31从算式到方程
3.1 从算式到方程人教版数学七年级上册同步练习1(解析版)
人教版数学七年级上册第3章3.1从算式到方程同步练习一、选择题1.下列方程中,是一元一次方程的是( )A.3x +6y =1B.y 2-3y -4=0C.12x ―1=1xD.3x -2=4x +12.在下列方程中①x 2+2x =1,②1x -3x =9,③12x =0,④3-13=223,⑤y ―23=y +13是一元一次方程的有( )个.A.1B.2C.3D.43.x =3是方程( )的解.A.3x =6B.(x -3)(x -2)=0C.x (x -2)=4D.x +3=04.关于x 的方程2x +4=3m 和x -1=m 有相同的解,则m 的值是( )A.6B.5C.52D.-235.方程(m +1)x |m |+1=0是关于x 的一元一次方程,则m ( )A.m =±1B.m =1C.m =-1D.m ≠-16.方程(a +2)x 2+5x m -3-2=3是关于x 的一元一方程,则a 和m 分别为( )A.2和4B.-2和4C.-2和-4D.-2和-47.已知3是关于x 的方程5x -a =3的解,则a 的值是( )A.-14B.12C.14D.-138.下列各式中,是方程的是( )A.7x -4=3xB.4x -6C.4+3=7D.2x <5二、填空题9.x =-4是方程ax 2-6x -1=-9的一个解,则a = ______ .10.若(m -1)x |m |-4=5是一元一次方程,则m 的值为 ______ .11.若x =3是方程2x -10=4a 的解,则a = ______ .12.满足方程|x +2|+|x -3|=5的x 的取值范围是 ______ .13.小强在解方程时,不小心把一个数字用墨水污染成了x =1-x ―●5,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是 ______ .三、解答题14.已知关于x 的方程4x +3k =2x +2和方程2x +k =5x +2.5的解相同,求k 的值.15.已知关于y的方程4y+2n=3y+2和方程3y+2n=6y-1的解相同,求n的值.人教版数学七年级上册第3章3.1从算式到方程同步练习答案和解析【答案】1.D2.B3.B4.A5.B6.B7.B8.A9.-210.-111.-112.-2≤x ≤313.114.解:方程4x +3k =2x +2的根为:x =1-1.5k ,方程2x +k =5x +2.5的根为:x =k ―2.53, ∵两方程同根,∴1-1.5k =k ―2.53, 解得:k =1.故当关于x 的方程4x +3k =2x +2和方程2x +k =5x +2.5的解相同时k 的值为1. 15.解:关于y 的方程4y +2n =3y +2和方程3y +2n =6y -1的解相同, 得4y +2n =3y +23y +2n =6y ―1,化简,得,①×3-②得8n =4,解得n =12. 【解析】1. 解:A 、3x +6y =1含有2个未知数,则不是一元一次方程,故选项不符合题意;B 、y 2-3y -4=0最高项的次数不是一次,则不是一元一次方程,故选项不符合题意;C 、12x -1=1x 不是整式方程,则不是一元一次方程,故选项不符合题意;D 、3x -2=4x +1是一元一次方程,选项符合题意.故选D .根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,即可作出判断.本题考查了一元一次方程的概念,通常形式是ax +b =0(a ,b 为常数,且a ≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax +b =0(其中x 是未知数,a 、b 是已知数,并且a ≠0)叫一元一次方程的标准形式.这里a 是未知数的系数,b 是常数,x 的次数必须是1.2. 解:①x 2+2x =1,是一元二次方程;②1x -3x =9,是分式方程;③12x =0,是一元一次方程;④3-13=223,是等式;⑤y ―23=y +13是一元一次方程; 一元一次方程的有2个,故选:B .根据一元一次方程的定义,即可解答.本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.3. 解:将x =3代入方程(x -3)(x -2)=0的左边得:(3-3)(3-2)=0,右边=0,∴左边=右边,即x =3是方程的解.故选B .将x =3代入各项中方程检验即可得到结果.此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值. 4. 解:由题意,得x =m +1,2(m +1)+4=3m ,解得m =6,故选:A .根据同解方程,可得关于m 的方程,根据解方程,可得答案.本题考查了同解方程,利用同解方程得出关于m 的方程是解题关键. 5. 解:由一元一次方程的特点得|m|=1m +1≠0,解得:m =1.故选B.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的等式,继而求出m的值.解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6. 解:根据题意得:a+2=0,且m-3=1,解得:a=-2,m=4.故选B.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7. 解:把x=3代入方程,得:15-a=3,解得:a=12.故选B.根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.8. 解:A、7x-4=3x是方程;B、4x-6不是等式,不是方程;C、4+3=7没有未知数,不是方程;D、2x<5不是等式,不是方程;故选:A.根据方程的定义:含有未知数的等式叫方程解答即可.本题主要考查方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数是解题的关键.9. 解:把x=-4代入方程ax2-6x-1=-9得:16a+24-1=-9,解得:a=-2.故答案为:-2.把x=-4代入已知方程,通过解方程来求a的值.本题考查了一元一次方程的解的定义.解决本题的关键是熟记使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.10. 解:由题意,得|m|=1且m-1≠0,解得m=-1,故答案为:-1.根据一元一次方程的定义,即可解答.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11. 解:把x=3代入方程得到:6-10=4a解得:a=-1.故填:-1.方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=3代入方程,就得到关于a的方程,就可求出a的值.本题主要考查了方程解的定义,已知x=3是方程的解,实际就是得到了一个关于a的方程,认真计算即可.12. 解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x-3=5,解得:x=3;第二种:当-2<x<3时,原方程就可化简为:x+2-x+3=5,恒成立;第三种:当x≤-2时,原方程就可化简为:-x-2+3-x=5,解得:x=-2;所以x的取值范围是:-2≤x≤3.分别讨论①x≥3,②-2<x<3,③x≤-2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解一元一次方程,注意最后的解可以联合起来,难度很大.13. 解:●用a表示,把x=1代入方程得1=1-1―a,5解得:a=1.故答案是:1.●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.14.两方程同根,用含有k的算式将根表示出来,再根据根相等可得出结果.本题考查同解方程的问题,解题的关键是用k将两方程根表示出来,再根据同根解方程即可.15.根据方程的解相同,可得关于y、n的二元一次方程组,根据解方程组,可得n的值.本题考查了同解方程,利用同解方程得出方程组是解题关键.。
人教版数学七年级上册优秀教案:3.1《从算式到方程》
3.1 从算式到方程(第1课时)教学目标:1.了解方程、一元一次方程、方程的解等概念,会估算方程的解,会检验一个数是否是方程的解.2.根据实际问题中的数量关系,列出相等关系,列出方程,体会数学建模思想.3.让学生体会我们的生活处处有数学,对数学产生亲近感,提高学生学习数学的兴趣. 教学重点:方程、一元一次方程和方程的解的概念.教学难点:从实际问题中找出相等关系,列出方程.教法: 指导法学法: 小组研讨法教学过程:一、情境引入问题1:一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是车70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A ,B 两地间的路程是多少?学生合作探究:小组讨论各个数量之间的运算关系,尝试列出算式.教师总结:由于客车比卡车早1h 经过B 地,则可计算出卡车行驶的时间:()76070170=-÷⨯(h ),则A ,B 两地的路程:420607=⨯(km )上述计算过程中的数量关系不是特别明显,我们是否能找到一种更加直接的求解方法呢?问题2:如果设A 、B 两地的路程是x km ,你能分别列出表示客车和卡车从A 地到B 地的行驶时间吗?从两车的时间相差1 h ,你能列出关于x 的方程吗?学生活动:小组合作探究,确定各个量之间的运算关系.师生合作探究:我们可知两车的时间相等关系:卡车行驶时间-客车行驶时间=1h 教师总结:本题主要数量关系是速度路程时间÷=. 可列出方程:17060=-x x ① 问题3:你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生活动:小组合作探究.师生合作探究:能否利用路程相等列出方程?教师总结:客车行驶路程=卡车行驶路程可以设客车行驶时间为x h ,则卡车行驶时间为(x +1)h , 则()16070+=x x .也可以设卡车行驶的时间为x h ,则客车行驶的时间为(x -1)h.则()x x 60170=-.以上的利用列方程的解题过程告诉我们:列方程时,要先设字母表示未知数,然后根据问题中的相等关系写出含有未知数的等式——方程.二、范例学习例1.根据下列问题,设未知数并列出方程:(1)用一根长20cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h ,预计每月再使用150h 小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?(3)某校女生占全体学生数的52℅,比男生多80人,这个学校有学生多少个?学生活动:小组合作探究找出问题中的相等关系,列出方程.师生合作探究:(1)正方形的周长与边长是什么关系?(2)规定时间=已使用时间+月数 每月再使用时间(3)女生人数+男生人数=总人数教师总结:(1)设正方形的边长为x cm.列方程:244=x .(2)设x 个月后这台计算机使用时间达到2450 h 。
