(1)在△ABC 中,∵∠A=90°,∠B=50°, ∴∠C=40°. ∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似).(2)在△ABC 中,∵∠A=∠B=∠C , ∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC ∽△A'B'C'(两角相等的两个三角形相似). 课后提升1.A2.D3.C4.D5.66.2.57.解:∵∠A=36°,AB=AC ,∴∠ABC=∠ACB=72°, ∵BD 平分∠ABC , ∴∠CBD=∠ABD=36°,∠BDC=72°, ∴AD=BD ,BC=BD , ∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CD AD ,∴AD 2=AC ·CD ,设AD=x ,则CD=1-x , ∴x 2=1×(1-x ),x 2+x-1=0,x=-1±√1+42=-1±√52,x 1=-1+√52,x 2=-1-√52(舍去),∴AD=√5-12,∴AD 的长是√5-12.8.解:(1)△ABC ∽△FOA ,理由如下:在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l 垂直平分AC , ∴∠OFC+∠BCA=90°, ∴∠BAC=∠OFC=∠OFA ,又∵∠ABC=∠FOA=90°, ∴△ABC ∽△FOA.(2)四边形AFCE 是菱形,理由如下: ∵AE ∥FC , ∴∠AEO=∠OFC ,∠EAO=∠OCF , ∴△AOE ∽△COF , ∵OC=OA ,∴OE=OF ,即AC 、EF 互相垂直平分, ∴四边形AFCE 是菱形.第2课时 两边成比例夹角相等或 三边成比例判定相似课前预习(1)成比例 夹角 (2)成比例课堂探究【例1】探究答案:1.4545 2.△DCA解:因为AB CD =45,BC AC =45, 所以AB CD =BC AC, 又因为∠B=∠ACD ,所以△ABC ∽△DCA ,所以AB DC =AC AD, 所以AD=DC ·AC AB =152×56=254. 变式训练1-1:B变式训练1-2:证明:∵四边形ABCD 是正方形, ∴AD=DC=BC ,∠D=∠C=90°, ∵M 是CD 的中点,∴AD ∶DM=2∶1, ∵BP=3PC ,∴CM ∶PC=2∶1,即AD DM =CM PC,且∠D=∠C , ∴△ADM ∽△MCP.【例2】探究答案:1.√5 √10 5 √2 2 √102.√102 √102 √102解:相似.理由如下:AB=√5,AC=√10,BC=5,DE=√2,DF=2,EF=√10,∵AB =√10,AC =√10,BC =√10, 即AB DE =AC DF =BC EF, ∴△ABC ∽△DEF.变式训练2-1:A变式训练2-2:证明:∵D 、E 、F 分别为AB 、AC 、BC 的中点, ∴DE 、DF 、EF 分别为△ABC 的中位线,∴DE=12BC ,DF=12AC ,EF=12AB ,∴DE CB =DF CA =EF BA =12, ∴△DEF ∽△CBA.课堂训练1.A2.C3.B4.35.解:由题知AC=√2,BC=√12+32=√10,AB=4,DF=√22+22=2√2,EF=√22+62=2√10,ED=8,∴AC DF =BC EF =AB DE =12,∴△ABC ∽△DEF.课后提升1.C2.C3.D4.C5.B6.20°7.(4,0)或(3,2)8.解:(1)△ABC ∽△EBD ,理由如下:∵BD ·AB=BE ·BC ,∴BD BC =BE AB ,又∵∠B 为公共角,∴△ABC ∽△EBD.(2)ED ⊥AB ,理由如下:由△ABC ∽△EBD 可得∠EDB=∠C , ∵∠C=90°,∴∠EDB=90°,即ED ⊥AB.9.解:△A'B'C'∽△ABC ,理由如下:∵OA'OA =OC'OC =3,∠AOC=∠A'OC',∴△AOC ∽△A'OC',∴A'C'AC =OA'OA =3,同理B'C'BC =3,A'B'AB =3,∴A'C'AC =B'C'BC =A'B'AB ,∴△A'B'C'∽△ABC.3.4.2相似三角形的性质课前预习1.相似比2.(1)相似比 相似比的平方(2)相似比 相似比的平方课堂探究【例1】 探究答案:1.△ADE 2.DE解:∵BC ∥DE , ∴∠ABC=∠ADE ,∠ACB=∠AED , ∴△ABC ∽△ADE ,所以MC NE =BC DE ,设DE 高为x m ,则0.630=0.24x ,x=12.故旗杆大致高12 m .变式训练1-1:C变式训练1-2:1∶2【例2】 探究答案:1.相似比的平方 2.916解:(1)∵△ABC ∽△ADE ,∴AB AD =AC AE , ∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD ·AC AB =20×915=12. 即AE 的长为12.(2)∵△ABC ∽△ADE ,∴S △ABC S △ADE =AB 2AD 2=916, ∴S △ADE =16×279=48, ∴S 四边形BDEC =48-27=21.变式训练2-1:A变式训练2-2:D 课堂训练1.D2.D3.1∶24.1∶2 1∶45.解:因为DE ∥BC ,所以∠ADE=∠ABC ,∠AED=∠ACB ,所以△ADE ∽△ABC.又DE BC =13,△ADE 的周长是10 cm , 所以△ABC 的周长是30 cm ,所以梯形BCED 的周长为30-8+2=24(cm ). 课后提升1.D2.A3.B4.A5.1∶96.37.60378.89.(1)证明:∵E 是AB 的中点,∴AB=2EB , ∵AB=2CD ,∴CD=EB ,又∵AB ∥CD , ∴四边形CBED 是平行四边形, ∴DE ∥CB , ∴∠EDM=∠MBF ,∠DEM=∠MFB , ∴△EDM ∽△FBM.(2)解:∵△EDM ∽△FBM ,∴DM BM =DE BF , 又∵F 是BC 的中点, ∴DE=2BF , ∴DM=2BM. ∴BM=13DB=3.。
学法大视野数学湘教版九年级上册
学法大视野数学湘教版九年级上册一、课程概述《学法大视野数学湘教版九年级上册》是湖南教育出版社根据新课程标准编写的九年级数学教材。
本教材主要内容涵盖了几何、代数、函数、数据统计等数学知识点。
通过本教材的学习,学生能够掌握基本的数学概念与技巧,培养数学思维,提高数学解决问题的能力。
二、课程目标1.掌握数学基本概念和基本技能;2.培养数学思维,提高抽象思维和逻辑思维能力;3.培养分析问题和解决问题的能力;4.培养学生的合作与交流能力。
三、课程内容第一章几何图形的认识与相似本章主要介绍了几种常见的几何图形及其性质,包括线段、角、三角形、四边形、圆等。
通过对几何图形的研究,培养学生观察、比较和分析的能力,以及几何图形间相似关系的认识。
第二章几何图形的计算本章主要介绍了几何图形的周长和面积的计算方法。
学生将学习如何计算正方形、长方形、三角形、圆的周长和面积,并通过实际问题的解答运用所学知识。
第三章二次根式和勾股定理本章主要介绍了二次根式及其运算法则,以及勾股定理的概念和应用。
学生将通过学习二次根式的性质以及勾股定理的证明和运用,加深对数学知识的理解和应用。
第四章一次函数和一元二次方程本章主要介绍了一次函数和一元二次方程的概念、性质和应用。
通过学习一次函数和一元二次方程的图像、特点及解法,培养和提高解决实际问题的能力。
第五章数据的收集与整理本章主要介绍了数据的收集、整理及展示方式。
学生将学习如何用直方图、折线图、饼图等方式展示和描绘数据,并通过分析数据的统计特征,培养学生分析和解决实际问题的能力。
四、学习方法1.认真听讲,理解教师的讲解;2.自学教材,强化基础知识;3.多做习题,巩固所学知识;4.课外拓展,丰富数学知识。
五、评估方式学生的评估主要通过平时作业、小测验、单元测试等形式进行。
评估的内容主要涉及数学基本概念的掌握、计算技巧的熟练程度以及问题解决能力的培养。
六、教学资源1.课本:《学法大视野数学湘教版九年级上册》2.课件:配套电子课件3.多媒体设备:电子白板、投影仪等七、总结《学法大视野数学湘教版九年级上册》是一本贴近学生实际生活,注重培养学生数学思维和解决问题能力的教材。
九年级上册数学学法大视野
九年级上册数学学法大视野一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法。
- 对于方程x^2=k(k≥0),解得x=±√(k)。
- 例如,方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法。
- 步骤:先将方程化为x^2+bx = c的形式,然后在等式两边加上((b)/(2))^2,将左边配成完全平方式(x+(b)/(2))^2,再进行求解。
- 例如,解方程x^2+6x - 7 = 0。
- 移项得x^2+6x=7。
- 配方:x^2+6x + 9 = 7+9,即(x + 3)^2=16。
- 解得x=-3±4,即x = 1或x=-7。
- 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
- 例如,方程2x^2-5x + 1 = 0,其中a = 2,b=-5,c = 1。
- 先计算Δ=b^2-4ac=(-5)^2-4×2×1 = 25 - 8 = 17。
- 代入求根公式得x=(5±√(17))/(4)。
- 因式分解法。
- 把方程化为一边是零,另一边是两个一次因式积的形式,然后使每个因式分别为零,从而求出方程的解。
- 例如,方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
