水泥余热发电
水泥生产及余热发电工艺流程
水泥生产及余热发电工艺流程1.原料准备:水泥的主要原料包括石灰石、粘土、煤炭和铁矿石等。
这些原料经过粉碎、混合和储存后,形成称为原料料堆的物料贮存库。
2.煤炭烧烤:煤炭是水泥生产过程中的重要燃料,主要用于熟料(可烧成水泥的原料)的回转窑燃烧。
在煤炭烧烤过程中,煤炭经过烘干、烧结和脱硫等处理,形成高温燃烧所需的热能。
3.煤炭燃烧:煤炭在熟料窑中被点燃,在高温下进行燃烧,产生大量的能量。
同时,煤炭的燃烧会产生废气,包括二氧化碳、氮氧化物和硫化物等。
为了减少环境污染,需要对煤炭燃烧过程进行控制和治理。
4.熟料制备:原料料堆中的原料通过称重、配比和研磨等工艺,进入窑炉进行熟化反应。
在窑炉中,原料在高温条件下发生化学反应,最终形成水泥熟料。
5.熟料烧成:熟料在回转窑中经过烘干、预热和煅烧等过程,使其在高温中充分烧结,形成成品水泥熟料。
同时,熟料烧成过程中产生的热能被回收利用,用于生活热水供应和余热发电。
6.煤炬:煤炬是指烧制过程中煤粉和熟料的混合物,其主要作用是提供燃料和热能。
煤炭粉碎后与熟料混合,形成煤炬,通过窑炉进入烧结过程。
7.水泥磨磨煤:熟料烧成后,形成的水泥熟料经过水泥磨磨煤工序,与适量石膏一起磨成水泥粉末。
水泥磨磨煤是水泥生产过程中的最后一道工序,在这个过程中通过添加适量的石膏,调整水泥的硫铝酸盐含量,以控制水泥凝固时间。
8.余热发电:水泥生产过程中熟料窑产生的高温热气和窑外的余热可以通过余热发电系统进行回收利用,产生电能,减少能源浪费。
余热发电系统通常包括余热锅炉、蒸汽发生器和发电机组。
余热锅炉将烟气中的热能转化为蒸汽,然后传递给蒸汽发生器,通过发电机组将蒸汽转化为电能。
以上就是水泥生产及余热发电的工艺流程。
水泥生产产生的废气、废水和尾渣等需要经过处理和利用,以减少对环境的污染。
余热发电系统的引入不仅可以提高能源利用率,还可以降低碳排放和降低生产成本,具有重要的经济和环境效益。
水泥生产及余热发电工艺流程
水泥生产及余热发电工艺流程
1.原料处理:首先需要选用优质的石灰石、粘土、铁矿石等原料。
这
些原料经过破碎、研磨和混合,形成均匀的熟料。
2.熟料烧成:将混合的熟料送入熟料窑进行烧成。
在风暴炉中,熟料
在高温下经历物理化学反应,形成熟料。
燃料的选择通常是煤或天然气。
3.冷却:熟料经过熟料窑的高温烧成后,需要通过冷却过程将其降温
到适宜的温度。
这一过程可以通过气体和水来实现。
4.磨矿:冷却后的熟料进入水泥磨机,添加适量石膏和一些辅助材料,进行细磨。
磨矿过程中,熟料被磨成细度适中的水泥粉末。
5.余热回收:在熟料窑的烧成过程中,燃料燃烧释放的烟气中含有大
量余热。
通过设置余热发电机组,将余热转化为电能。
在余热发电过程中,可以采取多种余热回收技术,如余热锅炉和蒸汽发生器。
6.能源回收:通过余热发电,将产生的电能供应给工厂内部使用,满
足水泥生产过程中的照明、动力等能源需求。
余热发电还可以减少对外购
电的需求,从而降低生产成本。
7.水泥储运:磨矿后的水泥粉末经过气力输送设备或螺旋输送机输送
到储存仓,然后再通过装车设备将水泥装入袋子或散装车辆中,进行运输。
总结来说,水泥生产及余热发电工艺流程主要包括原料处理、熟料烧成、冷却、磨矿、余热回收、能源回收和水泥储运。
通过合理的工艺流程
设计和余热发电设备的运用,可以最大限度地回收利用余热能源,提高能
源利用效率,减少环境污染。
水泥余热发电行业发展趋势
积极参加国际水泥余热发电技术交流与合作活动,引进国际先进技 术和经验,提高我国水泥余热发电行业的整体水平。
人才培养与引进策略
完善人才培养体系
建立健全水泥余热发电领域的人 才培养体系,包括学历教育、职 业教育和培训等,培养具备专业 技能和创新能力的高素质人才。
引进优秀人才
通过优惠政策、提高待遇等方式 ,吸引国内外优秀的水泥余热发 电领域人才,提升行业整体技术
案例二
某中型水泥企业通过与行业领军企业合作,引进先进的余热 发电设备和技术,大幅提升了企业的能源利用效率,减少了 能源成本支出。这一成功案例表明,企业间的合作与交流是 推动行业技术进步的重要途径。
失败案例分析
案例一
某小型水泥厂在未充分评估自身技术实力和市场需求的情况下,盲目投资余热发 电项目,最终因技术难题无法解决而导致项目失败。这一案例提醒其他企业在投 资新技术领域时要谨慎评估自身实力和市场需求。水泥余热发电行业源自05发展的策略建议
技术研发与创新策略
01
研发先进的水泥余热 回收技术
通过改进现有的水泥余热回收技术, 提高余热回收效率,降低能源消耗, 提升发电效率。
02
引入新型清洁能源技 术
结合水泥生产过程中的余热特点,引 入新型清洁能源技术,如热泵技术、 太阳能辅助技术等,进一步优化能源 结构和降低碳排放。
水泥余热发电行业发展 趋势
