机械振动和机械波知识点+例题分析
机械振动与机械波-高考物理典型例题
答案 ACE 本题考查机械振动和机械波的综合应用。由图像可知,该波的波长λ=16 cm=0.1
6
m,选项B错误;Δt=nT+
1 2
T(n=0,1,2,…),可得T=
t n 1
>0.20
s,即
0.20s n 1
>0.20
s,解得n=0,T=0.40
s,
22Leabharlann 波速v= λ = 0.16
T 0.40
l g
;当x<0时,摆长为
l 4
,T2=π
l g
,则T1=2T2,由机械能守恒定律可知,小球将运动
到与初始位置等高的地方,由几何关系可知,当x<0时,振幅变小,故A项正确。
解题关键 将整个全振动分为x>0与x<0两种情况来分析,比较两种情况下的周期大小和振幅 大小。
2.[2017课标Ⅰ,34(1),5分]如图(a),在xy平面内有两个沿z方向做简谐振动的点波源S1(0,4)和S2(0,
专题十六 机械振动与机械波
A组 统一命题·课标卷题组
考点一 机械振动
1.[2019课标Ⅱ,34(1),5分]如图,长为l的细绳下方悬挂一小球a,绳的另一端固定在天花板上O点
处,在O点正下方 3 l的O'处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度
4
(约为2°)后由静止释放,并从释放时开始计时。当小球a摆至最低位置时,细绳会受到铁钉的阻
2
在原点处的质点在平衡位置且向y轴负方向运动,所以A选项错误,D选项正确。分析可知,在t= 0时刻,质点P位于波谷,此时质点P的速率为0,加速度最大,位移大小最大,但质点Q在平衡位置, 速率最大,加速度为0,位移为0,所以B选项错误,C和E选项均正确。
机械振动和机械波知识点总结(最新整理)
机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
最新机械振动机械波知识点归纳(含过关题训练及答案)
机械振动机械波知识点归纳一、简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x —t 图象)是一条正弦曲线,这样的振动叫做简谐运动。
如:弹簧振子的运动。
二、振幅(A):1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
2、物理意义:振幅是描述振动强弱的物理量。
振幅的两倍表示的是做振动的物体运动范围的大小。
振幅和位移的区别和联系 :(1)振幅等于最大位移的数值;(2)对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的; (3)位移是矢量,振幅是标量。
三、简谐运动的表达式:做简谐运动的质点在任意时刻t 的位移四、简谐运动的回复力由于力F 的方向总是与位移X 的方向相反,即总是指向平衡位置。
它的作用总是要把物体拉回到平衡位置,所以称为回复力。
五、简谐运动中振子的受力、运动及能量情况分析六、周期公式的理解:1、摆长L =细绳长度+小球半径2、单摆周期与摆长和重力加速度有关,与振幅和质量无关。
3、摆长、重力加速度都一定时,周期和频率也一定,通常称为单摆的固有周期和固有频率。
kx F -=g l T π2=单摆周期公式的应用: 七、阻尼振动:1、阻尼振动:振幅逐渐减小的振动 2、阻尼振动的图像:八、受迫振动的特点:受迫振动的频率总等于驱动力的频率,与系统的固有频率无关。
共振:驱动力的频率等于系统的固有频率时,受迫振动的振幅最大,这种现象叫做共振。
共振曲线: 图象特点:f 驱= f 固时,振幅有最大值f 驱与 f 固差别越大时,振幅越小九、波的形成和传播: 1、介质各个质点不是同时起振,但起振方向与振源方向相同; 2、离振源近的质点先起振;3、质点只在平衡位置附近振动,并不随波迁移;4、波传播的是振动形式和能量,且能传递信息;5、传播过程中各质点的振动都是受迫振动,驱动力来源于振源,各质点起振时与振源起振时的情况完全相同,其频率等于振源频率. 十、机械波的分类 ①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷)。
机械振动和机械波知识点总结与典型例题
高三物理第一轮复习《机械振动和机械波》一、机械振动: (一)夯实基础:1、简谐运动、振幅、周期和频率:(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m (2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。
④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关)(3)振幅A :振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量, 是标量。
(4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆:(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:○1单摆是实际摆的理想化,是一个理想模型; ○2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100时,单摆的振动是简谐运动,其振动周期T=gL π2。
高中物理选修34知识点机械振动与机械波解析
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确明白得简谐运动图象的物理含义,明白简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平稳位置:小球偏离原先静止的位置;(2)弹簧振子:小球在平稳位置周围的往复运动,是一种机械运动,如此的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时刻图像弹簧振子的s—t图像是一条正弦曲线,如下图。
3.简谐运动及其图像。