3.1从算式到方程
第三章一元一次方程内容简介本章为人教版义务教育教科书(依据教育部2011年版《义务教育数学课程标准》编写)七年级数学第三章,是继第一章“有理数”和第二章“整式的加减”之后,属于《义务教育数学课程标准》中的“数与代数”领域.方程有悠久的历史,它随着实践需要而产生,并且具有极其广泛的应用.从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展.从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题.其中,以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章的主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的.列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本章始终渗透的主要数学思想.课标解读教育部2011年版《义务教育数学课程标准》有关一元一次方程部分的内容如下:1.方程与方程组(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.(2)经历估计方程解的过程.(3)掌握等式的基本性质.(4)能解一元一次方程、可化为一元一次方程的分式方程.与实验稿相比,正式稿的内容主要有以下几方面的变化:一是文字的顺序作了调整,将“方程是刻画现实世界的一个有效的数学模型”调整为“方程是刻画现实世界数量关系的有效模型”,使得表达更顺畅、更准确.二是删去了实验稿的限制性定语“用观察、画图或计算器等手段”,使得估计方程解的方法更加宽泛.三是新增加了一条,说明对解方程的理论依据“等式的基本性质”有明确的要求.四是正式版(4)条较实验稿③条,将“会解”改为“能解”,要求有所提高;将会解“简单的二元一次方程组”抽出来单独列为一条;删去了原来会解“可化为一元一次方程的分式方程”后的限定“方程中的分式不超过两个”,使得分式方程的教学空间得以扩充.教学目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界数量关系的有效模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.课时安排本章教学时间约需20课时,具体分配如下(仅供参考):3.1从算式到方程约4课时3.2一元一次方程(一)约4课时3.3一元一次方程(二)约4课时3.4实际问题与一元一次方程约4课时数学活动小结约2课时复习检测约2课时3.1 从算式到方程内容简介本节先通过一个具体行程问题。
七年级数学上册 3.1 从算式到方程 从算式到方程课标解读素材 (新版)新人教版
从算式到方程课标解读一、课标要求人教版七年级上册第三章“一元一次方程”的3.1节“从算式到方程”的主要内容是一元一次方程及其相关概念、等式的性质等内容,《义务教育数学课程标准(2011年版)》对这一节的内容提出了如下教学要求:1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.2.了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.3.掌握等式的性质,能够利用等式的性质探究一元一次方程的解法.二、课标解读1.本节内容包括方程、一元一次方程、方程的解、解方程的概念以及等式的性质等.一元一次方程是“数与代数”领域一块重要的内容,是所有代数方程的基础,也是中学数学的主要内容之一,在初中数学中占有重要地位.理解和掌握本节内容,是后续进一步学习一元一次方程的解法及其应用,以及其他方程和不等式等内容的基础和铺垫.2.学生在前一学段已经学习了简单方程相关内容,如:会用方程表示简单情境中的数量关系,会解简单的方程,对方程有了初步的感性认识,这些基本的、朴素的认识为进一步学习一元一次方程的解法和应用奠定了基础.本节内容是在前面学习基础上的进一步发展,即对一元一次方程作更系统、更深入的学习和研究,更加突出方程作为解决实际问题重要模型的思想渗透,强调创设未知向已知转化的条件.3.我们生活在一个丰富多彩的世界里,这里蕴藏着大量的涉及数量关系的实际问题,这为学习“一元一次方程”提供了大量的现实素材.在本节学习中,实际问题情境贯穿于始终,对方程概念的引入也是在解决实际问题的过程中进行的.因此,本节教学要充分关注方程的现实背景,要通过大量丰富的实际问题,反映出方程来源于实际又服务于实际,深化对方程是解决现实问题重要数学模型的认识.鉴于本章的学习对象是七年级学生,在教学中要尽量避免过多直接使用“数学模型”等词语,而要通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想.4.方程是含有未知数的等式,可以表示数量间的等量关系.解方程即是求未知数的值,这就需要相应的理论基础来说明解法的合理性,而等式的性质就是解方程的主要依据.本小节通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法.这将为后面几节进一步讨论较复杂的一元一次方程的解法提供理论依据.百度文库是百度发布的供网友在线分享文档的平台。
3。1。1从算式到方程
(3) 0.8x2 - 2x + 9=0
1) 5 5
(1) (3) ________
例2 根据下列问题, 设未知数并列出方程:
(1)用一根长24cm的铁丝围成 一个正方形,则正方形的边长是多少?
解:设正方形的边长为xcm 则 4X = 24
(2)一台计算机已使用1700小时, 预计每月再使用150小时, 经过多少月这台计算机的使用时间 达到规定的检修时间2450小时? 解:设经过x个月后,这台计算机的 使用时间达到2450小时, 则 1700 + 150X = 2450
3.1 1 从算式到方程
问题 一辆客车和一辆卡车同时从
A地出发沿同一公路同方向行驶,客 车的行驶速度是70 km/h,卡车的 行驶速度是60 km/h,客车比卡车 早1 h经过B地. A,B两地间的路程 是多少?
分析:如果设A,B两地相距 x km,
x 客车从A地到B地的行驶时间为______h, 70
能使方程左右两边相等的 未知数的值,叫方程的解.
探究:方程1700 + 150x = 2450的解.
当x等于多少时, 1700+150x的值是2450?
填下表
X
3 4 5 5 6 7
…
1700+150X 2150 2300 2450 2600 2750
…
∴x=5 是方程1700 + 150x = 2450的解
(3)一个梯形的下底比上底 多2厘米,高是5厘米, 面积是40厘米2 求上底 解:设上底为x
1 则 5( x x 2) 40 2
2. 列式表示: a+5 (1)比a大5的数;
(2)b的三分之一;
31从算式到方程(基础)知识讲解
从算式到方程(基础)巩固练习撰稿:孙景艳审稿:赵炜【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是已知数) .(3)一元一次方程的最简形式是:ax=b(其中a≠0,a,b是已知数).【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程C.方程是等式 D.等式是方程【答案】C.2.检验下列各数是不是方程27134x x=+的解.(1).x=12 (2).1213 x=-【答案与解析】解:(1).把x=12分别代入方程的左边和右边,左边21283⨯=,右边7121224=⨯+=.∵左边≠右边,∴x=12不是方程的解.(2).把1213x=-分别代入方程的左边和右边,左边212831313⎛⎫=⨯-=-⎪⎝⎭,右边7128141313⎛⎫=⨯-+=-⎪⎝⎭.∵左边=右边,∴1213x=-是方程的解.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是()A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=【答案】A.类型二、一元一次方程的相关概念3.已知方程①32x x -=;②0.4x =11;③512x x =-;④y 2-4y =3;⑤t =0;⑥x+2y =1.其中是一元一次方程的个数是( )A .2B .3C .4D .5 【答案】B .【解析】根据一元一次方程的定义判断,因为①不是整式方程(分母中含有未知数)④未知数的次数为2,⑥含有两个未知数.所以①、④、⑥都不是一元一次方程.【总结升华】3x 和2x 是有区别的,前者的分母中含有字母,而后者的分母中不含字母, 3x 不是整式,2x 是整式,分母中含有未知数的方程一定不是一元一次方程. 举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号).①2x -1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②. 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的.(1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11;(2).(-by ); 根据等式的性质1,等式两边都加上-by ;(3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c .B .在等式a =b 两边除以c 2+1,可得2211a b c c =++. C .在等式b c a a=两边都除以a ,可得b =c . D .在等式2x =2a -b 两边都除以2,可得x =a -b .【答案】B .类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
3.1.2从算式到方程
探究新知
估算:(2)方程1 700+150x=2 450中未知数x 的值是多少? 当x=1时,1 700+150x的值是: 1 700+150×1=1 850; 当x=2时,1 700+150x的值是: 1 700+150×2=2 000;
4 3 5 x 1 2 1 700+150x 1 850 2 000 2 150 2 300 2 450 当 x 5 时,方程 1 700 150 x 2 450等号左右 两边相等. x 5 叫做方程1700 150 x 2 450的解.
