戴维南定理和诺顿定理实验_模板

合集下载

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法(1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R0的测量方法(1)开路电压、短路电流法测R0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R = (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告戴维南定理和诺顿定理是电路理论中非常重要的两个定理,它们为我们理解和分析电路提供了重要的理论支持。

本次实验旨在通过实际操作验证戴维南定理和诺顿定理,并对实验结果进行分析和讨论。

实验一,验证戴维南定理。

首先,我们搭建了一个包含多个电阻的电路,并通过测量电路中各个电阻的电压和电流,得到了电路的电压-电流特性曲线。

然后,我们通过改变电路中的电阻值,重新测量电路的电压-电流特性曲线。

最后,我们根据戴维南定理,将电路简化为一个等效的电压源和电阻,通过比较原始电路和简化电路的特性曲线,验证了戴维南定理的有效性。

实验二,验证诺顿定理。

在这个实验中,我们利用相同的电路,通过测量电路中的电压和电流,得到了电路的电压-电流特性曲线。

然后,我们将电路简化为一个等效的电流源和电阻,重新测量电路的电压-电流特性曲线。

通过比较原始电路和简化电路的特性曲线,验证了诺顿定理的有效性。

实验结果分析。

通过实验验证,我们发现戴维南定理和诺顿定理在实际电路中具有很高的适用性。

戴维南定理告诉我们,任何线性电路都可以用一个等效的电压源和电阻来表示,而诺顿定理则告诉我们,任何线性电路都可以用一个等效的电流源和电阻来表示。

这些定理为我们分析复杂电路提供了便利,使得我们可以通过简化电路结构来更好地理解电路的特性和行为。

结论。

通过本次实验,我们验证了戴维南定理和诺顿定理在实际电路中的有效性,这些定理为我们理解和分析电路提供了重要的理论基础。

在今后的电路设计和分析中,我们可以充分利用这些定理,简化复杂电路的分析过程,提高工作效率,更好地理解电路的行为。

总结。

戴维南定理和诺顿定理是电路理论中的重要定理,通过本次实验,我们验证了它们在实际电路中的有效性。

这些定理为我们提供了简化电路分析的方法,为电路设计和分析提供了重要的理论支持。

希望通过本次实验,能够加深对这些定理的理解,提高电路分析能力,为今后的学习和工作打下良好的基础。

戴维南定理和诺顿定理验证实验报告(参考)

戴维南定理和诺顿定理验证实验报告(参考)

戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)第二篇:戴维南和诺顿等效电路 2200字《电路与电子学基础》实验报告实验名称戴维南和诺顿等效电路班级学号姓名实验1 戴维南和诺顿等效电路一、实验目的1.对一个已知网络,求出它的戴维南等效电路。

2.对一个已知网络,求出它的诺顿等效电路。

3.确定戴维南定理的真实性。

4.确定诺顿定理的真实性。

5.对一个已知网络,确定它的戴维南等效电路。

6.对一个已知网络,确定它的诺顿等效电路。

二、实验器材直流电压电源 1个直流电压表 1个直流电流表 1个电阻数个三、实验步骤1.在电子工作平台上建立如图1-1所示的实验电路。

2.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端开路电压Voc。

实验测得a-b两端开路电压Voc=4.950 V3.根据图1-1所示的电路的元件值,计算a-b两端的电压Voc。

根据两电阻串联分压原理可得? Voc=10*10/(10+10)=5 V4.在电子工作平台上建立如图1-2所示的实验电路。

5.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端的短路电流Isc。

实验测得a-b两端的短路电流 Isc=500.0 uA6.根据图1-2所示的电路元件值,计算短路电流Isc。

计算时应该用一个短导线代替电流表。

由图易知:r2和r3并联再与r1串联计算r1//r2=1/(1/5+1/10)=3.33333 k ohm所以干路总电阻 R=10+3.33333=13.33333 k ohm所以干路电流为 I=10/13.33333=0.75 mA =750 uA再由并联分流原理可得Isc=750×10/15 = 500.0 uA7.根据Voc和Isc的测量值,计算戴维南电压Vtn和戴维南电阻Req。