(1)简谐运动:若是质点的位移与时刻的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,如此的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于以下哪一种运动( )A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平稳位置周围做往复运动,而且平稳位置处合力为零,加速度为零,速度最大.从平稳位置向最大位移处运动的进程中,由F=-kx可知,振子的受力是转变的,因此加速度也是转变的。
故A、B错,C正确。
简谐运动是最简单的、最大体的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.明白简谐运动的振幅、周期和频率的含义。
2.明白振动物体的固有周期和固有频率,并正确明白得与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如下图:(1)振幅:振动物体离开平稳位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,以后又回到O,如此一个完整的振动进程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时刻,符号T表示,单位是秒(s)。
(4)频率:单位时刻内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
专题11机械振动和机械波(精练)(解析版)
2023年高考物理二轮复习讲练测专题11 机械振动和机械波(精练)一、单项选择题1.如图所示是某水平弹簧振子做简谐运动的x t -图像,M 、P 、N 是图像上的3个点,分别对应1t 、2t 、3t 时刻。
下列说法正确的是( )A .该振子的周期是0.2s ,振幅是8cmB .在2t 时刻振子的速度方向就是图像上P 点的切线方向C .在1t 到2t 过程振子的速度先增大后减小D .在2t 到3t 过程振子的加速度逐渐减小 【答案】D【详解】A .由振动图像可知,该振子的周期是0.2s T =,振幅是4cm A =,故A 错误;B .振动图像不是弹簧振子的运动轨迹,所以在2t 时刻振子的速度方向不是图像上P 点的切线方向,在2t 时刻振子的速度方向指向振子的平衡位置,故B 错误;C .由振动图像可知,在1t 到2t 过程振子先向正向最大位移方向运动,达到正向最大位移处后接着又朝着平衡位置运动,所以振子的速度先减小后增大,故C 错误;D .在2t 到3t 过程振子朝着平衡位置方向运动,振子偏离平衡位置的位移x 逐渐减小,根据kxa m=可知,振子的加速度逐渐减小,故D 正确。
故选D 。
2.如图甲所示为以O 点为平衡位置,在A 、B 两点间运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子的加速度为正向最大B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 时间内,弹簧振子做加速度增大的减速运动D .在t =0.6s 时,弹簧振子有最小的位移 【答案】C【详解】A .在t =0.2s 时,弹簧振子的位移为正向最大,加速度为负向最大,A 错误;B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的位移相同,说明弹簧振子在同一位置,速度大小相等,方向相反,B 错误;C .从t =0到t =0.2s 时间内,弹簧振子的位移增大,加速度增大,速度减小,所以弹簧振子做加速度增大的减速运动,C 正确;D .在t =0.6s 时,弹簧振子的位移为负向最大,D 错误。
高考物理最新力学知识点之机械振动与机械波解析含答案
高考物理最新力学知识点之机械振动与机械波解析含答案一、选择题1.一列波长大于1 m的横波沿着x轴正方向传播.处在x1=1 m和x2=2 m的两质点A、B 的振动图象如图所示,由此可知().A.波长为4 3 mB.波速为1m/sC.3 s末A、B两质点的位移相同D.1 s末A点的振动速度大于B点的振动速度2.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m.则两单摆摆长l a与l b分别为( )A.l a=2.5 m,l b=0.9 m B.l a=0.9 m,l b=2.5 mC.l a=2.4 m,l b=4.0 m D.l a=4.0 m,l b=2.4 m3.目前雷达发出的电磁波频率多在200MHz~1000 MHz的范围内,下列关于雷达和电磁波的说法正确的是()A.真空中,上述频率范围的电磁波的波长在30m~150m之间B.电磁波是由恒定不变的电场或磁场产生的C.波长越短的电磁波,越容易绕过障碍物,便于远距离传播D.测出从发射无线电波到接收反射回来的无线电波的时间,就可以确定障碍物的距离4.如图所示,A、B两物体组成弹簧振子,在振动过程中,A、B始终保持相对静止,下列给定的四幅图中能正确反映振动过程中物体A所受摩擦力F f与振子对平衡位置位移x关系的图线为A.B.C.D.5.如图所示,弹簧振子以O点为平衡位置,在M、N两点之间做简谐运动.下列判断正确的是()A.振子从O向N运动的过程中位移不断减小B.振子从O向N运动的过程中回复力不断减小C.振子经过O时动能最大D.振子经过O时加速度最大6.下列说法正确的是()A.物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大B.医生利用超声波探测病人血管中血液的流速应用了多普勒效应C.两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大D.遥控器发出的红外线波长比医院“CT”中的X射线波长短7.下列说法中正确的是()A.只有横波才能发生干涉,纵波不能发生干涉B.“闻其声而不见其人”现象说明遇到同样障碍物时声波比可见光容易发生衍射C.在受迫振动中,物体振动的频率一定等于自身的固有频率D.发生多普勒效应时,观察者接收的频率发生了变化,是波源的频率变化的缘故8.两个弹簧振子,甲的固有频率是100Hz,乙的固有频率是400Hz,若它们均在频率是300Hz的驱动力作用下做受迫振动,则()A.甲的振幅较大,振动频率是100HzB.乙的振幅较大,振动频率是300HzC.甲的振幅较大,振动频率是300HzD.乙的振幅较大,振动频率是400Hz9.关于下列四幅图的说法中,正确的是()A.图甲中C摆开始振动后,A、B、D三个摆中B摆的振幅最大B.图乙为两列水波产生的干涉图样,这两列水波的频率可以不同C.图丙是波的衍射现象,左图的衍射更明显D.图丁是声波的多普勒效应,该现象说明,当观察者与声源相互靠近时,他听到的声音频率变低了10.如图是观察水面波衍射的实验装置,AC 和 BD 是两块挡板,AB 是一个孔,O 是波源。