汇报人: 日期:
目 录
• 水泥余热发电概述 • 水泥余热发电技术现状 • 水泥余热发电行业市场现状 • 水泥余热发电行业发展趋势及前景 • 水泥余热发电行业发展的策略建议 • 案例分析
水泥余热发电概述
01
水泥余热发电定义
• 定义描述:水泥余热发电是一种利用水泥生产过程中产生的余 热进行发电的技术。它通过将水泥熟料生产过程中的高温废气 、废水等余热资源转化为电能,实现能源的高效利用。
水泥厂余热发电冷却原理
水泥厂余热发电冷却原理
水泥厂生产过程中,熟料需要经过高温煅烧而产生大量的废气和余热。
如何有效地利用这些废气和余热是水泥厂节能环保的重要一环。
其中,余热发电技术成为了一种可行的方法。
水泥厂余热发电的基本原理是利用余热驱动蒸汽涡轮机发电。
一般情况下,水泥厂的余热发电系统包括余热回收、换热器、蒸汽涡轮机和冷却系统。
具体来说,废气在通过烟囱排放之前会先进入余热回收系统,通过余热回收器进行余热回收。
余热回收器通常采用板式或者管式结构,其主要作用是使废气与水接触,使热量传递到水中,从而使水变成蒸汽。
蒸汽在经过换热器后,会通过蒸汽涡轮机转化为电能。
换热器将从余热回收器中流出的热水与进入换热器的冷水进行热交换,使冷水变成热水,从而增加余热回收的效率。
最后,冷却系统用于冷却蒸汽涡轮机排出的高温蒸汽。
冷却系统通常采用冷却水作为冷却介质,通过冷却水对高温蒸汽进行冷却,从而使高温蒸汽变成低温蒸汽,再进入换热器回收余热。
总之,水泥厂余热发电冷却原理就是通过余热回收、换热和冷却系统的相互配合,利用废气中的余热驱动蒸汽涡轮机发电,同时使高温蒸汽通过循环冷却,从而实现能源的高效利用。
- 1 -。
水泥余热发电简介演示
化工生产领域
化工生产过程中会产生大 量的高温废气和废水,通 过余热回收技术可以将其 转化为电能。
04
水泥余热发电的经济效益与社 会效益
经济效益分析
节约能源
水泥余热发电可以充分利用水泥生产 过程中的余热,减少能源浪费,降低 能源消耗成本。
创造额外收益
余热发电可以为企业创造额外的收益 ,用于支持企业的其他业务和发展。
02
余热收集技术主要通过 高效换热器将废气余热 转化为热能。
03
余热锅炉技术主要是将 热能转化为蒸汽,以供 后续的发电过程使用。
04
蒸汽轮机技术主要是将 蒸汽转化为机械能,以 驱动发电机产生电能。
余热发电系统组成
废气收集系统主要负责收集水泥 生产过程中的废气,并将其导入 余热锅炉。
余热锅炉系统主要由高效换热器 、锅炉本体等组成,将废气余热 转化为蒸汽。
降低生产成本
通过余热发电,可以减少对传统能源 的依赖,降低生产成本,提高企业经 济效益。
社会效益分析
促进可持续发展
水泥余热发电符合可持续发展的 理念,有利于减少对环境的污染
和破坏。
改善能源结构
余热发电可以改善能源结构,减少 对传统能源的依赖,提高能源利用 效率。
增加就业机会
余热发电项目需要专业的技术人员 和管理人员,可以增加就业机会, 促进当地经济发展。
在水泥熟料生产线上,高温废气和冷却废水的余热可以用于发电,提高能源利用 效率。
水泥窑协同处置过程中的余热利用
水泥窑可以协同处置城市垃圾、污泥等废弃物,同时回收废弃物中的热量进行发 电。
钢铁生产领域应用
高炉煤气余热回收
高炉煤气是钢铁生产过程中的主要副 产品之一,通过余热回收技术,可以 将高炉煤气中的热量转化为电能。
10纯低温水泥余热发电
• (2)社会效益: • 从能源利用率的角度来讲,水泥生产过程中消耗
的能源有效利用率仅为60%,其余40%的能量随 废气排放到大气中,余热发电建成后,可将排放 掉的38%的废气余热进行回收,使工厂的能源利 用率提高到95%以上,为工厂的可持续发展创造 了有利条件。从环境保护的角度来讲,减少了二 氧化碳的排放量。众所周知火力发电是燃煤发电, 在电力生产过程中要产生大量的二氧化碳,而余 热发电整个生产过程不烧1克煤,按发电机组截止 到二OO四底累计发电量35612.6万千瓦时来计算, 共减少二氧化碳的排放量总计为284900吨,这对 减少温室效应、保护生态环境起着积极的促进作 用。
• 在能源消耗方面,我国吨水泥的平均综合煤耗 约为159kg(标准煤),而国际先进水平约为 110kg,仅此一项,我国水泥工业每年多消耗 的煤炭约为5000万吨。
• 纯低温余热发电技术,即是在新型干法生产线生 产过程中,通过余热回收装置——余热锅炉将窑 头、窑尾排出大量低品位的废气余热进行回收换 热,产生过热蒸气推动汽轮机实现热能——机械 能的转换,再带动发电机发出电能,并供给水泥 生产过程中的用电负荷。
• ⑵、锅炉水的工艺流程: • 余热电站的热力循环是基本的蒸汽动力循环,即汽、
