轴对称图形练习题
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
五年级轴对称练习题
五年级轴对称练习题轴对称是数学中的一个重要概念,它在几何图形的对称性中起着重要作用。
在五年级学习数学时,轴对称是一个必须要掌握的内容。
本文将为你介绍一些五年级轴对称的练习题,帮助你巩固和提升对轴对称的理解和运用能力。
练习题一:判断图形是否有轴对称观察下面三个图形,判断它们是否有轴对称,并给出解释。
1.A B C D EA ■ ■B ■ ■C ■ ■D ■ ■E ■ ■2.F G H I JF ■G ■H ■I ■J ■3.K L M N OK ■L ■M ■N ■O ■练习题二:根据轴对称完成图形根据给出的轴对称线,完成相应的图形。
1. 轴对称线为竖线: |□ □ □ □ □□ □□ □□ □□ □ □ □ □2. 轴对称线为横线:_____□ □ □ □ □□ □□ □ □ □ □练习题三:图形的自带轴对称线观察下面的五个图形,找出其中自带轴对称线的图形,并给出解释。
1.P Q R S TP ■ ■Q ■ ■R ■ ■S ■ ■T ■ ■2.U V W X YU ■ ■V ■W ■X ■ ■Y ■3.Z AA BB CC DDZ ■ ■AA ■ ■BB ■ ■CC ■ ■DD ■练习题四:利用轴对称完成图形根据给出的图形和已知的轴对称线,完成相应部分的图形。
1.已知轴对称线为竖线: |□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □□ □ □2.已知轴对称线为横线:_____□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □ □ □□ □ □以上是五年级轴对称的练习题,通过反复练习,你将能够更加熟练地识别和应用轴对称的概念。
希望这些练习题能够帮助你加深对轴对称的理解,并在数学学习中取得更好的成绩!。
轴对称练习题(含答案)
轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
轴对称练习题及答案
轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。
2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。
3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。
三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。
2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。
3. 已知点C(1,-1),求点C关于原点的对称点的坐标。
四、判断题1. 所有矩形都是轴对称图形。
()2. 所有等腰三角形都是轴对称图形。
()3. 所有等边三角形都是轴对称图形。
()4. 所有平行四边形都是轴对称图形。
()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。
2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。
3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。
答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。
轴对称图形练习题
对称
一、填空
1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。
2、圆的对称轴有()条,半圆形的对称轴有()条。
3、正方形有()条对称轴,长方形有()条对称轴,圆有()条对称轴。
4、宋体的汉字“王”、“中”、“田”等都是轴对称图形,请再写出三个这样的汉字:_________.
英文字母“A”、“B”、“C”等都是轴对称图形,请再写出三个这样的字母:_________.
5、下列图形中是轴对称图形的在括号里画“√”。
二、选择
1、下列英文字母中,是轴对称图形的是()
A、S
B、H
C、P
D、Q
2、下列各种图形中,不是轴对称图形的是()
3、下列图形中,对称轴最多的是()。
A、等边三角形
B、正方形
C、圆
D、长方形
4、下面不是轴对称图形的是()。
A、长方形
B、平行四边形
C、圆
D、半圆
5、要使大小两个圆有无数条对称轴,应采用第()种画法。
A、 B 、 C、
三、画出下列图形的对称轴。
六年级轴对称图形练习题
六年级轴对称图形练习题轴对称图形是六年级数学学科中的重要概念,掌握轴对称图形的性质和特点对于学生的数学发展至关重要。
本文将为同学们提供一些轴对称图形的练习题,帮助学生加深对该概念的理解和应用。
练习题一:轴对称图形判断判断下列图形是否具有轴对称性,并在答题纸上标明对称轴的位置。