机械振动机械波知识点精析
机械振动机械波知识点精析一、机械振动质点沿着直线或弧线绕平衡位置往复运动叫做机械振动.机械振动是常见的一种运动形式.1.产生振动的必要条件回复力:振动的质点所受诸外力在指向平衡位置方向(振动方向)上的合力.如图7-1中,弹簧振子m离开平衡位置O处,就受到弹簧的弹力提供振动的回复力作用.如图7-2中,在离开最低点平衡位置O处,摆球m所受重力、细绳拉力(张力)在切线方向上的合力提供振动的回复力F向=mgsinθ的作用.注意:回复力是效果力,因此对质点振动受力分析时,不做独立分析.回复力的方向始终指向平衡位置.2.描述振动的物理量(1)振幅(A):振动质点离开平衡位置的最大距离振幅是标量,是表示质点振动强弱的物理量.(2)周期(T):振动质点经过一次全振动所需的时间.全振动:振动质点经过一次全振动后其振动状态又恢复到原来的状态.周期是表示质点振动快慢的物理量.(3)频率(f):一秒钟内振动质点完成全振动的次数.它与周期(4)相位(拍):表示质点振动的步调的物理量.如两振动质点同时由平衡位置向同方向运动,同时到达最大位置,这叫同相;如两振动质点同时离开平衡位置向相反方向运动同时到达最大位置,则叫反相.3.简谐振动简谐振动是振动中最简单,最基本的一种形式.弹簧振子、单摆(小振幅条件下的振动)是简谐振动中最典型最常见的例子.(1)简谐振动的特点:1)回复力的特点:F=-kx振动物体所受回复力的大小跟振动中的位移(x)成正比,方向始终与位移方向相反,指向平衡位置.回复力是周期性变化的.注意:位移必须从平衡位置起向外指向.图7-3(a)振子由平衡位置A向B运动过程中,回复力指向左方,在平衡位置右方;图7-3(b)振子由A向C运动过程中,所受回复力指向右方,在平衡位置左方.如图7-4所示,振子由平衡位置A运动到B时位移是AB,方向是由A到B;振子由B向A运动到D时,其位移是AD,方向仍是AD,不要错误地认为这时的位移是BD.F=-kx可作为判别一个物体是否作简谐振动的依据.如图7-2所示,当单摆摆角θ<5°时,单摆的振动为简谐振动.F回=-mgsinθ振动物体的加速度跟位移大小成正比,方向与位移方向相反.(加速度方向永远指向平衡位置.)振动物体的加速度是周期性变化的.所以,简谐振动是一种变加速运动.3)振动质点速度的特点:v=sin(ωt+ψ)(超纲)振动物体的速度的大小总是随位移的增大而减小,随位移的减小而增大.在平衡位置时,振动物体的速度最大.如表所示.4)振动中位移随时间变化规律:按正弦(或余弦)曲线变化[x=Acos(ωt+ψ)](超纲)如图7-5所示.5)振动物体能量的特点:振动物体的机械能是一个恒量,即物体做简谐振动过程中动能和势能相互转化,遵守机械能转换和守恒定律.E∝A2,振幅越大,能量越大.(2)简谐振动的规律:1)振动图象:振动位移-时间的函数图象.物理意义:a)从图象上可知振动的振幅A;b)从图象上可知振动的周期;c)从图象上可知质点在不同时刻的位移,如图7-5中t1时刻对应位移x1;t2时刻对应位移x2;d)从图象上可比较质点在各个时刻速度大小及符号(表示方向);如t1时刻质点速度较t2时刻质点的速度小,t1时刻速度为负,t2时刻速度也为负.(t1时刻是质点由最大位移处向平衡位置运动过程的某一时刻,而t2时刻是质点由平衡位置向负的最大位移运动过程中的某一时刻.)e)从图象上可比较质点在各个时刻加速度的大小及符号.如图7-5中t1时刻的加速度较质点在t2时刻加速度大,t1时刻质点加速度为负,t2时刻加速度符号为正.f)从图象可看出质点在不同时刻间的相差.2)简谐振动的周期:在①式中,m为简谐振动质点的质量,k为简谐振动质点振动的比例系数(回复系数),不同的简谐振动的k值不同,就弹簧振子而言,k为弹簧的劲度系数.由②式可看出:a)单摆的周期与振幅和摆球质量无关;b)L为摆长,由悬点至摆球重心的距离;c)g是单摆所在系统中的“重力加速度”,如单摆在地面或所在系统相对地静止或匀速运动,g=9.8m/s2.若单摆在竖直方向上作匀变速直线运动的升降机中,则g为该升降机中自由下落物体相对升降机的加速度.4.受迫振动(1)受迫振动产生条件:质点在周期性驱动力作用下的振动.(2)受迫振动特点:受迫振动的频率等于驱动力的频率,与物体的固有频率无关.振动物体的振幅随时间减小的振动——阻尼振动.振动物体的振幅固定不变的振动——无阻尼振动.形成阻尼振动的原因是,振动物体克服摩擦或其他阻力做功而逐渐减小能量.(3)共振——受迫振动特例.产生条件:f策=f固.周期性策动力的作用方向跟物体振动方向必须相同.共振现象:物体作受迫振动中,开始时兼有自由振动(情况复杂)待达到稳定后,自由振动已衰减为零,只有此时,受迫振动的频率才等于驱动力变化的频率.当策动力的频率等于受迫振动物体本身的固有频率时,受迫振动的振幅达到最大值,这种现象叫做共振.如图7-6所示,即f策=f固时,受迫振动振幅最大.二、机械波机械振动在弹性媒质中的传播运动叫机械波.我们应特别注意,在振动的传播过程中,每个参与传播振动的质点不沿振动传播方向定向移动(质点不随之迁移),它们只在各自的平衡位置附近振动.1.产生条件煤质中各质点间存在相互作用,因此一个质点的振动必然带动相邻的质点振动……于是振源的振动在媒质中传播的同时随之将其能量在媒质中传播出去.所以波动是传播能量的一种形式.2.波的分类(1)横波:质点振动方向与波的传播方向垂直;横波波型有波峰和波谷.