湘教版2020—2021学年九年级数学上册全册综合复习与简答
湘教版2020—2021学年九年级数学上册全册综合复习与简答一.选择题(共10小题,每小题3分,共30分)1.用配方法解一元二次方程22310x x --=,配方正确的是( ) A .2313()24x -=B .231()42x -=C .2317()416x -=D .2311()24x -=2.已知一元二次方程2770kx x --=有两个实数根,k 的取值范围是( ) A .74k >-B .74k - C .74K -且0k ≠ D .74k >-且0k ≠ 3.如图,反比例函数1a y x =经过矩形ABCD 的顶点D ,反比例函数2by x=经过矩形ABCD 的顶点C .矩形ABCD 的顶点A 在x 轴的负半轴上运动,矩形ABCD 的顶点B 在x 轴的正半轴运动上,如果矩形ABCD 的面积为定值,下列哪个值不变( )A .a b +B .a b -C .baD .ab4.如图,已知在平面直角坐标系中,Rt ABC ∆的顶点(0,3)A ,(3,0)B ,90ABC ∠=︒.函数4(0)y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 265.如图,在平行四边形ABCD 中,点E 在边DC 上,:5:2DE EC =,连接AE 交BD 于点F ,则DEF ∆的面积与BAF ∆的面积之比为( )第3题图 第4题图第5题图A .5:7B .10:4C .25:4D .25:496.如图,已知//DE BC ,//EF AB ,则下列比例式中不正确的是( ) A .AD AEAB AC=B .CE EACF FB=C .EF CFAB CB=D .DE ADBC DB=7.若角α,β都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=︒,则sin cos αβ=.其中正确的是( )A .①②B .①②③C .①③④D .①②③④8.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD .在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为45︒,测得与大桥主架的水平距离AB 为100米.则大桥主架顶端离水面的高CD 为( ) A .(100100sin α+ )米 B .(100100tan α+ )米 C .100(100)sin α+米 D .100(100)tan α+米 9.今年某校有2000名学生参加线上学习,为了解这些学生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是( )A .2000名学生是总体B .每位学生的数学成绩是个体C .这100名学生是总体的一个样本D .100名学生是样本容量第5题图第8题图10.用相同大小的等边三角形纸片玩叠纸游戏,可将纸片按如图所示的规律叠放,其中第①个图案有3个60︒的角,第②个图案有7个60︒的角,第③个图案有10个60︒的角,第④个图案有14个60︒的角;⋯,按此规律排列下去,则第⑦个图案中60︒的角的个数为( )A .21B .24C .28D .31二.填空题(共8小题,每小题3分,共24分)11.若00a b c a b c ++=⎧⎨-+=⎩,则关于x 的方程20(0)ax bx c a ++=≠的解是 .12.某工厂四月份生产口罩50万个,防疫需要,预计第二季度生产182万个口罩的生产任务,该工厂增加设备,并提高生产效率,设该工厂五、六月份生产口罩平均每月的增长率为x ,那么x = .13.已知反比例函数2k y x-=的图象如图,则一元二次方程22(21)10x k x k --+-=根的情况是 .14.如图,正比例函数1(0)y ax a =≠与反比例函数2(0)ky k x=≠的图象相交于A ,B 两点,其中点A的坐标为(1,3).当12y y <时,x 的取值范围是 .15.如果点P 为线段AB 的黄金分割点,且AP BP >,线段6AB =,则较短线段PB = .第13题图第14题图16.如图,90A B ∠=∠=︒,AB a =,AD BC <,在边AB 上取点P ,使得PAD ∆,PBC ∆与PDC ∆两两相似,则AP长为.(结果用含a 的代数式表示)17.如图,ABC ∆的顶点都是正方形网格中的格点,则cos ACB ∠等于 .18.如图,某河堤迎水坡AB 的坡比3i =5BC m =,则坡面AB 的长是 m . 三.解答题(共6小题,满分46分,其中19题10分,20、21每小题6分,22、23每小题7分,24题10分)19.解答下列问题.(1)计算:201()|12cos30|tan 60(20203)2-+-︒-︒+.(2)解方程:2450x x +-=.20.为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:第16题图第18题图第17题图(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排“读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加“体育”锻炼活动的大约有多少人?21.如图,一艘渔船以40海里/小时的速度由西向东追赶鱼群,在A处测得小岛C在渔船的北偏东60︒方向;半小时后,渔船到达B处,此时测得小岛C在渔船的北偏东30︒方向.已知以小岛C为中心,周围18海里以内为军事演习着弹危险区.如果这艘渔船继续向东追赶鱼群,是否有着弹危险?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大利润是多少元?23.国强在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x 元/件(2040)x .(1)用含售价x (元/件)的代数式表示每天能售出该工艺品的件数为 件; (2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元. ①求该商品的售价;②2020年10月17日为第7个国家扶贫日,国强决定每销售一件该工艺品便通过网络平台自动向某扶贫捐赠基金会捐款0.5元,求国强每天通过销售该工艺品捐款的数额.24.矩形ABCD 中,6AB cm =,8BC cm =,设运动时间为t (单位:)s .(1)如图1,若动点P 从矩形ABCD 的顶点A 出发,沿A B C →→匀速运动到点C ,图2是点P 运动时,APC ∆的面积2()S cm 随时间t (秒)变化的函数图象. ①点P 的运动速度是 /cm s ,m n += ; ②若2PC PB =,求t 的值;(2)如图3,若点P ,Q ,R 分别从点A ,B ,C 三点同时出发,沿矩形的边按逆时针方向匀速运动,当点Q 到达点C (即点Q 与点C 重合)时,三个点随之停止运动;若点P 运动速度与(1)中相同,且点P ,Q ,R 的运动速度的比为2:4:3,是否存在t ,使PBQ ∆与QCR ∆相似,若存在,求出所有的t 的值;若不存在,请说明理由.湘教版2020—2021学年九年级数学上册全册综合复习参考简答一.选择题(共10小题)1.C . 2.C . 3.B . 4.B . 5.D . 6.D . 7.C . 8.B . 9.B . 10.B . 二.填空题(共8小题)11. 11x =,21x =- . 12. 20% . 13. 无实数根 . 14. 1x <-或01x << .15. 935- . 16. 12a . 17. 10. 18. 10 . 三.解答题(共6小题) 19.请回答下列问题.(1)计算:201()|12cos30|tan 60(20203)2-+-︒-︒+-.(2)解方程:2450x x +-=. 【解】:(1)原式34(21)31=+⨯--+ 43131=+--+4=;(2)分解因式得:(1)(5)0x x -+=,可得10x -=或50x +=, 解得:11x =,25x =-.20.为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排“读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加“体育”锻炼活动的大约有多少人?【解】:(1)5020%250÷=(名),即调查中,一共抽查了250名初二同学;(2)安排“体育”活动的学生有:25028%70⨯=(名),安排“读书”活动的学生有:250705030100---=(名),补全的条形统计图如右图所示;(3)1200028%3360⨯=(人),即利用课余时间参加“体育”锻炼活动的大约有3360人.21.如图,一艘渔船以40海里/小时的速度由西向东追赶鱼群,在A处测得小岛C在渔船的北偏东60︒方向;半小时后,渔船到达B处,此时测得小岛C在渔船的北偏东30︒方向.已知以小岛C为中心,周围18海里以内为军事演习着弹危险区.如果这艘渔船继续向东追赶鱼群,是否有着弹危险?【解】:过点C作CD AB⊥交AB的延长线于D,由题意得,140202AB=⨯=,30CAB∠=︒,60CBD∠=︒,30ACB CBD CAB∴∠=∠-∠=︒,ACB CAB∴∠=∠,20CB AB∴==,在Rt CBD∆中,sinCD CBDCB∠=,3sin20103CD BC CBD∴=∠=⨯=,10318<,∴这艘渔船继续向东追赶鱼群,有着弹危险.22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:(1)猜测并确定y与x 之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?