五中心对称图形(二)测试题

合集下载

五年级上册数学单元测试-2.对称、平移和旋转 青岛版(含答案)

五年级上册数学单元测试-2.对称、平移和旋转 青岛版(含答案)

五年级上册数学单元测试-2.对称、平移和旋转一、单选题1.下列数字是对称的是()。

A. B. C.2.下边的图形,()是通过平移左边的图①得到的。

①A. B. C.3.下面是平移现象的是()A. B. C.4.中心对称图形是指把图形绕某一点旋转180°后的图形和原来的图形能够完全重合,下面这些美丽的轴对称图案中,中心对称的图形有()个。

A. 1B. 2C. 3D. 4二、判断题5.平移和旋转后的物体,位置改变,形状、大小也改变。

6.飞机在空中飞行是旋转现象。

7.“脸谱”不是轴对称图形。

()8.判断对错.左图是六边形,每条边都相等,它有三条对称轴.三、填空题9.我们学过的汉字中有很多都是轴对称图形,请写出几个吧:________、________、________、________、________。

10.下图中图形A是图形B先向________平移________格,再向________平移________格后得到的。

11.移一移,说一说。

向下平移了________格。

向右平移了________格。

向上平移了________格先向________平移________格,再向________平移________格。

先向________平移________格,再向________平移________格。

12.“小鱼之家”。

小鱼尼莫要去“小鱼之家”,首先要潜入水草底躲过大鲨鱼。

那么,它应先向________平移________格,再向________平移________格潜入水草底。

躲过大鲨鱼后,尼莫再向________平移________格,安全到达“小鱼之家”。

四、解答题13.在括号里填上“平移”或“旋转”。

14.仔细观察图形,找出变化规律,想一想空白处应该怎样填?试着画一画吧!五、综合题15.看一看,填一填。

(1平移能够互相重合的有________。

【答案】B和③;D和①(1)旋转能够互相重合的有________。

图象的轴对称与中心对称测试题(含答案)

图象的轴对称与中心对称测试题(含答案)

图象的轴对称与中心对称一、单选题(共10道,每道10分)1.已知函数y=f(x+1)的图象经过点(3,2),则与函数f(x)的图象关于x轴对称的图象一定过点( )A.(2,-2)B.(2,2)C.(-4,2)D.(4,-2)答案:D解题思路:试题难度:三颗星知识点:函数图象的平移变换2.将函数的图象先向右平移2个单位,再向下平移2个单位,得到函数y=f(x)的图象,若函数y=g(x)与y=f(x)的图象关于y轴对称,则g(x)的解析式为( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:函数图象的平移变换3.将函数的图象关于原点对称,所得图象再向右平移3个单位所得函数的解析式为( )A. B. C. D.答案:C解题思路:试题难度:三颗星知识点:函数图象的平移变换4.函数f(x)的图象向左平移1个单位,所得图象与关于x轴对称,则f(x)=( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:函数图象的平移变换5.函数的图象先向左平移1个单位,再向下平移2个单位,若所得图象与曲线关于轴对称,则=( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:函数图象的平移变换6.将函数y=f(x)的图象向左平移个单位得到,若和关于原点对称,则的解析式为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:函数图象的平移变换7.已知函数f(x),若函数f(x+1)的图象与函数的图象关于原点对称,则f(x)的解析式为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:函数图象的平移变换8.函数的大致图象是( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:函数图象的平移变换9.已知定义在区间上的函数的图象如图所示,则的图象为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:函数图象的平移变换10.若函数f(x)的图象如图所示,则函数y=f(1-x)的大致图象为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:函数图象的平移变换。

人教版五年级下册数学第五单元测试卷(2)

人教版五年级下册数学第五单元测试卷(2)

人教版小学数学第五单元检测卷(一)一、填空题。

1.等边三角形有()条对称轴,等腰三角形有()条对称轴,等腰梯形有()条对称轴。

2.平移作图时,要找准平移方向,还要数清平移的()。

3.旋转变换的三个基本要素是()、()、()。

4.看图填一填。

(1)图形1绕点A()旋转90°到图形2。

(2)图形2绕点A()旋转90°到图形3。

(3)图形3绕点A顺时针旋转()到图形1。

(4)图形4绕点A顺时针旋转()到图形3。

二、选择题。

(把正确答案的序号填在括号里)1.下面的游戏中,()是旋转现象。

A.踢毽子B.玩碰碰车C.荡秋千D.捉迷藏2.下面各组图形中,经过平移可以重合的是()。

A. B. C. D.3.下列图形中,有2条对称轴的是()。

A. B. C. D.4.三角形从(1)平移到(2)的位置,平移的方向和距离是()。

A.方向向左,平移了4格B.方向向右,平移了4格C.方向向右,平移了6格D.方向向左,平移了6格三、标出狗图中的序号并说明每块是怎样平移或旋转的。

四、将下面的图形绕点O分别顺时针旋转90°、逆时针旋转90°。

五、按要求作图。

1.画出轴对称图形的另一半。

2.把整个图形以点O为中心逆时针旋转90°。

3.旋转后,把整个图形向右平移9格。

六、下图是被打乱的4张图片,怎样才能还原成右图?七、根据学过的轴对称、平移和旋转设计图案。

参考答案一、1.3 1 1 2.距离3.旋转中心旋转方向旋转角度4.(1)逆时针(2)逆时针(3)180°(4)90°二、1.C 2.B 3.B 4.C三~七、略第五单元检测卷(二)一、填一填。

1.推拉铝合金窗户是()现象;钟面上时针、分针不停地走动是()现象;拧水龙头是()现象;汽车在笔直的马路上行驶,车身的运动是()现象,车轮的运动是()现象。

2.旋转和平移都只是改变图形的(),而不改变图形的()和()。

3.①中的图形是以点()为中心旋转的;②中的图形是以点()为中心旋转的;③中的图形是以点()为中心旋转的。

苏科版九年级数学上《第二章对称图形--圆》单元测试含答案试卷分析详解

苏科版九年级数学上《第二章对称图形--圆》单元测试含答案试卷分析详解

第二章对称图形--圆单元测试一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 ( )A、25πB、65πC、90πD、130π2.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A、60ºB、30ºC、45ºD、50º3.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则的长为()A、3π2B、3π4C、3π8D、3π4.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系()A、点A在圆内B、点A在圆上C、点A在圆外D、不能确定5.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是( ).A、30°B、60°C、90°D、120°6.如图所示的扇形的圆心角度数分别为30°,40°,50°,则剩下扇形是圆的()A、13B、23C、14D、347.如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则S1S2=()A.3B.4C.5D.68.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.若抛物线与坐标轴只有一个交点,则b2﹣4ac=0D.相等的圆心角所对的弧相等9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°10.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A、27°B、54°C、63° D 、36°二、填空题(共8题;共24分)11.已知,半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是________ .12.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .13.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________14.已知正六边形的半径为2cm,那么这个正六边形的边心距为 ________cm15.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的面积为________ cm2.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC^ 的弧长为________.(结果保留π)17.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是________.18.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于________.三、解答题(共5题;共36分)19.如图,P是半径为3cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C 是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=433cm,求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.23.如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为43 ,求点P的坐标.四、综合题(共1题;共10分)24.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)答案解析一、单选题1、【答案】B【考点】圆锥的计算,图形的旋转【解析】【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2、【答案】A【考点】圆周角定理【解析】【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=12∠AOB=60°;故选A.3、【答案】A【考点】等腰梯形的性质,切线的性质,弧长的计算【解析】【分析】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,由等腰梯形的性质可得到BM=AM=2,从而可求得∠BAD的度数,再根据弧长公式即可求得长.【解答】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为135×2π180=3π2 ,故选A.【点评】本题考查等腰梯形的性质,圆的切线的性质及弧长公式的理解及运用.4、【答案】A【考点】点与圆的位置关系【解析】【分析】点A到圆心O的距离是3,小于⊙O半径4,所以点A在圆内。

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册《第2章对称图形——圆》单元测试题(附答案)一.选择题(共8小题,满分40分)1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.22.如图,点P是半径为4的⊙O上一点,OC⊥AB于点D.若∠P=30°,则OD等于()A.B.C.2D.33.如图,AB是⊙O的弦,OC⊥AB,垂足为C,OD∥AB,OC=OD,则∠ABD的度数为()A.90°B.95°C.100°D.105°4.如图,CD是⊙O的直径,⊙O上的两点A,B分别在直径CD的两侧,且∠ABC=78°,则∠AOD的度数为()A.12°B.22°C.24°D.44°5.如图,从一张直径是2的圆形纸片上剪出一个圆心角为90°的扇形,若剪出的扇形恰好可以围成一个圆锥,则该圆锥底面圆的面积是()A.πB.C.D.6.已知三角形ABE为直角三角形,∠ABE=90°,BC为圆O切线,C为切点,CA=CD,则△ABC和△CDE面积之比为()A.1:3B.1:2C.:2D.(﹣1):1 7.如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4B.4<m≤10C.8<m≤10D.6<m<108.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°二.填空题(共8小题,满分40分)9.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如果C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为m.10.如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=°.11.如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为cm.12.如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是(结果保留π).13.如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.14.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.15.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=5,EF=4,那么AD=.16.如图,在平面直角坐标系中,B(0,4),A(3,0),⊙A的半径为2,P为⊙A上任意一点,C是BP的中点,则OC的最大值是.三.解答题(共6小题,满分40分)17.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.18.如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE ⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.19.如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.20.如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.21.已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.22.如图①,在△ABC中,CA=CB,D是△ABC外接圆⊙O上一点,连接CD,过点B作BE∥CD,交AD的延长线于点E,交⊙O于点F.(1)求证:四边形DEFC是平行四边形;(2)如图②,若AB为⊙O直径,AB=7,BF=1,求CD的长.参考答案一.选择题(共8小题,满分40分)1.解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.2.解:连接OA,∵∠P=30°,∴∠AOD=60°,∵OC⊥AB,∴∠ADO=90°,∴∠OAD=30°,∵OA=4,∴OD=OA=2.故选:C.3.解:如图:连接OB,则OB=OD,∵OC=OD,∴OC=OB,∵OC⊥AB,∴∠OBC=30°,∵OD∥AB,∴∠BOD=∠OBC=30°,∴∠OBD=∠ODB=75°,∠ABD=30°+75°=105°.故选:D.4.解:∵∠AOC=2∠ABC,∠ABC=78°,∴∠AOC=156°,∴∠AOD=180°﹣∠AOC=24°,故选:C.5.解:∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为,∴底面圆的面积为.故选:C.6.解:如图,连接OC,∵BC是⊙O的切线,OC为半径,∴OC⊥BC,即∠OCB=90°,∴∠COD+∠OBC=90°,又∵∠ABE=90°,即∠ABC+∠OBC=90°,∴∠ABC=∠COD,∵DE是⊙O的直径,∴∠DCE=90°,即∠OCE+∠OCD=90°,又∠A+∠E=90°,而∠E=∠OCE,∴∠A=∠OCD,在△ABC和△COD中,,∴△ABC≌△COD(AAS),又∵BO=DO,∴S△COD=S△COE=S△DCE,∴S△ABC=S△DCE,即△ABC和△CDE面积之比为1:2,故选:B.7.解:连接PD,DF,OC,BD,如图,∵CD⊥AB,BA为⊙O的直径,∴CE=ED=CD=4,∵OC=AB=5,∴OE==3,∴BE=OE+OB=8.∴BD==4.∵P是直径AB上的动点,CD⊥AB,∴AB是CD的垂直平分线,∴PC=PD.∵m=PC+PF,∴m=PD+PF,由图形可知:PD+PF≥DF(当D,P,F在一条直线上时取等号),∵点F是弧BC上动点,且与点B、C不重合,∴DC<DF≤直径,∴8<m≤10.故选:C.8.解:∵弦AD平分∠BAC,∠EAD=25°,∴∠OAD=∠ODA=25°.∴∠BOD=2∠OAD=50°.故选项D不符合题意;∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,即AE∥OD,故选项B不符合题意;∵DE是⊙O的切线,∴OD⊥DE.∴DE⊥AE.故选项A不符合题意;如图,过点O作OF⊥AC于F,则四边形OFED是矩形,∴OF=DE.在直角△AFO中,OA>OF.∵OD=OA,∴DE<OD.故选项C符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:连接OA,如图,设⊙O的半径为rm,∵C是⊙O中弦AB的中点,CD过圆心,∴CD⊥AB,AC=BC=AB=2m,在Rt△AOC中,∵OA=rcm,OC=(6﹣r)m,∴22+(6﹣r)2=r2,解得r=,即⊙O的半径长为m.故答案为:.10.解:连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.11.解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20πcm,故答案为:20π.12.解:根据题意可得,的半径AA1=;的半径BB1=AB+AA1=;的半径CC1=CB+BB1=;的半径DD1==CD+CC1=;的半径AA2=AD+DD1=;的半径BB2=AB+AA2=;的半径CC2=BC+BB2=;的半径DD2=CD+CC2=;•以此类推可知,弧∁n D n的半径为=2n,即弧C2022D2022的半径为DD2022=2n=2×2022=4044,∴弧C2022D2022的长l===2022π.故答案为:2022π.13.解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),∴阴影部分的面积=S扇形ADO=×π×22=.故答案为:.14.解:∵OC⊥AB,∴,∴∠AOD=∠BOD,∵∠AOB=120°,∴∠AOD=∠BOD=∠AOB=60°,∴∠APD=∠AOD=×60°=30°,故答案为:30°.15.解:过O作OM⊥EF于M,连接OE,则∠OMD=90°,∵四边形ABCD是矩形,∴∠A=∠D=90°,∴四边形AOMD是矩形,∴OM=AD,∵OM⊥EF,OM过圆心O,EF=4,∴EM=FM=2,∵OG=OB,BG=5,∴OB=OG=2.5=OE,在Rt△OME中,由勾股定理得:OM===1.5,∴AD=OM=1.5,故答案为:1.5.16.解:如图,连接AB,取AB的中点H,连接CH,OH.∵BC=CP,BH=AH,∴CH=P A=1,∴点C的运动轨迹是以H为圆心半径为1的圆,∵B(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OC的最大值=OH+CH=2.5+1=3.5,故答案为:3.5.三.解答题(共6小题,满分40分)17.(1)证明:连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵OA=OD,∴∠OAD=∠ODA,∵DA平分∠BDE,∴∠ODA=∠ADE,∴∠ADE=∠OAD,∴OA∥CE,∴∠E=180°﹣∠OAE=90°,∴AE⊥DE;(2)解:过点O作OF⊥DC,垂足为F,∴∠OFD=90°,∵∠OAE=∠E=90°,∴四边形OAEF是矩形,∴OA=EF=5,AE=OF,∵OF⊥CD,∴DF=CD=3,∴DE=EF﹣DF=5﹣3=2,∴OF===4,∵AE=OF=4,∴AD===2,∴AD的长为2.18.(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠P AE=60°,∵AB=AC,∴△ABC是等边三角形,∵⊙O的半径为6,∴BC=AB=12,∠C=60°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cos C=6×cos60°=3,答:CE的长是3.19.(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA,∠OEC=∠F AC=90°,设⊙O的半径为r,则,解得r=,在Rt△F AO中,∠F AO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.20.(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.21.解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.22.(1)证明:∵BE∥CD,∴∠ADC=∠E,∵AC=BC,∴=,∴∠ADC=∠BFC,∴∠BFC=∠E,∴ED∥FC,∴四边形DEFC是平行四边形;(2)解:如图②,连接AF,∵AB是⊙O的直径,∴∠ACB=∠AFB=∠AFE=90°,∵AB=7,BF=1,∴AF===4,∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠BFC=∠BAC=45°,∵DE∥CF,∴∠E=∠BFC=45°,∴△AFE是等腰直角三角形,∴EF=AF=4,∵四边形DEFC是平行四边形,∴CD=EF=4.。