、尝试归纳
探究新知
您认为怎样进行估算找出符合方程的未知数的值. 估算:用一些具体的数值代入方程,看方程 是否成立.
估算:(1)方程 4 x 24 中未知数x的值是多少? x6 当 x 6 时,方程 4 x 24 等号左右两边相等. x 6叫做方程 4 x 24 的解.
二、尝试归纳
一、复习提问
引出问题
2. 一台计算机已使用1700 h,预计每月再使 用150 h,经过多少月这台计算机的使用时间达 到规定的检修时间2450 h? 解:设x月后这台计算机的使用时间达到2450 h, 相等关系:已用时间+再用时间=检修时间.
1700 150 x 2450. 列方程:
一、复习提问
义务教育教科书
数学
七年级
上册
3.1 从算式到方程(第2课时) 3.1.1 一元一次方程
本课时简要说明
本课学习解方程及方程的解的概念.对于某些比较简单的 方程可以通过观察估算直接得到方程的解. 但是对于比较复杂 的方程用估算求解就比较困难了. 教学中要遵循“由易到难” 的原则,为逐步过渡到用等式性质讨论方程的解作准备. 学习目标: 1. 了解解方程及方程的解的概念. 2. 体验用观察估算的方法寻求方程的解的过程,通过具体数 值的计算和比较,渗透从特殊到一般,从具体到抽象的数 学方法. 学习重点:方程的解的概念及用观察估算的方法寻求方程的解. 学习难点:用观察估算的方法寻求较复杂的方程的解.
从算式到方程教案
第三章一元一次方程《3.1从算式到方程》第一课时教学设计课型:新授课授课人:教材分析:本课学习方程及一元一次方程的概念,根据问题中的数量关系——设未知数——建立方程模型.列方程打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步.也是为后面学习寻找相等关系列方程打下基础。
学情分析:在小学,学生已经习惯了用算术的方法解决实际问题,而对于如何设未知数,如何寻找相等关系,如何用含未知数的式子表示相等关系,虽然已经有所接触,但是还是不够熟悉,从算术方法过渡到代数方法的思维转变还是有一定的困难。
因此本节课教学时应该进行有针对性的问题引领。
通过思考,让学生比较算术方法和代数方法,体会方程在解决问题中的优势,从而更重视对方程的学习。
教学目标:知识与技能:理解一元一次方程的概念,领悟一元一次方程的意义和作用。
过程与方法:在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。
情感、态度与价值观:使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.教学重点:方程及一元一次方程概念,以及本节课内容所蕴涵的思想方法。
教学难点:找相等关系列方程教具准备:多媒体教学过程:一、创设情境,提出问题问题一:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地,A,B两地间的路程是多少? 师生活动:学生审题之后教师提问(1)你会用算术的方法解决这个问题吗?教师展示问题,学生分组讨论解决的方法,学生代表展示结果,教师及时给予肯定或帮助,并说明算术方法不便捷。
教师提出进一步学习新解法的必要性。
(2)此问题中涉及哪些量,这些量之间有什么关系?如何表示?(3)你认为应引进什么样的未知量?如何用方程表示这个问题中的相等关系?(4)列方程的依据是什么?教师与学生一起分析,引导学生找出相等关系列方程。
七年级上学期数学 3.1 从算式到方程
七年级上学期数学中,第三章第一节“从算式到方程”主要介绍的是如何将实际问题抽象成数学算式,并进一步转化为方程的过程。
这一部分内容对于建立和理解方程的概念非常重要,是学习代数的基础。
核心内容包括:
1.算式与方程的概念:
●算式:表示数的运算过程,如(3+5)、(2\times4)等。
●方程:含有未知数的等式,目的是找到未知数的值,使等式成立,如
(x+5=10)。
2.方程的构成:
●方程通常包含未知数(如x、y)、常数、运算符(加、减、乘、除)以及等
号“=”。
3.建立方程:
●通过分析实际问题,确定未知数,根据问题中的条件关系,用代数表达式表示
这些关系,从而建立方程。
●例如,如果一个数加上3等于7,可以写成方程\(x+3=7\)。
4.解方程:
●学习基本的解方程方法,如加减法、乘除法,逐步求解未知数。
●对于简单的一元一次方程,目标是通过等式的性质,将未知数单独留在方程的
一边,求出其值。
5.应用题:
●结合生活实际,通过设定未知数,将文字问题转换为方程问题,解决诸如购物
找零、行程问题、工作量分配等问题。
学习重点:
●理解并区分算式与方程的含义。
●掌握将实际问题抽象成方程的能力。
●学会基本的方程解法,特别是解一元一次方程。
通过这部分的学习,学生能够初步掌握利用方程解决实际问题的方法,为后续更复杂的代数学习打下坚实的基础。
新人教版七年级数学上册3.1《从算式到方程》教学设计
新人教版七年级数学上册3.1《从算式到方程》教学设计一. 教材分析新人教版七年级数学上册3.1《从算式到方程》是学生在学习了整数和分数的基础上,开始接触代数的知识。
本节课主要让学生了解方程的概念,学会将实际问题转化为方程,从而解决实际问题。
教材通过丰富的实例,引导学生认识方程,理解方程的含义,并掌握方程的解法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整数和分数有了深入的理解。
但是,对于代数知识,尤其是方程,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中发现方程,理解方程,并掌握解方程的方法。
三. 教学目标1.让学生了解方程的概念,理解方程的含义。
2.培养学生将实际问题转化为方程,并解决实际问题的能力。
3.引导学生掌握方程的解法,提高学生的数学素养。
四. 教学重难点1.重点:方程的概念,方程的解法。
2.难点:将实际问题转化为方程,并解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生认识方程,理解方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现规律,掌握方法。
3.合作学习法:鼓励学生之间相互讨论,共同解决问题。
六. 教学准备1.准备相关实例,用于引导学生认识方程。
2.准备练习题,用于巩固学生对方程的理解。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生认识方程。
例如:小明有2个苹果,小红的苹果数是小明的3倍,请问小红有多少个苹果?让学生尝试用数学语言表述这个问题,从而引出方程的概念。
2.呈现(15分钟)呈现一组实际问题,让学生尝试用方程来解决。
例如:甲车和乙车同时出发,甲车每小时行驶60公里,乙车每小时行驶80公里,请问甲车追上乙车需要多少时间?引导学生发现实际问题中存在的等量关系,并将其转化为方程。
3.操练(15分钟)让学生分组讨论,尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
在这个环节中,重点让学生掌握方程的解法,并能够将实际问题转化为方程。
数学湘教版七年级上2012秋第三章一元一次方程3.1-3.4节节练测试题
7.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风
时速度为
A.(x+y)千米/小时
B.(x-y)千米/
小时
C.(x+2y)千米/小时
D.(2x+y)千米/
小时 考查说明:本题考查行程问题中顺流逆流问题.两个速度公式一定
要记住. 答案与解析:C.由逆风速度=静风速度-风速,即x=静风速度-y,得
考查说明:本题主要考查根据题意找等量关系,从而列出方程. 答案与解析:55-x=29+x.等量关系为:抽调后,三班人数=八班人 数,关键要理解三班少了x人的同时,八班多了x人.
