定积分知识点总结

合集下载

考研定积分知识点总结

考研定积分知识点总结

一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。

具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。

这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。

因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。

2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。

主要的性质包括线性性、可加性、积性、保号性、保序性等。

具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。

这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。

二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。

其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。

本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。

1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。

具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。

定积分的计算方法有多种,常见的有几何法和定积分的运算法则。

几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。

2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。

(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。

(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。

(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。

(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。

3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。

以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。

(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。

定积分知识点总结等价

定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。

一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。

在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。

1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。

则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。

我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。

对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。

1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。

当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。

当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。

1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。

例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。

高三定积分知识点总结

高三定积分知识点总结

高三定积分知识点总结高三阶段,定积分是数学学科中重要的一部分,掌握定积分的知识点对学生来说至关重要。

在这篇文章中,我将对高三阶段定积分的知识点进行总结和归纳,以便帮助同学们更好地复习和掌握这一部分内容。

一、定积分的概念定积分是微积分的重要概念之一,它可以理解为曲线与坐标轴之间的有界区域的面积。

定积分的基本概念包括定积分的上下限、积分区间的分割以及极限等。

二、定积分的计算方法1. 函数的原函数在计算定积分的过程中,首先需要找到被积函数的原函数,也就是导函数。

通过求导反过来求解原函数,即可得到被积函数的原函数。

2. 定积分的基本计算方法定积分的基本计算方法包括积分的线性性质、定积分的区间可加性、换元积分法等。

这些方法能够简化定积分的计算过程,使得计算更加方便快捷。

3. 特殊函数的定积分计算对于一些特殊函数,如指数函数、对数函数、三角函数等,需要掌握相应的定积分计算公式和技巧,以便能够快速准确地计算出定积分的结果。

三、定积分的应用1. 几何应用定积分在几何中有着广泛的应用。

通过定积分,可以计算曲线和坐标轴之间的面积、曲线的弧长以及曲线的旋转体体积等几何问题。

2. 物理应用定积分在物理学中也有着重要的应用。

例如,通过定积分可以计算物体的质量、质心位置、重心位置以及力学和流体力学中的有关问题。

3. 经济和金融应用定积分在经济学和金融学中也有广泛的应用。

例如,通过定积分可以计算收益曲线下的总收益、消费曲线下的总消费等经济和金融问题。

四、定积分的性质1. 积分的性质定积分具有线性性质、区间可加性、保号性等性质。

这些性质在定积分的计算过程中起到了重要的作用,可以帮助我们更好地理解和运用定积分。

2. 无穷定积分无穷定积分是定积分的一种特殊形式,其中上下限存在无穷大的情况。

掌握无穷定积分的计算方法和性质,可以更好地解决一些复杂的数学问题。

五、定积分的应用举例在高三阶段,定积分的应用举例如下:1. 计算曲线下的面积,如椭圆的面积、抛物线的面积等;2. 计算曲线的弧长,如圆的弧长、正弦曲线的弧长等;3. 计算平面图形的重心位置和质心位置,如矩形的质心位置、三角形的重心位置等;4. 计算物体的质量和质量分布情况,如线密度、面密度和体密度的计算等。

定积分知识点,DOC

定积分知识点,DOC

定积分知识点1.定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n ξ=,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()ba S f x dx =⎰,其中-⎰积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量,[,]a b -积分区间,()f x dx -被积式。

说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)记为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰;(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功()baW F r dr =⎰2.定积分的几何意义恒有()0f x ≥,那从几何上看,如果在区间[],a b 上函数()f x 连续且么定积分()ba f x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()baf x dx ⎰的几何意义。

说明:一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号。

数学高三定积分知识点

数学高三定积分知识点

数学高三定积分知识点在高三数学中,定积分是一个重要的概念,也是学生们常常遇到的题型之一。

定积分可以用于计算曲线与坐标轴之间的面积、求解曲线的弧长、质心等一系列数学问题。

本文将介绍高三数学中关于定积分的基本概念、性质和应用。

一、定积分的基本概念1. 无穷小量与无穷大量在定积分的定义中,我们需要先了解无穷小量与无穷大量的概念。

无穷小量指的是当自变量趋于某个值时,依附于其而趋于零的量;而无穷大量则是当自变量趋于某个值时,逐渐无限增大的量。

2. 定积分的定义定积分的定义是通过分割求和的方式来计算曲线与坐标轴之间的面积。

对于一个函数 f(x) 在区间 [a, b] 上的定积分表示为∫[a,b] f(x) dx,其中 f(x) 为被积函数,dx 为积分变量。

3. 定积分的几何意义定积分的几何意义是曲线与坐标轴之间包围的面积。

当被积函数 f(x) 大于零时,定积分表示曲线所围成的面积;当被积函数 f(x) 小于零时,定积分表示曲线下方所围成的面积。

二、定积分的性质1. 定积分的可加性定积分具有可加性,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx +∫[a,b] g(x) dx。

这意味着我们可以将被积函数进行分解,然后对每个部分进行积分,最后将结果进行求和。

2. 定积分的线性性质定积分还具有线性性质,即∫[a,b] (cf(x)) dx = c∫[a,b] f(x) dx,其中 c 为常数。

这意味着可以将常数提取出来,然后对函数进行积分。

3. 定积分的区间可加性定积分的区间可加性表示对于一个函数 f(x) 在区间 [a, b] 上的定积分,可以分为两部分进行计算,即∫[a,b] f(x) dx= ∫[a,c] f(x) dx + ∫[c,b] f(x) dx,其中 c 为 [a, b] 上的某一点。