(2)纵波:质点振动方向与波的传播方向在一条直线上;纵波波型有密部和疏部.3.描述波的物理量(1)频率(f):波的频率与波源的振动频率相同.在传播过程中是不变的.只要振源的振动频率一定,则无论在什么媒质中传播,波的频率都等于振源的振动频率.(2)波速(v):波速是波传播的速度——质点振动状态传播的速度.机械波传播的速度仅取决于媒质的性质.同种媒质传播不同频率的同类机械波时,传播速度是相同的.位移.如图7-7.一列横波当t1=0时波形为Ⅰ,经过Δt波形为Ⅱ.从图可知,Δs为新、旧波形上振动状态相同的两质点间距离(图中所表示的为Δt<T的情况)(3)波长(λ):两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间的距离.或者说,在一个周期内波传播的距离的大小.波长是标量.(4)波长、频率和波速的关系:波速v由媒质决定,频率f只由振源决定.某一列横波由A媒质进入B媒质,其传播速度发生变化,但其频率不变.所以波长发生变化.4.波的图象波传播过程中,在某一时刻媒质各质点的位移末端连线如图7-8所示,图线上各质点均为媒质中振动的质点,横坐标表示质点的平衡位置,纵坐标表示质点的位移.物理意义:a)能表示出质点振动的振幅(A);b)能表示各质点振动的位移(y);c)能表示出波长(λ);d)能表示出各质点的振动方向、加速度大小及符号;e)能表示出各质点间的相位关系.特别注意:波的图象与振动图象的区别.5.波的一般性质(1)波的反射:当波到达两种性质不同媒质的分界面时,改变传播方向,但仍在原来媒质里传播的现象.(2)波的折射:当波到达两种性质不同媒质的分界面时,改变传播方向,但进入另一种媒质的现象.(3)波的干涉:1)产生条件:相干波——两列波频率相同;相差恒定;2)现象:在相干区域内,增强区与减弱区相间.其中Δs为该点至两波源的距离差(波程差).3)对干涉现象应注意:a)增强是指振动质点的能量增大,即振幅增大,并不是指振动速度增大;减弱是指质点合振动的振幅减小.b)增强区或减弱区位置是确定的,即增强点(域)始终增强;减弱区的点始终减弱.c)不论增强区或是减弱区,各质点都作与相干波源周期相同的振动,各质点振动的位移是周期性变化的.d)增强区和减弱区的位置确定,两列波相位相同情况有两列波相位相反情况有(4)波的衍射:波在煤质传播,遇到障碍物或小孔的大小可以和其波长比较时,波可以绕过障碍物或小孔到按直线传播时所要生成的阴影部分.(5)波的共振:波在媒质中传播时,如果遇到的物体的固有周期和波的周期相同时,能够引起物体振幅最大的振动.三、音调、响度和音品这是表征乐音三个特点的物理量.音调决定于声源的频率.响度决定于声源的振幅.音品决定于声源泛音的个数、频率和振幅.。
机械振动和机械波小结要点
《机械振动和机械波》小结知识内容:前面学习的两章内容综合运用运动学、动力学和能的转化等方面的知识讨论了两种常见的运动形式——机械振动和机械波的特点与规律,以及它们之间的联系与区别,并运用图象来描述,直观、简捷。
对于这两种运动,我们不但要认识到它们的共同点——运动的周期性,如振动物体的位移、速度、加速度、回复力、能量等都呈周期性变化,更重要的是搞清它们的区别:振动研究的是一个孤立质点的运动规律,而波动研究的是波的传播方向上参与波动的一系列质点的运动规律。
两章中所涉及的振动的周期、波速、波长之间的关系、机械波的干涉、衍射等知识,对于我们在后面学习交变电流、电磁振荡、电磁波的干涉、衍射等内容也是有很大帮助的。
下面我们对该两章中的重要知识点做一小结:1、如何判断物体的振动是简谐振动简谐振动是最简单的振动,我们应抓住其动力学特征进行判断,即物体所受回复力的大小始终与位移成正比,方向指向平衡位置,回复力有F=-kx的特征,即可被确定为简谐振动。
我们的教材中涉及了弹簧振子和单摆(小角度摆动)为两个典型的简谐振动。
回复力为产生振动加速度的合外力,也可以是弹力或某两个力的合力。
单摆是重力沿切线方向的分量。
2、如何正确认识单摆周期公式T=2p中的g公式中的g由单摆所在的空间位置决定。
由G=g知,g随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值g'代入公式,即g不一定等于9.8m/s2。
g还由单摆系统的运动状态决定。
如单摆处在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值g'=g+a,再如,单摆若在轨道上运行的航天飞机内,则摆球完全失重,回复力为零,g'=0。
(另外,还与其所处物理状态有关,如加上电场,此处我们尚不做研究。
)3、如何利用图象解题利用图象解决物理问题是一种重要的解题方法。
高考必做大题02:机械振动和机械波
高考必做大题02:机械振动和机械波一、计算题1.一列沿x轴负方向传播的简谐横波,在t=0时刻的波形图如图所示,此时坐标为(1,0)的质点刚好开始振动,在t1=0.6s时刻,P质点在t=0时刻首次位于波峰位置。
Q点的坐标是(-3,0),求:(i)这列波的传播速度;(ii)t2=1.5s时质点Q的位移。
2.一列沿x轴方向传播的横波,如图所示的实线和虚线分别为t1=0s时与t2=1s时的波形图像。
求:(i)如果该横波的传播速度为v=75m/s时,分析该波的传播方向;(ii)如果该横波沿x轴的正方向传播,虚线上x=2m的质点到达平衡位置时波传播的最短距离是多少?相对应的时间应为多长?二、解答题3.一列简谐横波沿x轴传播,如图甲所示为t = 0.1s时刻的波形图,介质中P、Q两质点离开平衡位置的位移相等,P、Q两质点相距8m,图乙为质点P的振动图象。
求:①质点P在t = 0.7s时离开平衡位置的位移y;②波速v及波的传播方向。
4.如图所示为一列沿x轴正方向传播的简谐横波在t=0时刻的波形图,已知该波的传播速度为10m/s,求:(i)这列波的周期;(ii)从图示时刻开始,在x=4cm处的质点在0~4.9s时间内运动的路程。
5.甲、乙两列简谐横波在同一介质中分别沿x轴正向和负向传播,在t=0时刻两列波的部分波形如图,甲恰好传播到质点M(1.0,0),乙恰好传播到质点N(2.0,0)。