(完整版)第9章中心对称图形—平行四边形测试题含答案

(完整版)第9章中心对称图形—平行四边形测试题含答案

第9章 中心对称图形—平行四边形 测试题一、选择题(每小题3分,共30分) 1.(2015年汕尾)下列命题中正确的是( )A. 一组对边相等,另一组对边平行的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直平分且相等的四边形是正方形2.如图1,将△ABC 沿BC 方向平移得到△DCE ,连接AD ,下列条件能够判定四边形ACED 为菱形的是( )A .AB =BC B .AC =BC C .∠B =60°D .∠ACB =60°3.如图2,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是( ) A .7.5 B .30 C .15 D .24 4.如图3,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 的度数为( ) A. 50° B .60° C .70° D .80°5.如图4,在□ABCD 中,对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE ,CF ,则四边形AECF 是( ) A .矩形 B .菱形 C .正方形 D .无法确定 6.如图5,在正方形ABCD 中,E ,F 分别为AB ,CD 的中点,连接DE ,BF ,CE ,AF ,正方形ABCD 的面积为1,则阴影部分的面积为( )A .21 B .31 C .41D .517. 用两个完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形.一定能拼成的图形是( ) A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤8.如图6,将矩形纸片ABCD 折叠,使点A 落在BC 上的点F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( ) A .邻边相等的矩形是正方形 B .对角线相等的菱形是正方形 C .两个全等的直角三角形构成正方形 D .轴对称图形是正方形9.如图7,把一个矩形纸片对折两次,然后沿虚线剪下一个角,为了得到一个内角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°10.如图8,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=1,DE=3,∠EFB=60°,则矩形ABCD的面积是()A.3 B.6 C.33D.43二、填空题(每小题4分,共32分)11.在□ABCD中,若添加一个条件:____,则四边形ABCD是矩形;若添加一个条件:____,则四边形ABCD是菱形.12.如图9,矩形ABCD内有一点E,连接AE,DE,CE,若AD=ED=EC,∠ADE =20°,则∠AEC的度数为____.13.在菱形ABCD中,AE⊥BC于点E,若菱形ABCD的面积为48 cm2,且AE=6 cm,则AB的长为_________.14. 如图10,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________.15. (2015年赤峰)如图11,在四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长,交AD的延长线于点F,请你只添加一个条件:____________,使得四边形BDFC 为平行四边形.16. 如图12,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形E FGH的面积为_________.17. 如图13,在□ABCD中,AC,BD相交于点O,AB=10 cm,AD=8 cm,AC⊥BC,则OB的长为_________cm.18.如图14,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________.三、解答题(共58分)19.(8分)如图15,在四边形ABCD中,∠ABC=∠ADC=90°,P是AC的中点.求证:∠BDP=∠DBP.20.(8分)如图16,在直线MN上和直线MN外分别取点A,B,过线段AB的中点O作CD∥MN,分别与∠MAB与∠NAB的平分线相交于点C,D.求证:四边形ACBD是矩形.21.(10分)如图17,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E,F,且DE=DF.求证:(1)△AE D≌△CFD;(2)四边形ABCD是菱形.22. (10分)如图18,在□ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE=12,CE=5.求□ABCD的周长和面积.23.(10分)如图19,在△ACD中,∠ADC=90°,∠ADC的平分线交AC于点E,EF⊥AD交AD于点F,EG⊥DC交DC于点G,请你说明四边形EFDG是正方形.24.(12分)如图20,在矩形ABCD中,对角线AC,BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于点Q.(1)求证:四边形PBQD为平行四边形.(2)若AB=3 cm,AD=4 cm,P从点A出发,以1 cm/s的速度向点D匀速运动,设点P的运动时间为t s,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.附加题(15分,不计入总分)以四边形ABCD 的边AB ,BC ,CD ,DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E ,F ,G ,H ,顺次连接这四个点,得到四边形EFGH .(1)如图①,当四边形ABCD 为正方形时,我们发现四边形EFGH 也是正方形;如图②,当四边形ABCD 为矩形时,请判断四边形EFGH 的形状(不要求证明).(2)如图③,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°). ①试用含α的代数式表示∠HAE ; ②求证:HE=HG .③四边形EFGH 是什么四边形?并说明理由.参考答案一、1.D 2.B 3.C 4.B 5.B 6.C 7. D 8.A 9.D 10.D二、11.答案不唯一,如∠ADC =90° AB =BC 12.120° 13.8 cm 14.4.8 15. 答案不唯一,如BD ∥FC ,或BC=DF ,或DE=CE 16. 12 17.73 18.35三、19.证明:因为∠ABC =∠ADC =90°,点P 是AC 的中点,所以BP =21AC ,DP =21AC .所以BP =DP .所以∠BDP =∠DBP . 20.证明:因为AD 平分∠BA N,所以∠DA N=∠BAD .因为CD ∥MN,所以∠CDA =∠DA N.所以∠BAD =∠CDA .所以DO =AO .同理,CO =AO .所以CO =DO .又AO =BO ,所以四边形ACBD 是平行四边形.因为AC ,AD 均为角平分线,所以∠CAD =90°,所以平行四边形ACBD 是矩形. 21.证明:(1)因为DE ⊥AB ,DF ⊥BC ,所以∠AED =∠CFD =90°.因为四边形ABCD 是平行四边形,所以∠A =∠C .又DE =DF ,所以△AED ≌△CFD .(2)因为△AED ≌△CFD ,所以AD =CD .因为四边形ABCD 是平行四边形,所以四边形ABCD 是菱形.22.解:因为BE ,CE 分别平分∠AB C ,∠BCD ,所以∠EBC=21∠ABC ,∠ECB=21∠DCB. 因为AB ∥CD ∠DCB=180°. 所以∠EBC+∠ECB=21(∠ABC+∠DCB )=90°. 所以△EBC 是直角三角形.因为BE =12,CE =5,由勾股定理,得BC=13. 因为四边形ABCD 是平行四边形,所以AD ∥BC. 所以∠DE C=∠ECB.因为∠ECD=∠ECB ,所以∠DEC=∠ECD. 所以DE=CD. 同理,AB=A E.所以AB+CD=AE+DE=AD=BC=13.所以□ABCD 的周长为AB+BC+CD+DA=13+13+13=39. 过点E 作BC 所以S △EBC =21BC·EH=21BE·CE=21×12×5=30. 所以□ABCD 的面积为BC·EH=2×30=60.23.解:因为∠ADC =90°,EF ⊥AD ,EG ⊥CD ,所以四边形EFDG 是矩形. 又DE 平分∠ADC ,所以EF =EG .所以四边形EFDG 是正方形. 24.(1)证明:因为四边形ABCD 是矩形,所以A D ∥BC ,OD =OB .所以∠PDO =∠QBO .又∠POD =∠QOB ,所以△POD ≌△QOB .所以OP =OQ .所以四边形PBQD 为平行四边形.(2)解:能.由题意,知AP =t cm ,PD =(4-t ) cm .当PB =PD =(4-t ) cm 时,四边形PBQD 是菱形.因为四边形ABCD 是矩形,所以∠BAP =90°.在Rt △ABP 中,AP 2+AB 2=PB 2,即t 2+32=(4-t )2.解得t =87.所以当点P 的运动时间为87s 时,四边形PBQD 是菱形.附加题(1)解:四边形EFGH 是正方形. (2)①解:在□ABCD 中,AB ∥CD ,所以∠BAD =180°-∠ADC =180°-α.因为△HAD 和△EAB 都是等腰直角三角形,所以∠HAD =∠EAB =45°. 所以∠HAE =360°-∠HAD -∠EAB -∠BAD =360°-45°-45°-(180°-α)=90°+α.②证明:因为△AEB 和△DGC 都是等腰直角三角形,所以AE =22AB ,DG =22CD .在□ABCD 中,AB =CD ,所以AE =DG .因为△HAD 和△GDC 都是等腰直角三角形,所以∠HDA =∠CDG =45°.所以∠HDG =∠HDA +∠ADC +∠CDG =45°+α+45°=90°+α=∠HAE .又HA =HD ,所以△HAE ≌△HDG ,所以HE =HG . ③解:四边形EFGH 是正方形.理由:同②,得GH =GF ,FG =FE .因为HE =HG ,所以GH =GF =EF =HE .所以四边形EFGH 是菱形.因为△HAE ≌△HDG ,所以∠DHG =∠AHE .因为∠AHD =∠AHG +∠DHG =90°,所以∠EHG =∠AHG +∠AHE =90°.所以四边形EFGH 是正方形.。