水之间的往复循环过程。蒸汽进入汽轮机做功后,经凝 汽器冷却成凝结水,凝结水经凝结水泵(150A/B)泵入闪 蒸器出水集箱,与闪蒸器出水汇合,然后通过锅炉给水 泵(230A/B)升压泵入AQC锅炉省煤器进行加热,经省煤 器加热后的高温水(167℃)分三路分别送到AQC炉汽 包,PH炉汽包和闪蒸器内。进入两炉汽包内的水在锅炉 内循环受热,最终产生一定压力下的过热蒸汽作为主蒸 汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸原 理产生一定压力下的饱和蒸汽送入汽轮机后级起辅助做 功作用。做过功后的乏汽经过凝汽器冷凝后形成凝结水 重新参与热力循环。生产过程中消耗掉的水由纯水装置 制取出的纯水经补给水泵(511)打入热水井(凝汽器140)。 锅炉水是整个余热发电炉机内部的循环水。这样,锅炉 水经历了一个水→蒸气→水的工艺过程。
水泥余热发电工艺流程
水泥余热发电工艺流程水泥生产过程中产生的余热一直是一个被人们关注的问题。
利用水泥生产过程中的余热进行发电已经成为一种常见的做法。
这种方法不仅可以有效地利用余热资源,还可以减少对环境的影响,提高水泥生产的能源利用率。
本文将详细介绍水泥余热发电的工艺流程。
1. 余热回收系统。
在水泥生产过程中,熟料冷却机、窑头和窑尾等部位都会产生大量的余热。
为了有效地利用这些余热,需要安装余热回收系统。
余热回收系统通常包括余热锅炉、余热管道和余热发电设备。
余热锅炉用来将余热转化为蒸汽,然后通过余热管道输送到发电设备中进行发电。
2. 蒸汽发电系统。
余热蒸汽通过管道输送到蒸汽发电设备中,蒸汽发电设备通常采用蒸汽轮机发电。
蒸汽进入蒸汽轮机后,推动轮机转动,从而带动发电机发电。
通过这种方式,余热可以被充分利用,同时也可以产生电能。
3. 发电系统。
发电系统是整个水泥余热发电工艺中最核心的部分。
发电系统包括蒸汽轮机、发电机、控制系统等部分。
蒸汽轮机是将余热蒸汽转化为机械能的设备,而发电机则是将机械能转化为电能的设备。
控制系统则用来监控和调节发电系统的运行状态,保证系统的安全稳定运行。
4. 排放系统。
在发电过程中会产生废气,为了保护环境,需要安装排放系统对废气进行处理。
排放系统通常包括除尘器、脱硫设备、脱硝设备等部分。
这些设备可以有效地去除废气中的颗粒物和有害气体,保护周围的环境。
5. 辅助系统。
水泥余热发电工艺中还需要一些辅助系统来保证整个工艺的正常运行。
比如冷却系统用来冷却发电设备,水处理系统用来处理冷却水和锅炉给水等。
这些辅助系统在整个工艺中起着至关重要的作用。
通过以上的工艺流程,水泥余热可以被有效地利用,转化为电能,从而提高水泥生产的能源利用率,减少对环境的影响。
水泥企业可以通过余热发电的方式获得额外的经济收益,同时也可以为环保事业做出贡献。
然而,水泥余热发电工艺也面临一些挑战。
首先是技术方面的挑战,余热发电技术需要高度的自动化和稳定性,需要水泥企业具备一定的技术实力。
水泥生产工艺与水泥余热发电
水泥生产工艺与水泥余热发电水泥是一种重要的建材,广泛用于建筑、道路、桥梁、隧道等工程。
然而,水泥生产也会产生大量的余热,如果能够合理利用这些余热,不仅可以减少能源消耗,还可以减少环境污染。
因此,水泥余热发电成为了一种热门的研究方向。
水泥生产主要分为原料破碎、原材料配料、物料提供及成品细磨等工序。
其中,物料提供环节是水泥生产中最耗能的环节,主要包括原料预热、煤粉燃烧以及熟料冷却等子过程。
这些子过程产生的热能大部分以烟气的形式排放,形成了水泥生产中的余热。
目前,水泥余热发电主要采用的技术是余热锅炉发电。
余热锅炉是一种将烟气中的余热转化为热能的装置,通过烟气在锅炉内的对流和辐射传热,将烟气中的余热转化为高温蒸汽,然后利用蒸汽驱动汽轮发电机发电。
这种方式可以有效地利用余热,提高能源利用效率。
水泥余热发电的一个关键问题是余热锅炉的设计。
余热锅炉的设计要考虑烟气的温度、流量以及烟气中的灰尘含量等因素,以保证余热能够充分转化为热能。
同时,余热锅炉还需要考虑烟气的清洁问题,避免烟气中的污染物对环境的影响。
水泥余热发电的另一个关键问题是发电设备的选择。
发电设备需要具备适应高温高压环境的能力,同时还需要具备高效稳定的发电性能。
目前,常用的发电设备有汽轮机和透平发电机等。
另外,还需要根据余热的热量和蒸汽流量确定发电机的型号和容量。
水泥余热发电的另一个关键问题是电网接入。
由于水泥生产中的余热发电是一种分布式发电,需要将发电产生的电能接入到电网中。
因此,需要与电网运营商协商,并满足电网的接入标准和要求。
同时,还需要解决与电网的功率平衡和电能质量等问题。
利用水泥余热发电可以有多重好处。
首先,可以减少水泥生产过程中的能耗,提高能源利用效率。
其次,还可以减少烟气的排放,降低环境污染。
另外,水泥余热发电还可以增加水泥企业的经济效益,降低生产成本。
总之,水泥生产过程中产生大量的余热,如果能够合理利用这些余热发电,不仅可以提高能源利用效率,还可以减少环境污染,增加企业的经济效益。