已知乙的周期T乙=0.4s,求:(i)质点P(1.6,0)开始振动的时刻t0;(ii)质点Q(2.4,0)的位移y=+20cm的时刻t。
6.坐标原点处的波源在t1=0时开始沿y轴负向振动,t2=1.5s时它正好第二次到达波谷,如图所示为t2=1.5s时沿波的传播方向上部分质点振动的波形图。
求:①这列波的传播速度;②写出波源振动的位移表达式。
7.一列简谐横波沿x轴方向传播,在x轴上沿传播方向上依次有P、Q两质点,P质点平衡位置位于x=4m处。
(八)机械振动和机械波专题[学]
高二物理《机械振动和机械波》专题一、知识结构横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置1. 重点:波的图象与波的传播规律(f v λ=)2. 振动图象与波动图象的区别(注意横坐标的单位或数量级)3. 介质中的各质点只在其平衡位置附近做(受迫)简谐振动,在波的传播方向上无迁移。
4. 注意振动和波的多解问题,受迫振动的周期。
5. 简谐振动过程中(或简谐振动过程中通过某一位置时)位置、位移、路程、振幅、速度、动能、动量、势能、总能量的大小、方向等之间的联系及区别 6. 秒摆的周期是2s 。
单摆的周期与摆长和地理位置有关;与摆球质量无关,与振幅无关(摆角05<θ);重力加速度g 由赤道到两极逐渐增大,随高度的增加而减小。
弹簧振子的周期与弹簧的劲度系数有关,与摆球质量有关. 与地理位置无关,与振幅无关。
三、【典型例题分析】【例1】一弹簧振子做简谐运动,振动图象如图6—3所示。
振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,(1)在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度。
(2)弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为0.4s 。
弹簧振子振动的周期是多少?(3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm ,求弹簧振子振动的振幅。
【例2】 一弹簧振子做简谐运动,周期为T,以下说法正确的是( )A. 若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B. 若t 时刻和(t +Δt )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍C. 若Δt =T /2,则在t 时刻和(t +Δt )时刻振子运动的加速度大小一定相等 D. 若Δt =T /2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等【例3】在某介质中,质点O 在t =0时刻由平衡位置开始向上振动。
机械振机械波-知识点-例题解答
一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件.产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量;②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f.①二者都表示振动的快慢;②二者互为倒数;T=1/f;③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX。
②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
高考物理经典题型:三种模型解决机械振动和机械波
三种模型解决机械振动和机械波距离高考还有不到一个月了,各位同学也早已进入到最后的冲刺阶段。
对于现阶段的复习,建议各位同学要回归课本,巩固知识点,重温近几年天津卷的真题,加强解题的规范性和准确性。
机械振动和机械波作为高考选择题的必考考点,常在多选题中出现,因此也成为选择题中的难点和失分点。
因此,我今天要和各位同学分享机械振动和机械波中常见的三种模型。
模型一:长度/时间模型(多解性)1、长度模型特征:已知两点间距为x和振动情况,求波长。
方法:按传播方向平移振动图像,写出多解表达式。
例题:(2008 天津)一列简谐横波沿直线由a向b传播,相距10.5m的a、b两处的质点振动图象如图中a、b所示,则()A.该波的振幅可能是20cmB.该波的波长可能是8.4mC.该波的波速可能是10.5m/sD.该波由a传播到b可能历时7s【分析】由振动图象可知波的振幅及周期;由图象得出同一时刻两质点的位置及振动方向,则可得出ab间可能含有的波长数,则可得出波长的表达式,波速公式可得出波速的可能值;则可知该波从a传播到b点可能经历的时间.【解答】解:A 、由图可知,波的周期为4s ,振幅为10cm ,故A 错误;B 、由图可知,在0时刻a 在负向最大位置处,b 在平衡位置向正方向运动,而波由a 向b 传播,则ab 间距离与波长关系为l =(n +34)λ=4n+34λ(n =0,1,2,3﹣﹣﹣﹣﹣﹣),将8.4m 代入n 无解,故B 错误;C 、由B 可知λ=424n+3m ,由v =λT 可知,v =424n+34m/s =10.54n+3m/s (n =0、1、2﹣﹣﹣﹣﹣﹣),将10.5m/s 代入,n 无解,故C 错误;D 、由a 到b 需要的时间t =l v=(4n+3)s ,当n =1时,t =7s ,故D 正确; 故选:D 。
2、 时间模型特征:已知时间间距为t 的两个时刻的振动情况,求周期。
方法:按传播方向平移振动图像,求多解表达式。
高考物理力学知识点之机械振动与机械波知识点总复习含答案解析
高考物理力学知识点之机械振动与机械波知识点总复习含答案解析一、选择题1.下图表示一简谐横波波源的振动图象.根据图象可确定该波的()A.波长,波速B.周期,振幅C.波长,振幅D.周期,波速2.下列关于简谐振动和简谐机械波的说法正确的是()A.简谐振动的平衡位置一定是物体所受合外力为零的位置。
B.横波在介质中的传播速度由波源本身的性质决定。
C.当人向一个固定的声源跑去,人听到的音调变低了。
D.当声波从空气进入水中时,声波的频率不变,波长变长。