三、定积分的应用1. 几何应用定积分在几何中有广泛的应用,可以用来计算曲线与坐标轴之间的面积。

高中数学知识点归纳定积分基础知识

高中数学知识点归纳定积分基础知识

高中数学知识点归纳定积分基础知识高中数学的定积分是数学中非常重要的一个概念,它是微积分的核心内容之一。

在学习定积分的过程中,我们需要了解一些基础知识,本文将对高中数学中定积分的基础知识进行归纳总结。

一、定积分的概念定积分是积分学中重要的概念之一,它可以看作是函数在一个区间上的加权平均。

定积分的定义是:设函数f(x)在区间[a,b]上有定义,将[a,b]等分成n个小区间,每个小区间的长度为Δx,然后在每个小区间上取一点ξ_i,构成一个积分和S_n,当n趋向于无穷大时,若极限存在且与ξ_i的选法无关,则称该极限为函数f(x)在区间[a,b]上的定积分,记作∫(a,b)f(x)dx。

二、定积分的计算方法在计算定积分时,可以使用不同的方法,具体的计算方法如下:1. 几何意义法:根据定积分的几何意义,可以将定积分看作是曲线与坐标轴所围成的面积。

根据几何图形的性质,可以求得定积分的值。

2. 定积分的性质法:根据定积分的性质,可以利用一些性质对定积分进行化简。

比如定积分的线性性质、区间可加性等。

3. 换元法:对于一些较复杂的函数,可以通过变量代换的方法将其化简为简单的形式,然后进行定积分的计算。

4. 分部积分法:对于一些乘积形式的函数,可以通过分部积分的方法将其化简为简单的形式,然后进行定积分的计算。

5. 积分表法:对于一些常见的函数,可以通过积分表中的公式直接进行定积分的计算。

三、定积分的应用领域定积分在数学中有广泛的应用领域,具体包括以下几个方面:1. 几何应用:定积分可以用来计算曲线与坐标轴所围成的面积、曲线的弧长、曲线的平均值等。