水泥厂余热发电技术介绍0708
水泥厂余热发电技术介绍0708
水泥厂余热发电技术介绍0708
水泥烧结过程产生的余热具有高温、大量、热能密度高等特点,具有垂直发电的优点,可以有效利用水泥厂内部的温度高于外部的余热,从而产生电力,将余热能转换为电力,水泥厂热能发电技术的应用,可以实现工业园区的零排放,节约能源,改善生态环境,有效减少空气污染物的排放,改善人们自然大气和环境健康。
而且,水泥工厂余热发电技术比传统燃料发电技术具有更低的成本、更安全、更可靠的操作等优势,在发电技术发展史上还有价值观,带来更多的技术创新。
具体来说,水泥工厂余热发电技术主要包括余热发电技术、热能转换技术及应用技术三部分:
1、余热发电技术:包括余热回收系统、余热回收设备、余热利用机械、电气及控制相关设备;
2、热能转换技术:主要指热能转换器中的一种,如余热发电机、内燃机、热能耦合系统等;。
2024年水泥余热发电市场分析现状
2024年水泥余热发电市场分析现状一、引言水泥制造过程中产生大量的废热,如果能够有效利用这些余热进行发电,不仅可以降低水泥企业的能耗,还可以减少环境污染。
本文将对水泥余热发电市场的现状进行分析。
二、水泥余热发电的概述水泥制造过程中的余热主要来自于系统的冷却过程和排放口的高温废气。
传统的处理方式是通过排放口将废气排放到大气中,造成能源的浪费和环境的污染。
而水泥余热发电技术的出现改变了这种状况,可以将废热转化为电力,实现能源的再利用。
三、水泥余热发电市场的优势1. 节能减排水泥余热发电技术可以高效利用水泥制造过程中产生的余热,将废热转化为电力,减少了水泥企业的能耗。
与传统的废气排放方式相比,水泥余热发电可以大幅度减少二氧化碳等温室气体的排放,对环境友好。
2. 经济效益水泥余热发电不仅可以满足水泥企业自身的电力需求,还可以通过出售多余的电力获得收入,提高企业的经济效益。
3. 灵活性水泥余热发电技术可以根据水泥生产的工艺和运行情况进行灵活调整,可以适应不同规模的水泥生产线,具有较大的适应性。
四、水泥余热发电市场的挑战1. 技术难题水泥余热发电技术在实际应用中还存在一些技术难题,如余热回收和转换效率的提高、系统的稳定性和可靠性等方面的问题,需要进一步加强研究和开发。
2. 成本问题水泥余热发电技术的投入成本较高,包括设备的购置和维护等方面的费用。
水泥企业需要对这些成本进行评估,并进行合理的投资规划。
3. 政策支持水泥余热发电市场的发展需要政府的政策支持,包括给予税收优惠、提供用电价格优惠等方面的支持政策,以吸引更多的水泥企业进行投资。
五、水泥余热发电市场的前景水泥余热发电市场有着广阔的前景。
随着环保意识的增强和能源资源的紧缺,水泥企业将更加重视余热的利用。
同时,技术的不断创新和成本的下降也将推动水泥余热发电市场的发展。
预计在未来几年内,水泥余热发电市场将成为一个具有较大潜力的市场。
六、结论水泥余热发电技术的出现在节能减排和环境保护方面起到了积极的作用,具有广阔的市场前景。
2024年水泥余热发电市场发展现状
2024年水泥余热发电市场发展现状引言水泥产业是我国重要的基础产业之一,但在水泥生产过程中会产生大量的余热。
这些余热如果不能有效利用,不仅会造成资源的浪费,还会对环境造成负面影响。
水泥余热发电技术的出现,为水泥产业的可持续发展提供了新的机遇。
本文将对水泥余热发电市场的发展现状进行分析。
水泥余热发电技术概述水泥生产过程中产生的余热主要来自于水泥窑和水泥磨。
水泥窑是水泥生产过程中的关键设备,其中熟料制备需要将石灰石等原料在高温下进行煅烧,产生大量的余热。
水泥磨是水泥生产过程中的另一个重要环节,磨矿机械产生的机械能也可以转化为余热。
水泥余热发电技术通过收集和利用这些余热,将其转化为电能,实现能源的再利用。
水泥余热发电市场的发展现状技术发展水平水泥余热发电技术在我国的应用起步较早,已经取得了一定的技术进展。
目前,我国已经建立了一批水泥余热发电装置,先进的发电设备能够将水泥生产过程中的余热转化为电能,提高能源利用效率。
然而,与发达国家相比,我国在水泥余热发电技术的研发和应用上仍存在一定差距,需要进一步加大科研力度和技术投入。
市场容量和潜力水泥行业是我国能源消耗的重要行业之一,也是我国水泥余热发电市场的潜在市场。
根据统计数据,我国年产水泥超过20亿吨,而水泥生产过程中的余热可利用率仅为30%左右。
因此,水泥余热发电市场具有巨大的潜力和发展空间,可以为我国节能减排和绿色发展做出重要贡献。
政策支持政府对水泥余热发电技术的发展给予了积极支持。
目前,我国已经出台了一系列的政策措施,包括财政补贴、税收优惠和项目审批加速等,以鼓励水泥企业利用余热发电。
政策的支持为水泥余热发电市场的发展提供了有力保障,并为相关企业创造了良好的投资环境。