Req=Voc/Isc=4.95/500*10^-6=9900 ohmVtn=4.95 V8.根据步骤7的计算值,画出戴维南等效电路。

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告

戴维南和诺顿定理的验证实验报告实验目的:验证戴维南和诺顿定理。

实验原理:戴维南和诺顿定理是电路理论中的基本定理之一。

它表示任何包含电压源和电流源的线性电路可以用其电压源和电流源的代数和来等效为一个独立电压源和电流源的并联电路。

实验装置:- 直流电源- 滑动变阻器- 电阻器- 电压表- 电流表- 连接线实验步骤:1. 将实验装置按照电路图连接好,确保电路没有接错。

2. 设置直流电压源的电压值为一定值,例如5V。

3. 测量并记录电路中各个元件的电压和电流数值。

4. 更改电路中的滑动变阻器的阻值,测量并记录电路中各个元件的电压和电流数值。

5. 使用戴维南和诺顿定理,将实验得到的电压和电流数据进行计算,验证定理的成立。

实验结果:表格1:电路1的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.5 0.5电阻器R2 2.5 0.5总电阻(R1+R2) 5.0 1.0表格2:电路2的各个元件的电压和电流数据元件电压(V)电流(A)电压源 5.0 0.5电流源0.0 1.0电阻器R1 2.0 0.4电阻器R2 3.0 0.6总电阻(R1+R2) 5.0 1.0根据戴维南和诺顿定理,两个电路的电压源和电流源的代数和应该相等。

计算结果:对于电路1:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

对于电路2:电压源的代数和= 5.0V + 0.0V = 5.0V,电流源的代数和= 0.5A + 1.0A = 1.5A。

实验结论:通过实验结果和计算可以看出,戴维南和诺顿定理在实际电路中成立,验证了定理的准确性。

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]戴维南定理和诺顿定理一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U 0C ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC ,其等效内阻R 0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U 0C 、I SC 和R 0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC 的测量方法 (1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R =(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U 0C ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 I SC ,其等效内阻R 0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U 0C 、I SC 和R 0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC 的测量方法 (1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SCOCO I U R (2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理及诺顿定理研究实验报告

戴维南定理及诺顿定理研究实验报告
5.11
4.92
4.75
4.59
U/V
5.47
5.83
6.16
6.46
6.73
6.99
7.22
7.44
7.65
P/
54.52
35.15
35.48
35.72
35.74
35.72
35.52
35.34
33.11
对上表的数据进行二次拟合得到以下图像:
于是可以得到,当 =1268时,功率P有最大值33.74× W。
戴维南定理:任何一个线性有源一端口网络,对外电路而言,它可以用一个电压源和一个电阻的串联组合电路等效,该电压源的电压等于该有源一端口网络在端口处的开路电压,而与电压源串联的等效电阻等于该有源一端口网络中全部独立源置零后的输入电阻。
诺顿定理:任何一个线性有源一端口网络,对外电路而言,它可以用一个电流源和一个电导的并联组合电路等效,该电流源的电流等于该有源一端口网络在端口处的短路电流,而与电流源并联的电导等于该有源一端口网络中全部独立源置零后的输入电导。
三.实验线路
参数: =400Ω; =1000Ω; =800Ω; =8mA; =5V。
四.使用设备及编号
设备名称:GDDS高性能电工电子实验台
五.数据、图表及计算
1、测定有源线性一端口网络的等效参数
(1)开路、短路法
=13.45V; =10.61A; = ≈1268Ω。
(2)半偏法
当 =0时, =13.45。
4、验证诺顿定理
比较戴维南等效电路(记为1)与诺顿等效电路(记为2)所测得的数据:
的大小,均小于0.1V
| |的大小,前5个数据大于0.1mA,后5个数据小于0.5mA。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法(1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R0的测量方法(1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SC OC O I U R =(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为复杂电路的简化和分析提供了有力的工具。

为了深入理解和验证这两个定理,我们进行了一系列的实验,并对实验数据进行了详细的分析。

一、实验目的本次实验的主要目的是通过实际测量和计算,验证戴维南定理和诺顿定理的正确性,并加深对这两个定理的理解和应用。

二、实验原理1、戴维南定理戴维南定理指出,任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中,电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络内部所有独立电源置零(即电压源短路,电流源开路)后的等效电阻 Ro。