3.如图所示,S是x轴上的上下振动的波源,振动频率为10Hz.激起的横波沿x轴向左右传播,波速为20m/s.质点a、b与S的距离分别为36.8m和17.2m,已知a和b已经振动.若某时刻波源S正通过平衡位置向上振动,则该时刻下列判断中正确的是A.b位于x轴上方,运动方向向下B.b位于x轴下方,运动方向向上C.a位于x轴上方,运动方向向上D.a位于x轴下方,运动方向向上4.一质点做简谐运动,则下列说法中正确的是()A.若位移为负值,则速度一定为正值,加速度也一定为正值B.质点通过平衡位置时,速度为零,加速度最大C.质点每次通过平衡位置时,加速度不一定相同,速度也不一定相同D.质点每次通过同一位置时,其速度不一定相同,但加速度一定相同5.如图所示,从入口S处送入某一频率的声音。
通过左右两条管道路径SAT和SBT,声音传到了出口T处,并可以从T处监听声音。
右侧的B管可以拉出或推入以改变B管的长度,开始时左右两侧管道关于S、T对称,从S处送入某一频率的声音后,将B管逐渐拉出,当拉出的长度为l时,第一次听到最弱的声音。
设声速为v,则该声音的频率()A.B.C.D.6.如图为一弹簧振子做简谐运动的位移﹣时间图象,在如图所示的时间范围内,下列判断正确的是()A.0.2s时的位移与0.4s时的位移相同B.0.4s时的速度与0.6s时的速度相同C.弹簧振子的振动周期为0.9s,振幅为4cmD.0.2s时的回复力与0.6s时的回复力方向相反7.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m.则两单摆摆长l a与l b分别为( )A.l a=2.5 m,l b=0.9 m B.l a=0.9 m,l b=2.5 mC.l a=2.4 m,l b=4.0 m D.l a=4.0 m,l b=2.4 m8.下列关于单摆运动过程中的受力说法,正确的是()A.单摆运动的回复力是重力和摆线拉力的合力B.单摆运动的回复力是重力沿圆弧切线方向的一个分力C.单摆过平衡位置时,所受的合力为零D.单摆运动的回复力是摆线拉力的一个分力9.关于机械振动和机械波,以下说法正确的是()A.要产生机械波,有波源就可以B.要产生机械波,必须要有波源和介质C.要产生机械波,有介质就可以D.要产生机械波,不需要有波源和介质10.如图所示,A、B两物体组成弹簧振子,在振动过程中,A、B始终保持相对静止,下列给定的四幅图中能正确反映振动过程中物体A所受摩擦力F f与振子对平衡位置位移x关系的图线为A.B.C.D.11.如图所示是一弹簧振子在水平面做简谐运动的图像,那么振动系统在( )A.t3 和t5具有相同的动能和动量B.t3 和t4具有相同的动能和不同的动量C.t2 和t5时刻振子所受的回复力大小之比为 2:1D.t1 和t4时刻具有相同的加速度和速度12.甲、乙两个单摆在同一地点做简谐振动,在相等的时间内,甲完成10次全振动,乙完成20次全振动.已知甲摆摆长为1 m,则乙摆的摆长为( )A.2 m B.4 mC.0.5 m D.0.25 m13.在平静的水面上激起一列水波,使漂浮在水面上相距6.0m的小树叶a和b发生振动,当树叶a运动到上方最大位移处时,树叶b刚好运动到下方最大位移处,经过1.0s后,树叶a的位移第一次变为零。
重难点12 机械振动和机械波(解析版)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点12 机械振动和机械波【知识梳理】一 简谐运动的特征 受力特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动特征靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量特征振幅越大,能量越大.在运动过程中,系统的动能和势能相互转化,机械能守恒周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T ;动能和势能也随时间做周期性变化,其变化周期为T 2对称性特征关于平衡位置O 对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O 用时相等二 简谐运动的振动图象 1.对简谐运动图象的认识(1)简谐运动的图象是一条正弦或余弦曲线,如图所示.(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹.(3)任一时刻图象上过该点切线的斜率数值表示该时刻振子的速度大小.正负表示速度的方向,正时沿x 正方向,负时沿x 负方向.2.图象信息(1)由图象可以得出质点做简谐运动的振幅、周期. (2)可以确定某时刻质点离开平衡位置的位移.(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向.①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴.②速度的方向:速度的方向可以通过下一时刻位移的变化来判断,下一时刻位移如增加,振动质点的速度方向就是远离t轴,下一时刻位移如减小,振动质点的速度方向就是指向t轴.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x-t图象的意义,其次要把x-t图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三波的形成、传播与图象1.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同.(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同.(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变.(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v =λT=λf. 2.波的图象特点(1)质点振动nT(波传播nλ)时,波形不变.