二、选择题
6.下列方程中,是一元一次方程的是( )
A、
B、
C、 D、
考查说明:本题主要考查一元一次方程的概念. 答案与解析:A.A和B都需要化简后再判断,C明显是二元的,D 分 母中含未知数,不是整式方程. 7. 根据下列条件能列出方程的是( ) A. 一个数的
一、填空题 1.如果 ,那么
. 考查说明:本题考查移项法则:移项要变号. 答案与解析:5.
2.若代数式3(x-1)与(x-2)是互为相反数,则x=____________. 考查说明:本题考查利用移项与合并同类项解一元一次方程. 答案与解析:
.由题意得:3(x-1)+(x-2)=0,3x-3+x-2=0,4x=5,x=
. 3.已知方程①3x-1=2x+1 ②
③Байду номын сангаас
④
中,解为x=2的是方程
.
考查说明:本题考查方程的解的概念,代入使等式左右两边相等即
可.
答案与解析:注意代入时一定要左右分开代入.
4.若
3.1从算式到方程第一课时教案
《<3.1从算式到方程>第一课时》一、教学目标[学习目标]1.了解一元一次方程的概念;2.通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会由算式到方程是数学的一大进步,从而体会方程思想;3.了解方程解的概念.[学习重点]渗透建立方程模型的思想和认识一元一次方程及有关的基本概念.[学习难点]从列算式到列方程的思维习惯的转变.二、教学过程设计1.情景引入猜猜我手中有多少颗糖果:糖果数量的3倍比它的1/4还多22颗,猜猜糖果的数量。
设计意图:通过猜糖果的数量,激发学生学习的兴趣,同时给出糖果数量的相关练习式,让学生带着问题思考,学习方向更加明确。
并且通过短时计算让他们感受小学算术方法思维上的局限性。
2.探索新知问题1:宜都cxyd学校有两辆汽车同时从学校出发,沿同一公路同方向行驶,A车的行驶速度是80 km/h,B车的行驶速度是50 km/h,A车比B车早7.2min (0.12h)到达ly中学. cxyd学校与ly学校间的路程是多少?思考1:你能用算术方法解答这道题吗?思考2:设计意图:设置问题情境,让学生先用列算式的方法解题,再引导学生通过找等量关系列方程解题.让学生知道用算术方法解题时,列出的算式只能用已知数,方程法可以用已知数和未知数一起表示量,体会列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
自主归纳1:方程的定义——含有未知数的等式.辨析环节:学生辨析手中卡片上的式子是否为方程,并且分类贴在指定位置,并说明选择的理由.设计意图:通过多样的形式让学生主动掌握方程的概念.问题2.用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?问题3.一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?问题4.某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?设计意图:通过例题的学习,让学生再次熟悉列方程时的设未知数、寻找相等关系、列出方程的过程,为一元一次方程的定义奠定基础.思考3:观察上面的例题,列出的3个方程有什么相同的地方?自主归纳2:一元一次方程的定义——只含有一个未知数,未知数的指数都是1,等号两边都是整式的方程.问题5.猜猜我手中有多少颗糖果:糖果数量的3倍比它的1/4还多22颗,猜猜糖果的数量.设计意图:通过本节课的学习,利用一元一次方程解决“情境引入”中的糖果问题,通过袋子里糖果数量的颗数验证方程是否成立,从而引出方程的解的概念.3.总结归纳a)含有________的________叫做方程;b)只有______个未知数(元),并且未知数的次数都是_____,等号两边都是______,这样的方程叫做__________方程;c)求出使___________左右两边相等的未知数的值,叫_________.4.当堂练习1)下列方程:①x-2= ;②3x=11;③5x-1;④y2-4y=3;⑤x+2y=1.其中是方程的是______________,是一元一次方程的是____________.(填序号)2)下列哪些是一元一次方程?_________________(a)2x+1;(b)2m+15=3;(c)3x-5=5x+4;(d)x2 +2x-6=0;(e)-3x +1.8=3y;(f)3a+9>15;(g)1/(x-1) =1.3)已知方程(m-2) x|m|-1+3=m-5是关于x的一元一次方程,求m的值,并写出其方程.4)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?。
2023-2024学年人教版七年级数学第三章3.1从算式到方程
3.1从算式到方程1.理解和掌握一元一次方程的定义.2.能判断一个数是否为方程的解.3.明确方程和等式的关系.4.理解和掌握等式的基本性质.5.能应用等式的基本性质解简单的一元一次方程.1.能根据问题的数量关系列方程.2.培养学生分析问题、解决问题的能力.1.体会一元一次方程作为从实际问题中抽象出的数学模型所带来的方便.2.感受数学源于生活,又应用于生活.【重点】1.能根据实际问题列简单的方程.2.能利用等式的基本性质解简单的一元一次方程.【难点】从应用题中找相等关系列方程.3.1.1一元一次方程1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.理解一元一次方程、方程的解的概念.3.掌握检验某个值是不是方程的解的方法.4.培养学生获取信息的能力.1.通过处理实际问题,让学生体验从算术方法到代数方法的一种进步.2.培养学生根据问题寻找相等关系,根据相等关系列出方程的能力.1.培养学生热爱数学、热爱生活的乐观人生态度.2.培养学生求实的态度和良好的学习习惯.【重点】1.了解一元一次方程及相关概念.2.寻找相等关系,列出方程.【难点】寻找问题中的相等关系,正确地列出方程.【教师准备】多媒体课件(1,2,3,4,5).【学生准备】复习小学学过的方程.导入一:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?[设计意图]通过问题与生活情境的引入,激发学生的探究欲望与学习热情.导入二:变魔术好玩吗?那我们现在就来试一下:请同学们在练习本上写下一个数,不要说出来,按照老师说的继续做下去,将你刚才写出来的数乘2,再加上4,再除以2,再减去3.好了,现在将你的结果告诉我,我就能说出你开始的时候在练习本上写下的数,神奇吗?学习了本节课的内容之后,同学们一定就可以明白其中的奥秘了![设计意图]通过这个情境的设计,让学生感受到数学的神奇,从而激发学生的好奇心和求知欲,调节了课堂气氛.导入三:卡片显示,观察卡片上的式子,你能填上适当的数吗?卡片上式子分别为:3+□=8,○-2=7,5×?=1,△÷2=3,43=()6.学生先独立思考,然后同桌之间互相交流.[设计意图]由最简单的题目导入,消除学生的心理障碍,体现面向全体学生的课标意识,增加趣味性,调节课堂气氛.活动1:问题探究思路一【课件1】出示教材第78页问题,提出问题:【问题1】路程、时间、速度三者之间的关系如何?在匀速运动过程中,时间、速度、路程之间的关系是时间=路程速度.【问题2】用列表的方法找等量关系,如果设A,B两地间的路程为x km,请你完成下面的表格:路程/km速度/(km/h)时间/h客车卡车【问题3】请找出等量关系,列出方程.设A,B两地间的路程是x km根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【教师说明】我们知道方程是含有未知数的等式.通过本章的学习,我们将能够从上述的方程解出未知数的值x=420,从而求出A,B两地间的路程是420 km.通常情况下,用x,y,z等字母表示未知数,法国数学家笛卡儿是最早这样做的人,我国古代用“天元、地元、人元、物元”等表示未知数.[知识拓展](1)方程中未知数的表示可以使用字母x,也可以使用其他一些字母,如y,z等.通常用字母a,b,c表示已知数.(2)方程中未知数可以有两个或两个以上,如x+y=12,2x-y=z+1等.(3)方程都是等式,但等式不一定是方程,如2+4=6.[设计意图]通过教师的引导和学生的讨论、交流,发现问题中的等量关系,培养学生分析问题、解决问题的能力.思路二1.定义方程,回顾举例.师:大家知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?学生举例,教师总结.【课件2】判断下列式子是不是方程.(1)1+2=3;(2)x+2>1;(3)1+2x=4; (4)x+y=2;(5)x2-1;(6)x2=x+2; (7) x+3-5; (8)x=8.2.根据题意列方程.【课件3】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h 经过B地.A,B两地间的路程是多少?