1. 正方形2. 矩形3. 正三角形4. 等腰梯形5. 长方形6. 椭圆7. 菱形8. 长方形9. 圆形练习题二:轴对称图形的完善在下列图形中完成对称图形的绘制,并标出对称轴。
1. 给定一条对称轴,画出一个与给定图形关于该对称轴完全对称的图形。
2. 给定一个点作为对称轴的起点,绘制一个与给定图形关于该点对称的图形。
练习题三:轴对称图形的构造1. 已知一张图片,找出该图片中的轴对称图形,并将其标记出来。
2. 给定某个点,利用直尺和画圆工具构造以该点为轴对称轴的图形。
练习题四:轴对称图形的特性回答下列问题,并说明理由。
1. 一个图形是否可以同时具备多个轴对称轴?2. 一个非对称图形是否可能存在对称轴?3. 轴对称图形具有哪些特点?请举例说明。
练习题五:轴对称图形的应用1. 举例说明轴对称图形在日常生活中的应用,并附上相关图片。
2. 利用轴对称图形的性质,设计一个寓教于乐的游戏或者谜题,描述规则并给出解答。
以上是一些针对六年级轴对称图形的练习题,希望能够帮助同学们提高对轴对称性的理解和应用能力。
通过不断练习和思考,相信同学们能够在数学学科中取得更好的成绩,并在日常生活中灵活运用轴对称图形的知识。
加油!。
轴对称图形练习题
轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 圆形B. 正方形C. 三角形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 点D. 面3. 轴对称图形的对称点关于对称轴具有什么性质?A. 距离相等B. 角度相等C. 面积相等D. 形状相同4. 一个轴对称图形沿着对称轴对折后,两部分会如何?A. 完全重合B. 部分重合C. 不重合D. 无法确定5. 轴对称图形的对称轴可以有多少条?A. 一条B. 两条C. 无数条D. 没有二、填空题6. 轴对称图形的对称轴是图形上所有对称点连线的________。
7. 在轴对称图形中,对称点到对称轴的距离________。
8. 如果一个图形关于某直线对称,那么这条直线就是该图形的________。
9. 轴对称图形的对称轴可以是图形内部的一条线,也可以是图形外部的一条线,这取决于图形的________。
10. 对于一个轴对称图形,如果沿着对称轴对折,图形的两部分会________。
三、简答题11. 请简述轴对称图形的定义。
12. 举例说明什么是轴对称图形的对称点。
13. 解释为什么轴对称图形沿着对称轴对折后,两部分会完全重合。
四、判断题14. 所有的圆形都是轴对称图形。
()15. 只有规则的多边形才是轴对称图形。
()16. 轴对称图形的对称轴可以是曲线。
()17. 轴对称图形的对称点一定在对称轴上。
()18. 轴对称图形沿着对称轴对折后,两部分可能会部分重合。
()五、应用题19. 给定一个矩形,其长为10厘米,宽为5厘米。
如果沿着矩形的长边中点画一条直线作为对称轴,这条直线是轴对称图形的对称轴吗?为什么?20. 如果一个等边三角形沿着其中一条中线对折,对折后的图形是什么?请说明理由。
六、绘图题21. 绘制一个轴对称图形,并标出其对称轴。
22. 给定一个轴对称图形,绘制出其对称点,并说明如何确定这些点。
七、探究题23. 研究并解释为什么自然界中的许多生物体,如蝴蝶和树叶,呈现出轴对称的特性。
轴对称图形练习题
轴对称图形练习题1、如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.2、在一些缩写符号SOS,CCTV,BBC,WWW,TNT中,成轴对称图形的是______3、将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.4、(1)如图,已知∠AOB和C、D两点,用直尺和圆规作一点P,使PC=PD,且P到OA、OB两边距离相等.(2)用三角尺作图在如图的方格纸中,①作△ABC关于直线l1对称的△A1B1C1;再作△A1B1C1关于直线l2对称的△A2B2C2;再作△A2B2C2关于直线l3对称的△A3B3C3.②△ABC与△A3B3C3成轴对称吗?如果成,请画出对称轴;如果不成,把△A3B3C3怎样平移可以与△ABC成轴对称?5、下列四个图案中,不是轴对称图形的是()A.B.C.D.6、在字母A、B、C、D、E、F、G、H、I、J中不是轴对称图形的是______7、将写有字“E”的纸条正对镜面,则镜中出现的会是()A.E B.ヨC.ΜD.Ш8、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有______.9、线段是轴对称图形,它有______条对称轴,正三角形的对称轴有______条.10、如图,已知△ABC和直线l.(1)请你作出与△ABC关于直线l对称的△A′B′C′.