《第16章轴对称和中心对称》单元测试(2)含答案解析

《第16章轴对称和中心对称》单元测试(2)含答案解析

《第16章轴对称和中心对称》一、选择题1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.4个C.3个D.2个2.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间3.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD4.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=3cm,则线段PB的长为()A.6cm B.5cm C.4cm D.3cm5.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点7.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°8.如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A.∠B=∠D B.∠A=∠B C.OA=OB D.AD=BC9.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)的值为()A.1 B.﹣1 C.7 D.﹣710.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空题11.观察字母A,E,H,O,T,W,X,Z,其中不是轴对称的字母是.12.如图,是从镜中看到的一串数字,这串数字应为.13.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5cm,BD=3cm,则点D到AB的距离为.14.已知点P关于x轴的对称点P′的坐标是(2,3),那么P关于y轴对称点P″的坐标是.15.等腰三角形一个顶角和一个底角之和是110°,则顶角是.16.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有对.17.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.18.如下图,在△ADC中,AD=BD=BC,若∠C=25°,则∠ADB= 度.三、解答题19.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC 边上的点F,求CE的长.20.如图,已知线段CD垂直平分线AB,AB平分∠CAD,问AD与BC平行吗?请说明理由.21.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.22.如图,在△ABC中,CE、CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.23.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE 的周长为14,求AB的长.24.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.25.如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P是线段CD的中点吗?为什么?《第16章轴对称和中心对称》参考答案与试题解析一、选择题1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.4个C.3个D.2个【考点】轴对称图形.【分析】此题主要是分析汉字的对称性,美和善都是轴对称图形,祥和洋不是对称图形.【解答】解:美和善都是轴对称图形,祥和洋不是对称图形.共2个.故选D.【点评】本题考查了轴对称图形,能够根据轴对称图形的概念,正确分析汉字的对称性.轴对称的概念:把其中的一个图形沿某直线翻折,能够和另一个图形完全重合,则两个图形关于某直线对称.2.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PD=PE.【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.4.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=3cm,则线段PB的长为()A.6cm B.5cm C.4cm D.3cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得PB=PA.【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,∵PA=3cm,∴PB=3cm.故选D.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.5.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C 的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选D.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.7.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°【考点】轴对称的性质;三角形内角和定理.【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.【点评】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.8.如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A.∠B=∠D B.∠A=∠B C.OA=OB D.AD=BC【考点】等腰三角形的性质;平行线的性质.【分析】本题可根据平行线的性质和OA=OC的条件来得出∠A、∠B、∠C、∠D四角的大小关系,进而可判断各条件的对错.【解答】解:∵AC∥BD,∴∠A=∠D,∠C=∠B;又∵OA=OC,∠A=∠C;∴∠A=∠D=∠C=∠B,∴△AOC和△BOD为等腰三角形;∴OA+OB=OC+OD,即AD=BC.所以A、B、D成立;C不一定成立.故选C.【点评】本题较简单,但构思巧妙,结合了等腰三角形和平行线的性质,是一道好题.9.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)的值为()A.1 B.﹣1 C.7 D.﹣7【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b,然后代入代数式进行计算即可得解.【解答】解:∵M(a,3)和N(4,b)关于y轴对称,∴a=﹣4,b=3,∴(a+b)=(﹣4+3)=1.故选A.【点评】本题考查了关于x轴y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【考点】剪纸问题.【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.【点评】对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.二、填空题11.观察字母A,E,H,O,T,W,X,Z,其中不是轴对称的字母是Z .【考点】轴对称图形.【分析】根据轴对称图形的概念可知.【解答】解:其中不是轴对称图形的只有Z.【点评】能够根据轴对称图形的概念,正确判断字母的对称性.12.如图,是从镜中看到的一串数字,这串数字应为810076 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.13.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5cm,BD=3cm,则点D到AB的距离为2cm .【考点】角平分线的性质.【分析】首先过点D作DE⊥AB于E,由在△ABC中,∠C=90°,AD是∠BAC的角平分线,根据角平分线的性质,即可得DE=CD,又由BC=5cm,BD=3cm,即可求得CD的长,继而求得点D到AB的距离.【解答】解:过点D作DE⊥AB于E,∵在△ABC中,∠C=90°,∴DC⊥AC,∵AD是∠BAC的角平分线,∴DE=CD,∵BC=5cm,BD=3cm,∴CD=BC﹣BD=2cm,∴DE=2cm.∴点D到AB的距离为2cm.故答案为:2cm.【点评】此题考查了角平分线的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.14.已知点P关于x轴的对称点P′的坐标是(2,3),那么P关于y轴对称点P″的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【专题】综合题.【分析】根据平面直角坐标系中两点关于x轴的对称点的坐标关系:横坐标不变,纵坐标互为相反数;可知道P点的坐标,再根据两点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数,得出P″的坐标.【解答】解:∵点P关于x轴的对称点P′的坐标是(2,3),根据轴对称的性质,得P点的坐标是(2,﹣3),根据两点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数,得出P″的坐标为(﹣2,﹣3),故答案为(﹣2,﹣3).【点评】本题考查了平面直角坐标系中两点关于x轴和y轴对称,横纵坐标的关系,难度适中.15.等腰三角形一个顶角和一个底角之和是110°,则顶角是40°.【考点】等腰三角形的性质.【分析】已知给出了两角的和,可根据三角形内角和定理求出另一个底角,再相减即可求出顶角.【解答】解:依题意得:等腰三角形的顶角和一个底角的和是110°即它的另一个底角为180°﹣110°=70°∵等腰三角形的底角相等故它的一个顶角等于110°﹣70°=40°.故答案为:40°.【点评】本题考查了三角形内角和定理以及等腰三角形的性质;本题思路比较直接,简单,属于基础题.16.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有 4 对.【考点】轴对称图形.【分析】关于直线OE对称的三角形就是全等的三角形,据此即可判断.【解答】解:△ODE和△OCE,△OAE和△OBE,△ADE和△BCE,△OCA和△ODB共4对.故答案为:4.【点评】能够理解对称的意义,把找对称三角形的问题转化为找全等三角形的问题,是解决本题的关键.17.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19 cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.18.如下图,在△ADC中,AD=BD=BC,若∠C=25°,则∠ADB= 80 度.【考点】等腰三角形的性质;三角形内角和定理.【分析】在等腰△BDC中,可得∠BDC=∠C;根据三角形外角的性质,即可求得∠ABD=50°;进而可在等腰△ABD中,运用三角形内角和定理求得∠ADB的度数.【解答】解:∵BD=BC,∴∠BDC=∠C=25°;∴∠ABD=∠BDC+∠C=50°;△ABD中,AD=BD,∴∠A=∠ABD=50°;故∠ADB=180°﹣∠A﹣∠ABD=80°.故答案为:80.【点评】本题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理;利用三角形外角求得∠ABD=50°是正确解答本题的关键.三、解答题19.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC 边上的点F,求CE的长.【考点】勾股定理;翻折变换(折叠问题).【专题】几何图形问题.【分析】要求CE的长,应先设CE的长为x,由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE ≌Rt△AFE,所以AF=10cm,EF=DE=8﹣x;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC﹣BF=10﹣BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8﹣x)2=x2+(10﹣BF)2,将求出的BF的值代入该方程求出x的值,即求出了CE的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=xcm,则DE=EF=CD﹣CE=8﹣x,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即CE=3cm.【点评】本题主要考查运用勾股定理、全等三角形、方程思想等知识,根据已知条件求指定边长的能力.20.如图,已知线段CD垂直平分线AB,AB平分∠CAD,问AD与BC平行吗?请说明理由.【考点】线段垂直平分线的性质;平行线的判定.【分析】由线段CD垂直平分线AB,根据线段垂直平分线的性质,易得∠CAB=∠CBA,又由AB平分∠CAD,即可得∠DAB=∠CBA,继而证得AD与BC平行.【解答】解:AD∥BC,理由:∵CD垂直平分AB,∴AC=BC,∴∠CAB=∠CBA,∵AB平分∠CAD,即∠CAB=∠DAB,∴∠ABC=∠DAB,∴AD∥BC.【点评】此题考查了线段垂直平分线的性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用.21.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.【考点】轴对称-最短路线问题.【专题】作图题.【分析】分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短.【解答】解:如图所示:分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P 1P 2交OX 于M ,交OY 于N ,则PM+MN+NP 最短.【点评】本题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.22.如图,在△ABC 中,CE 、CF 分别平分∠ACB 和△ACB 的外角∠ACG ,EF ∥BC 交AC 于点D ,求证:DE=DF .【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】利用平行线及角平分线的性质先求得CD=ED ,CD=DF ,然后等量代换即可证明DE=DF .【解答】证明:∵CE 是△ABC 的角平分线,∴∠ACE=∠BCE .∵CF 为外角∠ACG 的平分线,∴∠ACF=∠GCF .∵EF ∥BC ,∴∠GCF=∠F ,∠BCE=∠CEF .∴∠ACE=∠CEF ,∠F=∠DCF .∴CD=ED ,CD=DF (等角对等边).∴DE=DF .【点评】本题考查了等腰三角形的判定及角平分线的性质和平行线的性质;进行等量代换是正确解答本题的关键.23.已知,如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC=8,△ABE 的周长为14,求AB 的长.【考点】线段垂直平分线的性质.【分析】利用垂直平分线的性质和已知的周长计算.【解答】解:∵DE是BC的中垂线,∴BE=EC,则AC=EC+AE=BE+EA=8,又∵△ABE的周长为14,故AB=14﹣8=6.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.难度简单.24.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得,再解方程组即可;(2)根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,再解方程组即可.【解答】解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,∴,解得;(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,∴,解得:.【点评】此题主要考查了关于x、y轴对称的点的坐标,关键是掌握点的坐标特点.25.如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P是线段CD的中点吗?为什么?【考点】角平分线的性质.【分析】过点P作PE⊥AB于E,根据垂直于同一直线的两直线互相平行求出PC⊥BC,再根据角平分线上的点到角的两边距离相等可得PD=PE,PC=PE,从而得到PC=PD,然后根据线段中点的定义解答.【解答】答:点P是线段CD的中点.证明如下:过点P作PE⊥AB于E,∵AD∥BC,PD⊥CD于D,∴PC⊥BC,∵∠DAB的平分线与∠CBA的平分线交于点P,∴PD=PE,PC=PE,∴PC=PD,∴点P是线段CD的中点.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作出辅助线是解题的关键.。

五年级上册数学试题-第二单元 图案美-对称、平移与旋转 测试卷-青岛版(含答案)

五年级上册数学试题-第二单元 图案美-对称、平移与旋转 测试卷-青岛版(含答案)

五年级上册数学试题-第二单元图案美-对称、平移与旋转测试卷-青岛版(含答案)一.选择题(共5题,共10分)1.花朵是通过花瓣()得到的。

A.平移B.旋转C.对称2.下面的运动中,是旋转的是()。

A. B. C. D.3.从6:00到6:30,分针旋转了()。

A.30°B.90°C.180°4.中心对称图形是指把图形绕某一点旋转180°后的图形和原来的图形能够完全重合,下面这些美丽的轴对称图案中,中心对称的图形有()个。

A.1B.2C.3D.45.下列物体的运动属于旋转现象的是()。

A.推拉窗的打开和关上B.转盘的运转C.抽屉的推拉二.判断题(共5题,共10分)1.将等边三角形绕着中心点旋转120°后,不能与原来的图形重合。

()2.旋转时物体的形状和大小和位置都不改变。

()3.飞机在空中飞行是旋转现象。

()4.当禁止通行时,公路收费站的横杆一定是按逆时针方向旋转了90度。

()5.旋转就是以一个点或一个轴为中心而做的圆周运动。

()三.填空题(共5题,共10分)1.请在括号里填上“平移”或者“旋转”。

2.与表针旋转方向相同的是()旋转,与表针旋转方向相反的是()旋转。

3.汽车沿着直线行驶时,车轮做()运动,车身做()运动。

4.如下图,三角形围绕着虚线旋转一周,所形成的几何体,这个几何体是()。

5.下图中小船A通过()的转换得到红船,通过()的转换得到绿船。

四.作图题(共3题,共19分)1.观察图形,填写空格。

①号图形是绕A点按()时针方向旋转了()°;②号图形是绕()点按顺时针方向旋转了()°;③号图形是绕()点按()时针方向旋转了90°;④号图形是绕()点按()时针方向旋转了()。

2.如图,指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转()°。

五年级数学上册 第2章《轴对称和平移》单元测评必刷卷 带解析(北师大版)

五年级数学上册   第2章《轴对称和平移》单元测评必刷卷 带解析(北师大版)

北师大版五年级上册数学单元测评必刷卷第2章《轴对称和平移》测试时间:90分钟满分:100分+30分题号一二三四五B卷总分得分A 卷基础训练(100 分)一、选择题(每题2分,共20分)1.(2021·辽宁)下面图案能通过基本图形平移得到的是()。

A.B.C.【答案】C【分析】根据平移的定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移;结合各选项所给的图形即可作出判断。

【详解】A.通过基本图形的旋转得到的;B.通过基本图形的旋转得到的;C.是通过基本图形的平移得到的。

故答案为:C【点睛】本题考查平移的性质,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小。

2.(2021·四川成华区·五年级期末)如图,这些交通标志图案中是轴对称图形的是()。

A.B.C.【答案】A【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可。

【详解】由分析可知,上下对折后能够重合。

故答案为:A。

【点睛】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。

3.(2021·广东罗湖区·六年级期末)下列图形中对称轴最多的是()。

A.等腰梯形B.正方形C.圆形D.等边三角形【答案】C【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴。