【师生活动】学生分组活动,讨论看能否用算术方法解,交流后考虑用方程如何解决,最后小组内同学交流.教师可以参与到学生中去,要关注学生解决问题的思路.在用算术法解时,是否遇到了麻烦?用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km,根据客车比卡车早1 h经过B地,可得方程x60-x70=1.【建议】在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.【设计意图】通过对列方程解决问题的学习,使学生感受方程方法和算术方法之间的差异,为进一步学习方程做准备.活动2:归纳列方程的步骤思路一学生先说一说,然后教师归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母表示);(2)根据问题中的相等关系,列出方程.【比较】比较列算式和列方程两种方式的特点,建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数表示计算程序,依据是问题中的数量关系;列方程:可用未知数表示相等关系,依据是问题中的等量关系.【思考】对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个等量关系?可考虑按以下的顺序进行:(1)学生独立思考;(2)小组合作交流;(3)全班交流.【试一试】【课件4】小雨、小思的年龄和是25岁.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示,由于这两个不同的式子表示的是同一个量,因此我们又可以得到25-x=2x-8.这样就得到了一个方程.[设计意图]通过对问题解决方法的学习,进一步使学生感受列方程的一般步骤,即先找等量关系,再列方程.思路二【问题1】你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.【问题2】算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上看:算术法与方程法有什么不同的情况出现?从思路上看:刚才做题的想法有什么不同?(教师根据学生口述列表,便于比较)用方程解用算术方法解形式上:未知数用字母表示,参加列式;思路上:根据题意找出数量间的相等关系,列出含有未知数的等式形式上:未知数不参加列式;思路上:根据题中已知数和未知数间的关系,确定解答步骤,再列式计算【强调】在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答时,教师不必苛求学生回答得很全面,只要学生能谈出一两点体会,教师都应当加以鼓励.[设计意图]通过对思路的归纳、总结,使学生感受列方程的一般过程和思路,体验列方程的过程,培养学生分析、解决问题的能力.活动3:学习一元一次方程的概念【课件5】(教材例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?对于基础比较差的学生,教师可以做如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找到问题中的相等关系列出方程.让学生观察并讨论所列方程等号两边式子的关系,教师归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.【问题1】以上各题,你能用两种不同的方法来表示另一个量,再列出方程吗?【师生活动】让学生小组讨论,然后分组汇报交流.解题过程略.[设计意图]通过学生的自主尝试,激发学生的学习热情和探究欲望,培养学生的创新能力和分析、解决问题的能力.【问题2】上述方程具有什么样的特点?【师生活动】在学生观察、讨论上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.“一元”:一个未知数.“一次”:未知数的次数是1.[知识拓展]在判断一个方程是不是一元一次方程时,要注意:△必须含有一个未知数;△未知数的次数是1;△分母中不含有未知数.如果方程不是最简形式,先变形,化成最简形式后再判断.【问题3】你认为该怎样进行估算?【师生活动】可以采用“尝试——发现——归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面那样按程序进行尝试.在此基础上给出概念:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.[知识拓展](1)判断一个数是不是方程的解,可把这个数代入方程的两边,若方程的两边相等,则该数是方程的解;反之,则不是方程的解.(2)方程的解与解方程是两个不同的概念,方程的解是一个结果,是具体的数值,而解方程是一个变形的过程.[设计意图]通过学生的讨论、交流与归纳,得出一元一次方程的概念,使学生感受列方程的过程,树立建模思想.思路二【课件5】教师出示教材例1.【师生活动】学生分组交流讨论完成,教师巡视,教师在这一过程中应当关注学生能否恰当地设未知数,能否根据题意正确找出等量关系列出方程,必要时教师可参与到小组当中,和学生一起探讨交流,也可以给学生适当的提示与点拨.师:像上边这样的方程,你能给它起一个名字吗?你是从哪个角度给它命名的?学生阅读教材,体验方程的命名方式,并说一说什么是一元一次方程.教师进一步提出问题:想一想,以上几个问题你是怎样列出方程的?可以把你的思路过程表示出来吗?【归纳】分析实际问题中的等量关系,利用其中的相等关系列出方程是用数学知识解决实际问题的一种方法.实际问题一元一次方程对于问题(1),我们已经列出方程,可以发现当x=6时,4x的值是24,这时方程4x=24的两边相等,则x=6叫做方程4x=24的解.师:解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解.你能求出1700+150x= 2450的解吗?我们可以根据下面的流程图求解,给x一个值,代入方程,看一看方程两边是否相等,不相等再换一个试一试,依次进行下去,直到找到方程的解为止.【思考】这里是不是单纯盲目地去“碰”呢?师生讨论解决.[设计意图]通过对列方程的思路的进一步学习,使学生掌握列方程的一般步骤,培养学生分析、解决问题的能力,能够根据所列方程认识一元一次方程的有关概念.1.方程.准确把握方程的两个条件:一、必须含有未知数;二、必须是等式.两者缺一不可.2.一元一次方程.从三个方面理解一元一次方程的概念:一、一元一次方程首先属于整式方程,即方程两边不含分母,或虽含分母,但分母中不能有未知数.二、一元,即方程中只含有一个未知数,此未知数可以出现多次,但只能是同一未知数,同一个方程中不能出现两个不同的未知数.三、一次,未知数的次数是一次,指的是化为一般形式ax+b=0(a≠0)后,未知数的次数是一次.3.方程的解和解方程.这是两个不同的概念,方程的解是指使方程两边相等的未知数的值,具有名词性,而解方程是求方程解的过程,具有动词性.1.在下列式子:△2x -1;△2x +1=3x ;△|π-3|=π-3;△t +1=3中,等式有 ,方程有 .(填入式子的序号)解析:一元一次方程必须满足三个条件:(1)未知数的次数是1;(2)是整式方程;(3)只含有一个未知数.等式有△△△,方程有△△.答案:△△△ △△2.根据“x 的2倍与5的和比x 的12小10”可列方程为 . 解析:由题意列方程为2x +5=x2-10.故填2x +5=x2-10. 3.x =2是下列方程的解吗?(1)3x +(10-x )=20; (2)2x 2+6=7x.解析:把x =2代入上述方程,看等号左右两边是否相等. 解:(1)x =2不是3x +(10-x )=20的解. (2)x =2是方程2x 2+6=7x 的解.3.1.1 一元一次方程活动1:问题探究 方程的定义活动2:归纳列方程的步骤活动3:学习一元一次方程的概念 例1一元一次方程 一元一次方程的解一、教材作业 【必做题】教材第80页练习. 【选做题】教材第83页习题3.1第1,2,3题. 二、课后作业 【基础巩固】1.下列式子是方程的有 ( ) 35+24=59;3x -18>33;2x -5=0;2x +15=0.A .1个 B.2个 C.3个 D.4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存 10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A.10x +20=100 B.10x -20=100 C.20-10x =100D.20x+10=1003.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A.x+5(12-x)=48B.x+5(x-12)=48C.x+12(x-5)=48D.5x+(12-x)=484.检验下列各小题后面括号里的数是不是它前面方程的解.(1)3y-1=2y+1(y=2;y=4);(2)3(x+1)=2x-1(x=2;x=-4).