市场竞争格局水泥余热发电市场竞争格局相对集中,部分大型水泥企业在该领域具有较强的竞争优势。
这些企业利用自身的规模经济和技术实力,推动了水泥余热发电技术的发展。
然而,市场竞争也存在一定问题,如部分企业技术水平相对滞后,缺乏核心竞争力。
水泥厂余热发电原理
水泥厂余热发电原理水泥厂是工业生产中能源消耗较大的行业之一,而水泥生产过程中会产生大量的余热。
为了提高能源利用效率和减少环境污染,水泥厂常常运用余热发电技术,将过程中产生的余热转化为电能。
水泥生产中产生余热的主要过程有四个:熟料烧结系统中的烧结窑,水泥磨系统的磨机,废气制冷系统的废气冷却器和废气净化器。
首先,熟料烧结系统中的烧结窑是水泥生产过程中能耗最大的环节。
烧结窑中的高温燃烧过程会产生大量的废气和余热。
这些废气和余热进入废气制冷系统。
其次,废气冷却器是废气制冷系统的核心设备。
废气从烧结窑中进入废气冷却器,与冷却器中的循环水进行热交换,使废气温度下降。
在热交换过程中,循环水被加热并转化为蒸汽。
然后,经过废气冷却器之后的废气进入废气净化器,进行尾气净化处理。
废气净化器是为了达到环保排放标准,去除废气中的污染物和尾气中的有害物质。
最后,余热发电系统的核心设备是汽轮机。
经过废气净化器处理后的废气,可进入汽轮机中进行发电。
废气中的高温高压蒸汽能够为汽轮机提供动力。
汽轮机是将热能转化为机械能的装置,通过高速旋转的轴转动发电机,从而产生电能。
在水泥厂的余热发电系统中,还有一些辅助设备和系统。
例如,蒸汽产生系统用于将废气中的蒸汽采集和储存,并进行调压。
发电机通过机械能转化为电能,并将电能输送到水泥厂的电网中。
此外,还有控制系统用于实时监测和控制余热发电系统的运行,以确保系统的安全和稳定。
总之,水泥厂余热发电是一种能够提高能源利用效率和减少环境污染的技术。
通过将水泥生产过程中产生的余热转化为电能,不仅可以为水泥厂提供自身消耗的电能,还可以向周边地区供应清洁能源。
水泥厂余热发电系统的实施,不仅有利于推动水泥工业的可持续发展,也有助于实现绿色产业转型和低碳经济的建设。
水泥厂余热发电
水泥厂余热发电
水泥厂余热发电是指利用水泥生产过程中产生的烟气、废热等余热来发电。
水泥生产过程中,熟料烧成过程中的排放气体温度较高,烟气中含有大量的热能,可以通过余热发电技术将烟气中的热能转化为电能。
水泥厂余热发电的具体步骤如下:
1. 收集烟气:通过烟囱或热交换器等设备,收集水泥生产过程中产生的烟气。
2. 预处理烟气:将收集到的烟气进行预处理,如除尘、脱硫等,以减少对发电设备的损害。
3. 热能回收:将预处理后的烟气通过余热锅炉等设备,将烟气中的热能转化为高温高压蒸汽。
4. 发电:将高温高压蒸汽输入蒸汽轮机,蒸汽轮机通过转动发电机产生电能。
5. 余热利用:蒸汽经过蒸汽轮机后,其余的低温低压蒸汽可以用于水泥生产过程中的烘干等。
1
水泥厂余热发电的优势包括节能环保、资源综合利用等。
通过利用水泥生产过程中产生的余热发电,既可以减少水泥生产过程中的能耗和排放,还可以减少对传统能源的依赖,提高能源利用效率。
2。
水泥厂余热发电原理
水泥厂余热发电原理
水泥厂余热发电是利用水泥生产过程中产生的高温废气余热来发电的一种方法。
其原理主要包括以下几个步骤:
1. 水泥生产中的高温废气收集:水泥生产过程中,包括煤磨、煤烧、熟料球磨、水泥磨等环节,都会产生大量高温废气。
首先需要将这些高温废气进行收集,通过管道或系统将其输送到余热发电设备。
2. 废气余热回收:在余热发电设备中,废气被引导进入余热锅炉或余热交换器。
在这个过程中,废气与水或其他工质进行热交换,使废气的余热被转移到工质中。
3. 工质汽化发电:经过热交换后,工质会因为余热的作用而汽化变为高温蒸汽。
这些高温蒸汽会驱动汽轮机转动,汽轮机的转动运动会产生机械能。
4. 机械能发电:转动的汽轮机将机械能转化为电能。
汽轮机与发电机相连,在汽轮机的转动力的驱动下,发电机会产生电流,并将电能输出。
5. 排放废气处理:经过废气余热回收后,废气中的热能已被充分利用,但废气中可能仍含有些许污染物。
为了保护环境,水泥厂余热发电设备还需要配备排放废气处理设备,如除尘器、脱硫器等,对废气进行净化处理,以保证废气排放符合环保要求。
通过以上几个步骤,水泥厂能够将生产过程中产生的高温废气充分利用,转化为电能,实现了能源的再生利用,减少了对传统能源的需求,同时也减少了对环境的影响。
这种利用水泥厂余热发电的方式,不仅提高了水泥生产的能源利用效率,还具有较高的经济效益和环保效益。
水泥厂余热发电监测
水泥厂余热发电监测随着工业的高速发展,对能源的需求也越来越高。
在能源的使用过程中,不可避免会产生大量的余热,如果不加以利用就会浪费大量的能源。
为了充分利用余热,许多企业将余热转化成电能使用,这种将余热转换成电能的过程叫做余热发电。