2、诺顿定理诺顿定理则表明,任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。

电流源的电流等于该一端口网络的短路电流 Isc,电阻仍为网络内部所有独立电源置零后的等效电阻 Ro。

三、实验器材本次实验所使用的器材包括:直流电源、电阻箱、电压表、电流表、导线若干等。

四、实验步骤1、测量含源一端口网络的开路电压 Uoc将含源一端口网络的输出端开路,用电压表测量其两端的电压,即为开路电压 Uoc。

2、测量含源一端口网络的短路电流 Isc将含源一端口网络的输出端短路,用电流表测量其短路电流,即为短路电流 Isc。

3、求含源一端口网络的等效电阻 Ro将含源一端口网络内部的所有独立电源置零(电压源短路,电流源开路),然后用电阻箱测量其等效电阻 Ro。

4、构建戴维南等效电路根据测量得到的 Uoc 和 Ro,用一个电压源和电阻串联的组合来构建戴维南等效电路。

5、构建诺顿等效电路根据测量得到的 Isc 和 Ro,用一个电流源和电阻并联的组合来构建诺顿等效电路。

输出电压和电流,并与原含源一端口网络的测量结果进行比较。

五、实验数据记录与处理1、含源一端口网络的开路电压 Uoc 和短路电流 Isc 测量数据|测量次数|Uoc(V)|Isc(A)||||||1|_____|_____||2|_____|_____||3|_____|_____|取平均值得到:Uoc =______ V,Isc =______ A2、含源一端口网络的等效电阻 Ro 测量数据|测量次数|Ro(Ω)|||||1|_____||2|_____||3|_____|取平均值得到:Ro =______ Ω和电流测量数据|负载电阻(Ω)|原含源一端口网络|戴维南等效电路|诺顿等效电路|||||||10|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||20|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____||30|电压(V):_____|电压(V):_____|电压(V):_____|||电流(A):_____|电流(A):_____|电流(A):_____|六、实验结果分析通过对实验数据的分析,我们可以发现:1、戴维南等效电路和诺顿等效电路在不同负载电阻下的输出电压和电流与原含源一端口网络的测量结果非常接近,误差在允许范围内。

验证戴维南定理和诺顿定理实验报告

验证戴维南定理和诺顿定理实验报告

验证戴维南定理和诺顿定理实验报告戴维南定理(Kirchhoff's theorem)和诺顿定理(Norton's theorem)是电路理论中重要的基本定理。

为了验证这两个定理,可以进行以下实验。

实验步骤:1. 准备一个简单的直流电路,包括电源、电阻等元件。

2. 使用万用表测量电路中的各个元件的参数,如电流、电压等。

验证戴维南定理:1. 在电路中选择一个节点,将其它节点与该节点相连。

2. 测量该节点处的电流,记为I。

3. 将电流源连接到该节点,同时将电阻连接到电流源的另一头。

4. 测量电流源的电压,记为U。

5. 在电路中测量其它节点处的电压和电流,确保测量连接正确。

6. 计算I-U,即节点处进出的电流差异。

如果差异接近于零,说明实验结果符合戴维南定理。

验证诺顿定理:1. 在电路中选择一个支路,断开该支路的导线。

2. 测量该支路两个断开导线处的电压,记为U1和U2。

3. 计算U1-U2,即支路两端电压差。

确保测量连接正确。

4. 在电路中测量该支路断开导线处的电流,记为I。

5. 计算(U1-U2)/I,即支路两端电压差除以电流。

如果结果接近于零,说明实验结果符合诺顿定理。

实验注意事项:1. 实验过程中要注意安全,避免触电等危险。

2. 对于测量仪器的使用,要按照操作说明正确使用,避免误差产生。

3. 在连接电路时,要保证连接牢固,避免导线接触不良导致的测量错误。

4. 实验数据的精确性和准确性对于验证定理的结果有着重要影响,需要仔细测量和计算。

总结:通过以上实验步骤的操作和数据测量,可以验证戴维南定理和诺顿定理是否成立。

如果实验结果符合定理的要求,说明定理的基本原理得到了验证。

戴维南定理与诺顿定理实验报告

戴维南定理与诺顿定理实验报告

竭诚为您提供优质文档/双击可除戴维南定理与诺顿定理实验报告篇一:戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)篇二:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。

2、初步掌握用multisim软件绘制电路原理图。

3、初步掌握multisim软件中的multimeter、Voltmeter、Ammeter等仪表的使用以及Dcoperatingpoint、parametersweep 等spIce仿真分析方法。