(2)在波的传播方向上,当两质点平衡位置间的距离为nλ(n=1,2,3…)时,它们的振动步调总相同;当两质点平衡位置间的距离为(2n+1)λ2(n=0,1,2,3…)时,它们的振动步调总相反.(3)波源的起振方向决定了它后面的质点的起振方向,各质点的起振方向与波源的起振方向相同.3.波的传播方向与质点振动方向的互判方法内容图象“上下坡”法沿波的传播方向,“上坡”时质点向下振动,“下坡”时质点向上振动“同侧”法波形图上某点表示传播方向和振动方向的箭头在图线同侧“微平移”法将波形沿传播方向进行微小的平移,再由对应同一x坐标的两波形曲线上的点来判断振动方向四振动图象和波动图象的综合应用振动图象波动图象研究对象一个振动质点沿波传播方向的所有质点研究内容某一质点的位移随时间的变化规律某时刻所有质点的空间分布规律图象物理意义表示同一质点在各时刻的位移表示某时刻各质点的位移图象信息(1)质点振动周期(2)质点振幅(3)某一质点在各时刻的位移(4)各时刻速度、加速度的方向(1)波长、振幅(2)任意一质点在该时刻的位移(3)任意一质点在该时刻加速度的方向(4)传播方向、振动方向的互判图象变化随时间推移图象延续,但已有形状不变随时间推移,图象沿传播方向平移一个完整曲线占横坐标的距离表示一个周期表示一个波长五波的多解问题1.造成波动问题的多解的三大因素周期性(1)时间周期性:时间间隔Δt与周期T的关系不明确(2)空间周期性:波传播距离Δx与波长λ的关系不明确双向性(1)传播方向双向性:波的传播方向不确定(2)振动方向双向性:质点振动方向不确定波形的隐含性问题中,只给出完整波形的一部分,或给出几个特殊点,而其余信息均处隐含状态,波形就有多种情况2.解决波的多解问题的思路一般采用从特殊到一般的思维方法,即找出一个周期内满足条件的关系Δt 或Δx ,若此关系为时间,则t =nT +Δt (n =0,1,2…);若此关系为距离,则x =nλ+Δx (n =0,1,2…).六 波的干涉和衍射 多普勒效应1.波的干涉中振动加强点和减弱点的判断:某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr .(1)当两波源振动步调一致时若Δr =nλ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =nλ(n =0,1,2,…),则振动减弱.2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析(1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.【命题特点】这部分知识主要考查机械振动和机械波相结合的问题,尤其要注意机械波的多解问题和机械波传播方向与介质中质点振动方向的关系问题。
机械振动和机械波知识点总结分析
机械振动和机械波一、知识构造二、重点知识回忆1机械振动〔一〕机械振动物体〔质点〕在*一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
〔二〕简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最根本的振动。
研究简谐振动物体的位置,常常建立以中心位置〔平衡位置〕为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k*,其中“-〞号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能〔重力势能和弹性势能〕都随时间做周期性变化。
〔三〕描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A 〞表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
〔四〕单摆:摆角小于5°的单摆是典型的简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。
单摆的周期公式是T=。
由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。
g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。
(五)振动图象。
简谐振动的图象是振子振动的位移随时间变化的函数图象。
所建坐标系中横轴表示时间,纵轴表示位移。
图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。
要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。
(六)机械振动的应用——受迫振动和共振现象的分析(1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。
(2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。
2机械波中的应用问题1. 理解机械波的形成及其概念。
(1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。
(2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。
(3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。
(4)描述机械波的物理量关系:注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。
横坐标表示介质中各质点的平衡位置【例1】单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a 与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a 与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____沙摆实验1、简谐振动2【例2】 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s ,过B 点后再经过1s ,小球再一次通过B 点,小球在2s 内通过的路程为6cm ,N 点为小球下落的最低点,则小球在做简谐运动的过程中:(1)周期为 ;(2)振幅为 ;(3)小球由M 点下落到N 点的过程中,动能E K 、重力势能E P 、弹性势能E P ’的变化为 ;(4)小球在最低点N 点的加速度大小 重力加速度g (填>、=、<)。