【详解】等腰梯形有1条对称轴;正方形有4条对称轴;圆有无数条对称轴;等边三角形有3条对称轴。

故答案为:C【点睛】本题考查图形的对称轴的数量,根据轴对称图形和对称轴的概念解答。

4.(2021·天津红桥区·四年级期末)将如图方格纸中上面的图形平移后和下面的图形拼成一个长方形,那么正确的平移方法是()。

苏科版八年级数学下册第九章《中心对称图形——平行四边形》单元测试卷(解析版)

苏科版八年级数学下册第九章《中心对称图形——平行四边形》单元测试卷(解析版)

第9章《中心对称图形——平行四边形》单元测试卷一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.82.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.53.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.45.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.411.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.19.正方形至少旋转度才能与自身重合.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.答案与解析一.选择题(共12小题)1.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选:D.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.2.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34B.26C.8.5D.6.5【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.3.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm【分析】根据三角形中位线定理可以求得三条边的长度,然后由三角形的周长公式可知原三角形的周长.【解答】解:∵三角形的三条中位线长分别为2cm,3cm,4cm,∴原三角形的三条边长分别为2cm×2=4cm,3cm×2=6cm,4cm×2=8cm,∴原三角形的周长为:4cm+6cm+8cm=18cm;故选:B.【点评】本题考查了三角形中位线定理,即三角形的中位线平行于第三边且等于第三边的一半.4.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC 等于()A.1B.2C.3D.4【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5.在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AD=BCC.AB∥CD,AB=CD D.AB∥CD,AD∥BC【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形进行分析即可.【解答】解:A、AB=CD,AD=BC能判定四边形ABCD为平行四边形,故此选项不符合题意;B、AD=CB,AB∥DC不能判定四边形ABCD为平行四边形,故此选项符合题意;C、AB=CD,AB∥CD能判定四边形ABCD为平行四边形,故此选项不符合题意;D、AB∥CD,AD∥BC能判定四边形ABCD为平行四边形,故此选项不符合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.6.如图,△ABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为18,则PD+PE+PF=()A.18B.9C.6D.条件不够,不能确定【分析】因为要求证明PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,求出等于AB,根据三角形的周长求出AB即可.【解答】解:延长EP交AB于点G,延长DP交AC与点H,∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB==6,故选:C.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.7.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()A.B.C.D.【分析】根据平移和旋转的概念,结合选项中图形的性质进行分析,排除错误答案.【解答】解:A、只要平移即可得到,故错误;B、只能旋转就可得到,故错误;C、只有两个基本图形旋转得到,故错误;D、既要平移,又要旋转后才能得到,故正确.故选:D.【点评】解决本题要熟练运用平移和旋转的概念.①图形平移前后的形状和大小没有变化,只是位置发生变化;②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线段的垂直平分线的交点是旋转中心.8.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.9.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是()A.正三角形B.正方形C.正五边形D.正六边形【分析】求出各图的中心角,度数为60°的即为正确答案.【解答】解:选项中的几个图形都是旋转对称图形,A、正三角形的旋转最小角是=120°,故此选项错误;B、正方形的旋转最小角是=90°,故此选项错误;C、正五边形的旋转最小角是=72°,故此选项错误;D、正六边形旋转的最小角度是=60°,故此选项正确;故选:D.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法.考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.4【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,据此对各结论进行判断.【解答】解:△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,即点O就是▱ABCD的对称中心,则有:(1)点E和点F,B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为4个,故选:D.【点评】本题主要考查了中心对称的性质以及平行四边形的性质的运用,熟练掌握平行四边形的性质及中心对称图形的性质是解决此题的关键.解题时注意:关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.11.观察如图的图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二个图形是轴对称图形,也是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,也是中心对称图形.则既是轴对称图形又是中心对称图形的有3个.故选:C.【点评】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.【分析】根据旋转的性质,△AOB绕点O旋转180°得到△DOE,点A与点D、B与E 关于点O成中心对称解答.【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确是C选项图形.故选:C.【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键.二.填空题(共8小题)13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 2.5.【分析】根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.【解答】解:∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,∵CD是△ABC中线,∴CD=AB=×5=2.5,故答案为:2.5.【点评】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.15.如图,▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,则▱ABCD 面积等于24.【分析】由▱ABCD的对角线AC和BD交于点O,若AC=6,BD=10,AB=4,易求得OA与OB的长,又由勾股定理的逆定理,证得AC⊥AB,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,且AC=6,BD=10,AB=4,∴OA=OC=AC=3,OB=OD=5,∴OA2+AB2=OB2,∴△OAB是直角三角形,且∠BAO=90°,即AC⊥AB,∴▱ABCD面积为:AB•AC=4×6=24.故答案为:24.【点评】此题考查了平行四边形的性质与勾股定理的逆定理.此题难度不大,注意掌握数形结合思想的应用.16.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.17.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【分析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.【解答】解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.18.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是3.【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.【点评】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF=GE.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.19.正方形至少旋转90度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.20.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE 的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.三.解答题(共8小题)21.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)【分析】作出图形,然后写出已知,求证,延长CD到E,使DE=CD,连接AE、BE,根据对角线互相平分的四边形是平行四边形判断出四边形AEBC是平行四边形,再根据有一个角是直角的平行四边形是矩形可得四边形AEBC是矩形,然后根据矩形的对角线互相平分且相等可得CD=AB.【解答】已知:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的中线,求证:CD=AB;证明:如图,延长CD到E,使DE=CD,连接AE、BE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形AEBC是平行四边形,∵∠ACB=90°,∴四边形AEBC是矩形,∴AD=BD=CD=DE,∴CD=AB.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质证明,作辅助线,构造出矩形是解题的关键.22.如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.【分析】(1)如图,连接DE、DF.欲证明AD与EF互相平分,只需证得四边形AEDF 是平行四边形即可;(2)由“有一内角为直角的平行四边形是矩形”证得四边形ADEF为矩形.【解答】(1)证明:如图,连接DE、DF.∵D、F分别是BC,AC的中点,∴DF∥AB,同理,DE∥AC∴四边形AEDF是平行四边形.∴AD与EF互相平分;(2)由(1)得四边形AEDF为平行四边形.∵∠BAC=90°∴四边形ADEF为矩形.【点评】本题考查的知识比较全面,需要用到三角形中位线定理,平行四边形的判定与性质,以及矩形的判定等.23.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.【分析】(1)由平行四边形的性质可证得△ABE≌△CDF,则可证得BE=DF;(2)由(1)可求得AE=CF,则可证得四边形AECF为平行四边形,可证得AF∥CE.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠ABE=∠CDF,∵∠1=∠2,∴∠AEB=∠CFD,在△ABE和CDF中∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)可知△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF为平行四边形,∴AF∥CE.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的对边平行且相等是解题的关键.24.如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【分析】由SAS证得△ADE≌△CBF,得出AD=BC,∠ADE=∠CBF,证得AD∥BC,利用一组对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.25.将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N 点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.【分析】(1)根据旋转的性质可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN =45°,从而求出∠MCF=45°,然后利用“边角边”证明△CMF和△CMN全等即可;(2)①根据全等三角形对应边相等可得FM=MN,再根据旋转的性质可得AF=BN,∠CAF=∠B=45°,从而求出∠BAF=90°,再利用勾股定理列式即可得解;②把△BCN绕点C逆时针旋转90°得到△ACF,根据旋转的性质可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“边角边”证明△CMF和△CMN全等,根据全等三角形对应边相等可得MF=MN,然后利用勾股定理列式即可得解.【解答】解:(1)∵△BCN绕点C逆时针旋转90°得到△ACF,∴CF=CN,∠ACF=∠BCN,∵∠DCE=45°,∴∠ACM+∠BCN=45°,∴∠ACM+∠ACF=45°,即∠MCF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS);(2)①∵△CMF≌△CMN,∴FM=MN,又∵∠CAF=∠B=45°,∴∠FAM=∠CAF+∠BAC=45°+45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2;②如图,把△BCN绕点C逆时针旋转90°得到△ACF,则AF=BN,CF=CN,∠BCN=∠ACF,∵∠MCF=∠ACB﹣∠MCB﹣∠ACF=90°﹣(45°﹣∠BCN)﹣∠ACF=45°+∠BCN ﹣∠ACF=45°,∴∠MCF=∠MCN,在△CMF和△CMN中,,∴△CMF≌△CMN(SAS),∴FM=MN,∵∠ABC=45°,∴∠CAF=∠CBN=135°,又∵∠BAC=45°,∴∠FAM=∠CAF﹣∠BAC=135°﹣45°=90°,∴AM2+AF2=FM2,∴AM2+BN2=MN2.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,此类题目根据相同的思路确定出全等的三角形,然后找出条件是解题的关键.26.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).【点评】(1)此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.(2)此题还考查了坐标与图形的性质的应用,要熟练掌握,解答此题的关键是要明确点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.27.如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.【分析】(1)根据中心对称图形的性质找出各顶点的对应点,然后顺次连接即可;(2)根据三角形的三边关系求解即可.【解答】解:(1)所画图形如下所示:△ADE就是所作的图形.(2)由(1)知:△ADE≌△BDC,则CD=DE,AE=BC,∴AE﹣AC<2CD<AE+AC,即BC﹣AC<2CD<BC+AC,∴2<2CD<10,解得:1<CD<5.【点评】本题考查中心对称图形及三角形三边关系的知识,难度适中,解答第(2)问的关键是通过△ADE≌△BDC,将2CD放在△ACE中求解.28.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为(﹣1,3).【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.。

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷(含答案)

苏科版八年级数学下册第9章  中心对称图形-平行四边形  单元测试卷(含答案)