(保留作图痕迹,不写作法)(2)请你在直线l上找到一点P,使得AP+BP最短.11、下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形一定是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有3条对称轴错误的有()A.4个B.3个C.2个D.1个12、一牧童在A处牧马,牧童的家在B处,A、B处距河岸的距离分别是AC=500m,BD=700m,且C、D两地间距离也为500m,天黑前牧童从A点将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)请你求出他至少要走______路程.13、如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED的最小值为______..14、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个15、已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有()A.1个B.2个C.3个D.4个16、如图,这是由三个正方形构成的图形.请你在这个图形中再添加一个正方形,使得添加完之后的图形是一个轴对称图形.参考下图:17、观察如图所示的图案,轴对称图形的个数有()。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
轴对称图形练习题
轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 平行四边形D. 梯形2. 下列哪个字母是轴对称图形?A. AB. BC. CD. DA. 0B. 1C. 3D. 84. 下列哪个图形不是轴对称图形?A. 心形B. 五角星C. 菱形D. 圆二、判断题1. 所有的三角形都是轴对称图形。
()2. 轴对称图形的对称轴可以是直线,也可以是曲线。
()3. 正六边形有6条对称轴。
()4. 任意一条直线都可以作为轴对称图形的对称轴。
()三、填空题1. 轴对称图形的对称轴将图形分成了______部分。
2. 一个正方形有______条对称轴。
3. 轴对称图形的两侧是______的。
4. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是______。
四、作图题1. 请画出下列图形的对称轴:(1)正方形(2)等腰三角形(3)矩形2. 请画出下列图形关于某条直线的轴对称图形:(1)正五边形(2)字母“M”(3)数字“2”五、应用题1. 在平面直角坐标系中,已知点A(1,2)、点B(3,4)和点C(5,6)。
请找出一个点D,使得四边形ABCD是一个轴对称图形。
2. 小明在纸上画了一个不规则图形,他想知道这个图形是否是轴对称图形。
请你帮助小明判断,并说明理由。
3. 下列图形中,哪些是轴对称图形?请分别找出它们的对称轴。
(1)长方形(2)正六边形(3)平行四边形4. 请设计一个轴对称图形,使其包含至少4种不同的几何图形。
六、简答题1. 请解释什么是轴对称图形,并给出一个生活中的实例。
2. 为什么说圆是轴对称图形?圆有多少条对称轴?3. 描述如何判断一个图形是否是轴对称图形。
4. 在一个轴对称图形中,对称轴上的点到图形两侧的距离是否相等?为什么?七、匹配题请将下列图形与其对应的对称轴匹配:A. 正方形 a. 一条对角线B. 等边三角形 b. 经过中心的任意直线C. 半圆 c. 经过顶点的中线D. 椭圆 d. 经过中心的水平线八、分类题1. 正五边形2. 不规则四边形3. 菱形4. S形曲线5. 长方形九、探究题1. 探究轴对称图形在折叠后的性质,并举例说明。
轴对称图形及性质专项练习30题(有答案)ok
25.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
26.如图,△ABC和△A′B′C′关于直线m对称.
轴对称图形及性质专项练习30题(有答案)
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A.
1
B.
2
C.
3
D.
4
2.如本题图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )
A.
B.
C.
D.
3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )
∴对称轴的条数为2的图形的个数是3;
故选:C
2.解:根据轴对称图形的概念可得:A、B和C选项中的图案是轴对称图形,D选项中的图案不是轴对称图形,
故选D
3.解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,
所以此时实际时刻为10:51.
故选C
4.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.
A.
2种
B.
3种
C.
4种
D.