2. 物理应用:在物理学中,定积分可以用来求解物体在一定时间内的位移、速度、加速度等。

3. 统计学应用:在统计学中,定积分可以用来计算概率密度函数下的概率、求解统计分布的期望值等。

4. 经济应用:在经济学中,定积分可以用来计算收入曲线下的总收入、成本曲线下的总成本等。

总结:高中数学中的定积分是微积分学习的重要内容,通过学习定积分的基础知识,我们可以更好地理解和应用定积分。

教你学会定积分:定积分知识点总结及简单应用

教你学会定积分:定积分知识点总结及简单应用

定积分知识点总结及简单应用知识点1.定积分的几何意义:如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么函数f (x )在区间[a ,b ]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.2.定积分的性质(1)ʃb a kf (x )d x =__________________ (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =_____________________________________; (3)ʃb a f (x )d x =_______________________________________. 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做__________________,为了方便,我们常把F (b )-F (a )记成__________________,即ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).4.定积分在几何中的应用(1)当x ∈[a ,b ]且f (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(2)当x ∈[a ,b ]且f (x )<0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________________.(3)当x ∈[a ,b ]且f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =______________________.(4)若f (x )是偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x ;若f (x )是奇函数,则ʃa-a f (x )d x =0.5.定积分在物理中的应用 (1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )[v (t )≥0]在时间区间[a ,b ]上的定积分,即________________________.(2)变力做功公式一物体在变力F (x )(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a <b )(单位:m),则力F 所做的功W =__________________________.自我检测1.计算定积分ʃ503x d x 的值为 ( ) A.752 B .75 C.252D .252.定积分ʃ10[1-(x -1)2-x ]d x 等于 ( )A.π-24B.π2-1C.π-14D.π-123.如右图所示,阴影部分的面积是 ( )A .2 3B .2- 3 C.323D.3534.ʃ421x d x 等于 ( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 25.若由曲线y =x 2+k 2与直线y =2kx 及y 轴所围成的平面图形的面积S =9,则k =________.探究点一 求定积分的值 例1 计算下列定积分: (1)2111()ex dx x x++⎰; (2)2sin 2cos )x x dx π-⎰(;(3)ʃπ0(2sin x -3e x +2)d x ; (4)ʃ20|x 2-1|d x .变式迁移1 计算下列定积分:(1)ʃ2π0|sin x |d x ;(2)ʃπ0sin 2x d x .探究点二 求曲线围成的面积例2 计算由抛物线y =12x 2和y =3-(x -1)2所围成的平面图形的面积S .变式迁移2 计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.探究点三 定积分在物理中的应用例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.变式迁移3 A 、B 两站相距7.2 km ,一辆电车从A 站开往B 站,电车开出t s 后到达途中C 点,这一段速度为1.2t m/s ,到C 点时速度达24 m/s ,从C 点到B 点前的D 点以匀速行驶,从D 点开始刹车,经t s 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离; (2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.例 (12分)在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-ʃt 0x 2d x =23t 3.[2分]S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即S 2=ʃ1t x 2d x -t 2(1-t )=23t 3-t 2+13.[4分] 所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).[6分]令S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12=0时,得t =0或t =12.[8分] t =0时,S =13;t =12时,S =14;t =1时,S =23.[10分]所以当t =12时,S 最小,且最小值为14.[12分]本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.总结;1.定积分ʃb a f (x )d x 的几何意义就是表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x 2d x =π (半径为2的14个圆的面积),ʃ2-24-x 2d x =2π.2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F ′(x )=f (x )的F (x );第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.检测题 一、选择题1.下列值等于1的积分是 ( )A .ʃ10x d xB .ʃ10(x +1)d xC .ʃ1012d xD .ʃ101d x2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x ≤1,3-x ,1<x ≤2,则ʃ20f (x )d x 等于 ( )A.13 B.176 C .6D .173.已知f (x )为偶函数且ʃ60f (x )d x =8,则ʃ6-6f (x )d x 等于 ( ) A .0B .4C .8D .164.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .ʃπ20(sin x -cos x )d xB .2ʃπ40(sin x -cos x )d xC .ʃπ20(cos x -sin x )d xD .2ʃπ40(cos x -sin x )d x5.函数f (x )=ʃx 0t (t -4)d t 在[-1,5]上 ( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值 二、填空题6.若1 N 的力使弹簧伸长2 cm ,则使弹簧伸长12 cm 时克服弹力做的功为__________J.7.ʃ10(2x k+1)d x =2,则k =________.8.若f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,则ʃ30f (x )d x =________.三、解答题9.计算以下定积分: (1)ʃ21⎝⎛⎭⎫2x 2-1x d x ; (2)ʃ32⎝⎛⎭⎫x +1x 2d x ;(3)ʃπ30(sin x -sin 2x )d x ; (4)ʃ21|3-2x |d x .10.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.11.求曲线y =e x -1与直线x =-ln 2,y =e -1所围成的平面图形的面积. 答案1.x =a ,x =b (a ≠b ),y =0和曲线y =f (x ) 面积2.(1)k ʃb a f (x )d x (2)ʃb a f 1(x )d x ±ʃb a f 2(x )d x (3)ʃc a f (x )d x +ʃbc f (x )d x (其中a <c <b )3.微积分基本定理 F (x )|b a4.(1)ʃb a f (x )d x (2)-ʃb a f (x )d x (3)ʃba [f (x )-g (x )]d x 5.