本文将以水泥厂余热发电监测为例,介绍余热发电的原理、应用以及监测过程。
一、余热发电原理余热是指在各种生产过程中因各种原因而没能完全转化成电能和机械能而流失掉的热能。
把这些余热收集起来,再进行转化工艺,可以把它转换成电能。
其中,比较成熟的转换工艺有蒸汽轮机、燃气轮机和有机朗肯循环机等。
目前,水泥厂余热发电一般采用蒸汽轮机的方式来转换余热。
水泥生产中,熟料窑是空气污染的主要来源,它也是一个巨大高温的加热器。
生产工艺中,熟料经过熟化反应要以高于1400摄氏度的温度保持30分钟,这样才能够转化成半熟或者完全烧结的固态颗粒。
在这个过程中,会释放出大量的热能。
利用余热发电,就是通过收集和利用这些热量来发电。
二、余热发电的应用余热发电技术广泛应用于化工、钢铁、水泥等行业的余热利用中。
这些工业中,产生的高温高压蒸汽都可以用来推动涡轮发电机、燃气轮机等以发电。
与此同时,余热发电还可以帮助企业节约成本。
充分利用余热发电,可以大幅度降低企业的能耗成本,减少环保税,提高经济效益。
同时,也是对高能物资的有效利用,不仅减轻了能源不足问题,也让企业拥有更多的自由度去吸收能源价格的变化。
三、水泥厂余热发电监测1、监测方法专业监测机构会利用各种现代测量和控制技术对余热发电过程进行监测。
在监测中,会使用实时在线监测、历史数据查询、统计分析等多种方法,获取最为全面的数据,最好涵盖同_品批次内不同发电机组性能指标的差异。
2、监测内容水泥厂余热发电监测的内容主要包括发电机、燃机、加热器、锅炉、蒸汽轮机、辅助发电设备等方面的监测。
同时还要监测电网电压、电流等重要电力参数,并针对监测结果进行数据分析,找出各种电力参数对发电量的影响。
水泥厂余热发电原理
水泥厂余热发电原理水泥生产过程中会产生大量的余热,这些余热如果不加以利用会造成能源的浪费。
而水泥厂余热发电就是利用水泥生产过程中的余热来进行发电,从而实现能源的高效利用。
水泥生产中主要有煤磨煤粉和熟料煅烧两个主要环节。
煤磨煤粉环节是将煤炭粉碎成煤粉,并将其送入炉内与热风进行混合燃烧,产生高温热风。
而熟料煅烧环节是将石灰石和粉煤灰等原料在高温下进行反应,形成熟料。
这两个环节产生的高温热风就是余热的主要来源。
水泥厂余热发电系统主要包括余热烟气收集、余热烟气回收和发电装置三个部分。
首先,余热烟气收集。
水泥厂煤磨煤粉和熟料煅烧过程中产生的高温热风经过排气管道排出,这些烟气中含有大量的热能。
因此,需要在排烟口处设置余热烟气收集装置,将烟气引导到余热回收设备中。
常见的收集装置有烟道、热管等。
这些收集装置的设计要考虑到烟气的流速、温度和压力等参数,以保证烟气能够被有效地收集。
其次,余热烟气回收。
收集到的高温烟气需要通过余热回收装置来回收其中的热能。
常见的热能回收方式有直接利用和间接利用两种方式。
直接利用是指将高温烟气直接与工作介质(如水、有机液体等)进行热交换,使介质升温,然后直接用于发电或其他用途。
间接利用是指通过换热器将高温烟气热量传递给介质,使介质的温度上升,然后再用于发电或其他用途。
根据实际情况和经济性考虑,选择适合的余热回收方式。
最后,发电装置。
余热回收装置将高温烟气中的热量传递给工作介质后,介质的温度升高。
通过将介质中的热能转化为机械能,再进一步转化为电能来实现发电。
常见的发电装置有蒸汽涡轮发电机组和有机朗肯循环发电机组。
蒸汽涡轮发电机组通过高温烟气产生蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。
有机朗肯循环发电机组通过高温烟气产生有机工质的蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。
水泥厂余热发电原理的核心是利用水泥生产过程中产生的高温热风,通过回收和利用热能来进行发电。
这不仅可以降低水泥生产过程中的能源消耗,减少环境污染,还可以提高水泥厂的能源利用效率,降低生产成本,实现可持续发展。
水泥余热发电安全生产
水泥余热发电安全生产水泥余热发电是利用水泥生产过程中的余热来发电的一项技术。
随着水泥工业的快速发展和环保意识的增强,水泥余热发电逐渐受到人们的重视。
在实施水泥余热发电项目的同时,安全生产是至关重要的。
首先,水泥余热发电项目应遵循相关的法律法规和安全生产标准。
水泥企业在进行余热发电项目前,应充分了解国家和地方的相关法律法规要求,并按照标准设计、建设和运行。
同时,必须配备专业的安全生产人员,建立完善的安全生产管理制度。
只有在符合安全生产标准的前提下,才能确保水泥余热发电项目的安全进行。
其次,水泥余热发电项目应进行全面的安全评估。
在项目建设之前,必须进行全面的安全评估,并制定相应的安全保障措施。
安全评估应涵盖从项目建设、设备选型、施工实施、试运行到正常运行的全过程,确保项目的每个环节都符合安全要求。