5种
13.下列说法错误的是( )
A.
线段是轴对称图形,它的对称轴是线段的垂直平分线
(完整版)轴对称图形练习题
轴对称图形练习题
姓名_________ 家长签字_______________
一、判断下列哪些图形是轴对称图形,在方框内打“√”,不是的在方框内打“×”.
二、画出下列轴对称图形的对称轴。
三、填空。
1、如果把一个图形沿着一条虚线对折,两侧的图形能够___________,这个图形就是_________________。
这条虚线叫做____________.
2、蝴蝶左右两边的形状____________,所以是__________图形。
3、五角星是_________图形,它有______条对称轴。
4、等边三角形有_____条对称轴,长方形有_____条对称轴,正方形有_____条对称轴,圆形有____条对称轴。
四、判断正误,正确的在括号内打“√”,错误的在括号内打“×”。
1、圆形和三角形都是轴对称图形。
﹙﹚2、树叶都是轴对称图形,有一条对称轴。
﹙﹚3、长方形和正方形都有四条对称轴。
﹙﹚
五、在方格纸上画出轴对称图形的另一半,并把图形涂上你喜欢的颜色。
轴对称图形练习题
轴对称图形练习题(一)1、如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.2、在一些缩写符号SOS,CCTV,BBC,WWW,TNT中,成轴对称图形的是______3、将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.等.(2)用三角尺作图在如图的方格纸中,①作△ABC关于直线l1对称的△A1B1C1;再作△A1B1C1关于直线l2对称的△A2B2C2;再作△A2B2C2关于直线l3对称的△A3B3C3.②△ABC与△A3B3C3成轴对称吗?如果成,请画出对称轴;如果不成,把△A3B3C3怎样平移可以与△ABC成轴对称?5、下列四个图案中,不是轴对称图形的是()A.B.C.D.6、在字母A、B、C、D、E、F、G、H、I、J中不是轴对称图形的是______7、将写有字“E”的纸条正对镜面,则镜中出现的会是()A.E B.ヨC.ΜD.Ш8、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有______.9、线段是轴对称图形,它有______条对称轴,正三角形的对称轴有______条.10、如图,已知△ABC和直线l.(1)请你作出与△ABC关于直线l对称的△A′B′C′.(保留作图痕迹,不写作法)(2)请你在直线l上找到一点P,使得AP+BP最短.11、下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形一定是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有A.4个B.3个C.2个D.1个12、一牧童在A处牧马,牧童的家在B处,A、B处距河岸的距离分别是AC=500m,BD=700m,且C、D两地间距离也为500m,天黑前牧童从A点将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)请你求出他至少要走______路程.13、如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED的最小值为______..14、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个15、已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有()A.1个B.2个C.3个D.4个16、如图,这是由三个正方形构成的图形.请你在这个图形中再添加一个正方形,使得添加完之后的图形是一个轴对称图形.参考下图:17、观察如图所示的图案,轴对称图形的个数有()A.1个B.2个C.3个D.4个。
小学轴对称图形练习题
小学轴对称图形练习题小学轴对称图形练习题在小学数学的学习中,轴对称图形是一个重要的概念。
它不仅能培养学生的观察能力,还能锻炼他们的逻辑思维和创造力。
下面,我们来看几道关于轴对称图形的练习题,帮助学生更好地理解和掌握这个概念。
练习题一:请画出下列图形的轴对称图形。
1. 一个等边三角形2. 一个正方形3. 一个长方形4. 一个五角星5. 一个心形解答:1. 等边三角形的轴对称图形是它自身。
2. 正方形的轴对称图形是它自身。
3. 长方形的轴对称图形是它自身。
4. 五角星的轴对称图形是它自身。
5. 心形的轴对称图形是它自身。
练习题二:请判断下列图形是否具有轴对称性。
1. 一个矩形2. 一个圆形3. 一个梯形4. 一个菱形5. 一个椭圆解答:1. 矩形具有轴对称性。
它的轴对称线可以是它的中心线。
2. 圆形具有无限多条轴对称线。
任意一条直径都是它的轴对称线。
3. 梯形不具有轴对称性。
它没有任何一条直线可以将它分成两个完全相同的部分。
4. 菱形具有轴对称性。
它的轴对称线可以是它的两条对角线。
5. 椭圆不具有轴对称性。