【解】:(1)由表可知,6000xy=,6000(0)∴=>;y xx(2)根据题意,得:600012000W x y x=-=-=-;(2)(2)6000x xx,(3)101200060004800∴-,x即当10x=时,W取得最大值,最大值为4800元,答:当日销售单价x定为10元/个时,才能获得最大日销售利润,最大利润是4800元.23.国强在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(2040)x.(1)用含售价x(元/件)的代数式表示每天能售出该工艺品的件数为(1803)x-件;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②2020年10月17日为第7个国家扶贫日,国强决定每销售一件该工艺品便通过网络平台自动向某扶贫捐赠基金会捐款0.5元,求国强每天通过销售该工艺品捐款的数额.【解】:(1)该商品的售价为x 元/件(2040)x ,且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为603(40)(1803)x x +-=-件,故答案为:(1803)x -.(2)①依题意,得:(20)(1803)900x x --=,整理,得:28015000x x -+=,解得:130x =,250x =(不合题意,舍去).答:该商品的售价为30元/件.②0.5(180330)45⨯-⨯=(元).答:国强每天通过销售该工艺品捐款的数额为45元.24.矩形ABCD 中,6AB cm =,8BC cm =,设运动时间为t (单位:)s .(1)如图1,若动点P 从矩形ABCD 的顶点A 出发,沿A B C →→匀速运动到点C ,图2是点P 运动时,APC ∆的面积2()S cm 随时间t (秒)变化的函数图象.①点P 的运动速度是 /cm s ,m n += ;②若2PC PB =,求t 的值;(2)如图3,若点P ,Q ,R 分别从点A ,B ,C 三点同时出发,沿矩形的边按逆时针方向匀速运动,当点Q 到达点C (即点Q 与点C 重合)时,三个点随之停止运动;若点P 运动速度与(1)中相同,且点P ,Q ,R 的运动速度的比为2:4:3,是否存在t ,使PBQ ∆与QCR ∆相似,若存在,求出所有的t 的值;若不存在,请说明理由.【解】:(1)①观察图象2可知,点P 从B 到C 的运动时间为4s ,故点P 的运动速度为82(/)4cm s =. 632m ∴==,此时168242n =⨯⨯=, 32427m n ∴+=+=. ②90B ∠=︒,2PC PB =, 30PCB ∴∠=︒,83tan30()PB BC cm ∴=︒=, 83(6)()PA cm ∴=-, 4332PA t ∴==-. (2)点P 的运动速度为2/cm s ,且点P ,Q ,R 的运动速度的比为2:4:3, ∴点Q 的运动速度为4/cm s ,点R 的运动速度为3/cm s . 如图3中,由题意,62PB t =-,4BQ t =,84CQ t =-,3CR t =,①当PB BQ QC CR=时,PBQ ∆与QCR ∆相似, ∴624843t t t t-=-, 解得75t =, 经检验,75t =是分式方程的解,且符合题意. ②当时,PB BQ CR CQ=时,PBQ ∆与QCR ∆相似, ∴624384t t t t-=-,解得5t =-或5-(舍弃),经检验,5t =-+是分式方程的解,且符合题意.综上所述,满足条件的t 的值为75或5-.。
湘教版九年级上册数学第2章 一元二次方程含答案
湘教版九年级上册数学第2章一元二次方程含答案一、单选题(共15题,共计45分)1、某公司把500万元资金投入新产品的生产,第一年获得一定的利润,在不抽掉资金和利润的前提下,继续生产,第二年的利润率提高8%,若第二年的利润达到112万元,设第一年的利润率为x,则方程可以列为()A.500(1+x)(1+x+8%)=112B.500(1+x)(1+x+8%)=112+500 C.500(1+x)•8%=112 D.500(1+x)(x+8%)=1122、若n()是关于x的方程的根,则m+n的值为()A.-2B.-1C.1D.23、下列方程没有实数根的是()A.x 2+4x=10B.3x 2+8x﹣3=0C.x 2﹣2x+3=0D.(x﹣2)(x ﹣3)=124、下列给出的方程:①(x+1)(x﹣1)﹣x2=0;②x2+1=0;③y2﹣2y﹣1=0;④x2﹣1= .其中是一元二次方程的是()A.①②③B.②③④C.①②④D.②③5、用配方法解方程,配方后的方程是()A. B. C. D.6、若方程x2+9x-a=0有两个相等的实数根,则()A. B. C. D.7、一元二次方程2x2-x-3=0的而次项系数、常数项分别是()A.2,1,3B.2,1,﹣3C.2,﹣1,3D.2,﹣1,﹣38、方程的二次项系数、一次项系数、常数项分别是()A.2,-3,1B.2,3,-1C.2,3,1D.2,-3,-19、下列各方程中,一定是关于x的一元二次方程的是()A.2x 2+3=2x(5+x)B.ax 2+c=0C.(a+1)x 2+6x+1=0D.(a 2+1)x 2﹣3x+1=010、若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=()A.3B.4C.5D.611、某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务,那么改进操作方法后,每天生产的产品件数为()A.55B.60C.50D.6512、若α、β是一元二次方程x2+2x﹣6=0的两个不相等的根,则α2﹣2β的值是()A.10B.16C.﹣2D.﹣1013、已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0 的两个不相等的实数根,且满足= -1,则m的值是().A.3或 -1B.3C.-1D.-3 或 114、已知−1是关于x的方程x2+4x−m=0的一个根,则这个方程的另一个根是( )A.-3B.-2C.-1D.315、已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D. 或二、填空题(共10题,共计30分)16、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为________17、已知一元二次方程x2﹣7x+10=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为________18、当________时,代数式比代数式的值大2.19、一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为________.20、一元二次方程2x2+ax+2=0的一个根是x=2,则它的另一个根是________.21、m是方程x2-6x-5=0的一个根,则代数式11+6m-m2的值是________.22、已知是方程的根,求的值为________.23、一元二次方程的根是________.24、已知实数m是关于x的方程-3x-1=0的一根,则代数式2-6m+2值为________.25、已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时参考答案(课前预习、课堂探究、课堂训练、课后提升)第1章 反比例函数1.1 反比例函数课前预习1.y=k x≠ 零课堂探究【例1】 探究答案:-1 k ≠0 B变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x 与y ,而要看它能否化为y=k x(k 为常数,k ≠0)的形式.所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3.变式训练1-2:解:(1)由三角形的面积公式,得12xy=36, 于是y=72x.所以,y 是x 的反比例函数.(2)由圆锥的体积公式,得13xy=60,于是y=180x. 所以y 是x 的反比例函数.【例2】 探究答案:1.y=k x (k ≠0) 2.(√2,-√2) 解:设反比例函数的解析式为y=k x(k ≠0), 因为图象过点(√2,-√2), 将x=√2,y=-√2代入,得-√2=√2,解得k=-2. 因此,这个反比例函数的解析式为y=-2x , 将x=-6,y=13代入,等式成立.所以函数图象经过-6,13.变式训练2-1:B变式训练2-2:解:(1)设y 1=k 1x ,y 2=k 2x(k 1,k 2为常数,且k 1≠0,k 2≠0),则y=k 1x+k 2x.∵x=1,y=4;x=2,y=5,∴{k 1+k 2=4,2k 1+k 22=5.解得{k 1=2,k 2=2.∴y 与x 的函数表达式为y=2x+2x.(2)当x=4时,y=2×4+24=812.课堂训练1.B2.C3.A4.-25.解:设大约需要工人y 个,每人每天生产纪念品x 个.∴xy=100,即y=100x(x>0) ∵5≤x ≤8,∴1008≤y ≤1005, 即1212≤y ≤20,∵y 是整数,∴大约需工人13至20人.课后提升1.D2.A3.C4.B5.C6.27.4008.-129.解:(1)∵y 是x 的正比例函数, ∴m 2-3=1, m 2=4, m=±2.∵m=2时,m-2=0, ∴舍去. ∴m=-2.(2)∵y 是x 的反比例函数, ∴m 2-3=-1, m 2=2,m=±√2.10.解:(1)由S=12xy=30,得y=60x,x 的取值范围是x>0.