4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。

二、实验内容:1、计算等效电压和等效电阻;(:戴维南定理与诺顿定理实验报告) 2、用multisim软件测量等效电压和等效电阻;3、用multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理;三、实验步骤1、计算等效电压V=us(R3//R33)/((R1//R11)+(R3//R33))=2.613V;等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250.355Ω2、软件仿真(1)实验电路在multisim软件上绘制实验电路,如图11图1实验电路参数测试负载RL短路时的短路电流Isc?10.42mA负载RL开路时的开路电压uoc?2.609V调节负载RL时的数据如表1所示。

(2)等效电路在multisim软件上绘制等效电路,如图2图2等效电路参数测试负载RL短路时的短路电流Isc?10.41mA负载RL开路时的开路电压uoc?2.60V调节负载RL时的数据如表1所示。

23、电路实测(1)实验电路负载RL短路时的短路电流Isc?10.01mA负载RL开路时的开路电压uoc?2.58V调节负载RL时的数据如表1所示。

(2)等效电路负载RL短路时的短路电流Isc?10.1mA负载RL开路时的开路电压uoc?2.58V调节负载RL时的数据如表1所示。

戴维南定理和诺顿定理的验证实验数据完整版

戴维南定理和诺顿定理的验证实验数据完整版

戴维南定理和诺顿定理的验证实验数据HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C ,其等效内阻R等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流 ISC ,其等效内阻R定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C 、ISC和R称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压UOC的测量方法(1)可直接用电压表测量。

(2)零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图 3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压, 即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R 0的测量方法 (1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

实验八 戴维南定理和诺顿定理

实验八  戴维南定理和诺顿定理

实验八戴维南定理和诺顿定理一、实验目的1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。

2.掌握含源二端网络等效参数的一般测量方法。

3.验证最大功率传递定理。

二、原理说明戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。

在电子技术中,常需在负载上获得电源传递的最大功率。

选择合适的负载,可以获得最大的功率输出。

1.戴维南定理任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

2.诺顿定理任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。

Uoc、Isc和Ro称为有源二端网络的等效参数。

3.最大功率传递定理在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率:P MAX=I sc2.R L/4=Uoc2/4RL (1)4.有源二端网络等效参数的测量方法⑴开路电压Uoc的测量方法①直接测量法直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图8-1(a)所示。

它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。

②零示法在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图8-1(b)所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是非常重要的两个定理,它们为复杂电路的分析和简化提供了有力的工具。

为了更深入地理解这两个定理,我们进行了一系列的验证实验,并对实验数据进行了详细的分析。

一、实验目的本次实验的主要目的是验证戴维南定理和诺顿定理的正确性,并通过实际测量和计算,加深对这两个定理的理解和应用。

二、实验原理1、戴维南定理任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中电压源的电压等于该一端口网络的开路电压 Uoc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。

2、诺顿定理任何一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻的并联组合来等效替代。

其中电流源的电流等于该一端口网络的短路电流 Isc,电阻等于该一端口网络中所有独立源置零后的等效电阻 Ro。

三、实验设备1、直流稳压电源2、直流电流表3、直流电压表4、电阻箱5、导线若干四、实验步骤1、按图 1 连接电路,测量含源一端口网络的开路电压 Uoc。

图 1将电阻 RL 开路,用电压表测量 AB 两端的电压,即为开路电压Uoc。

记录测量数据。

2、按图 2 连接电路,测量含源一端口网络的短路电流 Isc。

图 2将电阻 RL 短路,用电流表测量短路电流 Isc。

记录测量数据。

3、按图 3 连接电路,测量含源一端口网络中所有独立源置零后的等效电阻 Ro。

图 3将电压源短路,电流源开路,用电阻箱测量 AB 两端的电阻,即为等效电阻 Ro。

记录测量数据。

4、按图 4 连接电路,验证戴维南定理。

图 4将一个电压源(电压等于 Uoc)和一个电阻(电阻等于 Ro)串联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。

记录测量数据。

5、按图 5 连接电路,验证诺顿定理。

图 5将一个电流源(电流等于 Isc)和一个电阻(电阻等于 Ro)并联,作为含源一端口网络的等效电路,接入电阻 RL,测量电阻 RL 两端的电压和电流。

戴维南定理和诺顿定理实验_模板(优选)word资料

戴维南定理和诺顿定理实验_模板(优选)word资料

戴维南定理和诺顿定理实验_模板(优选)word资料实验三戴维南定理和诺顿定理实验姓名学号专业实验台号实验时间一、实验目的1.通过实验验证戴维南定理和诺顿定理,加深理解等效电路的概念2.学习用补偿法测量开路电压二、原理1.戴维南定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换。