同时,需要制定应急预案,及时应对突发情况,保障人员和设备的安全。
另外,水泥余热发电项目应采取必要的安全措施。
在项目建设过程中,需要加强现场管理,确保施工人员的安全。
工人在操作设备时,应经过专门培训,了解设备的工作原理和操作规程,严禁擅自操作设备,防止发生安全事故。
在正常运行阶段,应定期检查设备运行情况,及时发现并处理设备故障,以确保设备的正常运行和人员的安全。
此外,水泥余热发电项目应加强对设备和管道的维护保养。
定期检修设备,清洗管道,及时更换老化和磨损的零部件,确保设备的可靠性和安全性。
同时,要做好安全防护措施,设立警示标识,设置安全防护装置,防止人员误入危险区域。
对设备和管道进行维护保养,可以有效避免事故的发生。
最后,水泥余热发电项目应实施安全监管机制。
相关政府部门应加强对水泥余热发电项目的安全监管,确保项目的安全运行。
对于存在安全隐患的项目,应及时进行整改,对于违规操作的企业,应依法进行处罚,以维护整个行业的安全生产秩序。
综上所述,水泥余热发电项目的安全生产至关重要。
只有在遵循法律法规、进行全面的安全评估、采取必要的安全措施、加强设备和管道的维护保养以及实施安全监管机制的前提下,才能确保水泥余热发电项目的安全进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、水泥窑纯低温余热发电背景
随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。
但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。
新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。
项目的经济效益十分可观。
我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。
目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。
而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。
因此在水泥业发展余热发电项目是行业及国家经济发展的必然。
此外,为了提高企业的市场竞争力,扩大产品的盈利空间,国内的许多水泥生产企业在建设熟料生产线的同时,也纷纷规划实施余热发电项目。
随着世界经济快速发展、新型节能技术的推广应用,充分利用有限的资源和发展水泥窑余热发电项目已经成为水泥业发展的一种趋势,也完全符合国家产业政策。
截至2009年,全国新型干法熟料生产线为934条,熟料产能7.6亿吨, 预计到2010年全国新型干法熟料生产线为1080条左右,熟料生产能力为8.6亿吨左右。
虽然在水泥行业余热发电推广和普及迅速,除已建和在建外,到2010年全国还有50%的全国新型干法熟料生产线可以配置余热发电装置,如果以上新型干法熟料线全部配套余热发电,每年可实现节电270亿度,相当于节约煤炭消耗1000万吨(标煤),可减排CO2约24400万吨。
根据国家现行产业政策和“八部委”文件要求,截止2010 年国内新型干法水泥生产线配套建设纯低温余热电站的比例将达到40%,即到2010 年底以前还将有约400多座纯低温余热电站建成并投入运行。
二、新型干法水泥窑纯低温余热发电的兴起
1998年3月,日本政府赠送的中国首套水泥纯低温余热发电机组在海螺建成投运,十年来,该项目取得了良好的社会和经济效益,起到了很好的示范作用。
海螺集团公司集成创新,在原有的基础上,针对水泥工艺特性改进设计,自行研发DCS系统,个性化设计,国产化装备。
所开发的纯低温水泥窑余热发电技术余热回收效率高、发电过程中无需补充燃料,不产生任何污染,已处于国际领先地位。
该技术是符合国家产业政策的绿色发电技术,是一种环保的、节能减排的、符合可持续发展要求的循环经济技术,经济效益也非常显著。
海螺集团水泥纯低温余热发电装机容量居全球水泥企业之首。
2005年,海螺开始大规模建设余热发电项目,为了落实国家关于节能减排的号召和政策,承担应尽的社会责任,海螺引进川崎先进的余热发电技术,结合海螺的工程设计、设备成套能力、项目实施能力和调试运行经验,和川崎成套设备工程株式会社合资成立了安徽海螺川崎工程有限公司和安徽海螺川崎节能设备制造有限公司,以便更好的在中国推广纯低温余热发电技术。
2006年8月,首条自主设计、自行成套的日产5000吨水泥熟料余热发电项目在宁国水泥厂建成投运;到09年上半年,海螺集团内已建成投运28套余热发电机组,装机规模达到465.5兆瓦,在建机余热发电组15套,装机规模达到162兆瓦。
总装机规模达到627兆瓦,上述机组全部投运后年发电量47.69亿度,按火力发电同口径计算,年可以节约标煤172万吨,减少二氧化碳排放413万吨。