虽然它有两条对称轴,但是没有一条直线可以将它分成两个完全相同的部分。
练习题三:请找出下列图形的轴对称线。
1. 一个矩形2. 一个圆形3. 一个梯形4. 一个菱形5. 一个椭圆解答:1. 矩形的轴对称线可以是它的中心线或者任意一条对角线。
2. 圆形的轴对称线可以是任意一条直径。
3. 梯形没有轴对称线。
4. 菱形的轴对称线可以是它的两条对角线。
5. 椭圆没有轴对称线。
通过这些练习题,学生们可以更好地理解轴对称图形的概念,并能够运用这个概念来解决问题。
轴对称图形是数学中的一个基础概念,对于培养学生的几何直观和逻辑思维非常重要。
在解答这些练习题的过程中,学生们不仅能够培养观察力和创造力,还能够提高他们的空间想象力和问题解决能力。
除了练习题,老师们还可以设计一些与轴对称图形相关的游戏和活动,让学生们通过实际操作来加深对这个概念的理解和掌握。
画轴对称图形练习题(超经典含答案)
1.已知点P关于y轴的对称点1P的坐标是(2,3),则点P坐标是A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)2.点M关于y轴对称点M1的坐标为(2,-4),则M关于x轴对称点M2的坐标为A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有A.2种B.3种C.4种D.5种4.△ABC的三个顶点的横坐标都乘以-1,纵坐标不变,则所得三角形与原三角形的位置关系是A.关于x轴对称B.关于y轴对称C.关于原点对称D.将△ABC向右平移了1个单位长度5.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C6.如图,点A的坐标(-1,2),点A关于y轴的对称点的坐标为A .(1,2)B .(-1,-2)C .(1,-2)D .(2,-1)7.若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是 A .-5B .-3C .3D .18.点A (-5,-6)与点B (5,-6)关于__________对称.9.如图,在方格纸上建立的平面直角坐标系中,Rt △ABC 关于y 轴对称的图形为Rt △DEF ,则点A 的对应点D 的坐标是__________.10.把如图中所示的某两个空白小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.11.已知(2)A a ,,(4)B b ,,分别根据下列条件求a b ,的值. (1)A B ,关于y 轴对称; (2)A B ,关于x 轴对称.12.如图,按要求完成下列问题:作出这个小红旗图案关于y轴对称的轴对称图形,写出所得到图形相应各点的坐标.13.下列关于A、B两点的说法中,正确的个数是(1)如果点A与点B关于y轴对称,则它们的纵坐标相同;(2)如果点A与点B的纵坐标相同,则它们关于y轴对称;(3)如果点A与点B的横坐标相同,则它们关于x轴对称;(4)如果点A与点B关于x轴对称,则它们的横坐标相同.A.1个B.2个C.3个D.4个14.如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴对称的图形△A2B2C2,则顶点A2的坐标是A.(-3,2)B.(2,-3)C.(1,-2)D.(3,-l)15.如图所示,是用笔尖扎重叠的纸得到成轴对称的图案,请根据图形写出:(1)两组对应点__________和__________;(2)两组对应线段__________和__________;(3)两组对应角__________和__________.16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1,B1,C1的坐标(直接写出答案);(3)△A1B1C1的面积为__________.17.下面两个轴对称图形分别只画出一半,请画出它的另一半(直线l为对称轴).18.如图,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.19.(2018·四川甘孜州)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B 的坐标为A.(-2,3)B.(-2,-3)C.(2,-3)D.(-3,-2)20.(2018·辽宁沈阳)在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)21.(2018·吉林长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.3.【答案】A【解析】如图,.有2种方法.故选A.4.【答案】B【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.横坐标都乘以−1,即横坐标变为相反数,纵坐标不变,符合关于y轴对称,故选B.5.【答案】A【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.故点A与C,B与D关于y轴对称.故选A.6.