(2)由y=60x可知,y 是x 的反比例函数,系数为60.1.2 反比例函数的图象与性质第1课时 反比例函数的图象课前预习 3.(1)一、三 (2)二、四课堂探究【例1】 探究答案:第一、三象限 >解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5.(2)∵点A (2,n )在正比例函数y=2x 的图象上, ∴n=2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y=m -5x的图象上, ∴4=m -52,即m-5=8. ∴反比例函数的解析式为y=8x.变式训练1-1:C 变式训练1-2:-52【例2】 探究答案:1.(1,5) 2.{y =kx ,y =3x +m解:(1)∵点(1,5)在反比例函数y=k x的图象上,∴5=k 1,即k=5,∴反比例函数的关系式为y=5x.又∵点(1,5)在一次函数y=3x+m 的图象上, ∴5=3+m , ∴m=2.∴一次函数的关系式为y=3x+2.(2)由题意可得{y =5x ,y =3x +2, 解得{x 1=1,y 1=5或{x 2=−5,y 2=−3.∴这两个函数图象的另一个交点的坐标为-53,-3.变式训练2-1:A变式训练2-2:解:(1)将A (-1,a )代入y=-x+2中, 得a=-(-1)+2,解得a=3.(2)由(1)得,A (-1,3),将A (-1,3)代入y=k x中, 得到3=k -1,即k=-3,即反比例函数的表达式为y=-3x.(3)如图:过A 点作AD ⊥x 轴于D , ∵A (-1,3),∴AD=3,在直线y=-x+2中,令y=0,得x=2, ∴B (2,0),即OB=2, ∴△AOB 的面积S=12×OB ×AD=12×2×3=3.课堂训练1.A2.C3.B4.m>15.解:(1)∵反比例函数y=k x与一次函数y=x+b 的图象,都经过点A (1,2),∴将x=1,y=2代入反比例函数解析式得, k=1×2=2,将x=1,y=2代入一次函数解析式得, b=2-1=1,∴反比例函数的解析式为y=2x,一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1.∴一次函数图象与x 轴,y 轴的交点坐标分别为(-1,0),(0,1).课后提升1.C2.B3.A4.D5.C6.-37.-248.解:m 2=(-4)×(-9)=36,∴m=±6.∵反比例函数y=m x的图象位于第一、三象限,∴m>0, ∴m=6.9.解:(1)∵y=m -5的一支在第一象限内,∴ m-5>0. ∴m>5.对直线y=kx+k 来说,令y=0,得kx+k=0,即k (x+1)=0. ∵k ≠0,∴x+1=0,即x=-1. ∴点A 的坐标为(-1,0).(2)过点M 作MC ⊥AB 于点C ,∵点A 的坐标为(-1,0),点B 的坐标为(3,0), ∴AB=4,AO=1.∵S △ABM =12×AB ×MC =1×4×MC=8,∴MC=4.又AM=5,∴AC=3,又OA=1,∴OC=2.∴点M 的坐标为(2,4).把M (2,4)代入y=m -5x, 得4=m -52,则m=13,∴y=8x. 第2课时 反比例函数的性质课前预习 1.在每一象限内 减小 在每一象限内 增大2.y=±x 坐标原点课堂探究【例1】 探究答案:1.一、三 >0 2.减小 >解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2. (2)把点(3,1)代入y=2n -4x,得2n-4=3, 解得n=72.(3)因为在每个象限内,y 随x 的增大而减小,所以由a 1<a 2,得b 1>b 2. 变式训练1-1: A 变式训练1-2:< 【例2】 探究答案:|k||k|解:设点A 的坐标为a ,2a,则点B 的坐标为-a ,-2a,∵BC ∥x 轴,AC ∥y 轴,∴AC ⊥BC ,又由题意可得BC=2a ,AC=4a,S △ABC =12BC ·AC=12·2a ·4a=4.变式训练2-1:1变式训练2-2:解:设A 的坐标是(m ,n ),则n=k ,即k=mn ,∵OB=-m ,AB=n ,S 长方形ABOC =OB ·AB=(-m )n=-mn=3, ∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x.课堂训练1.A2.C3.64.25.解:设一次函数的解析式为y=kx+b (k ≠0).∵点A 是直线与反比例函数y=2x的交点, ∴把A (1,a )代入y=2x,得a=2. ∴A (1,2).把A (1,2)和C (0,3)代入y=kx+b ,得{k +b =2,b =3.解得k=-1,b=3.所以一次函数的解析式为:y=-x+3.课后提升1.D2.D3.A4.C5.C6.C7.x<-2或0<x<18.69.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0,∴m<52.(2)b 1<b 2.理由如下:∵m<52,∴m-4<m-3<0,∴b 1<b 2.1.3 反比例函数的应用课堂探究【例1】 探究答案:1.反比例 v=P F2.减小 解:(1)设反比例函数解析式为v=P F, 把(3000,20)代入上式, 得20=P3000,P=3000×20=60000, ∴v=60000F. (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时), 即当它所受的牵引力为1200牛时,汽车的速度为180千米/时. (3)由v=60000F≤30,得F ≥2000. 所以,若限定汽车的速度不超过30米/秒,则F 应不小于2000牛.变式训练1-1:C 变式训练1-2:0.5【例2】 探究答案:1.k 2 -2 2.图象 解:(1)∵双曲线y=k 2x经过点A (1,2),∴k 2=2.∴双曲线的解析式为y=2x. ∵点B (m ,-1)在双曲线y=2x上,∴m=-2,则B (-2,-1).由点A (1,2),B (-2,-1)在直线y=k 1x+b 上,得{k 1+b =2,-2k 1+b =−1,解得{k 1=1,b =1.∴直线的解析式为y=x+1. (2)y 2<y 1<y 3.(3)x>1或-2<x<0.变式训练2-1:C变式训练2-2:解:(1)直线y=12x+b 经过第一、二、三象限,与y 轴交于点B ,∴OB=b ,∵点A (2,t ),△AOB 的面积等于1.∴12×2×b=1,可得b=1,即直线为y=12x+1.(2)由点A (2,t )在直线y=12x+1上, 可得t=2,即点A 坐标为(2,2),反比例函数y=k x(k 是常量,k ≠0)的图象经过点A ,可得k=4, 所求反比例函数解析式为y=4x.课堂训练1.C2.C3.B4.(1,-2)5.解:(1)将A (2,4)代入反比例函数解析式得m=8,∴反比例函数解析式为y 2=8x,将B (-4,n )代入反比例函数解析式得n=-2, 即B (-4,-2),将A 与B 坐标代入一次函数解析式得,{2k +b =4,-4k +b =−2,解得{k =1,b =2.则一次函数解析式为y 1=x+2.(2)联立两函数解析式得{y =x +2,y =8x,解得{x =2,y =4或{x =−4,y =−2,则y 1=y 2时,x 的值为2或-4. (3)利用题图象得,y 1>y 2时,x 的取值范围为-4<x<0或x>2.课后提升1.D2.D3.C4.D5.x<0或1<x<46.1.67.(3,2)8.19.解:(1)∵反比例函数y=k x的图象过B (4,-2)点,∴k=4×(-2)=-8,∴反比例函数的解析式为y=-8x. ∵反比例函数y=-8的图象过点A (-2,m ), ∴m=-8=4,即A (-2,4).∵一次函数y=ax+b 的图象过A (-2,4),B (4,-2)两点,∴{-2a +b =4,4a +b =−2,解得{a =−1,b =2.∴一次函数的解析式为y=-x+2. (2)∵直线AB :y=-x+2交x 轴于点C , ∴C (2,0).∵AD ⊥x 轴于D ,A (-2,4), ∴CD=2-(-2)=4,AD=4, ∴S △ADC =12·CD ·AD=12×4×4=8.10.解:(1)把A (m ,2)代入反比例函数解析式y=2x得2=2m,所以m=1. ∴A (1,2).(2)把A (1,2)代入正比例函数解析式y=kx 得2=k ,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x ,当x=2时,y ≠3,所以点B (2,3)不在正比例函数图象上.第2章 一元二次方程2.1 一元二次方程课前预习 1.一个 2 整式 3.相等 课堂探究【例1】 探究答案:1.2 =2 2.≠0 解:根据题意,得m 2-2=2,且m-2≠0. 解得m=±2,且m ≠2.所以m=-2. 则m 2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C 变式训练1-2:≠±1 =12【例2】 探究答案:1.移项 合并同类项 2.符号 0 解:(1)去括号,得4t 2+12t+9-2(t 2-10t+25)=-41, 去括号、移项、合并得2t 2+32t=0,所以二次项系数、一次项系数和常数项分别为2,32,0. (2)去括号,得12x 2-x+12=3x+13, 移项、合并,得12x 2-4x+16=0,所以二次项系数、一次项系数和常数项分别为1,-4,1.变式训练2-1:B变式训练2-2:解:{m2-2=2, m+2≠0,解得m=±2且m≠-2.∴m=2.【例3】探究答案:1.根2.≠0解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0,即m2-4=0,故m2=4,解得m=2或m=-2.∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程,∴m-2≠0,即m≠2.故m=-2.变式训练3-1:1变式训练3-2:解:把x=0代入方程得a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a=-1.课堂训练1.C2.A3.-104.-25.解:去括号,得9x2+12x+4=4x2-24x+36.移项、合并同类项得,5x2+36x-32=0.∴它的二次项为5x2二次项系数为5,一次项为36x,一次项系数为36,常数项为-32.课后提升1.D2.D3.C4.C5.D6.x(x+5)=300x2+5x-300=015-3007.18.≠1=19.解:(1)去括号,得x2-4=3x2+2x,移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4.(2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0.10.解:小明的话有道理.理由:若方程为一元二次方程,则m+1=2,m=1.而m=1时,m2+m-2=0,所以此方程不可能为一元二次方程.2.2 一元二次方程的解法2.2.1 配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±√b没有解:移项,得2(x+1)2=92, 两边同时除以2,得(x+1)2=94,∴x+1=±32,∴x 1=-1+32=12,x 2=-1-32=-52.变式训练1-1:m ≥7变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5,解这两个方程得:x 1=3,x 2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2.解这两个方程,得x 1=4,x 2=0.【例2】 探究答案:一次项系数一半的平方 解:移项,得x 2-12x=12, 配方,得x 2-12x+(14)2=916,(x -14)2=916, ∴x-14=34或x-14=-34,∴x 1=1,x 2=-12.变式训练2-1:±43变式训练2-2:解:移项,得x 2-2x=2,配方,得(x-1)2=3, 解得x=1±√3.∴x 1=1+√3,x 2=1-√3.课堂训练1.D2.B3.±324.±85.解:(1)移项得x 2-2x=1,配方,得x 2-2x+1=2, 即(x-1)2=2,开方,得x-1=±√2, 则x 1=1+√2,x 2=1-√2.(2)移项,得x 2-4x=-1,配方,得x 2-4x+4=-1+4,即(x-2)2=3, 开方,得x-2=±√3,∴原方程的解是x 1=2+√3,x 2=2-√3.课后提升1.D2.B3.D4.B5.36.-37.900 cm 28.解:(1)直接开平方得,x-1=±√3,即x-1=√3或x-1=-√3,∴x 1=1+√3,x 2=1-√3.(2)配方,得x 2-2x+1=4+1,即(x-1)2=5. ∴x-1=±√5,即x-1=√5或x-1=-√5 ∴x 1=1+√5,x 2=1-√5.(3)方程两边都除以2,得x 2-32=-52x , 移项,得x 2+52x=32.配方,得x 2+52x+542=32+542,即x+542=4916. 开平方得,x+54=±74,∴x 1=12,x 2=-3.9.解:用配方法解方程a 2-10a+21=0,得a 1=3,a 2=7.当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x 2+px=-q ,配方得x 2+px+p 22=-q+p 22,即x+p 22=p 2-4q4.∵p 2≥4q , ∴p 2-4q ≥0,∴x+p2=±√p 2-4q 2.∴x 1=-p+√p 2-4q2,x 2=-p -√p 2-4q2.第2课时 用配方法解复杂的一元二次方程课前预习(1)1(2)二次项和一次项 常数项 (3)一次项系数一半的平方课堂探究【例1】 探究答案:1.1 2.完全平方式 解:两边同时除以2,得x 2-32x+12=0, 移项,得x 2-32x=-12, 配方,得x 2-32x+(-34)2=-12+(-34)2, 即(x -34)2=116,两边开平方,得x-34=±14,x-34=14或x-34=-14,∴原方程的解为x 1=1,x 2=12.变式训练1-1:D变式训练1-2:解:(1)二次项系数化为1, 得x 2-16x-2=0, 移项,得x 2-16x=2,配方, 得x 2-16x+1144=2+1144, 即x-1122=289144, ∴x-112=±1712,∴x 1=32,x 2=-43.(2)二次项系数化为1,得x 2-12x-12=0. 移项,得x 2-12x=12.配方得x 2-12x+142=12+142,即x-142=916, ∴x-14=±34, ∴x 1=1,x 2=-12.【例2】 探究答案:1.1 2.减去解:2x 2-4x+5=2(x 2-2x )+5 =2(x 2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0,∴代数式2x 2-4x+5的值总是一个正数. 变式训练2-1:13变式训练2-2:解:x 2-4x+5=x 2-4x+22-22+5 =(x-2)2+1.∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时,代数式x 2-4x+5的值最小,最小值为1.课堂训练1.A2.B3.x 1=-2,x 2=124.3或-75.-3或36.解:由题意得2x 2-x=x+6,∴2x 2-2x=6,∴x 2-x=3,∴x 2-x+14=3+14,∴x-122=134,∴x-12=±√132, ∴x 1=1+√132,x 2=1−√132. ∴x=1+√132或1−√132时,整式2x 2-x 与x+6的值相等. 课后提升1.D2.D3.B4.D5.x 1=1+√3,x 2=1-√36.87.38.1±2√29.解:去括号,得4x 2-4x+1=3x 2+2x-7,移项,得x 2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x 1=2,x 2=4.10.解:由题意,得2x 2+x-2+(x 2+4x )=0, 化简,得3x 2+5x-2=0. 系数化为1,得x 2+53x=23,配方,得x+562=4936,∴x+56=±76, ∴x 1=-2,x 2=13.2.2.2 公式法课前预习1.x=-b±√b 2-4ac2a(b 2-4ac ≥0)2.求根公式课堂探究【例1】 探究答案:1.一般形式 2.a 、b 、c解:原方程可化为x 2+2x-1=0, ∵a=1,b=2,c=-1.b 2-4ac=22-4×1×(-1)=8>0,∴x=-2±√82×1=-2±2√22=-1±√2.∴x 1=-1+√2,x 2=-1-√2.变式训练1-1:D变式训练1-2:解:(1)移项,得2x 2+3x-1=0, ∵a=2,b=3,c=-1,∴b 2-4ac=17>0,∴x=-3±√174,∴x 1=-3+√17,x 2=-3-√17. (2)化简得,x 2+5x+5=0,∴a=1,b=5,c=5, ∴b 2-4ac=5>0,∴x=-5±√52,∴x 1=-5+√52,x 2=-5-√52. 【例2】 探究答案:1.一元二次方程有实数根 2.相等 解:原方程可化为2x 2+2√2x+1=0,∵a=2,b=2√2,c=1, ∴b 2-4ac=(2√2)2-4×2×1=0, ∴x=-2√2±√02×2=-√22. ∴x 1=x 2=-√22.变式训练2-1:解:(1)b 2-4ac=(-2)2-4×1×1=4-4=0.∴此方程有两个相等的实数根.(2)b 2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练1.D2.C3.24.解:(1)b 2-4ac=(-4)2-4×2×(-1)=16+8=24>0.∴x=-b±√b 2-4ac 2a =4±√242×2=4±2√64=2±√62.∴x 1=2+√62,x 2=2−√62. (2)整理,得4x 2+12x+9=0,所以a=4,b=12,c=9.因为b 2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根,所以x=-b±√b 2-4ac 2a=-12±√02×4=-128=-32. ∴x 1=x 2=-32.课后提升1.C2.A3.D4.D5.-1+√32,-1-√326.x 1=1,x 2=17.25或168.解:整理得x 2+2x-1=0, b 2-4ac=22-4×1×(-1)=8,x=-2±√82×1=-2±2√22=-1±√2,∴x 1=-1+√2,x 2=-1-√2.9.解:(1)x 2-4x-1=0,∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20,∴x=4±√20=2±√5, ∴x 1=2+√5,x 2=2-√5.(2)∵3x (x-3)=2(x-1)(x+1),∴x 2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0,∴x=-b±√b 2-4ac =9±√73, ∴x 1=9+√732,x 2=9−√732. 10.解:由题意得,m 2+1=2, 且m+1≠0, 解得m=1.所以原方程为2x 2-2x-1=0, 这里a=2,b=-2,c=-1.b 2-4ac=(-2)2-4×2×(-1)=12.