诺顿定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合等效电路。

以上等效变换的电路如图3-1所示。

(a) 线性含源一端口电路(b) 基于戴维南定理的替代电路(c) 基于诺顿定理的替代电路图3-1 等效变换图2.含源一端口网络开路电压的测量方法(1)直接测量法:当电压表内阻R v相比可以忽略不计时,可以直接用电压表测量器开路电压U oc。

(2)补偿法:当电压表内阻R v相比不可忽略时,补偿法可以消除或减小电压表内阻在测量中产生的误差。

图3-23.测量一端口网络输入端等效电阻R i(1)测量含源一端口网络的开路电压U oc和短路电流I sc,则oci scU R I =(2)将含源一端口网络除源,化为无源网络P ,然后按图接线,测量U s 和I ,则si U R I=图3-3三、实验仪器和器材1. 0-30V 可调直流稳压电源 2. +15直流稳压电源 3. 0~200mA 可调恒流源 4. 电阻 5. 电阻箱6. 交直流电压电流表/电流表 7. 实验电路板 8. 短接桥 9. 导线四、实验内容及步骤1. 测量含源一端口网络的外部伏安特性测量含源一端口网络的外部伏安特性:用电阻箱作为一端口网络的外接电阻R L ,如图3-4所示,测量结果在表3-1中。

()L R ω0 500 1k 1.5k 2k 2.5k 开路 I(mA) U(V)图3-42. 验证戴维南定理电压源用直流稳压电源代替,调节电源输出电压,使之等于U OC ,R i 用电阻箱代替,在CD 端接入负载电阻R L ,改变电阻值,侧去电流和电压。

(完整word版)戴维南定理和诺顿定理的验证实验+数据(word文档良心出品)

(完整word版)戴维南定理和诺顿定理的验证实验+数据(word文档良心出品)

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法(1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R0的测量方法(1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SC OC O I U R =(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

戴维南定理与诺顿定理实验报告

戴维南定理与诺顿定理实验报告

戴维南定理与诺顿定理实验报告戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)篇二:戴维南定理和诺顿定理实验报告实验一、戴维南定理一、实验目的:1、深刻理解和掌握戴维南定理。

2、初步掌握用Multisim软件绘制电路原理图。

3、初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。

4、掌握电路板的焊接技术以及直流电源、万用表等仪表的使用。

二、实验内容:1、计算等效电压和等效电阻;2、用Multisim软件测量等效电压和等效电阻;3、用Multisim软件仿真验证戴维南定理;4、在实验板上测试等效电压和等效电阻;5、在实验板上验证戴维南定理; 三、实验步骤1、计算等效电压V=US(R3//R33)/((R1//R11)+(R3//R33))=2.613 V ; 等效电阻R=((R1//R3)+R2)//((R11//R33)+R22)=250.355Ω2、软件仿真 (1)实验电路在Multisim软件上绘制实验电路,如图11图1 实验电路参数测试负载RL短路时的短路电流Isc?10.42mA 负载RL开路时的开路电压Uoc?2.609V调节负载RL时的数据如表1所示。

(2)等效电路在Multisim软件上绘制等效电路,如图2图2 等效电路参数测试负载RL短路时的短路电流Isc?10.41mA 负载RL开路时的开路电压Uoc?2.60V 调节负载RL时的数据如表1所示。

23、电路实测 (1)实验电路负载RL短路时的短路电流Isc?10.01mA 负载RL开路时的开路电压Uoc?2.58V 调节负载RL时的数据如表1所示。

(2)等效电路负载RL短路时的短路电流Isc?10.1mA 负载RL开路时的开路电压Uoc?2.58V 调节负载RL时的数据如表1所示。

实验4戴维南定理和诺顿定理实验

实验4戴维南定理和诺顿定理实验

实验四 戴维南定理和诺顿定理实验一、实验目的1.通过实验验证戴维南定理和诺顿定理,加深对等效电路概念的理解。

2.掌握测量含源二端网络等效参数的一般方法。

二、实验原理1.戴维南定理和诺顿定理:戴维南定理:任何一个含源二端网络如图5-1(a ),总可以用一个电压源U S 和一个电阻R S 串联组成的实际电压源来代替如图5-1(b ),其中:电压源U S 等于这个含源二端网络C 、D 两端的开路电压U OC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R i (入端电阻)。