【答案】A【解析】点A的坐标(-1,2),点A关于y轴的对称点的坐标为:(1,2).故选A.10.【解析】所作图形如图:11.【解析】(1)若点A,B关于y轴对称,则a=4,−b=−2,b=2.(2)若点A,B关于x轴对称,则a=−4,−b=2,b=−2.12.【解析】小红旗关于y轴的轴对称图形如图所示:A'B'C',,,,,.(89)(85)(25)13.【答案】B【解析】正确的是:①如果点A与点B关于y轴对称,则它们的纵坐标相同;④如果点A与点B关于x轴对称,则它们的横坐标相同.故正确的有两个.故选B.16.【答案】(1)图见解析;(2)A 1(-1,2);B 1(-3,1);C 1(2,1);(3)4.5.【解析】(1)如图所示:(2)A 1(-1,2),B 1(-3,1),C 1(2,-1). (3)△A 1B 1C 1的面积=5×3-1×2÷2-5×2÷2-3×3÷2=4.5. 17.【解析】所作图形如下:18.【解析】画出的图形如下所示,其中1111(11)(51)(54)(24)A B C D ----,,,,,,,.2222(11)(51)(54)(24)A B C D ----,,,,,,,.19.【答案】A【解析】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.20.【答案】A【解析】∵点B的坐标是(4,-1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.21.【解析】如图所示:。
轴对称(练习题)
轴对称(练习题)轴对称(练习题)一、填空题1.下列图形中,是轴对称图形的为()2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()3.点P(1,2)关于y轴对称点的坐标是().A.(-1,2) B.(1,-2) C.(1,2) D.(-1,-2)4.下列图形中,既是轴对称图形,又是中心对称图形的个数是()①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆.A.2 B.3 C.4 D.55.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cm C.11cm 或7.5cm D.以上都不对6.等腰三角形的两边分别为6,13,则它的周长为()A.25 B.25或32 C.32 D.197.下列命题中,真命题的是( )A.相等的两个角是对顶角B.若a>b,则a>bC.两条直线被第三条直线所截,内错角相等D.等腰三角形的两个底角相等8.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。
如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是()A.12∶51 B.15∶21 C.15∶51 D.12∶219.如图,直线1表示石家庄的太平河,点P表示朱河村,点Q表示黄庄村,欲在太平河1上修建一个水泵站(记为点M),分别向两村供水,现有如下四种修建水泵站供水管道的方案,图中实线表示修建的管道,则修建的管道最短的方案是()10.如图,在△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的度数为( )A.100° B.80° C.70° D.50°11.等腰三角形中有一个内角等于40°,其余两个内角的度数为( )A.40°,100°B.70°,70°C.40°,100°或70°,70°D.60°,80°12.如图,在△ABC中,AB=AC,AE=BE,∠BAE=40°,且AE=AF,则∠FEC等于()A.10° B.15° C.20° D.25°13.将△ABC三个顶点横坐标都乘以-1,纵坐标不变,则所得图形与原图形的关系是A、关于x轴对称B、关于y轴对称C、关于原点对称D、不存在对称关系14.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°15.已知点P关于x轴的对称点为(a,-2),关于y轴的对称点为(1,b),那么点P的坐标为()A. (a, -b)B.(b, -a)C. (-2,1)D. (-1,2)16.等腰三角形一腰上的高与另一腰的夹角是35°,则顶角的度数是()A.55° B.125° C.125°或55° D.35°或145°17.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)18.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下结论不成立的是()A.AD=BEB.AP=BQC.DE=DPD.PQ∥AE二、填空题19.已知一个等腰三角形两内角的度数之比1∶4,则这个三角形顶角为度20.若1|2|0ab-+-=,则以,a b为边长的等腰三角形的周长为___________.21.如图,在△ABC中,AB=AC,D、E分别是AB、AC的中点,M、N为BC上的点,连接DN、EM.若AB=10cm,BC=12cm,MN=6cm,则图中阴影部分的面积为_________cm2.22.如图,在等边△ABC中,AB=6,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是 .23.点P(3,-5)关于x轴对称的点的坐标是.24.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= 。