∴x=2±2√34=1±√32, ∴x 1=1+√32,x 2=1−√32.2.2.3 因式分解法课前预习 1.(2)(a-b )(a+b ) (a ±b )2 2.一次因式 0 0课堂探究【例1】 探究答案:x [(x+2)-4] 3(x-5)2-2(5-x )=0 (x-5)(3x-13)解:(1)x (x+2)-4x=0,x [(x+2)-4]=0, 即x (x-2)=0, ∴x=0或x-2=0, ∴x 1=0,x 2=2.(2)3(x-5)2=2(5-x ), 3(x-5)2-2(5-x )=0, (x-5)[3(x-5)+2]=0, ∴x-5=0或3x-15+2=0,∴x 1=5,x 2=133.变式训练1-1:C变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0,∴x 1=43,x 2=73.(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0, ∴x 1=-2,x 2=-4.【例2】 探究答案:直接开平方法 配方法 公式法 因式分解法 解:(1)公式法:∵a=1,b=-3,c=1, ∴b 2-4ac=(-3)2-4×1×1=5>0,∴x=-(-3)±√52×1,∴x 1=3+√52,x 2=3−√52. (2)因式分解法:原方程可化为x (x-3)=0,∴x=0或x-3=0 ∴x 1=0,x 2=3.(3)配方法:配方,得x 2-2x+1=4+1, 即(x-1)2=5,∴x-1=±√5, ∴x 1=1+√5,x 2=1-√5.变式训练2-1:C变式训练2-2:解:(1)用直接开平方法:原方程可化为 (x-3)2=4, ∴x-3=±2,∴x 1=5,x 2=1.(2)用配方法:移项,得x 2-4x=7. 配方,得x 2-4x+4=7+4, 即(x-2)2=11,∴x-2=±√11∴x-2=√11或x-2=-√11, ∴x 1=2+√11,x 2=2-√11.(3)用因式分解法:方程两边分别分解因式,得 (x-3)2=2(x-3)(x+3),移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得 (x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0. ∴x 1=3,x 2=-9.课堂训练1.C2.D3.74.-1或45.解:(1)∵a=3,b=1,c=-1,∴b 2-4ac=12-4×3×(-1)=13>0,∴x=-1±√132×3∴x 1=-1+√136,x 2=-1-√136. (2)移项,得(3x-2)2-4(3-x )2=0,因式分解,得[(3x-2)+2(3-x )][(3x-2)-2(3-x )]=0, 即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0,∴x 1=-4,x 2=85.(3)将原方程整理,得x 2+x=0, 因式分解,得x (x+1)=0, ∴x=0或x+1=0, ∴x 1=0,x 2=-1.课后提升1.A2.D3.B4.B5.B6.x 1=3,x 2=97.68.-19.解:(1)用求根公式法解得y 1=3,y 2=-8. (2)用分解因式法解得x 1=52,x 2=-1. (3)用求根公式法解得y 1=-2+√22,y 2=-2-√22.10.解:解方程x(x-7)-10(x-7)=0,得x1=7,x2=10.∵4<第三边长<10,∴x2=10(舍去).第三边长为7.这个三角形的周长为3+7+7=17.2.3 一元二次方程根的判别式课前预习1.a≠02.(1)> (2)= (3)<课堂探究【例1】探究答案:1.一般形式2.a、b、c b2-4ac解:(1)原方程可化为x2-6x+9=0,∵Δ=b2-4ac=(-6)2-4×1×9=0,∴原方程有两个相等的实数根.(2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0,∴原方程有两个不相等的实数根.(3)原方程可化为3x2-2√6x+3=0.∵Δ=b2-4ac=(-2√6)2-4×3×3=-12<0,∴原方程无实数根.变式训练1-1:A变式训练1-2:B【例2】探究答案:1.≥解:由题意知:b2-4ac≥0,即42-8k≥0,解得k≤2.∴k的非负整数值为0,1,2.变式训练2-1:B变式训练2-2:解:∵a=2,b=t,c=2.∴Δ=t2-4×2×2=t2-16,令t2-16=0,解得t=±4,当t=4或t=-4时,原方程有两个相等的实数根.课堂训练1.D2.A3.D4.k<-15.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0,∴原方程没有实数根.(2)当m=-3时,x2+2x-3=0,x2+2x=3,x2+2x+1=3+1,(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3.课后提升1.D2.A3.C4.C5.D6.m>17.m<2且m≠18.6或12或109.解:由题意,得{ b 2-4ac =(−2√k +1)2-4(1-2k)(-1)>0 ①1−2k ≠0 ②k +1≥0 ③由①,得4(k+1)+4-8k>0,即-4k>-8,解得k<2.由②得,k ≠12,由③得,k ≥-1. ∴-1≤k<2且k ≠1.10.解:(1)Δ=b 2-4ac =4-4(2k-4) =20-8k. ∵方程有两个不等的实根, ∴20-8k>0,∴k<52.(2)∵k 为正整数, ∴0<k<52(且k 为整数),即k 为1或2,∴x=-1±√5−2k . ∵方程的根为整数,∴5-2k 为完全平方数.当k=1时,5-2k=3;当k=2时,5-2k=1. ∴k=2.*2.4 一元二次方程根与系数的关系课前预习-b a c a 课堂探究【例1】 探究答案:1.-1 2.2ab a+b ab解:因为方程x 2-x-1=0的两实根为a 、b.所以(1)a+b=1;(2)ab=-1;(3)a 2+b 2=(a+b )2-2ab=12-2×(-1)=3;(4)1a +1b =a+b ab=-1. 变式训练1-1:-2变式训练1-2:-658【例2】 探究答案:1.2(m+1) 2.>0解:∵方程有两个不相等的实数根, ∴Δ=b 2-4ac=[-2(m+1)]2-4×1×(m 2-3) =16+8m>0,解得m>-2;根据根与系数的关系可得x 1+x 2=2(m+1), ∵(x 1+x 2)2-(x 1+x 2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0,解得m 1=1或m 2=-52. ∵m>-2,∴m 2=-52(舍去),∴m=1.变式训练2-1:1变式训练2-2:解:∵x 1+x 2=2,∴m=2. ∴原方程为x 2-2x-3=0,即(x-3)(x+1)=0,解得x 1=3,x 2=-1. 课堂训练1.B2.A3.-24.55.解:设x 1,x 2是方程的两个实数根,∴x 1+x 2=-32,x 1x 2=1−m 2. 又∵1x 1+1x 2=3,∴x 1+x 2x 1x 2=3, ∴-31−m=3, ∴-3=3-3m ,∴m=2,又∵当m=2时,原方程的Δ=17>0, ∴m 的值为2. 课后提升1.B2.B3.D4.B5.B6.-20147.68.20149.解:将-2代入原方程得:(-2)2-2+n=0,解得n=-2,因此原方程为x 2+x-2=0,解得x 1=-2,x 2=1, ∴m=1.10.解:(1)根据题意得m ≠1Δ=(-2m )2-4(m-1)(m+1)=4,∴x 1=2m+22(m -1)=m+1m -1, x 2=2m -22(m -1)=1. (2)由(1)知x 1=m+1m -1=1+2m -1 又∵方程的两个根都是正整数,∴2m -1是正整数, ∴m-1=1或2. ∴m=2或3.2.5 一元二次方程的应用第1课时增长率与利润问题课前预习1.a(1±x)2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2(2)12100(1+x)解:(1)设捐款增长率为x,根据题意列方程得,10000(1+x)2=12100,解得x1=0.1,x2=-2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.变式训练1-1:A变式训练1-2:B3-2-x【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元.-24=200.根据题意,得(3-2-x)200+40x0.1解这个方程,得x1=0.2,x2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.变式训练2-1:2或6变式训练2-2:解:设每件童装应降价x元.根据题意得(40-x)(20+2x)=1200,解这个方程得x1=10,x2=20.因为在相同利润的条件下要扩大销售量,减少库存,所以应舍去x1=10.答:每件童装应降价20元.课堂训练1.B2.D3.B4.20%5.解:设每千克核桃应降价x元.×20)=2240根据题意得(60-x-40)(100+x2解这个方程得x1=4,x2=6.答:每千克核桃应降价4元或6元.课后提升1.C2.C3.D4.B5.10%6.30007.40(1+x)2=48.48.10%9.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9.答:每轮传染中平均一个人传染了7个人.(2)7×64=448.答:又有448人被传染.10.