苏科版八年级数学下册第9章 中心对称图形-平行四边形 单元测试卷一、单选题1.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.下列结论中,正确的是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒4.如图,在矩形ABCD 中,AB =8,AD =6,过点D 作直线m∥AC ,点E 、F 是直线m 上两个动点,在运动过程中EF∥AC 且EF =AC ,四边形ACFE 的面积是( )A .48B .40C .24D .305.如图,四边形ABCD 中,90DAB CBA ∠=∠=︒,将CD 绕点D 逆时针旋转90︒至DE ,连接AE ,若6AD =,10BC =,则ADE ∆的面积是( )A .272B .12C .9D .86.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5 B .4 C .7 D .147.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒.下列三个结论:∥当MN =时,则22.5BAM ∠=︒;∥290AMN MNC ∠-∠=︒;∥MNC ∆的周长不变,其中正确结论的个数是( )A .0B .1C .2D .38.如图,在∥ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE∥AB 于 E ,PF∥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.59.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AB =4,BD =E 为AB 的中点,点P 为线段AC 上的动点,则EP+BP 的最小值为( )A .4B .C .D .810.如图,在∥ABC中,∥ACB=90o,∥B=30o,AC=1,AB=2,AC在直线l上,将∥ABC绕点A顺时针转到位置∥可得到点P1,此时AP1=2;将位置∥的三角形绕点P1顺时针旋转到位置∥,可得到点P2,此时AP2=2+∥的三角形绕点P2顺时针旋转到位置∥,可得到点P3,此时AP3,按此顺序继续旋转,得到点P2016,则AP2016=( )A.B.C.D.二、填空题11.如图,在∥ABC中,∥BAC=65°,将∥ABC绕点A逆时针旋转,得到∥AB'C',连接C'C.若C'C∥AB,则∥BAB'=_____°.12.如图,矩形ABCD的对角线AC和BD相交于点O,直线EF经过点O,交BC于点E,AD于点F,若AB=5cm,AC=13 cm,则阴影部分的面积为_________.13.在菱形ABCD中,对角线AC=2,BD=4,则菱形ABCD的周长是________.14.如图.将长方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∥EBF的大小为_____ .15.如图,在∥ABC中,∥ACB=90°,AC=BC=4,O是BC的中点,P是射线AO上的一个动点,则当∥BPC=90°时,AP的长为______.16.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.17.如图,∥ABC 中,AB=AC ,BE∥AC ,D 为AB 中点,若DE=5,BE=8.则EC=______.18.如图,在∥ABC 中,CD∥AB 于点D ,BE∥AC 于点E ,F 为BC 的中点,DE =5,BC =8,则∥DEF 的周长是______.19.如图,在ABC V 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 的中点,则AM 的最小值为________.20.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:∥四边形CFHE是菱形;∥EC平分∥DCH;∥线段BF的取值范围为3≤BF≤4;∥当点H与点A重合时,以上结论中,你认为正确的有.(填序号)三、解答题21.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.22.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.23.如图,在边长为1的正方形网格中,∥ABC 的顶点均在格点上.(1)画出∥ABC 绕点O 顺时针旋转90°后的∥A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).24.如图,在ABCD Y 中,对角线BD 平分ABC ∠,过点A 作AE BD P ,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F .(1)求证:四边形ABCD 是菱形;(2)若452ABC BC ∠︒=,=,求EF 的长.25.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且DE AC P ,CE BD P .求证:四边形OCED 是菱形.26.如图,在∥ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC∥EF .求证:四边形AECF 是菱形.27.如图,在ABCD Y 中,AE BC ⊥于点E 点,延长BC 至F 点使=CF BE ,连接AF ,DE ,DF .(1)求证:四边形AEFD 是矩形;(2)若6AB =,8DE =,10BF =,求AE 的长.28.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∥PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,∥PBE为等腰三角形?29.在∥ABCD中,∥BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∥ABC=90°,G是EF的中点(如图2),直接写出∥BDG的度数;(3)若∥ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∥BDG的度数.30.如图,∥ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE∥AB于E,连接PQ交AB于D.(∥)若设AP=x,则PC=,QC=;(用含x的代数式表示)(∥)当∥BQD=30°时,求AP的长;(∥)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.苏科版八年级数学下册第9章中心对称图形-平行四边形单元测试卷(含答案)一、填空题1.C 2.B 3.C 4.A 5.B6.A 7.D 8.C 9.C 10.B二、填空题11.50 12.15cm2 13.14.45° 15.±216.4-17.4 18.13 19.1.2 20.∥∥∥三、解答题21.证明见解析.【分析】求证四边形AECF是平行四边形,只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证,依据∥AOE∥∥COF即可证明OE=OF.【详解】证明:∥平行四边形ABCD中AB∥CD,∥∥OAE=∥OCF,又∥OA=OC,∥COF=∥AOE,∥∥AOE∥∥COF(ASA),∥OE=OF,又∥OA=OC∥四边形AECF是平行四边形.22.证明见解析.根据平行四边形的判定推出四边形OBEC 是平行四边形,根据菱形性质求出∥AOB=90°,根据矩形的判定推出即可.【详解】∥BE∥AC ,CE∥DB ,∥四边形OBEC 是平行四边形,又∥四边形ABCD 是菱形,且AC 、BD 是对角线,∥AC∥BD ,∥∥BOC =90°,∥平行四边形OBEC 是矩形.23.(1)画图见解析;(2)点B 绕点O 旋转到点B′. 【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A′、B′、C′,从而得到∥A′B′C′;(2)先计算出OB 的长,然后根据弧长公式计算点B 绕点O 旋转到点B′的路径长.【详解】(1)如图,∥A′B′C′为所作;(2)OB =,点B 绕点O 旋转到点B′的路径长=90180π⨯⨯π.24.(1)见解析;(2)(1)证明ADB ABD ∠∠=,得出AB AD =,即可得出结论;(2)由菱形的性质得出2AB CD BC ===,证明四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,得出24AB DE CE CD DE +==,==,在Rt CEF △中,由等腰直角三角形的性质和勾股定理即可求出EF 的长.【详解】(1)证明:∥四边形ABCD 是平行四边形,AD BC AB CD AB CD ∴P P ,=,,ADB CBD ∴∠∠=,, ∥BD 平分ABC ∠,ABD CBD ∴∠∠=,, ADB ABD ∴∠∠=,, AB AD ∴=,, ABCD ∴Y 是菱形;(2)解:∥四边形ABCD 是菱形,2AB CD BC ∴===,AB CD AE BD Q P P ,,∥四边形ABDE 是平行四边形,45ECF ABC ∠∠︒==,2AB DE ∴==,4CE CD DE ∴+==,45EF BC ECF ⊥∠︒Q ,=,CEF ∴V 是等腰直角三角形,2EF CF ∴=== 25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∥DE AC P ,CE BD P ,∥四边形OCED 是平行四边形,∥四边形ABCD 是矩形,∥AC BD =,OA OC =,OB OD =,∥OC OD =,∥四边形OCED 是菱形.26.见解析.【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】证明:Q 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF =Q ,AE CF ∴=,//AE CF Q ,∴四边形AECF 是平行四边形,AC EF ⊥Q ,∴四边形AECF 是菱形.27.(1)见解析;(2)245【解析】试题分析:(1)先证明四边形AEFD 是平行四边形,再证明∥AEF=90°即可.(2)证明∥ABF 是直角三角形,由三角形的面积即可得出AE 的长.试题解析:(1)证明:∥CF=BE ,∥CF+EC=BE+EC .即 EF=BC .∥在∥ABCD 中,AD∥BC 且AD=BC ,∥AD∥EF 且AD=EF .∥四边形AEFD是平行四边形.∥AE∥BC,∥∥AEF=90°.∥四边形AEFD是矩形;(2)∥四边形AEFD是矩形,DE=8,∥AF=DE=8.∥AB=6,BF=10,∥AB2+AF2=62+82=100=BF2.∥∥BAF=90°.∥AE∥BF,∥∥ABF的面积=12AB•AF=12BF•AE.∥AE=•6824105 AB AFBF⨯==.28.(1)45°(t,t);(2)t=4秒或(-4)秒【分析】(1)易证∥BAP∥∥PQD,从而得到DQ=AP=t,从而可以求出∥PBD的度数和点D的坐标.(2)由于∥EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于∥PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.【详解】(1)如图1,由题可得:AP=OQ=1×t=t(秒)∥AO=PQ .∥四边形OABC 是正方形,∥AO=AB=BC=OC ,∥BAO=∥AOC=∥OCB=∥ABC=90°.∥DP∥BP ,∥∥BPD=90°.∥∥BPA=90°-∥DPQ=∥PDQ .∥AO=PQ ,AO=AB ,∥AB=PQ .在∥BAP 和∥PQD 中,BAP PQD BPA PDQ AB PQ ∠∠∠∠⎧⎪⎨⎪⎩===∥∥BAP∥∥PQD (AAS ).∥AP=QD ,BP=PD .∥∥BPD=90°,BP=PD ,∥∥PBD=∥PDB=45°.∥AP=t ,∥DQ=t .∥点D 坐标为(t ,t ).故答案为:45°,(t ,t ).(2)∥若PB=PE ,则t=0(舍去),∥若EB=EP ,则∥PBE=∥BPE=45°.∥∥BEP=90°.∥∥PEO=90°-∥BEC=∥EBC .在∥POE 和∥ECB 中,PEO EBC POE ECB EP BE ∠∠∠∠⎧⎪⎨⎪⎩===∥∥POE∥∥ECB (AAS ).∥OE=CB=OC .∥点E 与点C 重合(EC=0).∥点P 与点O 重合(PO=0).∥点B (-4,4),∥AO=CO=4.此时t=AP=AO=4.∥若BP=BE ,在Rt∥BAP 和Rt∥BCE 中,BA BC BP BE ⎧⎨⎩== ∥Rt∥BAP∥Rt∥BCE (HL ).∥AP=CE .∥AP=t ,∥CE=t .∥PO=EO=4-t .∥∥POE=90°,4-t ).延长OA 到点F ,使得AF=CE ,连接BF ,如图2所示.在∥FAB 和∥ECB 中,90AB CB BAF BCE AF CE ⎧⎪⎨⎪∠∠⎩︒====∥∥FAB∥∥ECB .∥FB=EB ,∥FBA=∥EBC .∥∥EBP=45°,∥ABC=90°,∥∥ABP+∥EBC=45°.∥∥FBP=∥FBA+∥ABP=∥EBC+∥ABP=45°.∥∥FBP=∥EBP .在∥FBP 和∥EBP 中,BF BE FBP EBP BP BP ⎪∠⎪⎩∠⎧⎨===∥∥FBP∥∥EBP (SAS ).∥FP=EP .∥EP=FP=FA+AP=CE+AP .∥EP=t+t=2t .(4-t )=2t .解得:-4∥当t 为4秒或(-4)秒时,∥PBE 为等腰三角形.29.(1)见解析;(2)45°;(3)见解析.【分析】(1)根据AF 平分∥BAD ,可得∥BAF=∥DAF ,利用四边形ABCD 是平行四边形,求证∥CEF=∥F 即可;(2)根据∥ABC=90°,G 是EF 的中点可直接求得;(3)分别连接GB 、GC ,求证四边形CEGF 是平行四边形,再求证∥ECG 是等边三角形,由AD∥BC 及AF 平分∥BAD 可得∥BAE=∥AEB ,求证∥BEG∥∥DCG ,然后即可求得答案.【详解】(1)证明:如图1,∥AF 平分∥BAD ,∥∥BAF=∥DAF ,∥四边形ABCD 是平行四边形,∥AD∥BC ,AB∥CD ,∥∥DAF=∥CEF ,∥BAF=∥F ,∥∥CEF=∥F .∥CE=CF .(2)解:连接GC 、BG ,∥四边形ABCD 为平行四边形,∥ABC=90°,∥四边形ABCD 为矩形,∥AF 平分∥BAD ,∥∥DAF=∥BAF=45°,∥∥DCB=90°,DF∥AB ,∥∥DFA=45°,∥ECF=90°∥∥ECF 为等腰直角三角形,∥G 为EF 中点,∥EG=CG=FG ,CG∥EF ,∥∥ABE 为等腰直角三角形,AB=DC ,∥BE=DC ,∥∥CEF=∥GCF=45°,∥∥BEG=∥DCG=135°在∥BEG 与∥DCG 中,∥EG CG BEG DCG BE DC =⎧⎪∠=∠⎨⎪=⎩,∥∥BEG∥∥DCG ,∥BG=DG ,∥CG∥EF ,∥∥DGC+∥DGA=90°,又∥∥DGC=∥BGA ,∥∥BGA+∥DGA=90°,∥∥DGB为等腰直角三角形,∥∥BDG=45°.(3)解:延长AB、FG交于H,连接HD.∥AD∥GF,AB∥DF,∥四边形AHFD为平行四边形∥∥ABC=120°,AF平分∥BAD∥∥DAF=30°,∥ADC=120°,∥DFA=30°∥∥DAF为等腰三角形∥AD=DF,∥CE=CF,∥平行四边形AHFD为菱形∥∥ADH,∥DHF为全等的等边三角形∥DH=DF,∥BHD=∥GFD=60°∥FG=CE,CE=CF,CF=BH,∥BH=GF在∥BHD与∥GFD中,∥DH DFBHD GFD BH GF=⎧⎪∠=∠⎨⎪=⎩,∥∥BHD∥∥GFD,∥∥BDH=∥GDF∥∥BDG=∥BDH+∥HDG=∥GDF+∥HDG=60°.30.(∥)6﹣x,6+x;(∥)2;(∥)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可.(3) 作QF∥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明∥APE∥∥BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(∥)∥∥ABC是边长为6的等边三角形,∥AB =BC =AC =6,设AP =x ,则PC =6﹣x ,QB =x ,∥QC =QB +BC =6+x ,故答案为:6﹣x ,6+x ;(∥)∥在Rt∥QCP 中,∥BQD =30°,∥PC =12QC ,即6﹣x =12(6+x ),解得x =2, ∥AP =2;(∥)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ∥AB ,交直线AB 的延长线于点F ,连接QE ,PF , 又∥PE ∥AB 于E ,∥∥DFQ =∥AEP =90°,∥点P 、Q 速度相同,∥AP =BQ ,∥∥ABC 是等边三角形,∥∥A =∥ABC =∥FBQ =60°,在∥APE 和∥BQF 中,∥∥AEP =∥BFQ =90°,∥∥APE =∥BQF ,∥在∥APE 和∥BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥APE∥∥BQF(AAS),∥AE=BF,PE=QF且PE∥QF,∥四边形PEQF是平行四边形,∥DE=12 EF,∥EB+AE=BE+BF=AB,∥DE=12 AB,又∥等边∥ABC的边长为6,∥DE=3,∥当点P、Q运动时,线段DE的长度不会改变.。

五年级上册数学单元测试-2.对称、平移和旋转 (含答案)

五年级上册数学单元测试-2.对称、平移和旋转 (含答案)

五年级上册数学单元测试-2.对称、平移和旋转一、单选题1.下列数字是对称的是()。

A. B. C.2.下边的图形,()是通过平移左边的图①得到的。

①A. B. C.3.下面是平移现象的是()A. B. C.4.中心对称图形是指把图形绕某一点旋转180°后的图形和原来的图形能够完全重合,下面这些美丽的轴对称图案中,中心对称的图形有()个。

A. 1B. 2C. 3D. 4二、判断题5.平移和旋转后的物体,位置改变,形状、大小也改变。

6.飞机在空中飞行是旋转现象。

7.“脸谱”不是轴对称图形。

()8.判断对错.左图是六边形,每条边都相等,它有三条对称轴.三、填空题9.我们学过的汉字中有很多都是轴对称图形,请写出几个吧:________、________、________、________、________。