(1)s =ʃb a v (t )d t (2)ʃb a F (x )d x自我检测1.A 2.A 3.C 4.D 5.±3解析 由⎩⎪⎨⎪⎧y =x 2+k 2,y =2kx .得(x -k )2=0, 即x =k ,所以直线与曲线相切,如图所示,当k >0时,S =ʃk 0(x 2+k 2-2kx )d x=ʃk 0(x -k )2d x =13(x -k )3|k 0=0-13(-k )3=k 33,由题意知k 33=9,∴k =3.由图象的对称性可知k =-3也满足题意,故k =±3. 课堂活动区例1 分析 (1)与绝对值有关的函数均可化为分段函数. ①分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.(2)f (x )是偶函数,且在关于原点对称的区间[-a ,a ]上连续,则ʃa -a f (x )d x =2ʃa 0f (x )d x .解 (1)ʃe 1⎝⎛⎭⎫x +1x +1x 2d x =ʃe 1x d x +ʃe 11x d x +ʃe 11x2d x =12x 2|e 1+ln x |e 1-1x |e 1=12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32.(2)ʃπ20(sin x -2cos x )d x=ʃπ20sin x d x -2ʃπ20cos x d x =(-cos x )|π20-2sin x |π2=-cos π2-(-cos 0)-2⎝⎛⎭⎫sin π2-sin 0 =-1.(3)ʃπ0(2sin x -3e x+2)d x =2ʃπ0sin x d x -3ʃπ0e x d x +ʃπ02d x =2(-cos x )|π0-3e x |π0+2x |π0=2[(-cos π)-(-cos 0)]-3(e π-e 0)+2(π-0) =7-3e π+2π. (4)∵0≤x ≤2,于是|x 2-1|=⎩⎪⎨⎪⎧x 2-1,1<x ≤2,1-x 2,0≤x ≤1,∴ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x=⎝⎛⎭⎫x -13x 3|10+⎝⎛⎭⎫13x 3-x |21=2.变式迁移1 解 (1)∵(-cos x )′=sin x ,∴ʃ2π0|sin x |d x =ʃπ0|sin x |d x +ʃ2ππ|sin x |d x =ʃπ0sin x d x -ʃ2ππsin x d x =-cos x |π0+cos x |2ππ=-(cos π-cos 0)+(cos 2π-cos π)=4. (2)ʃπ0sin 2x d x =ʃπ0⎝⎛⎭⎫12-12cos 2x d x =ʃπ012d x -12ʃπ0cos 2x d x=12x |π0-12⎝⎛⎭⎫12sin 2x |π0 =⎝⎛⎭⎫π2-0-12⎝⎛⎭⎫12sin 2π-12sin 0=π2. 例2 分析: 求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.解 作出函数y =12x 2和y =3-(x -1)2的图象(如图所示),则所求平面图形的面积S 为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =12x 2,y =3-(x -1)2,得⎩⎨⎧x =-23,y =29或⎩⎪⎨⎪⎧x =2,y =2.所以两曲线交点为A ⎝⎛⎭⎫-23,29,B (2,2). 所以S =ʃ2-23[3-(x -1)2]d x -ʃ2-2312x 2d x=ʃ2-23(-x 2+2x +2)d x -ʃ2-2312x 2d x=⎪⎪⎝⎛⎭⎫-13x 3+x 2+2x 2-23-⎪⎪16x 32-23 =⎝⎛⎭⎫-83+4+4-⎝⎛⎭⎫881+49-43-16×⎝⎛⎭⎫8+827 =42027. 变式迁移2 解如图, 设f (x )=x +3, g (x )=x 2-2x +3,两函数图象的交点为A ,B ,由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3.得⎩⎪⎨⎪⎧ x =0,y =3或⎩⎪⎨⎪⎧x =3,y =6.∴曲线y =x 2-2x +3与直线y =x +3所围图形的面积 S =ʃ30[f (x )-g (x )]d x=ʃ30[(x +3)-(x 2-2x +3)d x ] =ʃ30(-x 2+3x )d x=⎝⎛⎭⎫-13x 3+32x 2|30=92. 故曲线与直线所围图形的面积为92.例3 分析: 用定积分解决变速运动的位置与路程问题时,将物理问题转化为数学问题是关键.变速直线运动的速度函数往往是分段函数,故求积分时要利用积分的性质将其分成几段积分,然后求出积分的和,即可得到答案.s (t )求导后得到速度,对速度积分则得到路程.解 方法一 由速度—时间曲线易知. v (t )=⎩⎪⎨⎪⎧3t ,t ∈[0,10),30,t ∈[10,40),-1.5t +90,t ∈[40,60],由变速直线运动的路程公式可得s =ʃ1003t d t +ʃ401030d t +ʃ6040(-1.5t +90)d t=32t 2|100+30t |4010+⎝⎛⎭⎫-34t 2+90t |6040=1 350 (m). 答 此汽车在这1 min 内所行驶的路程是1 350 m.方法二 由定积分的物理意义知,汽车1 min 内所行驶的路程就是速度函数在[0,60]上的积分,也就是其速度曲线与x 轴围成梯形的面积,∴s =12(AB +OC )×30=12×(30+60)×30=1 350 (m).答 此汽车在这1 min 内所行驶的路程是1 350 m.变式迁移3 解 (1)设v (t )=1.2t ,令v (t )=24,∴t =20.∴A 、C 间距离|AC |=ʃ2001.2t d t=(0.6t 2)|200=0.6×202=240 (m).(2)由D 到B 时段的速度公式为v (t )=(24-1.2t ) m/s ,可知|BD |=|AC |=240 (m).(3)∵|AC |=|BD |=240 (m),∴|CD |=7 200-240×2=6 720 (m).∴C 、D 段用时6 72024=280 (s).又A 、C 段与B 、D 段用时均为20 s ,∴共用时280+20+20=320 (s).课后练习1.D 2.B 3.D 4.D 5.B6.0.36解析 设力F 与弹簧伸长的长度x 的关系式为F =kx ,则1=k ×0.02,∴k =50,∴F =50x ,伸长12 cm 时克服弹力做的功W =ʃ0.12050x d x =502x 2|0.120=502×0.122=0.36(J).7.1解析 ∵ʃ10(2x k +1)d x = ⎪⎪⎝⎛⎭⎫2k +1x k +1+x 10=2k +1+1=2,∴k =1.8.-18解析 ∵f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2),即f ′(2)=-4,∴f (x )=x 2-8x +3,∴ʃ30f (x )d x =13×33-4×32+3×3=-18. 9.解 (1)函数y =2x 2-1x 的一个原函数是y =23x 3-ln x ,所以ʃ21⎝⎛⎭⎫2x 2-1x d x = ⎪⎪⎝⎛⎭⎫23x 3-ln x 21=163-ln 2-23=143-ln 2(2) ʃ32⎝⎛⎭⎫x +1x 2d x =ʃ32⎝⎛⎭⎫x +1x +2d x = ⎪⎪⎝⎛⎭⎫12x 2+ln x +2x 32=⎝⎛⎭⎫92+ln 3+6-(2+ln 2+4)=ln 32+92.(3)函数y =sin x -sin 2x 的一个原函数为y =-cos x +12cos 2x ,所以ʃπ30(sin x -sin 2x )d x= ⎪⎪⎝⎛⎭⎫-cos x +12cos 2x π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14.322(4)3232322311232(32)(23)2312x dx x dx x dxx dx x dx=-=-+-=-+-⎰⎰⎰⎰⎰=(3x -x 2)|321+(x 2-3x )|232=12.10.解 (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积S =ʃ10(x 2-2x +1)d x=⎝⎛⎭⎫13x 3-x 2+x |10=13.11.解 画出直线x =-ln 2,y =e -1及曲线y =e x -1如图所示,则所求面积为图中阴影部分的面积.由⎩⎪⎨⎪⎧ y =e -1,y =e x -1,解得B (1,e -1). 由⎩⎪⎨⎪⎧ x =-ln 2,y =e x -1,解得A ⎝⎛⎭⎫-ln 2,-12.此时,C (-ln 2,e -1),D (-ln 2,0).所以S =S 曲边梯形BCDO +S 曲边三角形OAD=ʃ1-ln 2(e -1)d x -ʃ10(e x -1)d x +||0-ln 2(e x -1)d x=(e -1)x |1-ln 2-(e x -x )|10+|(e x -x )|0-ln 2|=(e -1)(1+ln 2)-(e -1-e 0)+|e 0-(e -ln 2+ln 2)|=(e -1)(1+ln 2)-(e -2)+ln 2-12=eln 2+12。