解:(1)设每年市政府投资的增长率为x,根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得x2+3x-1.75=0,解之,得x1=0.5, x2=-0.35(舍去)所以每年市政府投资的增长率为50%.=38(万平方米).(2)到2013年年底共建廉租房面积=9.5×82第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x(6-x)·2x=82.12解:设经过x秒钟后,△PBQ的面积等于8 cm2.根据题意得1(6-x)·2x=8.解这个方程得x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8 cm2.变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x,则(5-x)2+(2x)2=52,即x2-2x=0.解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去.答:再运动2秒钟后,P、Q间的距离又等于5 cm.(2)设y秒钟时,可使△PCQ的面积等于4 cm2.1×(5-y)×2y=4,2即y2-5y+4=0,解得y1=1,y2=4.经检验,它们均符合题意.答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2.变式训练1-2:解:设应移动x米.OA=√AB2-OB2=3米.则由题意得(3+x)2+(4-x)2=52.解这个方程得x1=1,x2=0(不合题意,舍去).答:应移动1米.【例2】探究答案:(100-2x)(50-2x)解:设正方形观光休息亭的边长为x米.依题意,有(100-2x)(50-2x)=3600.整理,得x2-75x+350=0.解得x1=5,x2=70.∵x=70>50,不合题意,舍去,∴x=5.答:矩形花园各角处的正方形观光休息亭的边长为5米.变式训练2-1:B变式训练2-2:解:设P 、Q 两块绿地周围的硬化路面的宽都为x 米,根据题意,得(40-2x )(60-3x )=60×40×14,解之,得x 1=10, x 2=30(不符合题意,舍去).答:两块绿地周围的硬化路面的宽都是10米. 课堂训练1.B2.C3.D4.15.解:设花边的宽为x 米,根据题意,得(2x+6)(2x+3)=40.解得x 1=1,x 2=-112.但x 2=-112不合题意,舍去.答:花边的宽为1米. 课后提升1.D2.C3.C4.B5.D6.97.24 458.10009.解:(1)设小货车原计划每辆每次运送帐篷x 顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得 2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000.故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶.(2)根据题意,得2(1000-200m )1+12m +8(800-300)(1+m )=14400, 化简为m 2-23m+42=0,解得m 1=2,m 2=21.∵1000-200m 不能为负数,且12m 为整数,∴m 2=21(不符合实际,舍去),故m 的值为2.10.解:设x 秒后四边形APQB 的面积是△ABC 面积的23,在Rt △ABC 中,AB=10,AC=8,由勾股定理,得 BC 2=AB 2-AC 2=102-82=36, ∴BC=6.则12(8-2x )(6-x )=13×12×6×8,解得x 1=2,x 2=8(不合题意,舍去), ∴2秒后四边形APQB 的面积是△ABC 面积的23. 第3章 图形的相似3.1 比例线段 3.1.1 比例的基本性质 课前预习1.(1)比值 比值 (2)比例内项2.(1)bc课堂探究 【例1】 探究答案:1.3x 3y =2y 3yx y =23 2.7y=4x 7∶4解:(1)∵3x=2y ,∴3x 3y =2y 3y,即x y =23.(2)∵7=4, ∴7y=4x ,x y =74. 变式训练1-1:D变式训练1-2:4【例2】 探究答案:1.2解:∵AD AB =AE AC =DE BC =23, ∴AD+AE+DE AB+AC+BC =23, 即△ADE 的周长△ABC 的周长=23. 设△ADE 和△ABC 的周长分别为2x cm 和3x cm,则有3x-2x=15,得x=15. ∴△ABC 的周长为45 cm,△ADE 的周长为30 cm .变式训练2-1:D变式训练2-2:解:设x 3=y 5=z 7=k ,则x=3k ,y=5k ,z=7k , ∴x -y+z x+y -z =3k -5k+7k 3k+5k -7k =5k k=5. 课堂训练1.C2.A3.2∶3=4∶6(答案不唯一)4.135.解:因为m -n n =23, 所以3(m-n )=2n ,,. 化简得3m=5n ,所以m n =53,则3m+2n n =3m n +2=m n ×3+2=53×3+2=7.课后提升1.C2.C3.D4.C5.A6.52 727.3√38.2或-19.解:∵a ∶b ∶c=1∶2∶4,设a=k ,b=2k , c=4k ,则a+2b+3ca -b+c =k+4k+12kk -2k+4k =17k 3k =173.10.解:∵a b =c d =e f =23,∴2a 2b =-c -d =-5e-5f =23.∴2a -c -5e2b -d -5f =23.3.1.2 成比例线段课前预习1.m ∶n AB CD =m n2.a b =c d3.BC AC 黄金比 √5-12≈0.618课堂探究【例1】探究答案:1.(12-x ) x 12−x =64 2.DB AB =EC AC解:(1)设AD=x cm,则DB=(12-x )cm .则有x 12−x =64,解这个方程得x=7.2,所以AD=7.2 cm .(2)DB AB =12−7.212=25,EC AC =46+4=25,所以DB AB =EC AC ,所以线段DB 、AB 、EC 、AC 是成比例线段. 变式训练1-1:B变式训练1-2:解:利用比例线段的定义, ∵a=1 mm =0.1 cm,b=0.8 cm, c=0.02 cm,d=4 cm,∴d>b>a>c ,而d b =40.8=5,a c =0.10.02=5, ∴d b =a c ,∴d 、b 、a 、c 四条线段是成比例线段.【例2】 探究答案:1.AC AB =CB AC 2.3x+3=x 3 解:设CB=x ,∵点C 为线段AB 的黄金分割点, ∴AC AB =CB AC ,即3x+3=x 3,得9=x (x+3), 解得x 1=3√5-32,x 2=-3√5-32(舍去). 故CB 的长为3√5-32. 变式训练2-1:C变式训练2-2:解:因为点C 是AB 的黄金分割点, 所以当AC>BC 时,AC AB =√5-12. 又因为AB=10 cm,所以AC=√5-12×10=(5√5-5)(cm),当AC<BC 时,BC AB =√5-12, 所以BC=√5-12×10=(5√5-5)(cm),所以AC=AB-BC=10-(5√5-5)=(15-5√5)(cm), 所以AC 的长为(5√5-5)cm 或(15-5√5)cm . 课堂训练1.D2.45 353.6-2√54.=5.解:(1)a ∶b=c ∶d ,即a ∶0.2=0.5∶1,则a=0.2×0.5=0.1.(2)a ∶b=c ∶d ,即3∶7=c ∶21,则7c=21×3,得c=9. 课后提升1.B2.D3.C4.B5.B6.6.987.168.√5-12或3−√529.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5,CE=1,CF=4,AF=3.在直角三角形ABD中,AB=√AD2+BD2=√22+52=√29,在直角三角形BCE中,BC=√BE2+CE2=√52+12=√26,在直角三角形ACF中,AC=√CF2+AF2=√42+32=5,所以AB=√29,BC=√26.10.解:设每一份为k,由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1,得{a-c=−2k,a+b=7k,c-b=k,解得{a=3k,b=4k,c=5k,而(3k)2+(4k)2=(5k)2,即a2+b2=c2,所以△ABC是直角三角形.3.2 平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.352.DE DF解:∵l1∥l2∥l3,∴AB AC =DE DF,∵AB BC =32,∴ABAC=35,∴DE DF =3 5 ,由DF=20 cm,得DE=35DF=12 cm,∴EF=DF-DE=8 cm.变式训练1-1:D变式训练1-2:12【例2】探究答案:1.AEAC 2.x-4x-4x-4x-3=4xD变式训练2-1:B变式训练2-2:A 课堂训练1.B2.A3.A4.55.解:∵DE ⊥AB ,CB ⊥AB , ∴DE ∥BC ,∴AD AB =AE AC ,即35=5AC, ∴AC=253.∴BC=√AC 2-AB 2=√(253) 2-52=203. 课后提升1.C2.C3.A4.D5.D6.97.68.149.解:∵DE ∥BC ,DF ∥AC , ∴四边形EDFC 为平行四边形, ∴DE=FC=5,又∵DF ∥AC ,∴AD BD =CF BF ,即48=5BF,得BF=10. 10.解:∵DE ∥BC ,∴AD AB =AE AC. 又∵EF ∥CD ,∴AF =AE , ∴AD =AF , ∴AD 2=AB ·AF=36, ∴AD=6 cm .3.3 相似图形课前预习 1.