10.下图中图形A是图形B先向________平移________格,再向________平移________格后得到的。

11.移一移,说一说。

向下平移了________格。

向右平移了________格。

向上平移了________格先向________平移________格,再向________平移________格。

先向________平移________格,再向________平移________格。

12.“小鱼之家”。

小鱼尼莫要去“小鱼之家”,首先要潜入水草底躲过大鲨鱼。

那么,它应先向________平移________格,再向________平移________格潜入水草底。

躲过大鲨鱼后,尼莫再向________平移________格,安全到达“小鱼之家”。

四、解答题13.在括号里填上“平移”或“旋转”。

14.仔细观察图形,找出变化规律,想一想空白处应该怎样填?试着画一画吧!五、综合题15.看一看,填一填。

(1平移能够互相重合的有________。

【答案】B和③;D和①(1)旋转能够互相重合的有________。

苏科版八年级数学下册单元测试《第9章 中心对称图形》(解析版)

苏科版八年级数学下册单元测试《第9章 中心对称图形》(解析版)

《第9章中心对称图形》一、选择题1.顺次连接等腰梯形各边中点所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形2.顺次连接下列各四边形中点所得的四边形是矩形的是()A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形3.如果四边形的对角线相等,那么顺次连接四边中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对4.把图形绕点A按逆时针方向旋转70°后所得的图形与原图作比较,保持不变的是()A.位置与大小B.形状与大小C.位置与形状D.位置、形状及大小5.下面4个图案中,是中心对称图形的是()A.B.C.D.6.在平行四边形、矩形、菱形和等腰梯形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个7.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形8.如图,AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件不可能是()A.BD=DC B.AB=AC C.AD=BC D.AD⊥BC9.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于()A.1:4 B.1:3 C.1:2 D.3:4二、填空题10.如图,在△ABC中,D,E分别是AB,AC的中点,若DE=5,则BC的长是.11.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为cm.12.已知以一个三角形各边中点为顶点的三角形的周长为8cm,则原三角形的周长为cm.13.如图,D、E、F分别是△ABC各边的中点.(1)如果EF=4cm,那么BC=cm;如果AB=10cm,那么DF=cm;(2)中线AD与中位线EF的关系是.14.要使一个平行四边形成为正方形,则需增加的条件是(填上一个正确的结论即可).15.已知:如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段(不包括AB=CD和AD=BC).16.已知菱形的两条对角线长为6cm和8cm,菱形的周长是cm,面积是cm2.17.如图,P是边长为4的正方形ABCD的边AD上的一点,且PE⊥AC,PF⊥BD,则PE+PF=.18.斜拉桥是利用一组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,如图:、、…、是斜拉桥上五条相互平行的钢索,并且、、、、被均匀地固定在桥面上.已知最长的钢索=80m,最短的钢索=20m,那么钢索、的长分别为m和m.三、解答题19.如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.20.如图,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.AG与CG有怎样的位置关系?说明你的理由.21.如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.22.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).23.如图,在梯形ABCD中,点P从点A向点D运动,点Q从点C向点B运动.已知点P的运动速度为1cm/s,点Q的运动速度为2cm/s,AD=4cm,BC=8cm,运动时间为t.当t为何值时,四边形ABQP是平行四边形?《第9章 中心对称图形》参考答案与试题解析一、选择题1.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形【考点】菱形的判定;三角形中位线定理;等腰梯形的性质.【分析】由E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,得出EF ,EH 是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【解答】解:∵E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,∴EF ∥AC 且EF=AC ,EH ∥BD 且EH=BD ,∵AC=BD ,∴EF=EH ,同理可得GF=HG=EF=EH ,∴四边形EFGH 为菱形,故选:C .【点评】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义;②四边相等;③对角线互相垂直平分.2.顺次连接下列各四边形中点所得的四边形是矩形的是( )A .等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形【考点】矩形的判定;三角形中位线定理.【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解答】解:A、等腰梯形的对角线相等但不垂直,故连接等腰梯形各边中点所得的四边形为菱形.不正确.B、矩形的对角线相等且互相平分,但却不垂直.故连接矩形各边中点所得的四边形为菱形.不正确.C、平行四边形的对角线互相平分,但并不相等和互相垂直.故连接平行四边形各边中点所得的四边形为平行四边形.不正确.D、对角线互相垂直的四边形(菱形)连接各边中点所得的四边形为矩形.因为矩形是有一个角为直角的平行四边形.正确.故选D.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.如果四边形的对角线相等,那么顺次连接四边中点所得的四边形是()A.矩形B.菱形C.正方形D.以上都不对【考点】中点四边形.【分析】作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根据四边形的对角线相等可可知AC=BD,从而得到EF=FG=GH=HE,再根据四条边都相等的四边形是菱形即可得解.【解答】解:如图,E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,根据三角形的中位线定理,EF=AC,GH=AC,HE=BD,FG=BD,连接AC、BD,∵四边形ABCD的对角线相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四边形EFGH是菱形.故选B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,四条边都相等的四边形是菱形,熟记定理与判定方法是解题的关键,作出图形更形象直观.4.把图形绕点A按逆时针方向旋转70°后所得的图形与原图作比较,保持不变的是()A.位置与大小B.形状与大小C.位置与形状D.位置、形状及大小【考点】旋转的性质.【分析】直接根据旋转的性质得到答案.【解答】解:∵旋转前后两图形全等,∴把图形绕点A按逆时针方向旋转70°后所得的图形与原图的形状与大小一样,但位置发生了变化.故选B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点与旋转中心的连线段的夹角等于旋转角.5.下面4个图案中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形.故此选项错误.故选A.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.在平行四边形、矩形、菱形和等腰梯形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:矩形、菱形是轴对称图形,也是中心对称图形.故选B.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.下列说法中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别根据平行四边形以及矩形、菱形、正方形的判定分析得出即可.【解答】解:A、只有两组对边平行的四边形是平行四边形,故此选项错误;B、根据有一个角是直角的平行四边形是矩形,故此选项错误;C、四条边相等的四边形是菱形,此选项正确;D、根据对角线互相垂直平分且相等的四边形是正方形,故此选项错误;【点评】此题主要考查了平行四边形以及矩形、菱形、正方形的判定,正确区分它们的判定是解题关键.8.如图,AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件不可能是()A.BD=DC B.AB=AC C.AD=BC D.AD⊥BC【考点】菱形的判定.【分析】可以添加BD=CD或AB=AC或AD⊥BC,然后利用三角形中位线证明四边形ADEF 是平行四边形,再证明是菱形即可.【解答】解:添加BD=CD,∵E、F分别是边AB、AC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.添加AB=AC,则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点再证明即可;添加AD⊥BC,再由AD是△ABC的角平分线可证明△ABD≌△ACD,进而得到BD=CD,再证明四边形ADEF为菱形即可,【点评】本题考查了菱形的判定.利用了三角形的中位线的性质和平行四边形的判定和性质、等腰三角形的性质.也可添加∠B=∠C或AE=AF.9.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于()A.1:4 B.1:3 C.1:2 D.3:4【考点】梯形中位线定理.【分析】设DC=x,AB=2x,根据梯形的中位线等于两底和的一半表示出EF的长,然后求解即可.【解答】解:∵DC:AB=1:2,∴设DC=x,AB=2x,∵E、F分别是两腰BC、AD的中点,∴EF=(AB+CD)=(2x+x)=x,∴EF:AB=x:2x=3:4.故选D.【点评】本题考查了梯形的中位线定理,熟练掌握中位线定理是解题的关键,用x表示出DC、AB可以使运算更加简便.二、填空题10.如图,在△ABC中,D,E分别是AB,AC的中点,若DE=5,则BC的长是10.【考点】三角形中位线定理.【分析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,根据三角形的中位线定理求解即可.【解答】解:∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∵DE=5,∴AB=2ED=10.故答案为:10.【点评】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并等于三角形第三边的一半.11.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为5cm.【考点】三角形中位线定理.【分析】根据三角形中位线的性质,即三角形的中位线等于第三边的一半求解即可.【解答】解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,EF=AB,DF=BC,∵AB+BC+AC=10,∴DE+EF+FD=(AB+BC+AC)=5cm,故答案为:5.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.12.已知以一个三角形各边中点为顶点的三角形的周长为8cm,则原三角形的周长为16cm.【考点】三角形中位线定理.【分析】三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的一半,已知中点三角形的周长,可以求出原三角形的周长.【解答】解:由中点和中位线定义可得原三角形的各边长分别为新三角形各边长的2倍,所以原三角形的周长为新三角形的周长的2倍为16.故答案为16.【点评】解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.13.如图,D、E、F分别是△ABC各边的中点.(1)如果EF=4cm,那么BC=8cm;如果AB=10cm,那么DF=5cm;(2)中线AD与中位线EF的关系是互相平分.【考点】三角形中位线定理.【分析】(1)根据三角形中位线定理易求BC=2EF,DF=AB;(2)根据三角形中位线定理推知四边形AEDF是平行四边形,则平行四边形的对角线互相平分.【解答】解:(1)如图,在△ABC中,∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC,则BC=2EF=8cm.同理,DF是△ABC的中位线,∴DF=AB=5cm.故答案是:8;5;(2)如图,∵DF是△ABC的中位线,∴DF∥AB,则DF∥AE.同理,DE∥AF,∴四边形AEDF是平行四边形,∴对角线AD与EF互相平分.故答案是:互相平分.【点评】本题考查了三角形中位线定理.解(2)题时,根据“三角形中位线定理推知四边形AEDF是平行四边形”是解题的难点.14.要使一个平行四边形成为正方形,则需增加的条件是对角线相等且互相垂直(填上一个正确的结论即可).【考点】正方形的判定;平行四边形的性质.【专题】开放型.【分析】根据正方形的判定和定义进行填空.【解答】解:根据正方形的判定和定义知:有一组邻边相等且一个角是直角的平行四边形是正方形;对角线相等且相互垂直的平行四边形是正方形.故答案为:“一组邻边相等且一个角是直角”或“对角线相等且相互垂直”.【点评】本题主要考查正方形的判定和定义.15.已知:如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段OA=OE或OB=OD或AB=ED或CD=ED或BC=BE或AD=BE (不包括AB=CD和AD=BC).【考点】矩形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【专题】压轴题;开放型.【分析】折叠前后的对应边相等,结合矩形的性质可得到多组线段相等.【解答】解:由折叠的性质知,ED=CD=AB,BE=BC=AD,∴△ABD≌△EDB,∠EBD=∠ADB,由等角对等边知,OB=OD.【点评】本题答案不唯一,本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,全等三角形的判定和性质,等角对等边求解.16.已知菱形的两条对角线长为6cm和8cm,菱形的周长是20cm,面积是24cm2.【考点】菱形的性质;勾股定理.【分析】根据菱形的面积等于两对角线乘积的一半可得到其面积,根据菱形的性质可求得其边长,从而可得到其周长.【解答】解:如图,四边形ABCD是菱形,BD,AC分别是其对角线且BD=6,AC=8,求其面积和周长.∵四边形ABCD是菱形,BD,AC分别是其对角线,∴BD⊥AC,BO=OD=3cm,AO=CO=4cm,∴AB=5cm,∴菱形的周长=5×4=20cm;S菱形=×6×8=24cm2.故本题答案为:20cm;24cm2.【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用.17.如图,P是边长为4的正方形ABCD的边AD上的一点,且PE⊥AC,PF⊥BD,则PE+PF=.【考点】正方形的性质;勾股定理.【专题】计算题.【分析】根据条件可以得到四边形PEOF是矩形,因而PF=OE,同时易证△APE是等腰直角三角形,因而AE=PE,则PE+PF=OA.根据勾股定理即可求解.【解答】解:∵四边形ABCD是正方形,边长为4,∴AD=CD=4 AC⊥BD∠DAO=45°;∴AC2=AD2+CD2=42+42=32,则AC=4,∵PE⊥AC,PF⊥BD,∴∠PEC=∠PFB=90°;又∵AC⊥BD,∴四边形EPFO是矩形;∴PF=OE,又∵∠DAO=∠APE=45°,∴AE=PE;∵AE+OE=OA=AC=×4=2,∴PE+PF=2.故答案为2.【点评】此题较简单,根据正方形的性质及勾股定理解答即可.18.斜拉桥是利用一组钢索,把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,如图:、、…、是斜拉桥上五条相互平行的钢索,并且、、、、被均匀地固定在桥面上.已知最长的钢索=80m,最短的钢索=20m,那么钢索、的长分别为40m和60m.【考点】三角形中位线定理;梯形中位线定理.【专题】应用题.【分析】需要先求出B2、B3、B4是B1到高塔底端的四等分点,由题可知A1B1、A2B2、A3B3、A4B4是互相平行的.此题只需分别根据梯形的中位线定理进行求解.【解答】解:∵B2、B3、B4是B1到高塔底端的四等分点,A1B1、A2B2、A3B3、A4B4是斜拉桥上互相平行的钢索,∴A4B4是△AA3B3的中位线,∴A3B3=2A4B4=2×20=40m,∵同理,梯形A1B1B3A3的中位线是A2B2∴A2B2===60m.故答案是:40、60.【点评】本题只要是把实际问题抽象到三角形及梯形中,利用三角形及梯形的中位线定理列出方程,通过解方程求解,体现了方程的思想.三、解答题19.如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.20.如图,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.AG与CG 有怎样的位置关系?说明你的理由.【考点】三角形中位线定理.【分析】利用三角形中位线定理推知EF∥BC.所以利用平行线的性质、三角形角平分线的性质以及等腰三角形的判定证得FG=FC.又由AF=CF,则FG是△ACG中AC边上的中线,且FG=AC,则△AGC是直角三角形.【解答】解:AG⊥CG,理由:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,AF=CF,∴EF∥BC,∴∠FGC=∠GCD.∵CG平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC.又∵AF=CF,∴FG是△ACG中AC边上的中线,且FG=AC,∴△AGC是直角三角形,∴AG⊥CG.【点评】本题考查了三角形中位线定理、直角三角形斜边上的中线定理.一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.21.如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM,CD分别交于点E、F.求证:∠BEN=∠NFC.【考点】三角形中位线定理.【专题】证明题.【分析】取AC中点G,连接NG,MG,根据三角形中位线定理可得到NG∥AE,MG∥CF,NG=AB,MG=CD,由平行线的性质可得∠BEN=∠FNG,∠CFN=∠NMG,从而可推出△GMN为等腰三角形,从而不难证得结论.【解答】证明:取AC中点G,连接NG,MG,∵点M,G,N分别是边AD,AC,BC的中点,∴MG、NG分别是△ADC与△ABC的中位线,∴NG∥AB,MG∥CF,NG=AB,MG=CD,∴∠BEN=∠FNG,∠CFN=∠NMG,∵NG=AB,MG=CD,AB=CD,∴NG=MG,∴∠MNG=∠GMN,∵∠MNG=∠BEN,∠GMN=∠CFN,∴∠BEN=∠CFN.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确作出辅助线是关键.22.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).【考点】利用旋转设计图案.【分析】根据题目要求画出图形,注意花坛和整个矩形空地应该成中心对称图案.【解答】解:如图所示:【点评】此题主要考查了利用旋转设计图案以及中心对称图形定义,利用中心对称图形的性质设计是解题关键.23.如图,在梯形ABCD中,点P从点A向点D运动,点Q从点C向点B运动.已知点P的运动速度为1cm/s,点Q的运动速度为2cm/s,AD=4cm,BC=8cm,运动时间为t.当t为何值时,四边形ABQP是平行四边形?【考点】梯形;平行四边形的判定.【专题】动点型.【分析】首先根据题意得:AP=tcm,CQ=2tcm,又由AD∥BC,可得当AP=BQ时,四边形ABQP是平行四边形,即可得方程t=8﹣2t,解此方程即可求得答案.【解答】解:根据题意得:AP=tcm,CQ=2tcm,∵AD=4cm,BC=8cm,∴DP=AD﹣AP=4﹣t(cm),BQ=BC﹣CQ=8﹣2t(cm),∵AD∥BC,∴当AP=BQ时,四边形ABQP是平行四边形,即t=8﹣2t,解得:t=,∴当t=时,四边形ABQP是平行四边形.【点评】此题考查了梯形的性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.。