高数定积分知识点总结

高数定积分知识点总结

高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。

在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。

定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。

定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。

定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。

二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。

2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。

3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。

定积分知识点总结半圆

定积分知识点总结半圆

定积分知识点总结半圆在介绍定积分之前, 我们首先需要了解什么是函数的积分. 在微积分中, 函数的积分是函数的反导数, 也就是说, 如果函数f(x)的导数为F(x), 那么F(x)就是函数f(x)的积分, 记作∫f(x)dx=F(x)+C, 其中C为积分常数. 积分常数是由于我们在对函数进行积分时, 存在无法确定的起始点, 所以需要添加一个常数C来表示.而定积分是积分的一种特殊形式, 其中积分的上下限是固定的, 即从a到b, 记作∫[a,b]f(x)dx. 定积分的几何意义是曲线与x轴以及两条垂直线x=a和x=b所围成的区域的面积, 如果函数f(x)在区间[a,b]上连续, 那么该面积可以通过定积分来计算. 定积分的计算可以帮助我们求解曲线下面积、弧长、体积等问题, 在数学、物理、工程等领域有着广泛的应用.定积分的定义和性质定积分的定义是通过极限的概念来进行的, 定积分的定义如下:设函数f(x)在区间[a,b]上连续, 将区间[a,b]等分为n等分, 其中Δx=(b-a)/n, 在每个子区间[x(i-1),x(i)]上取一点ξ(i), 对于每个ξ(i),取其函数值f(ξ(i))与子区间长度Δx的乘积之和, 即为定积分的近似值:∑f(ξ(i))Δx, i=1,2,...,n.当n趋向无穷大时, 以上和的极限存在, 并称该极限为函数f(x)在区间[a,b]上的定积分, 记作∫[a,b]f(x)dx. 其中ξ(i)为区间[x(i-1),x(i)]上的任意一点.定积分的性质包括线性性、区间可加性、保号性等, 下面分别介绍:1. 线性性: 对于任意函数f(x)和g(x), 以及任意常数α和β, 有∫[a,b](αf(x)+βg(x))dx=α∫[a,b]f(x)dx+β∫[a,b]g(x)dx.2. 区间可加性: 对于任意函数f(x), 如果在区间[a,b]和[b,c]上都连续, 那么有∫[a,c]f(x)dx=∫[a,b]f(x)dx+∫[b,c]f(x)dx.3. 保号性: 如果函数f(x)在区间[a,b]上连续且非负, 那么有∫[a,b]f(x)dx≥0, 若在某一点x(i)上f(ξ(i))>0, 那么定积分的值也大于0.定积分的计算定积分的计算通常分为定积分的求解和定积分的应用两个方面:1. 定积分的求解通常采用牛顿-莱布尼兹公式, 也就是说, 如果函数f(x)的原函数F(x)已知,那么可以通过F(b)-F(a)来求解∫[a,b]f(x)dx的值. 但是, 实际情况中很多函数并没有原函数, 这时就需要通过定积分的数值计算方法进行求解, 如梯形法则、辛普森法则等.2. 定积分的应用涉及到物理学、工程学等领域, 其中包括曲线下面积、旋转体的体积、平均值、弧长等问题. 定积分可以帮助我们求解某些物理现象的参数, 如质心、转动惯量、功等, 并且可以用于求解一些工程问题, 如柱面体积、水压力等.定积分的重要定理在定积分的学习中, 我们需要了解一些重要的定理, 如积分中值定理、换元积分法、分部积分法等, 这些定理可以帮助我们更快更准确地解决定积分的计算问题.1. 积分中值定理: 如果函数f(x)在区间[a,b]上连续, 那么存在ξ∈[a,b], 使得∫[a,b]f(x)dx=f(ξ)(b-a). 积分中值定理告诉我们, 定积分对应了函数在区间[a,b]上的平均值乘以区间长度, 这对于某些物理问题有着重要的意义.2. 换元积分法: 如果定积分中含有较复杂的函数形式, 我们可以通过换元积分法来简化定积分的计算, 过程中需要进行变量代换, 以便求得新的积分上下限和被积函数.3. 分部积分法: 如果需要求解的定积分中含有乘积函数的情形, 我们可以通过分部积分法来简化积分的计算, 过程中需要选取一个函数作为导数, 另一个函数作为原函数, 并进行分部积分.这些定理为我们提供了解决定积分问题的重要工具, 对于学习定积分具有很大的帮助.定积分的应用定积分在数学、物理、工程等领域有着广泛的应用, 下面介绍一些定积分的典型应用:1. 曲线下面积: 定积分可以帮助我们求解曲线与x轴围成的面积, 也就是说, 如果我们知道了函数f(x)在区间[a,b]上的表达式, 那么可以通过定积分来求解其图像下的面积. 这对于某些物理问题有着重要的意义, 如速度与时间的关系、加速度与时间的关系等.2. 旋转体的体积: 定积分可以帮助我们求解旋转体的体积, 例如,通过定积分可以求解由函数f(x)、直线x=a、x=b、x轴围成的曲线绕x轴旋转所得到的旋转体的体积. 这对于某些工程问题有着重要的意义, 如管道的容积、杯子的容量等.3. 平均值: 定积分可以帮助我们求解函数在区间[a,b]上的平均值, 也就是说, 定积分的值除以区间长度, 可以得到函数在该区间上的平均值. 这对于某些物理问题有着重要的意义, 如温度的平均值、压强的平均值等.4. 弧长: 定积分可以帮助我们求解曲线的弧长, 也就是说, 定积分可以求解曲线与x轴围成的面积. 这对于某些工程问题有着重要的意义, 如弯管的长度、曲线轨迹的长度等.总结定积分是微积分中的一个重要概念, 不仅可以帮助我们求解曲线下面积、旋转体的体积等问题, 还可以用于求解一些物理和工程问题. 定积分的定义和性质、定积分的计算和应用、定积分的重要定理以及定积分的应用等方面都有很多值得深入学习和探讨的地方. 对定积分的深入理解不仅可以帮助我们提高数学水平, 还可以为我们解决实际问题提供重要的依据和方法. 因此, 对于定积分的学习有着非常重要的意义, 并且有着广阔的应用前景.。