诺顿定理:任何一个含源二端网络如图5-1(a ),总可以用一个电流源I S 和一个电阻R S 并联组成的实际电流源来代替如图5-1(c ),其中:电流源I S 等于这个含源二端网络C 、D 两端短路后的短路电流I SC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R i (入端电阻)。

U S 、R S 和I S 、R S 称为有源二端网络的等效参数。

用等效电路替代含源二端网络的等效性,在于保持外电路中的电流和电压不变,即替代前后两者引出端钮间的电压相等时,流出(或流入)引出端钮的电流也必须相等(伏安特性相同)。

2.含源二端网络等效参数的测量方法采用开路电压、短路电流法: 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC , 然后再将其输出端短路,测其短路电流I SC ,且内阻为: SCOCS I U R。

入端等效电阻R i (即R S ),可根据含源二端网络除源(电压源短路,电流源开路,保留内阻)后的无源网络通过计算机求得,也可通过实验的办法得出 。

三、实验设备1.直流数字电压表、直流数字电流表各1只;2.直流稳压电源(恒压源双路0~30V可调)1台;3.电流源(恒源流0~200mA可调)1台;4.EEL-51N单元板1块;5.EEL-53单元板1块;6.ZX21旋转式电阻箱1只;7.低压导线若干。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三戴维南定理和诺顿定理实验
姓名
学号
专业
实验台号
实验时间
一、实验目的
1.通过实验验证戴维南定理和诺顿定理,加深理解等效电路的概念
2.学习用补偿法测量开路电压
二、原理
1.戴维南定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换。
诺顿定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合等效电路。
表3-3验证诺顿定理
0
500
1k
1.5k
2k
2.5k
开路
I(mA)
U(V)
图3-6
五、思考题
1.在同一张坐标纸上画出一端口网络和各等效网络的伏安特性曲线,并做分析比较,说明如何验证戴维南定理和诺顿定理。
2.对于图3-2,如果在补偿法测量开路电压时,将C’和D相接,D’与C相接,能否达到测量电压UCD的目的?为什么?
以上等效变换的电路如图3-1所示。
(a)线性含源一端口电路(b)基于戴维南定理的替代电路(c)基于诺顿定理的替代电路
图3-1等效变换图
2.含源一端口网络开路电压的测量方法
(1)直接测量法:
当电压表内阻Rv相比可以忽略不计时,可以直接用电压表测量器开路电压Uoc。
(2)补偿法:
当电压表内阻Rv相比不可忽略时,补偿法可以消除或减小电压表内阻在测量中产生的误差。
6.交直流电压电流表/电流表
7.实验电路板
8.短接桥
9.导线
四、实验内容及步骤
1.测量含源一端口网络的外部伏安特性
测量含源一端口网络的外部伏安特性:用电阻箱作为一端口网络的外接电阻RL,如图3-4所示,测量结果在表3-1中。
表3-1测量含源一端口网络的外部伏安特性
0ቤተ መጻሕፍቲ ባይዱ
500
1k
1.5k
2k
2.5k
开路
I(mA)
U(V)
图3-4
2.验证戴维南定理
电压源用直流稳压电源代替,调节电源输出电压,使之等于UOC,Ri用电阻箱代替,在CD端接入负载电阻RL,改变电阻值,侧去电流和电压。结果如表3-2所示。
图3-5
表3-2验证戴维南定理
0
500
1k
1.5k
2k
2.5k
开路
I(mA)
U(V)
3.验证诺顿定理
按图3-6接线,构成诺顿等效电路,其中ISC为可调电流源。街上负载电阻RL,改变阻值,测量电流和电压,验证诺顿定理。
图3-2
3.测量一端口网络输入端等效电阻Ri
(1)测量含源一端口网络的开路电压Uoc和短路电流Isc,则
(2)将含源一端口网络除源,化为无源网络P,然后按图接线,测量Us和I,则
图3-3
三、实验仪器和器材
1.0-30V可调直流稳压电源
2.+15直流稳压电源
3.0~200mA可调恒流源
4.电阻
5.电阻箱
相关文档
最新文档