轴对称练习题含答案
轴对称练习题13.1.1 轴对称下列图形中,是轴对称图形的是( )3 .如图,△ ABC和4A'B。
关于直线I对称,下列结论中正确的有()①^ABC/△ A'B'C;②/BAC =Z B'A'C;③直线l垂直平分C C;④直线BC和B'C 的交点不一定在直线l上.A. 4个B. 3个C 2个D. 1个第3题图第4题图4 .如图,△ ABC与^A'B。
关于直线l对称,且N A = 105°, Z C = 30°,则N B的度数为()A.25°B.45°C.30°D.20°5 .如图,A ABC关于直线MN对称的三角形的顶点分别为A', B’, C,其中Z A = 90°, A =8cm, A'B=6cm.(1)求AB, A'C的长;(2)求4 A‘B。
的面积.2下列轴对称图形中,对称轴条数是四条的图形是()13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在八^。
中,AB的垂直平分线交AC于点P, PA = 5,则线段PB的长度为()A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD, BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC AB垂直平分CD D. CD平分/ACB3.如图,在A ABC中,D为BC上一点,且BC=BD+AD,则点D在线段的垂直平分线上.第3题图第4题图4.如图,在Rt A ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且N CBD =Z ABD,则N A =°.5.如图,在^ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm, △ ADC的周长为11cm,求BC的长.第2课时线段垂直平分线的有关作图1.如图,已知线段/'分别以点A,点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《轴对称图形与成轴对称》练习题
姓名:班别: 学号:
一.填空。
1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是
(),折痕所在的直线叫做()。
2.在对称图形中,对称轴两侧相对的点到对称轴的()。
二.判断。
1.通过一个圆的圆心的直线是这个圆的对称轴。
( )
2.圆是轴对称图形,每一条直径都是它的对称轴。
()
3.等腰梯形是对称图形。
( )
4.正方形只有一条对称轴。
( )
三.选择。
1.4、下列图形中对称轴条数最多的是( )
A.正方形
B.长方形
C.等腰三角形
D.等腰梯形
E.等边三角形
F.角
G.线段
H.圆
I.正五角星2.下面不是轴对称图形的是()。
①长方形②平行四边形③圆④半圆
3.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )
4.(2004·安徽)如图14-18所示,下列图案中,是轴对称图形的是( )
A.(1)(2)
B.(1)(3)
C.(1)(4)
D.(2)(3)
5.(2004·厦门)如图14-19所示,下列图案中,是轴对称图形的是( )
图14-19
A.(1)(2)
B.(1)(3)(4)
C.(2)(3)
D.(1)(4)
6、下列英文字母属于轴对称图形的是( )
A 、N
B 、S
C 、L
D 、E
7、下列各时刻是轴对称图形的为( )
A 、
B 、
C 、
D 、
8、将写有字“B ”的字条正对镜面,则镜中出现的会是( )
A 、
B 、
C 、
D 、 9、和点P (-3,2)关于y 轴对称的点是( )
A.(3, 2)
B.(-3,2)
C. (3,-2)
D.(-3,-2)
10.小强从镜子中看到的电子表的读数如图所示,则电子表的实际读数是 .
四.作图题。
画下面图形的对称轴.
五.解答题。
1. 判断下列图形(如图14-6所示)是不是轴对称图形.
B
: 第10题图
2、判断下面每组图形(如图14-7所示)是否关于某条直线成轴对称.
3、如图14-8所示,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.
4、两个大小不同的圆可以组成如图14-12中的五种图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么共同的特点.
5、(2003·吉林)在图14-17中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.
答:图形;理由是: .
6、求右图阴影部分的面积。
(单位:厘米)。