定积分计算知识点总结

定积分计算知识点总结

定积分计算知识点总结一、定积分的概念1.1 定积分的定义定积分是在微积分学中给定一个连续函数$f(x)$,对它在区间$[a, b]$上的积分值的确定。

具体地,定积分可以定义为:$$\int_{a}^{b} f(x) dx = \lim _{n \rightarrow \infty} \sum _{i=1}^{n} f(x_{i}^{*})\Delta x $$其中,$\Delta x = (b-a)/n$,$x_i^* \in [x_{i-1}, x_i]$。

1.2 定积分的几何意义定积分的几何意义是函数$y=f(x)$在区间$[a, b]$上的曲边梯形的面积,可以用积分来表示。

当积分区间的$[a, b]$上的函数是非负值函数时,它的定积分可以表示该函数与$x$轴所夹的曲边梯形的面积。

1.3 定积分的基本性质① 定积分与积分区间的顺序无关,即$\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx$。

② 定积分的线性性:$\int_{a}^{b}(\alpha f(x)+\beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$。

③ 定积分的加法性:$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$。

1.4 定积分的计算方法定积分的计算方法主要包括:几何意义法、切割法、定积分的性质、换元积分法、分部积分法等。

这些方法在不同的情况下都有其适用范围,学习者需要根据具体问题进行选择和灵活运用。

二、定积分的计算2.1 几何意义法几何意义法是通过将定积分代表的曲边梯形进行适当的分割和逼近,最终得到定积分的值。

这种方法适用于简单的函数和几何形状,容易理解和操作。

2.2 切割法切割法是将定积分的积分区间进行适当的分割,然后对每个小区间内的函数求积分,最后将所得的和加起来。

定积分知识点总结

定积分知识点总结

定积分知识点总结一、定积分的概念定积分是微积分中的一个重要概念,它是求解曲线下面积的一种方法。

当我们要计算一个曲线在两个点之间的面积时,可以使用定积分来求解。

定积分通常由一个区间上的函数来定义,它表示这个函数在这个区间上的面积。

二、定积分的符号表示定积分通常用符号∫关于x代表积分,下限和上限之间的函数表示要积分的函数,dx表示积分变量。

即∫ab f(x)dx表示在区间[a, b]上的函数f(x)的定积分。

三、定积分的性质1. 线性性质:若f(x)和g(x)是[a, b]上的可积函数,k1和k2是常数,则有∫ab(k1f(x)+k2g(x))dx=k1∫abf(x)dx+k2∫abg(x)dx。