分析:(1)小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,t AO =t BO =0.5s, t BN = t NB =0.5s ,所以t ON =t OB +t BN =1s ,因此小球做简谐运动的周期T =4t ON =4s 。
(2)小球从A 经B 到N 再返回B 所经过的路程,与小球从B 经A 到M 再返回A 所经过的路程相等。
因此小球在一个周期内所通过的路程是12cm ,振幅为3cm 。
(3)小球由M 点下落到N 点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小。
(4)M 点为小球的振幅位置,在该点小球只受重力的作用,加速度为g ,方向竖直向下,由空间对称性可知,在另一个振幅位置(N 点)小球的加速度大小为g ,方向竖直向上。
解答:4s ;3cm ;E K 先增大后减小,E P 减少,E P ’ 增加;=。
说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O ,尤其小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判断的。
图6-1如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动。
因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度。
【例3】 已知某摆长为1m 的单摆在竖直平面内做简谐运动,则:(1)该单摆的周期为 ;(2)若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;(3)若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 。
分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的。
只要找出等效重力加速度,代入周期公式即可得解。
第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动。
但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期。
解答:(1)依据gL T π2=,可得T =2s 。
(2)等效重力加速度为4/'g g =,则依据'2'g L T π=,可得4'=T s 。
(3)钉钉后的等效摆长为:半周期摆长为L 1=1m ,另半周期摆长为L 2=0.5m 。
则该小球的摆动周期为:222''21+=+=g L g L T ππs 说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式。
应该特别注意改变周期的因素:摆长和重力加速度。
例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化。
比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动。
把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度。
这类问题将在电学中遇到。
【例4】一弹簧振子做简谐运动,振动图象如图6—3所示。
振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,(1)在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度。
(2)弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为0.4s 。
弹簧振子振动的周期是多少?(3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm ,求弹簧振子振动的振幅。
分析:(1)弹簧振子振动的加速度与位移大小成正比,与位移方向相反。
振子具有沿x 轴正方向最大加速度,必定是振动到沿x振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度。
(2)图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处。
e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处。
由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为0.8s ,弹簧振子振动周期为T =1.6s 。
(3)在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm ,说明在x 轴上负向最大位移处到-7cm 处相距3cm ,弹簧振子的振幅图6-3A =10cm 。
解答:(1)f 点;h 点。
(2)T =1.6s 。
(3)A =10cm 。
说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化。
讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式。
当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下。
振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关。