【能力提升】5.希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=496.甲、乙两数的和为10,且甲数比乙数大2,求甲、乙两数,正确的方程是()A.设乙数为x,则(x+2)+x=10B.设乙数为x,则(x-2)+x=10C.设甲数为x,则(x+2)+x=10D.设甲数为x,则x-2=107.为创建园林城市,某城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.6(x+22)=7(x-1)B.6(x+22-1)=7(x-1)C.6(x+22-1)=7xD.6(x+22)=7x【拓展探究】8.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圈(1)中,属于一次方程的序号填入圈(2)中,既属于一元方程又属于一次方程的序号填入两个圈的公共部分.△3x+5=9;△x2+4x+4=0;△2x+3y=5;△x2+y=0;△x-y+z=8;△xy=-1.【答案与解析】1.B(解析:35+24=59,是等式但不含未知数,所以不是方程;3x-18>33,含未知数但不是等式,所以+15=0都是含有未知数的等式,所以都是方程.故选B.)不是方程;2x-5=0与2x2.A(解析:由题意知x月存10x元,又现在有20元,因此可列方程10x+20=100.故选A.)3.A(解析:1元纸币为x 张,那么5元纸币为(12-x )张,所以x +5(12-x )=48.故选A .)4.解析:把每个方程后面的两个数分别代入原方程,如果左右两边相等,那么这个数就是方程的解,反之则不是.解:(1)把y =2代入原方程的左、右两边,左边=3×2-1=5,右边=2×2+1=5,左边=右边,所以y =2是方程3y -1=2y +1的解;把y =4代入原方程的左、右两边,左边=3×4-1=11,右边=2×4+1=9,左边≠右边,所以y =4不是方程3y -1=2y +1的解. (2)把x =2代入原方程的左、右两边,左边=3×(2+1)=9,右边=2×2-1=3,左边≠右边,所以x =2不是方程3(x +1)=2x -1的解;把x = - 4代入原方程的左、右两边,左边=3×(- 4+1)=- 9,右边=2×(- 4) -1=- 9,左边=右边,所以x =- 4是方程3(x +1)=2x -1的解.5.A(解析:由题意得女生有2(x -1)人,根据题意得2(x -1)+x =49.故选A .)6.A(解析:设乙数为x ,根据甲数比乙数大2,则甲数为x +2,根据题意得出(x +2)+x =10.故选A .)7.B(解析:根据首、尾两端均栽上树,每间隔6米栽一棵,则缺少22棵,可知这一段公路长为6(x +22-1);若每隔7米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为7(x -1),根据公路的长度不变列出方程即可.)8.解析:一元方程指的是含有一个未知数的方程;一次方程指的是未知数的次数是1的方程;而一元一次方程指的是含有一个未知数,并且未知数的次数是1的方程.解:如图所示.这节课在设计上重点体现学生的自主探索.首先在引入时,问题设计体现出教师的教学活动是建立在学生认识发展水平和已有的知识经验的基础上,探究过程在对教材例题的处理上,让学生探索方程解法与算术解法的优劣,从而让学生在自主探索中进行比较,自己得出结论,较传统的教学活动而言,体现了学生的主体地位,着重于学生的探索活动,强调了学生的自我发现在方程的解的概念这部分的处理上的重要性.1.在教学的过程中,教师只局限于教材中的问题和例题,限制了学生的思维.2.对于一元一次方程的概念的分析和实际问题中的等量关系的确定,教师没有重点指导.3.在探索方程的解的过程中,没有让学生主动去探索尝试.教师要能灵活地运用教材,并加以创造.可以设计一些其他的应用问题,让学生寻找等量关系.一元一次方程的概念学生第一次接触到,可以让学生通过判断、辨析等手段加以强化.明确一元一次方程的“一元”和“一次”两个重要的特点.在探索方程解的时候,一定要让学生自己去想、小组合作去探究方程的解,教师一定要相信学生,给学生自主思考的空间和时间,让学生自己得到答案.练习(教材第80页)1.解:设沿跑道跑x 周可以跑3000 m,则400x =3000.2.解:设甲种铅笔买了x 支,则乙种铅笔买了(20-x )支,所以0.3x +0.6(20-x )=9.3.解:设上底为x cm,则下底为(x +2)cm,所以5(x+x+2)2=40,即5(2x+2)2=40.4.解:设小水杯的单价为x元,则大水杯的单价为(x+5)元,根据题意得10(x+5)=15x.下列各式中,是方程的为()A.3=5-2B.3+4xC.5a-6=3D.2x+3>4x-5〔解析〕本题考查方程的定义.A选项为一个等式,但等式中不含有未知数,故不是方程;B选项含有未知数,但不是一个等式,也不是方程;D选项含有未知数,但不是等式,故也不是方程.故选C.〔解题策略〕方程有两个条件:(1)式子中必须含有未知数;(2)式子必须是等式.检验0,1,2三个数是否为方程3(x+1)=2(2x+1)的解.〔解析〕判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.解:将x=2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.左边≠右边,所以x=2不是原方程的解.将x=1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.左边=右边,所以x=1是原方程的解.将x=0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.左边≠右边,所以x=0不是原方程的解.〔解题策略〕使方程左、右两边相等的未知数的值称为方程的解.判断一个数是不是原方程的解,直接根据条件代入方程的两边进行计算即可.3.1.2等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的一元一次方程.3.培养观察、分析、概括及逻辑思维能力.1.让学生经历知识的形成过程,培养学生自主探索和相互合作的能力.2.初步体验解方程的化归思想.1.感受数学与生活的联系,认识数学来源于生活,又应用于生活.2.激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯.【重点】理解和应用等式的性质.【难点】应用等式的性质解简单的一元一次方程.【教师准备】多媒体课件、天平、砝码、等质量木块若干.【学生准备】复习一元一次方程的定义,每小组准备天平、砝码、等质量木块若干.导入一:师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考后回答.用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.23-0.13y=0.47y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,让学生进行简单尝试.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,而且有的方程要利用这种方法求解很困难.有没有相对简单的方法,使我们可以获得方程的解呢?现在我们就来学习解方程.[设计意图]通过对上节课内容的回忆和教师提出的问题,引发学生的思考,激发学生的探究欲望,进而引出本节课的内容.导入二:小明和王力同学玩跷跷板,当他们位于跷跷板两端的时候,跷跷板恰好处于平衡的位置.这时,李强和小丽也来了,如果他们二人的体重相等,他们这时也分别坐到跷跷板两端,这时候是否仍然平衡?[设计意图]通过情境教学,让学生初步感受等式的性质,激发学生的学习兴趣,让学生产生求知欲望,从而进行下面的学习.活动1:等式的性质思路一1.实验演示.教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按如图所示的方法演示实验.(教师可以进行两次不同物体的实验,学生独立思考,小组交流,代表发言.)2.集体归纳.在学生叙述发现的规律后,教师进一步引导:等式就像平的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.提出问题1:你能用文字来叙述等式的这个性质吗?等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.提出问题2:等式一般可以用a=b来表示,等式的性质1怎样用式子来表示?如果a=b,那么a±c=b±c.字母a,b,c可以表示具体的数,也可以表示一个式子.3.巩固性质1.(教材例2)利用等式的性质解方程:(1)x+7=26.〔解析〕所谓“解方程”,就是要求出方程:的解“x=?”.因此我们需要把方程转化为x=a(a 为常数)的形式.怎样才能把方程x+7=26转化为x=a的形式呢?解:方程两边减7,得:x+7-7=26-7,于是x=19.【思考1】如果x-2=3,那么x-2+2=3+2,依据是,即x=;【思考2】如果x+3=-10,那么x=;依据是;【思考3】如果-2x-9=-12,那么-2x=,依据是;【思考4】如果2m+n=p+2m,那么n=,依据.4.观察下列实验,你又能发现什么规律?你能用实验加以验证吗?在学生观察上图时,必须注意图上两个方向的箭头所表示的含义,观察后再让学生用实验验证,然后让学生用两种语言表示等式的性质2.文字语言:等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.符号语言:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac =bc.(教材例2)利用等式的性质解方程:(2)-5x=20.解:方程两边同除以-5,得:-5x -5=20-5,于是x=-4.【思考1】如果3x=5,那么3x×(-2)=5×(-2),即-6x=;【思考2】如果-2x=6,那么x=;【思考3】已知x=3y,那么-5x=;【思考4】已知-13x=2,那么x=;。