到2009年5月,安徽海螺川崎工程有限公司还向其他国内外20家水泥企业集团进行了推广应用,共97套机组,涉及156条水泥熟料生产线,装机规模达到1334.6兆瓦,上述项目全部建成后预计年发电量101.48亿度,将减排 880万吨,节约标煤365.5万吨,环保效益和经济效益十分显著。
其中国内除海螺外,海螺川崎工程公司还向其他14家水泥企业进行了推广,涉及71条水泥熟料生产线配套余热发电项目,共49套机组,装机规模达到618兆瓦。
余热发电市场已覆盖到全国21个省、市。
其中在国外,承担了泰国、巴基斯坦等国水泥企业共11条水泥熟料生产线配套的6套余热发电总包工程项目,装机规模达到90兆瓦。
二、水泥窑纯低温余热发电技术介绍
1、水泥窑余热发电技术
是直接对水泥窑在熟料煅烧过程中窑头窑尾排放的余热废气进行回收,通过余热锅炉产生蒸汽带动汽轮发电机发电。
一条日产5000吨水泥熟料生产线每天可利用余热发电21-24万度,可解决约60%的熟料生产自用电,产品综合能耗可下降约18%,每年节约标准煤约2.5万吨,减排二氧化碳约6万吨。
水泥纯低温余热发电技术是指在新型干法水泥熟料生产线生产过程中,通过余热回收装置——余热锅炉将水泥窑窑头、窑尾排出大量的低品位废气余热进行热交换回收,产生过热蒸汽推动汽轮机实现热能向机械能的转换,从而带动发电机发出电能,
窑头锅炉
所发电能供水泥生产过程中使用。
三、目前国内预分解水泥窑采用纯低温余热发电的主机设备配置主要为:
1、窑头采用余热锅炉(或热交换器),简称为AQC炉,国内都为立式;国外也是。
2、窑尾采用余热锅炉(或热交换器),国内大多采用的是立式,简称SP
锅炉,安徽海螺川崎工程有限公司采用的是卧式,简称PH锅炉;国外为卧式。
卧式锅炉和立式锅炉的性能比较见下表:
PH锅炉SP锅炉
工质循环
方式
强制循环自然循环
体积小,现场
布置方便
大,现场
布置不方
便
重量轻重
积灰废气流动
的方向和
换热管垂
直,不易
积灰,清
灰效果好
废气流动
的方向和
换热管水
平,易积
灰,清灰
难度大
维护量少多换热端差小大
蒸发量比立式高
15%~30%
比卧式低
15%~30%
换热效率比立式高
8%~10%
比卧式低
8%~10%
上表中的换热端差是指锅炉入口废气温度与过热器出口蒸汽温度之间的差值,其值越小,表明锅炉过热器换热充分,传热效率高,蒸汽热焓高,热能利用率高。
PH锅炉换热端差约为10℃,而SP锅炉的换热端差接近30℃。
3、汽轮机,国内采用补汽凝汽式汽轮机;国外为混压式汽轮机。
4、发电机,国内采用空冷式发电机;国外也是。
5、水处理设备。
6、循环冷却设备。
7、DCS控制设备。
四、常用的余热发电热力系统
常用的有单压不补汽、闪蒸(单压补汽)、双压补汽余热发电三种方式;
1、单压不补汽系统指窑头余热锅炉和窑尾余热锅炉产生相近参数的主蒸汽,混合后进入汽轮机;窑头余热锅炉生产的热水供窑头余热锅炉蒸汽段和窑尾余热锅炉。
柜内的技术代表有中材节能—天津院和南京凯盛公司。
2、双压补汽系统指余热锅炉生产较高压力和较低压力的蒸汽,分别进入汽轮机的高、低压进汽口。
国内的技术代表有洛阳中信和大连易事达。
3、闪蒸系统指锅炉产生一定压力的主蒸汽和热水,主蒸汽进入汽轮机高压进汽口,热水经过闪蒸,生产低压的饱和蒸汽,补入补汽式汽轮机的低压进汽口。
国内的技术代表有安徽海螺川崎工程有限公司。
五、案例介绍
纯低温余热发电技术的关键问题,一是面对中、低品位的热源如何提高发电效率;二是余热锅炉如何适应低温的、含尘浓度高的废气,因为废气温度低就要增加换热面积,废气的含尘浓度高会带来传热性能降低,并加快设备磨损,尤其是窑头余热锅炉的磨损,甚至恶性堵灰事故造成的系统可靠性降低。
一条4500t/d熟料生产线窑尾预热器及窑头熟料冷却机废气余热联合生产低压过热蒸汽进行发电设计指标如下:
发电机装机容量: 10 MW
设计小时发电功率: 9000 kW
年向水泥厂供电:6361×10kWh
废气余热资源表
内容 4500t/d熟料生产线
窑尾废气参数窑尾废气量 360,000Nm/h
窑尾废气温度330℃
窑尾废气负压 7000mmH2O
窑尾锅炉出口温度213℃
窑尾废气含尘度 80g/Nm
窑头废气参数窑头废气量 222,000Nm/h
窑头废气温度360℃
窑头废气含尘浓度 30/Nm
通过对上表生产线废气余热资源表的分析、热平衡计算,余热发电机组设计发电量为9000kW。
生产工艺是一个能量转化的过程。
给水通过PH余热锅炉和AQC余热锅炉,将4500t/d水泥熟料生产线排放的低温余热的热能进行回收,使其转化为蒸汽,再通过蒸汽管道导入蒸汽轮机,在汽轮机中热能转化为动能,使汽轮机转子高速旋转,驱动发电机转动,从而转化为最终的产品-----电能。