2. 区间可加性:若f(x)在[a, b]和[b, c]上都可积,则有∫ac f(x)dx=∫ab f(x)dx+∫bc f(x)dx。

3. 积分的保号性:若在[a, b]上有f(x)≥0,则∫ab f(x)dx≥0。

4. 积分的单调性:若在[a, b]上有f(x)≥g(x),则∫ab f(x)dx≥∫ab g(x)dx。

五、定积分的计算方法1. 几何法:通过几何图形的面积来计算定积分,通常使用在能够用几何图形表示的函数上,例如多项式函数。

2. 积分表法:通过积分表中的已知积分公式,来计算定积分,通常用于一些常见函数。

3. 定积分的换元积分法:通过变量替换的方法来进行定积分的计算,通常适用于需要进行一定变量替换后才能计算的函数。

4. 定积分的分部积分法:通过分部积分的方法来进行定积分的计算,通常适用于需要进行一定的分部积分后才能计算的函数。

六、定积分的应用定积分在数学和物理学中有着极其重要的应用,例如计算曲线下面积、求解函数的平均值、求解体积、求解质量、质心和弧长等。

在数学中,定积分是微积分的基础,它还被广泛应用于概率统计、微分方程、傅立叶变换等领域。

在物理学中,定积分被用来求解各种场和力的功、能量、质心等问题。

定积分和微积分基本定理知识点及题型归纳总结

定积分和微积分基本定理知识点及题型归纳总结

定积分和微积分基本定理知识点及题型归纳总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--定积分和微积分基本定理知识点及题型归纳总结知识点精讲一、基本概念 1.定积分的极念一般地,设函效()f x 在区间[a ,b]上连续.用分点0121ii ax x x x x n x b 将区间[,]a b 等分成n 个小区间,每个小区间长度为x (b axn),在每个小区间1,i i x x 上任取一点()1,2,,i i n ξ=,作和式:1()n n i i S f x ξ==∆=∑ 1()ni i b af n ξ=-∑,当x 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,()f x 为被积函数,x 为积分变量,[,]a b 为积分区间,b 为积分上限,a 为积分下限. 需要注意以下几点:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法.①分割:n 等分区间,a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b af nξ=-∑;④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰ (3)曲边图形面积:()b aS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功(x)baS F dx =⎰2.定积分的几何意义从几何上看,如果在区间,a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()ba f x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()yf x 所围成的曲边梯形(如图3-13中的阴影部分所示)的面积,这就是定积分()b af x dx ⎰的几何意义.一般情况下,定积分()b af x dx ⎰的值的几何意义是介于x 轴、函数()f x 的图像以及直线,x a x b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.二、基本性质 性质1 1ba dxb a =-⎰.性质2 ()()(0)b baakf x dx k f x dx k =⎰⎰其中是不为的常数(定积分的线性性质).性质3 1212[()()]()()b b ba aaf x f x dx f x dx f x dx ±=±⎰⎰⎰(定积分的线性性质).性质4 ()()()()bc baacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中(定积分对积分区间的可加性)推广1 1212[()()()]()()()bb bbm m a aaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰推广2 121()()()()kb c c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰.三、基本定理设函数()f x 是在区间[,]a b 上连续,且()F x 是()f x 是在[,]a b 上的任意一个原函数,即'()()F x f x =,则()()()b a f x dx F b F a =-⎰,或记为()()ba bf x dx F x a==⎰ ()()F b F a -,称为牛顿—莱布尼兹公式,也称为微积分基本定理.该公式把计算定积分归结为求原函数的问题,只要求出被积函数()f x 的一个原函数()F x .然后计算原函数()F x 在区间[],a b 上的增量()()F b F a -即可,这一定理提示了定积分与不定积分之间的内在联系.题型归纳及思路提示题型1 定积分的计算 思路提示对于定积分的计算问题,若该定积分具有明显的几何意义,如圆的面积等(例及其变式),则利用圆面积计算,否则考虑用牛顿-莱布尼茨公式计算. 例计算()12-1sin x x dx +⎰= .解析 ()123-111112sin =cos cos1cos113333x x dx x x ⎛⎫⎛⎫⎛⎫+-=----= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎰.A. B. C. D.变式1 ()421dx x=⎰ A.-2ln 2 B. 2ln 2 C.-ln2 D. ln 2变式2 ()1(2)x e x dx +=⎰B 1e -. C.e D. +1e变式3 设函数()()20f x ax c a =+≠,若()()()100001f x dx f x x =≤≤⎰,则0x 的值为 .变式4 设函数()y f x =的定义域为R, 若对于给定的正数k ,定义函数()()(),(),k k f x k f x f x f x k≤⎧=⎨>⎩,则当函数()1,1f x k x ==时,定积分()214k f x dx ⎰的值为( )A.2ln 22+B. 2ln 21-C.2ln2D. 2ln 21+ 例 根据定积分的几何意义计算下列定积分(1)()402x dx -⎰; (2)1-⎰分析根据定积分的几何意义,利用图形的面积求解.解析 根据定积分的几何意义,所求的定积分是直线所围成图形(如图3-14所示)的面积的代数和,很显然这是两个面积相等的等腰直角三角形,如图3-14所示,其面积代数和是0,故()4020x dx -=⎰.(2)根据定积分的几何意义,所求的定积分是曲线()2210x y y +=≥和x 轴围成图形(如图3-15所示)的面积,显然是半个单位圆,其面积是2π,故121=2x dx π--⎰.评注 定积分()bax dx ⎰的几何意义是函数和直线,x a x b ==以及x 轴所围成的图形面积的代数和,面积是正值,但积分值却有正值和负值之分,当函数时,()0f x >面积是正值,当函数()0f x <时,积分值是负值.变式1 根据定积分的几何几何意义计算下列定积分. (1)()402x dx +⎰; (2)024x dx --⎰; (3)100sin xdx π⎰; (4)344sin xdx ππ-⎰.题型52 求曲边梯形的面积 思路提示函数()(),y f x y g x ==与直线(),x a x b a b ==<围成曲边梯形的面积为()()|f g |dx baS x x =-⎰,具体思路是:先作出所涉及的函数图象,确定出它们所围成图形的上、下曲线所对应函数,被积函数左、右边界分别是积分下、上限. 例 由曲线23,y x y x ==围成的封闭图形的面积为( ) A.112 B.14 C.13 D.712解析 由23x x =得01,x x ==或则由2y x =和3y x =围成的封闭图形的面积为()1233401111110343412x x dx x x ⎛⎫-=-=-= ⎪⎝⎭⎰,故选A . 变式1(2012湖北理3)已知二次函数()y f x =的图象如图3-16所求,则它与x 轴所围成图形的面积为( ) A.25π B.43 C.32 D.2π变式2 由曲线2y x =和直线()20,1,,0,1x x y t t ===∈所围成的图形(如图3-17中阴影部分所示)面积的最小值为( ) A.23 B.13 C.12 D.14变式3 求抛物线24y x =与24y x =-围成的平面图形的面积.变式4 求由两条曲线2214,y 4y x x ==和直线4y =所围成的面积.最有效训练题 1.已知函数()223f x x x =--,则()11f x dx -=⎰( )A. -2B.163- D. 1632.定积分())1211x x dx --=⎰( )A,24π- B.12π- C.14π- D. 12π-3.设()[]2,0,12,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则()20f x dx =⎰( )A.34B.45C.56D.不存在 4.222,,sin xa xdxb e dxc xdx ===⎰⎰⎰,则,,a b c 的大小关系是( )A,a c b << B.a b c << C.c b a << D. c a b <<5.曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面区域的面积为( )A,1 B. 2 C.21 D. )2216.由直线,,033x x y ππ=-==与曲线cos y θ=所围成的平面图形的面积为( )A,12 B.1 C.33 7.抛物线22y x =与直线4y x =-围成的平面图形的面积为 .8.已知()f x 是偶函数,且()506f x dx =⎰,则()55f x dx -=⎰ .9.()22|1x |dx --=⎰ .1-y xO图3-161110.已知函数()y f x =的图象是折线段ABC ,其中()()10,0,5,1,02A B C ⎛⎫⎪⎝⎭,.函数()()01y xf x x =≤≤的图象与x 轴所围成的图形的面积为 .11.根据定积分的几何意义计算下列定积分.(1)11|x|dx -⎰; (2)22411x dx x ⎛⎫+ ⎪⎝⎭⎰; (3)11dx ⎰;(4)20cos 2x dx π⎰; (5)20cos 2cos sin x dx x xπ-⎰ 12.有一条直线与抛物线2y x =相交于A,B两点,线段AB与抛物线所围成图形的面积恒等于43,求线段AB的中点P的轨迹方程.。