人教版七年级上册数学3.1从算式到方程 说课稿
3.1《从算式到方程》说课稿一、教材地位:本节内容是人教版七年级上册3.1,前面已经学了有理数,它是为整式的加减做铺垫,整式的加减则是为解方程做预备。
方程也是进一步学习一元一次方程,一元二次方程,二元一次方程,及不等式的基础。
因此在内容上本节主要起着承前启后的作用,可以说是内容上的衔接点。
“数学来源于生活,又应用于生活”,而方程在实际问题中的应用,是中学阶段应用数学知识解决问题的重要开端,也是增强学生学习数学,应用数学的重要题材,是小学与中学解题方法上的分水岭。
所以本节课的学习具有举足轻重的作用。
学生分析:初二的学生已经会用算术方法解题和对方程有初步了解等知识储备,还具有一定的观察、归纳能力,但学生的抽象概括和探索能力相对偏弱一些。
为此制定如下教学目标。
二、教学目标1、了解方程的基本概念2、会根据具体问题中的数学关系列出方程3、经历从具体问题中的数量关系列出方程的过程,并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。
【围绕以上教学目标,制定下面教学重难点:】三、教学重、难点由于学生在小学已经习惯于用算术方法解决实际问题,对方程不太熟悉,所以为防止学生仍停留在用算式解决实际问题的低层上,确定本节重点为:让学生在讨论问题、解决问题中,比较列算式与方程在分析数量关系上的区别以及列方程时相等关系的建立。
本节的难点是相等关系的建立。
四、教学内容1、出示问题(附图):一群老头去赶集,半路买了一堆梨。
一人一个多一个,一人两个少两梨。
请问君子知道否,几个老头几个梨?【设计目的】“兴趣是最好的老师”这节课的首要问题是调动学生的学习兴趣,根据本节内容与现实生活较紧密的特点,选取学生熟悉的感兴趣一个小故事,调动学生的学习热情.........。
2、引入问题:①用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?列方程,4x=24【设计目的】因为本节引入问题是个行程问题,很难理解,难度较大,所以可以将例题和引入交换顺序,先让学生分组讨论例1,①是为了引出方程的概念。
新课标3.3.1《从算式到方程》教学详案
3.1.1从算式到方程一、学习目标:1.了解什么是方程,什么是一元一次方程;2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。
二、重点1.了解什么是方程、一元一次方程;2.分析实际问题中的数量关系,利用其中的相等关系列出方程。
三、难点体会找等量关系,会用方程表示简单实际问题。
四、教学过程学习探究15钟)板书:§3.3.1从算式到方程师:同学们,我们先来探究一道实际问题:(PPT展示)【问题】如图,汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?师:从图中我们能获得哪些信息呢?生:知道翠湖距青山50千米,距秀水70千米,还知道汽车匀速行驶从王家庄、青山、秀水三地的时间。
师:非常好,那么大家会用算术方法求出王家庄到翠湖的距离吗?生:额。
(思考30秒后回答)不会。
师:那我们一起来探讨探讨这道题吧。
我们要求王家庄到翠湖的速度,那么我们需要知道什么东西才能够求出路程呢?同学们想想怎样求路程。
生:要知道王家庄到翠湖的速度和时间师:非常好,路程=速度x时间,对吧?生:对!!!师:那么我们能够知道王家庄到翠湖的速度吗?生:能!!!师:速度是多少呢?生:速度=(50+70)/2师:嗯?同学们是怎么得到的?生:因为汽车是匀速行驶,所以从王家庄到翠湖的速度=从青山到秀山的速度,通过算式与方程的对究,体会方程的优越性而速度=路程/时间。
师:同学们真是太聪明了,那我们知道了王家庄到翠湖的速度,接下来我们还要知道什么量才能够求王家庄到翠湖的路程呢?生:王家庄到翠湖的时间。
师:那我们能够知道王家庄到翠湖的时间吗?生:不能!!!师:额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版义务教育教科书◎数学七年级上册3.1 从算式到方程内容简介本节先通过一个具体行程问题。
引导学生尝试如何用算术方法解决它,然后再逐步引导学生列出含未知数的式子表示有关的量,并进一步依据相等关系列出含未知数的等式——方程.这样安排的目的在于,突出方程的根本特征.引出方程的定义,并使学生认识到从算式到方程使我们有了更有力、更方便的数学工具,从算术方法到代数方法是数学的进步.教学目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界数量关系的有效模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.2.经历估算求解方程的解的过程,培养估算能力,了解方程解的概念;3.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法;4.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系;5.能利用等式的性质求解简单的一元一次方程,了解方程求解的过程;6.会将实际问题抽象为数学问题,通过列方程解决问题,增强数学的应用意识,激发学习数学的热情.教学重点本节重点是对建立方程模型思想的渗透,对一元一次方程及其概念的认识,了解等式的两条性质,并利用它们讨论一些较简单的一元一次方程的解法.方程是应用广泛的数学工具,在初中数学课程中占重要地位,小学对方程有一定的感性认识,本节着重让学生从实际问题中认识到方程的概念引入的必要性,并且能设未知数、列出方程,感受建立方程模型的一般步骤,由于没有整式运算的基础,求解方程不要过多,使学生整体上把握方程建立模型的思想,更好的建立方程的概念.等式的性质是求解方程的重要依据,理解等式的性质才能进一步研究方程的求解.教学难点本节难点是培养由实际问题抽象出方程模型的能力,正确的设未知数,列出方程.虽然小学对方程有一定认识,但本节的问题更贴近实际,背景、数据更复杂,如何抽象出数学需要的数据以及之间的各种关系对七年级的学生有一定的难度.教学时数4课时.1教师备课系统──多媒体教案2第1课时教学内容3.1.1 一元一次方程. 教学目标1.了解什么是方程,什么是一元一次方程.2.体会字母表示数的好处、画示意图有利于分析问题、找相关关系是列方程的重要一步,从算式到方程是数学的一大进步.3.通过用方程解决实际问题,总结用方程解决实际问题的一般步骤. 教学重点一元一次方程概念. 教学难点实际问题的数学化过程. 教学过程一、设计问题 导入新课问题 一辆客车和一辆卡车同时从A 地出发沿同一公路同一方向行驶,客车的行驶速度是70 km/h ,卡车的行驶速度是60 km/h ,客车比卡车早1 h 经过B 地,A 、B 两地间的路程是多少?教师展示问题,让学生充分发表意见,并给予肯定或帮助,对各种解法给予解释. 学生可自由发表意见,或与同伴交流.二、合作探究 定义方程如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?匀速运动中,时间=路程/速度. 根据问题的条件,客车和卡车从A 地到B 地的行驶时间,可以分别表示为70x h 和60xh . 因为客车比卡车早 1 h 经过B 地,所以70x 比60x小1,即. 60x -70x =1. ① 我们已经知道,方程是含有未知数的等式,上面等式中的 x 是未知数,这个等式是一个方程.通过本章的学习,我们将能够从上面的方程解出未知数的值x =420,从而求出A 、B 两地间的路程为420 km .人教版义务教育教科书◎数学七年级上册3教师结合上面的过程,给出方程的定义.列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程.