(1)对应相等 对应成比例 (2)∽ △ABC 相似于△A'B'C'(3)相等 成比例2.(1)对应角 成比例 (2)相等 等于相似比 课堂探究【例1】 探究答案:1.∠A' ∠B' ∠C'2.180°-∠A-∠B解:∵△ABC ∽△A'B'C', ∴∠B=∠B'=60°,在△ABC 中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50变式训练1-2:1∶2【例2】探究答案:(1)CD CB (2)77° 83° 解:因为四边形ABCD ∽四边形EFGH ,∴∠F=∠B=77°,∠G=∠C=83°,EF AB =GH CD =FG BC =418=29, ∴∠H=360°-(∠E+∠F+∠G )=83°, BC=FG ÷29=6×92=27, CD=GH ÷2=7×9=31.5.变式训练2-1:B变式训练2-2:解:由四边形ABCD 与四边形A'B'C'D'相似得,x 21=12y =1015, ∠A=∠A'=120°,∴x=21×1015=14, y=12÷1015=12×32=18,∠α=360°-(∠A+∠B+∠C )=80°.课堂训练1.C2.B3.6 1.54.9或255.解:因为梯形AEFD ∽梯形EBCF , 所以AD EF =EF BC =AE EB, 又因为AD=4,BC=9,所以EF 2=AD ·BC=4×9=36, 所以EF=6, 所以AE EB =AD EF =46=23. 课后提升1.B2.D3.D4.D5.D6.2 30°7.60° 140° 18.√5+129.解:∵四边形ABCD 与四边形EFGH 相似, ∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵AB EF =AD EH, ∴AB=EF ·AD EH =5×86=203. ∵BC FG =ADEH,∴BC=FG ·AD EH =7×86=566=283. 10.解:∵△ABC ∽△APQ ,∴AB AP =BCPQ , 即4040+60=30PQ, 解得PQ=75.答:PQ 的长为75 cm .3.4 相似三角形的判定与性质3.4.1 相似三角形的判定第1课时 两角对应相等或平行判定相似课前预习 (1)相似 (2)相等课堂探究【例1】 探究答案:1.EDA 2.DFC 3.△EDA △DFC 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,∴△BEF ∽△CDF ,△BEF ∽△AED , ∴△BEF ∽△CDF ∽△AED. 当△BEF ∽△CDF 时,相似比k 1=BE CD =13; 当△BEF ∽△AED 时,相似比k 2=BE AE =14; 当△CDF ∽△AED 时,相似比k 3=CD AE =34. 变式训练1-1:3变式训练1-2:1∶2【例2】 探究答案:1.∠DAE 2.∠D 解:△ABC ∽△ADE ,理由如下: ∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC , 即∠BAC=∠DAE ,又∵在△AOB 与△COD 中, ∠AOB=∠COD ,∠1=∠3, ∴∠B=∠D ,∴△ABC ∽△ADE. 变式训练2-1:C变式训练2-2:证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠ADF=∠CED ,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B , ∴∠AFD=∠C , ∴△ADF ∽△DEC.课堂训练1.D2.C3.A4.∠ADE=∠C (答案不唯一)5.解:(1)在△ABC 中, ∵∠A=90°,∠B=50°, ∴∠C=40°.∴∠A=∠A'=90°,∠C=∠C'=40°.∴△ABC ∽△A'B'C'(两角相等的两个三角形相似). (2)在△ABC 中, ∵∠A=∠B=∠C , ∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B',∴△ABC ∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A2.D3.C4.D5.66.2.57.解:∵∠A=36°,AB=AC , ∴∠ABC=∠ACB=72°, ∵BD 平分∠ABC , ∴∠CBD=∠ABD=36°, ∠BDC=72°,∴AD=BD ,BC=BD , ∴△ABC ∽△BDC ,∴BD AB =CD BC ,即AD AC =CD AD, ∴AD 2=AC ·CD ,设AD=x ,则CD=1-x , ∴x 2=1×(1-x ), x 2+x-1=0, x=-1±√1+42=-1±√52,x 1=-1+√52,x 2=-1-√52(舍去), ∴AD=√5-12,∴AD 的长是√5-12.8.解:(1)△ABC ∽△FOA ,理由如下:在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l 垂直平分AC ,∴∠OFC+∠BCA=90°, ∴∠BAC=∠OFC=∠OFA , 又∵∠ABC=∠FOA=90°, ∴△ABC ∽△FOA.(2)四边形AFCE 是菱形,理由如下: ∵AE ∥FC ,∴∠AEO=∠OFC ,∠EAO=∠OCF , ∴△AOE ∽△COF , ∵OC=OA ,∴OE=OF , 即AC 、EF 互相垂直平分, ∴四边形AFCE 是菱形.第2课时 两边成比例夹角相等或三边成比例判定相似课前预习 (1)成比例 夹角 (2)成比例课堂探究【例1】探究答案:1.45452.△DCA 解:因为AB CD =45,BC AC =45, 所以AB CD =BC AC, 又因为∠B=∠ACD , 所以△ABC ∽△DCA , 所以AB DC =AC AD, 所以AD=DC ·AC AB=152×56=254.变式训练1-1:B变式训练1-2:证明:∵四边形ABCD 是正方形, ∴AD=DC=BC ,∠D=∠C=90°,∵M 是CD 的中点,∴AD ∶DM=2∶1, ∵BP=3PC ,∴CM ∶PC=2∶1, 即AD DM =CMPC,且∠D=∠C , ∴△ADM ∽△MCP.【例2】探究答案:1.√5 √10 5 √2 2 √10 2.√10√10√10解:相似.理由如下:AB=√5,AC=√10,BC=5, DE=√2,DF=2,EF=√10, ∵AB DE =√102,AC DF =√102,BC EF =√102, 即AB DE =AC DF =BC EF, ∴△ABC ∽△DEF.变式训练2-1:A变式训练2-2:证明:∵D 、E 、F 分别为AB 、AC 、BC 的中点, ∴DE 、DF 、EF 分别为△ABC 的中位线,∴DE=12BC ,DF=12AC ,EF=12AB , ∴DE CB =DF CA =EF BA =12, ∴△DEF ∽△CBA.课堂训练1.A2.C3.B4.35.解:由题知AC=√2,BC=√12+32=√10,AB=4,DF=√22+22=2√2,EF=√22+62=2√10, ED=8,∴AC DF =BC EF =AB DE =12, ∴△ABC ∽△DEF.课后提升1.C2.C3.D4.C5.B6.20°7.(4,0)或(3,2)8.解:(1)△ABC ∽△EBD ,理由如下:∵BD ·AB=BE ·BC ,∴BD BC =BE AB, 又∵∠B 为公共角,∴△ABC ∽△EBD. (2)ED ⊥AB ,理由如下:由△ABC ∽△EBD 可得∠EDB=∠C , ∵∠C=90°,∴∠EDB=90°,即ED ⊥AB. 9.解:△A'B'C'∽△ABC ,理由如下:∵OA'OA =OC'OC=3,∠AOC=∠A'OC', ∴△AOC ∽△A'OC', ∴A'C'AC =OA'OA=3, 同理B'C'BC =3,A'B'AB=3, ∴A'C'AC =B'C'BC =A'B'AB, ∴△A'B'C'∽△ABC.3.4.2 相似三角形的性质课前预习1.相似比2.(1)相似比 相似比的平方 (2)相似比 相似比的平方课堂探究【例1】 探究答案:1.△ADE 2.DE 解:∵BC ∥DE ,∴∠ABC=∠ADE ,∠ACB=∠AED , ∴△ABC ∽△ADE ,所以MC NE =BC DE, 设DE 高为x m,则0.630=0.24x,x=12. 故旗杆大致高12 m .变式训练1-1:C 变式训练1-2:1∶2【例2】 探究答案:1.相似比的平方 2.916解:(1)∵△ABC ∽△ADE ,∴AB AD =AC AE, ∵AB=15,AC=9,BD=5, ∴AD=20,∴AE=AD ·AC AB =20×915=12. 即AE 的长为12. (2)∵△ABC ∽△ADE ,∴S△ABCS△ADE=AB 2AD2=916,∴S △ADE =16×279=48, ∴S 四边形BDEC =48-27=21.变式训练2-1:A变式训练2-2:D课堂训练1.D2.D3.1∶24.1∶2 1∶45.解:因为DE ∥BC ,所以∠ADE=∠ABC ,∠AED=∠ACB , 所以△ADE ∽△ABC. 又DE BC =13,△ADE 的周长是10 cm, 所以△ABC 的周长是30 cm,所以梯形BCED 的周长为30-8+2=24(cm).课后提升1.D2.A3.B4.A5.1∶96.37.60378.8 9.(1)证明:∵E 是AB 的中点, ∴AB=2EB ,∵AB=2CD ,∴CD=EB , 又∵AB ∥CD ,∴四边形CBED 是平行四边形, ∴DE ∥CB ,∴∠EDM=∠MBF ,∠DEM=∠MFB , ∴△EDM ∽△FBM. (2)解:∵△EDM ∽△FBM ,∴DM BM =DEBF,。