最新二次根式的大小比较ppt

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

二次根式ppt课件

二次根式ppt课件

(2)
x为全体实数 变式
1 x2
x≠0
变式一:
变式二:
x为全体实数
x为全体实数
变式三:
变式四:
x=0
x=5
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
例2.已知 a 1 +
解:由题意得:
=0,求 的值。 解得
几个非负数的和为0,它们每一个数都必须同时为0.
a

2. a
3. 1
(二)选择题(每题15分)
4. C 5. D (三)解答题:(10分) 6. 解:由题意得:
解得
∴y=3 ∴ x=2
知识:
(1)二次根式的定义。即 a ( a 0 )
(2)二次根式有(或无)意义字母的取值范围
(3)二次根式双重非负性。即a≥0, a ≥0
方法:
(1)求二次根式中字母的取值范围的基本依据:
变式训练:


互为相反数,求
的值。 解:由题意得:
解得
例3.若y=
+
解:由题意得:
-3.求 解得
的值。
∴x=2 ∴ y=-3
注意用几个二次根式有意义的字母取值来解相关题目。 变式训练:
已知x、y为实数,5

+y
求x、y的值. 解:由题意得:
解得
∴x=2 ∴ y=-3
(一)填空题(每线15分)
1.a
展示探究:
例1.求当x是怎样的实数时,下列各式在实数范
围内有意义: 6-2x≥0
(1)
x≤3 变式:
6-2x<0 无意义 x>3
变式一: + 2≤x≤3

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)

浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠), 正方形美
术作品的面积为多少平方厘米?
解:
(2)三张长方形连接在一起的总长度为:
10 2
20 2
A
B

C
30 2
10 2 20 2+30 2=60 2cm
AB=5 2cm
AC=60 2 4=15 2cm
正方形的边长BC AC AB

= (m)

.
C
∴BE=AE÷0.8=
AEΒιβλιοθήκη FD

(m)

∴AB = +

= (m)



∵CF= BE=
=

.
∴DF=1.6CF= (m)
∴CD = +
=


(m)
答:这个小男孩经过的总路程约为7.71米.

∵CD= m
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2


解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
E
G
D
图2
F
B
例题分析
例7 如图,一张等腰直角三角形彩色纸,AC=BC=40cm,将斜边上

浙教版八年级下册 1.2 二次根式的性质 课件(共17张ppt)

浙教版八年级下册 1.2 二次根式的性质 课件(共17张ppt)

记作 a . 2. 2是什么数的平方根?所以 2的平方等于什么?
2的一个平方根.
3(. 7)2,( 1)2呢? 2
( 2)2 =2. ( 7)2 =7,( 1)2 = 1 .
22
你能猜想 ( a )2 ?
二次根式的性质1: 二次根式的平方等于被开方数
2
a aa 0
4.能用几何图形作出直观解释吗?
1.2 二次根式的性质
(1)
复习回顾
1.怎样的式子叫二次根式?
一般地,我们把形如 a(a≥0)的式子叫做二次根式。
2.怎样判断一个式子是不是二次根式?
(1)形式上: a ; (2)被开方数a≥0.
3.如何确定二次根式中字母的取值范围?
①被开方数不小于零; ②分母中有字母时,要保证分母不为零.
复习回顾
72
7
(5) 22 52
解:(1)原式=
4 7
1 2
4 7
1
4 7
1 2
1
4 7
=
4 7
1 2
4 7
+1=
1 2
.
(2)原式= 1 2 2+1 2-1+ 2+1 =2 2 .
拓展提升
1.若 (1 x)2 1 x,则x的取值范围为 ( )
A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
a2
|
a
|
a a≥0; a a<0.
1 102
2
15 ;
2
2
7
25 9 ;
(4)( 11)2 (-13)2 .
2
(5)
2 5

0.12-
1. 4

二次根式ppt课件

二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

初三上数学课件(华东师大)-方法专题 二次根式比较大小

初三上数学课件(华东师大)-方法专题 二次根式比较大小
3- 8< 3+ 5.
方法三 分母有理化法 策略:将各自的分母有理化,再进行比较. 3.比较31++2 22与2+2+21的大小.
1+ 2 解:∵3+2 2=(1+ 2)(3-2 2)= 2-1,
2+ 2
1+ 2 2+ 2
2+1=(2+ 2)( 2-1)= 2,∴3+2 2< 2+1.
方法四 分子有理化法
x2+3x+2,∵x2+3x<x2+3x+2,∴ x2+3x< x2+3x+2,∴A<B.
方法九 设特定值比较法 策略:可以在许可的条件下设定特殊值进行比较 9.比较 a+1- a(a≥0)与 a+2- a+1(a≥0)的大小.
解:设 a=0,则 a+1- a=1, a+2- a+1= 2-1,∵ 2-1<1, ∴ a+1- a> a+2- a+1.
策略:求出两个式子 a、b 的差,再根据 a-b<0 时,a<b,a-b>0 时,a
>b,a-b=0 时,a=b 进行比较.
5.比较
6- 3
5与2- 2的大小. 2
6- 5 2- 2
解:∵