这是首次出现方程的定义,这里所说的等式指其中只有一个等号的式子,等号两边分别叫做等式的左边和右边.三、实例分析 归纳总结例 根据下列问题,设未知数并列出方程:(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间达到规定的检修时间2 450 h ?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:(1)设正方形的边长为x cm . 列方程4 x =24.(2)设 x 月后这台计算机的使用时间达到2 450 h ,那么在 x 月里这台计算机使用了150x h .列方程1 700+150x =2 450.(3)设这个学校的学生数为x ,那么女生数为0.52x ,男生数为(1-0.52)x . 列方程0.52x -(1-0.52)x =80. 观察所列的几个方程,有什么共同点?上面各方程都只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.说明:该例安排了三个实际问题,让学生设未知数、列出方程.这样安排一方面是要分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力.另一方面是由一些具体的方程归纳出一元一次方程的概念.在本节的前面部分,重点是对建立方程模型思想的渗透和对于一元一次方程及其有关概念的认识.解方程还未成为主要内容,通过定义、举例,进一步巩固一元一次方程的概念. 归纳:上面的分析过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.四、小结教师备课系统──多媒体教案4 1.本节课学习了方程和一元一次方程.2.还学习了将实际问题转化为数学问题的一般过程.五、课堂练习根据下列问题,设未知数,列出方程,并指出是不是一元一次方程:(1)环行跑道一周长400m,沿跑道跑多少周,可以跑3 000 m?(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?学生练习,教师进行指导.答案:(1)设跑x周,则400x=3 000.(2)设买甲种铅笔x支,乙种铅笔(20-x)支,则0.3x+0.6(20-x)=9.六、作业教科书第83页习题3.1第1、5、6题.第2课时教学内容3.1.1 一元一次方程.(方程的解)教学目标1.深化对方程的理解.2.对例题进行深入分析,通过计算和比较,从特殊到一般,从具体到抽象地引出方程的解的概念.3.根据方程解的概念,会估算出简单的一元一次方程的解.教学重点通过具体数值的计算引出方程的解的概念的过程.教学难点由具体、实际问题抽象出方程的解的概念.教学过程一、设计问题导入新课1.我们上节课探讨了方程和一元一次方程的概念,请同学们对这两个概念复述一遍.2.列方程的一般步骤是什么?说明:首先分析实际问题中的数量关系,然后设未知数,最后利用其中的相等关系列出方程.人教版义务教育教科书◎数学七年级上册二、师生探究归纳总结列方程是解决问题的重要方法,利用方程可以求出未知数.我们通过分析实际问题中的数量关系,列出了方程,那么,这样才能求方程的解呢?可以发现,当x=6 时,4x的值就是24,这时方程4x=24等号左右两边相等.x =6叫做方程4 x=24的解.这就是说,方程4 x=24中未知数x的值应是6.同样地,当x=5时,1 700+150x的值是2450,这时方程1 700+150 x=2 450等号左右两边相等.x=5 叫做方程1 700+150 x=2 450的解.这就是说,方程1 700+150 x=2 450中未知数x的值应是5.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.思考x=1 000和x=2 000中哪一个是方程0.52 x-(1-0.52)x=80的解?说明:进行这样的思考可以通过比较辨别加深对方程的解的理解.为逐步过渡到用等式性质讨论方程的解法作准备.教师可引导学生思考探究,必要时可全班进行讨论.答案:x=2 000是方程0.52 x-(1-0.52)x=80的解.三、实例分析巩固提高例已知某厂今年平均每月生产机器80台,比去年每月平均生产机器的1.5倍少13台,那么去年平均每月生产机器的台数为( ).A.54.1B.138C.70D.62分析:我们根据前面讲到的列方程的一般步骤,首先分析实际问题中的数量关系,然后设未知数,最后利用其中的相等关系列出方程.设去年平均每月生产机器为x台,依题意,容易想到:一方面该厂今年平均每月生产机器的台数为80台.另一方面,1.5x就是该厂去年每月平均生产机器台数的1.5倍.而(1.5x-13)就是该厂今年平均每月生产机器的台数.这样就得到了相等关系.解:设去年平均每月生产机器为x台,依题意,有1.5x-13=80.可以发现,当x=62时,等式成立,这就是说,方程1.5x-13=80.中未知数x的值应是62.故应选D.例父亲今年38岁,女儿今年14岁,何时父亲的年龄是女儿年龄的7倍?解:设x年后父亲的年龄是女儿年龄的7倍,那时,父亲的年龄是(38+x)岁,女儿的年龄是(14+x)岁,依题意列方程38+x=7(14+x).可以发现,当x=-10时,等式成立,这就是说,方程5教师备课系统──多媒体教案6 38+x=7(14+x)中未知数x的值应是-10.这就是说,从今年起,-10年后(根据负数在这里的意义,就是10年前)父亲的年龄是女儿年龄的7倍.答:10年前父亲的年龄是女儿年龄的7倍.说明:(1)应用题要根据实际意义进行检验:10年前,父亲28岁,女儿4岁,父亲正好是女儿年龄的7倍.(2)在解题时,千万不要一看到负数(x=-10)就主观地断定本题无解,而是要认真分析,结合实际情况细加研究:父亲的年龄不会大到是女儿年龄的7倍,这种关系只有在过去才能成立.四、练习教科书第80页练习.说明:此页的练习是为使学生熟悉“分析实际问题的数量关系,设未知数,列出方程”的思考方法,同时也可以巩固和加深对一元一次方程的有关概念的理解.这里重点在于设未知数和列方程,重点在于让学生对方程是解决实际问题的重要工具有所感受,为后面的内容进行铺垫.所以不必急于让学生考虑方程的解.五、作业教科书第83页习题3.1第3、5、6题.第3-4课时教学内容3.1.2等式的性质.教学目标1.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法.2.培养学生观察、分析、归纳、概括的思维能力,同时培养学生积极探究,勇于创新的学习态度.渗透数学来源于实践的观点.教学重点等式的两条性质.教学难点用等式的性质解简单方程.教学过程一、提出问题导入新课人教版义务教育教科书◎数学七年级上册7我们可以直接看出像4x =24,x +1=3这样的简单方程的解,但是仅靠观察来解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.方程是含有未知数的等式,为了讨论解方程,我们先来看看等式有什么性质.像m +n =n +m ,x +2x =3x ,3×3+1=5×2,3x +1=5y 这样的式子,都是等式.我们可以用a =b 表示一般的等式.二、探究发现 归纳总结探究1请看下图,由它你能发现什么规律?说明:借助天平可以加强对等式性质的直观理解.注意图中的两个方向的箭头,它们分别表示在天平两边“加”或“减”.我们可以发现,如果在平衡的天平的两边都加(或减)同样的量,天平还保持平衡. 等式就像平衡的天平.它具有与上面的事实同样的性质. 等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.如果a =b ,那么a ±c =b ±c .探究2请看下图,由它你能发现什么规律?等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb . 三、实例分析 巩固提高 例 利用等式的性质解下列方程:教师备课系统──多媒体教案8(1)x +7=26; (2)-5x =20; (3)-31x -5=4.分析:要使方程x +7=26转化为x =a (常数)的形式,需去掉方程左边的7,利用等式的性质1,方程两边减去7就得出的值. 另两个方程也可以类似地考虑,如何转化为x =a 的形式.解:(1)两边减7,得x +7-7=26-7.于是x =19.(2)两边除以-5,得.52055-=--x 于是x =-4.(3)两边加5,得-31x -5+5=4+5. 化简,得-31x =9. 两边乘-3,得x =-27.一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等,例如,将x =-27代入方程-31x -5=4的左边,得-31x ×(-27)-5=9-5=4. 方程的左右两边相等,所以x =-27是方程-31x -5=4的解.四、练习教科书第83页练习. 五、作业教科书第83页习题3.1第4、11题.人教版义务教育教科书◎数学七年级上册9。