定积分的计算知识点总结

定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。

1. 概念。

- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。

在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。

当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。

- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。

2. 几何意义。

- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。

- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。

- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。

二、定积分的基本性质。

1. 线性性质。

- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。

2. 区间可加性。

- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。

3. 比较性质。

- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。

- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。

高数大一定积分知识点总结

高数大一定积分知识点总结

高数大一定积分知识点总结大一学习高数,定积分是必不可少的一个重要知识点。

定积分是微积分的重要内容,具有广泛的应用价值。

下面就来总结一下高数大一定积分的知识点。

一、定积分的概念定积分是对函数在给定区间上的值进行求和的一种运算。

它可以用来求函数曲线与坐标轴之间的面积,解决一些几何问题,也可以用来计算物理问题中的一些重要量。

定积分可以看作是对无限个微小的小矩形面积的求和,它的值代表了函数在给定区间上的总体变化情况。

二、定积分的计算方法1. 基本积分法通过基本积分法可以求解一些初等函数的定积分。

例如,通过查表或者掌握一些基本的积分公式,可以直接求出一些常见函数的定积分。

对于一般的函数,可以通过将其转化为一些已知函数的积分形式,再进行计算。

2. 牛顿-莱布尼兹公式牛顿-莱布尼兹公式是定积分与不定积分之间的重要关系。

它指出,一个函数在一个区间上的定积分等于该函数的原函数在该区间的两个端点处的函数值之差。

这个公式可以简化定积分的计算,将其转化为不定积分的计算。

3. 分部积分法当被积函数是两个函数的乘积时,可以使用分部积分法进行求解。

分部积分法的基本思想是将一个积分转化为两个函数的乘积形式,通过对其中一个函数求导,对另一个函数进行积分,从而求解原始的积分问题。

4. 替换变量法有时候,为了简化定积分的计算,可以通过进行变量替换将原来的积分转化为新的积分形式。

这样一来,可以减少计算的复杂度,简化求解的过程。

常见的变量替换方法有三角代换、指数代换等。

5. 积分换元法积分换元法是一种重要的定积分计算方法,它通过引入新的变量进行变换,将原积分转化为新变量的积分表达式。

这样一来,可以通过对新变量的积分求解,再通过转换回原变量,得到原来的定积分结果。

三、定积分的几何应用定积分的一个重要应用就是求解函数曲线与坐标轴之间的面积。

通过定积分,可以计算出函数曲线与坐标轴之间的有界曲边梯形或者曲边三角形的面积。

这个应用在计算几何和物理学中有着广泛的应用。

大专定积分知识点总结

大专定积分知识点总结

大专定积分知识点总结一、初等函数的不定积分1. 一元函数的不定积分(1)定义:设f(x)是定义在一个区间上的函数,F(x)是它的一个原函数,则在这个区间上有F'(x)=f(x),记为∫f(x)dx=F(x)+C,其中C为任意常数,这个过程称为不定积分,或者原函数的求法。

(2)基本积分公式:① ∫kdx=kx+C② ∫xⁿdx=x^(n+1)/(n+1)+C,n≠-1③ ∫dx=x+C④ ∫(1/x)dx=ln|x|+C⑤ ∫e^xdx=e^x+C⑥ ∫aˣdx=aˣ/ln(a)+C(3)分部积分法:2. 函数的定积分(1)定义:设f(x)是定义在[a,b]上的函数,P:{a=x₀<x₁<...<xₙ=b}是[a,b]的一个分划,则δxᵢ=xᵢ-xᵢ₋₁, ξᵢ∈[xᵢ-₁,xᵢ],S(P,f)=Σf(ξᵢ)δxᵢ称为f(x)在[a,b]上P的积分和。

(2)引入定义:如果有两个数I*,I使得|S(P,f)-I|<ε对任意的分划P均成立,即对任意的ε>0,总存在一个正数δ,对任意的分划P的细分P',当δ(P')<δ时,有|S(P',f)-I|<ε,则称函数f(x)在[a,b]上可积,且I是f(x)在[a,b]上的定积分,记作∫f(x)dx。

(3)定积分的性质:① ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx② ∫(kf(x))dx=k∫f(x)dx③ 若f(x)≤g(x),则∫f(x)dx≤∫g(x)dx3. 定积分的计算(1)牛顿-莱布尼兹公式:设F(x)是f(x)在[a,b]上的一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)(2)变上限积分:设f(x)在区间[a,b]上连续,则Ψ(x)=∫[a,x]f(t)dt是F(x)的一个原函数,即Ψ'(x)=f(x)。

(3)定积分的几何意义:设f(x)在[a,b]上连续,则∫[a,b]f(x)dx表示曲线y=f(x),直线x=a,x=b和y轴所围成的平面图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档