2020-2021学年苏科版八年级下册数学第九章《中心对称图形》单元测试

2020-2021学年苏科版八年级下册数学第九章《中心对称图形》单元测试

初二数学第九章《中心对称图形》单元测试班级姓名学号一、选择题:(本题共10小题,每小题3分,共30分)1.下列图案中,不是中心对称图形的是( )2.如图,在□ABCD中,BM平分∠ABC,交CD于点M,且MC=2,□ABCD的周长是14,则DM的长为( ) CA.1B.2C.3D.43.如图,已知□ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为( ) BA.13B.14C.18D.234.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是( ) DA.6B.8C.63D.43第2题第3题第4题5.下列说法中,正确的是( )A.一组对边平行的四边形是平行四边形;B.有一个角是直角的四边形是矩形;C.四条边相等的四边形是菱形;D.对角线互相垂直平分的四边形是正方形.6.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AB的长是( ) BA.4B.245C.5D.125第6题第7题第8题7.如图,在四边形ABCD中;对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是( ) BA.AB=AD;B.AC=BD;C.AC⊥BD;D.∠ABO=∠CBO8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是( ) BA.20°B.22.5°C.40°D.67.5°9.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F 的坐标为( ) DA.(-2,3)B.(-3,5)C.(5,-2)D.(-1,5)第9题第10题10.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为( ) CA. 3B. 4C.5D.6二、填空题:(本题满分24分)11.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD= . 70°13.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC =62°,则∠DFE的度数为. 56°第12题第13题第14题14.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=. 20°15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长为.24cm第15题第16题第17题16.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C 的坐标是. (-5,4)17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为. 4.818.平面直角坐标系中,平行四边形OABC的边OC在x轴的正半轴,点B(6,2)、C(4,0),直线y=2x+1以每秒1个单位的速度向下平移,经过秒,该直线将平行四边形OABC 面积平分.三、解答题:(本题满分46分)19.(5分)如图,已知: AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形.20.(5分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CEBD,连接OE.求证:OE=BC.21.(6分如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:.四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、:H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请证明你的结论.23.(8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE、BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处;BE交AD于点P.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.25.(8分)如图,在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=-x+9,点P是BC边上一个动点,(1)当PB= 时,以点P、A、D、E为顶点的四边形为平行四边形;(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、B为顶点的四边形能否构成菱形?试说明理由.。

西师大版五年级数学上期第二单元测试题

西师大版五年级数学上期第二单元测试题

西师大版五年级数学上期第二单元《图形的平移、旋转与对称》测试题一、填空。

(41分)1、下面的现象中是平移的画“△”,是旋转的画“□”。

(12分)(1)索道上运行的观光缆车。

()(2)推拉窗的移动。

()(3)钟面上的分针。

()(4)飞机的螺旋桨。

()(5)工作中的电风扇。

()(6)拉动抽屉。

()2、看右图填空。

(12分)(1)指针从“12”绕点A顺时针旋转600到“2”;(2)指针从“12”绕点A顺时针旋转(0)到“3”;A(3)指针从“1”绕点A顺时针旋转(0)到“6”;(4)指针从“3”绕点A顺时针旋转300到“()”;(5)指针从“5”绕点A顺时针旋转600到“()”;(6)指针从“7”绕点A顺时针旋转(0)到“12”。

3、先观察右图,再填空。

(12分)(1)图1绕点“O”逆时针旋转900到达图()的位置;(2)图1绕点“O”逆时针旋转1800到达图((3)图1绕点“O”顺时针旋转(0(4)图2绕点“O”顺时针旋转(0)到达图4的位置;(5)图2绕点“O”顺时针旋转900到达图()的位置;(6)图4绕点“O” 逆时针旋转900到达图()的位置;4、想好了再填。

(5分)①、封闭的电梯的上上下下属于()现象。

②、正在拧动水龙头开关属于()现象。

③、开动汽车时方向盘的转动,属于()现象。

④、飞机降落到机场跑道到机身静止这一过程,对于整个机身而言,属于()现象,而对于滚动的轮胎而言,它是()现象。

二、判断题。

正确的在题后的括号里画“√”,错的画“×”。

(4分)(1)正方形是轴对称图形,它有4条对称轴。

…………………………()(2)圆不是轴对称图形。

………………………………………………( )(3)利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案。

……( )(4)风吹动的小风车是旋转现象。

……………………………………( )三、画出下列轴对称图形的一条对称轴。

(9分)四、1、写出镜子中的这段话。

人教版2020届九年级数学上学期同步测试专题23-2:中心对称 含解析

人教版2020届九年级数学上学期同步测试专题23-2:中心对称 含解析

专题23.2中心对称(测试)一、单选题1.下列图形,是中心对称图形的是( )A.B.C.D.【答案】C【解析】根据中心对称图形的概念可知A、B、D不是中心对称图形;C是中心对称图形. 故选C.2.下列图形中,是中心对称图形的是()A.B.C.D.【答案】B【解析】A. 正三角形不是中心对称图形;B. 平行四边形是中心对称图形;C. 半圆不是中心对称图形;D. 正五边形不是中心对称图形;故选:B.3.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个B.4个C.3个D.2个【答案】C【解析】(1)正方形绕中心旋转180︒能与自身重合;(2)等边三角形不能绕某点旋转180︒与自身重合;(3)矩形绕中心旋转180︒能与自身重合;(4)直角不能绕某个点旋转180︒能与自身重合;(5)平行四边形绕中心旋转180︒能与自身重合;综上所述,绕某个点旋转180︒能与自身重合的图形有(1)(3)(5)共3个. 故选:C .4.如图,△DEF 是△ABC 经过某种变换后得到的图形.△ABC 内任意一点M 的坐标为(x ,y ),点M 经过这种变换后得到点N ,点N 的坐标是( )A .(﹣y ,﹣x )B .(﹣x ,﹣y )C .(﹣x ,y )D .(x ,﹣y )【答案】B【解析】解:如图,点M 与点N 关于原点对称,∴点N 的坐标为(﹣x ,﹣y ), 故选:B .5.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3C .5D .7【答案】C【解析】解:∵点()1,5P m -与点()3,2Q n -关于原点对称, ∴13m -=-,25n -=-, 解得:2m =-,7n =, 则275m n +=-+=6.如图,ABC △中,,AB AC ABC =与FEC 关于点C 成中心对称,连接,AE BF ,当ACB =∠( )时,四边形ABFE 为矩形.A .30︒B .45︒C .60︒D .90︒【答案】C【解析】∵ABC 与FEC 关于点C 成中心对称 ∴AC=CF,BC=EC∴四边形AEFB 是平行四边形当AF=BE 时,即BC=AC ,四边形AEFB 是矩形 又∵AB AC =∴△BCA 为等边三角形,故60ACB ∠=︒ 选C7.如图,ABC ∆与'''A B C ∆关于O 成中心对称,下列结论中不一定成立的是( )A .'''ABC A CB ∠=∠ B .'OA OA =C .''BC B C =D .'OC OC =【答案】A【解析】A. '''ABC A B C ∠=∠,本选项不一定正确; B. 'OA OA =,对应边相等; C. ''BC B C =,对应边相等; D.'OC OC =,对应边相等;8.点(1,2)-关于原点的对称点坐标是( ) A .(1,2) B .(1,2)-C .(1,2)D .(2,1)-【答案】B【解析】根据中心对称的性质,得点()1,2-关于原点的对称点的坐标为()1,2-. 故选B .9.下列图形中,不是中心对称图形的是( ) A .圆 B .菱形C .矩形D .等边三角形【答案】D 【解析】A 、B 、C 中,既是轴对称图形,又是中心对称图形;D 、只是轴对称图形. 故选:D .10.下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,也是中心对称图形,故此选项正确; D 、不是轴对称图形,是中心对称图形,故此选项错误. 故选:C .11.下面是“湖南新田”四个汉字的声母的大写,不是..中心对称图形的是 A .H B .NC .XD .T【答案】D【解析】根据中心对称图形的性质,只有T 倒置后有变化 故答案为:D12.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成中心对称....图形,那么符合条件的小正方形共有( )A .3个B .2个C .1个D .0个【答案】C【解析】如图所示,有1个使之成为中心对称图形, 故选C.13.已知正方形的对称中心在坐标原点,顶点A B C D 、、、按逆时针依次排列,若点A 的坐标为()23,,则B 点与D 点的坐标分别为( ) A .()()2,3,2,3-- B .()()3,2,3,2--C .()()3,2,2,3-- D .721721,,,22⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】解:如图,连接OA OD 、,过点A 作AF x ⊥轴于点F ,过点D 作DE x ⊥轴于点E ,易证AFO OED AAS ≌(),OE AF 3∴==DE OF 2==,D3,2(),∴-、关于原点对称,B D()∴,,B3故选:B.二、填空题14.把一个图形绕着一个定点旋转_________后,与初始图形重合,那么这个图形叫做________________,这个定点叫做__________________.【答案】180°中心对称图形对称中心【解析】把一个图形绕着一个定点旋转180°,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫对称中心.故答案为:180°,中心对称图形,对称中心.15.点A(-1,2)关于y轴的对称点坐标是____________;点A关于原点的对称点的坐标是____________。