3
2
6- 5 2-2- 2 3 6- 10

6
= 6 <0,
6- 5 2- 2

< 3
2.
方法六 作商比较法 策略:求出两个式子 a、b 的商,再根据ba>1 时,则 a>b,若ab<1,则 a <b,若ba=1,则 a=b 进行比较. 6.比较 6 5与 5 6的大小.
方法一 移动因式法 策略:将根号外的正因式移入根号内,转化比较被开方数的大小. 1.比较-5 19与-6 15的大小. 解:∵-5 19=- 52×19=- 475, -6 15=- 62×15=- 540, ∵- 475>- 540,∴-5 19>-6 15.

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质

人教版八年级数学下册《二次根式》PPT课件

人教版八年级数学下册《二次根式》PPT课件
求此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、

初中数学二次根式PPT课件图文

初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).

第3讲二次根式ppt课件全面版

第3讲二次根式ppt课件全面版

值,然后代入代数式计算,根据题意,得 x-1=0,y+3=0,解得:x=1,y=-3,
所以 x+y=-2.
(2)∵ ������-2 ≥0,(n-2 017)2≥0, ������-2+(n-2 017)2=0,
∴ ������-2=0,(n-2 017)2=0,解得:m=2,n=2 017.
∴m-1+n0=2-1+2 0170=12+1=32.
x2

1 x2
5
的值.
解:(1)
(2)由x2-4x+1=0 x+ -4=0 x+ =4. ∴原式=
1.(04浙江)若数轴上表示数x的点在原点的
左边,则化简 3x x2 的结果是( C )
A.-4x B.4x C.-2x D.2x
2.能使等式
x x2
x 成立的x的取值
x2
范围是( B )
(3)
2

2
2 1
(4) 3 18 1 50 4 1
2 1
5
2
(5)先化简,再求值:x2 x
1 1

x(1

1 x
)

其中 x 2 1
7.
x
的取值范围是(
A.x≥-12,且 x≠1 B.x≠1
C.x≥-12
D.x>-12,且 x≠1
答案:A
2.下列式子中,属于最简二次根式的是(
A. 9
B. 7
C. 20
答案:B
)
)
D.
1 3
考点梳理 自主测试
3.下列根式中,不能与 3合并的是( )
A.

八上数学(北师大)课件-方法专题 比较二次根式大小的几种方法

八上数学(北师大)课件-方法专题 比较二次根式大小的几种方法

倒数法
4.比较 7- 6与 6- 5的大小.
解:
1 7-
6=
7+ 7+ 6
6 7-
6 =
7+ 6 7-6 =
7+
6.
1 6-
= 5

6+ 6+ 5
5 6-
5=
6+ 5 6-5 =
6+
5.∵
7+
6>
6+
5,∴
1 7-
> 6
1 6-
5,又∵
7-
6>0,
6-
5>0,∴
7-
6<
6-
5.
分母有理化法
作差法 2.比较 198-1与38的大小.
解:因为
198-1-38=
19-4 8 , 19-4>0,所以
19-4 8 >0,所以
19-1 8>
3 8.
作商法 3.比较 4- 3与 2+ 3的大小.
4- 3 解:因为2+ 3=(4- 3)(2- 3)=11-6 3,6 3≈10.39,所以 11-6 3< 1.又因为 4- 3>0,2+ 3>0,所以 4- 3<2+ 3.
解:( 2019+x+ 3+x)( 2019+x- 3+x)=( 2019+x)2-( 3+x)2= 2019+x-(3+x)=2016.又 2019+x+ 3+x=1008, ∴1008·( 2019+x- 3+x)=2016, ∴ 2019+x- 3+x=2.
9.已知 a-b= 3+ 2,b-c= 3- 2,求(a-b)2+(b-c)2+(a-c)2 的值. 解:∵(a-b)+(b-c)=( 3+ 2)+( 3- 2)=2 3.∴a-c=2 3.(a-b)2+(b -c)2+(a-c)2=( 3+ 2)2+( 3- 2)2+(2 3)2=5+2 6+5-2 6+12= 22.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档