第五章中心对称图形测试题

第五章中心对称图形测试题

O D C B A 第五章中心对称图形测试题 姓名_____________ 得分____________ 一、填空题(每题2分,共20分)1.如图,⊙O 中,∠ACB =∠D =60°,AC =3,△ABC 周长为______.2.半径分别为6cm 和4cm 的两圆内切,则它们的圆心距为 cm .3.两圆的半径分别为3cm 和4cm ,圆心距为2cm.,两圆的位置关系是____.4.如图,⊙O 的半径为4cm ,直线ι⊥OA ,垂足为O ,则直线l 沿射线OA 向平移________cm 时与⊙O 相切。

5.已知四边形ABCD 内接于⊙O ,且∠A :∠C =1∶2,则∠BOD =_________.6.如图,点D 在以AC 为直径的⊙O 上,假如∠BDC =20°,那么∠ACB = .第14题 第16题7. 同圆中,内接正四边形与正六边形面积之比是 .8. 已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是 .9. 要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形面积的最小值是 __.10.如图,一圆与平面直角坐标系中的x轴切于点A (8,0),与y 轴交于点B (0,4),C (0,16),则该圆的直径为 .二、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 89 10 选择11.下列图案中,不是中心对称图形的是( )12.在半径为1的⊙O 中,120°的圆心角所对的弧长是A .3π B .23π C .π D .32π A C D A B D C 第10题 O .13.已知AB 为⊙O 的弦,OC ⊥AB,垂足为C,若OA= 10,AB=16, 则OC 的长为A.12B.10C.6D.814. 半径为4和2的两圆相外切,则其圆心距为A.2B.3C.4D.615.点P 到⊙O 上各点的最大距离为5,最小距离为1,则⊙O 的半径为A .2B .4C .2或3D .4或616.相交两圆的直径分别为2和8,则其圆心距d 的取值范畴是A .d >3B .3<d <5C .6<d <10D .3≤d ≤517.一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6,母线长为cm 5,围成如此的冰淇淋纸筒所需纸片的面积是A . 266cm πB . 230cm πC . 228cm πD . 215cm π18.边长为4的正方形的外接圆与内切圆组成的圆环的面积为A .2πB .4πC .8πD .16π19.如图⊙O 的半径OA=6,以A 为圆心OA 为半径的弧交⊙O 于B 、 C 点, 则BC长为A . 36B .26 C .33 D . 2320.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦 AB 于点D ,连接CD ,则阴影部分的面积是( )A.1π-B. 2π-C. 112π-D. 122π-三、解答下列各题(共50分)21.(4分)已知平面内两点A 、B ,请你用直尺和圆规求作一个圆,使·它通过A 、B 两点.(不写作法,保留作图痕迹)B A ·22.(5分)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交BC⌒于D.(1)请写出四个不同类型....的正确结论;(2)若BC = 8,ED = 2,求⊙O的半径.23.(6分)如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C = 25°,求∠A的度数。

中心对称图形练习测试试题

中心对称图形练习测试试题

中心对称图形练习题南苑中学朱瑞金王晓红一.选择题:1.连云港市2004年中考题下列图案图1中;既是中心对称又是轴对称的图案是A B C D图12.温州市2005年中考题下列图形图2中;既是轴对称图形又是中心对称图形的是图23.大连市2004年中考题将一圆形纸片对折后再对折;得到图3-1中图3;然后沿着图中的虚线剪开;得到两部分;其中一部分展开后的平面图形是图3-14.浙江省衢州市2004年中考题下列几个图形图4是国际通用的交通标志;其中不是中心对称图形的是A B C D图45.湖北省黄石市2005年中考题下列图案图5中;既是轴对称图形;又是中心对称图形的是图56.安徽无为县2004年初中毕业题某校计划建一座既是中心对称图形又是轴对称图形的花坛;从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案;你认为符合条件的是A.等边三角形B.等腰梯形C.菱形D.正五边形7.江西省2004年中考题右图是跳棋盘;其中格点上的黑色点为棋子;剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行;跳行一次称为一步.已知点A为已方一枚棋子;欲将棋子A跳进对方区域阴影部分的格点;则跳行的最少步数为A.2步B.3步C.4步D.5步8.湖南娄底2003年中考题下列图案图7是中心对称图形;不是轴对称图形的是.图79.湖北省黄石市2005年中考题如图8;把一个正方形三次对折后沿虚线剪下;则所得图形是图810.绍兴市2004年中考题图9中4张扑克牌如图1所示放在桌面上;小敏把其中一张旋转180°后得到如图2所示;那么她所旋转的牌从左数起是A.第一张B.第二张C.第三张D.第四张11、如图10所示的图形是由三个半圆组成的图形;点O是大半圆的圆心;且AC=CD=DB;则此图关于点O成中心对称的图形是A BC D图1012.如图11.将△AOB绕点O旋转180°得到△DOE;则下列作图正确的是图11二.填空题:1.下列几张扑克牌中;中心对称图形的有________张图122.山东临沂2004年中考题下列五种图形:①平行四边形②矩形③菱形④正方形⑤等边三角形..其中既是中心对称图形又是轴对称图形的共有种3.下图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________..①②③④⑤图134.如图14;将标号为A、B、C、D的正方形沿着图中的虚线剪开后得到标号为P、Q、M、N的四组图形;试按照“哪个正方形剪开后得到哪组图形”的对应关系填空..A与对应;B与对应;C与对应;D与对应.A B CDP Q MN图145.下列图形图15中;中心对称图形有_________个图156.如图16;观察下列用纸折叠成的图案;其中不是中心对称图形的个数为_______个信封飞机裤子褂子图167.青海省湟中县实验区2004年中考题下列美丽的图案图17;既是轴对称图形又是中心对称图形的个数是_________个图178.吉林省中考题如图18;菱形花坛ABCD的边长为6 m;∠B=60°;其中由两个正六边形组成的图形部分种花;则种花部分的图形的周长粗线部分为_________.9.大连市2005年中考题如图19;是两个同心圆;其中两条直径互相垂直;大圆的半径是2;则图中阴影部分面积和为____________..10.请在图20这一组图形符号中找出它们所蕴含的内在规律;然后在横线的空白处设计一个恰当的图形..————————三.解答题图201.两个完全一样的三角形;可以拼出各种不同的图形;如图21已画出其中一个三角形;请你分别补画出另一个与其一模一样的三角形;使每个图形分别构成不同的可中心对称图形所画三角形可与原三角形有重叠部分.图212、如图22由16个相同的小正方形拼成的正方形网格;现将其中的两个小正方形涂黑如图..请你在下图中再将两个空白的小正方形涂黑;使它成为中心对称图形..图223.已知:图23中图A、图B;分别是6×6正方形网格上的两个轴对称图形阴影部分;其面积分别为S A、S B;网格中最小的正方形面积为一个平方单位..请观察图形并解答下列问题.1填空:S A:S B的值是.2请在图C的网格上画出一个面积为8个平方单位的中心对称图形.图234.如图2412所示的两组长方形能否关于某一点成中心对称若能;则请画出其对称中心.图245.如图25;两个图形关于某点中心对称;看谁能用最简单的方法找出对称中心..你的根据是什么6.浙江省台州市2004年有些图形既是轴对称图形又是中心对称图形;比如正方形.请你画出另外三种有这一性质的图形画图工具不限;不写画法.图一:图二:图三:7.青蛙跳问题地面上有不共线的三点A、B、C;一只青蛙位于异于A、B、C的点P.第一步;青蛙从P点跳到关于A的对称点P1;第二步;青蛙从P1跳到关于B的对称点P2;第三步;青蛙从P2跳到关于C的对称点P3;第四步;从P3跳到关于A的对称点P4;…;如此不断地跳下去;问青蛙跳完6666步后落在什么位置上。

2022年五年级上册数学试题 图形的平移、旋转与对称 测试卷 (含答案) 2

2022年五年级上册数学试题  图形的平移、旋转与对称 测试卷 (含答案) 2

五年级上册数学试题-第二单元图形的平移、旋转与对称测试卷-西师大版(含答案)一.选择题(共6题,共12分)1.如何将○移动到△的位置,下面方法()是正确的。

A.将○向上移动4格,再向右移动3格。

B.将○向上移动3格,再向右移动3格。

C.将○向右移动4格,再向上移动3格。

2.下面图形中,()能绕着中心点旋转60°后与原图重合。

A. B. C.3.下列属于旋转现象的是()。

A.汽车方向盘的运动B.拉开抽屉C.电梯的运动4.下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是()。

A.三角形B.长方形C.圆D.平行四边形5.想一想,下列哪一组都是旋转现象?()A.拉抽屉,电风扇转动B.转动转盘,风车转动C.时针转动,电梯升降6.下面不是旋转现象的是()。

A. B. C.二.判断题(共6题,共12分)1.教室门的打开和关上,门的运动是既平移又旋转。

()2.将等边三角形绕着中心点旋转120°后,不能与原来的图形重合。

()3.图形旋转时,对应的旋转角度相等,图形的形状和大小都没有发生变化。

()4.线段AB长3厘米,绕着它的端点A旋转180度后,这条线段变成了6厘米。

()5.时针,分针旋转的方向是顺时针方向,相反的就是逆时针方向。

()6.一个平行四边形绕一点逆时针旋转了90°,这个平行四边形的位置发生了改变,形状和大小也发生了改变。

()三.填空题(共6题,共27分)1.旋转时先确定相应的()或()的位置,再旋转。

2.钟面上,时针从指向6转到指向()是顺时针旋转了90°,分针从4:00走到():()是顺时针旋转了90°。

3.如图,指针从A开始,逆时针旋转了90°到()点,逆时针旋转了180°到()点;要从A旋转到D,可以按()时针方向旋转()°,也可以按()时针方向旋转()°4.你能通过卡片的平移和旋转将图2“还原”为图1吗?图形A先向()移动()格,再向()移动()格;图形B先绕点O ()时针旋转(),再向()平移()格,最后向()平移()格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章中心对称图形(二)单元检测
姓名______________ 得分____________________________
一、填空题(每题2分,共20分)
1.如图,00 中,ZACB=ZD=60° , AC=3, A ABC周长为 ____________ .
2.半径分别为6⑷和的两圆内切,则它们的圆心距为 _____________ on .
3. __________________________________________________________ 两圆的半径分别为3cm和4cm,圆心距为2cm.,两圆的位置关系是______________ •
4.如图,00的半径为4cm,直线i丄0A,垂足为0,则直线1沿射线0A向平
移________ cm时与O0相切。

5.已知四边形ABCD内接于且ZA: ZC = 1 : 2,则ZB0D= ________________ ・
6.如图,点0在以/1C为直径的O0上,如果ZBDC=2Q° ,那么ZACB=

7.同圆中,内接正四边形与正六边形面积之比是________________ ・
&已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角
9.要在一个矩形纸片上画岀半径分别是4cm和lcm的两个
切圆,该矩形面积的最小值是一=.
10.如图,一圆与平面直角坐标系中的X
轴切于点A (8, 0),与y轴交于点B (0, 4), <7(0,
16),则该圆的直径为______________ ・
X
题号1234567S910
选择
二.选择题(每小题3分,共36分)
11・下列图案中,不是中心对称图形的是()
©WAS
A C D
12・在半径为1的中,120°的圆心角所对的弧长是
D
.
13・已知AB 为00的弦,0C 丄AB,垂足为C,若0A 二10, AB 二16,则0C 的长为
A. 12
B. 10
C. 6 14.半径为4和2的两圆相外切,则其圆心距为
A. 2
B. 3
C. 4 15•点P 到00上各点的最大距离为5, A ・2 B. 4 C ・2或3 16.相交两圆的直径分别为2和8,则其圆心距d 的取值范圉是
A. d>3 B ・ 3<d<5 C. 6<d<10 D ・ 3WdW3
17・一个形式如圆锥的冰淇淋纸筒,其底面直径为&7”,母线长为5纫八围成这 样
的冰淇淋纸筒所需纸片的面积是
A. 66加?〃『
B. 30^C 7W 2
C. 2S^cnr D ・ XSncnr
18. 边长为4的正方形的外接圆与内切圆组成的圆环的面积为
A ・ 2Ji
B ・ 4兀 C- 8% D. 16龙
19. 如图00的半径0A 二6,以A 为圆心0A 为半径的弧交(DO 于B 、C 点,则BC
长为
A. 6\行
B. 6V2
C. 3^3
D. 3^2
20. 如图,以BC 为直径,在半径为2圆心角为90°的扇形内作半圆,交弦
AB 于点D,连接CD,则阴影部分的面积是()
A. 7T —1
B. /r — 2
C.
三、解答下列各题(共50分)
21. (4分)已知平面内两点A 、B,请你用直尺和圆规求作一个圆,使
它经过A 、B 两点.(不写作法,保留作图痕迹) A
1/1
D. 8
D. 6
最小距离为1,则00的半径为
D. 4或
6
第10题图
22・(5分)如图,月万是00的直径,兀是弦,
(1)请写出四个不同类型的正确结论;
• • • •
(2)若 BC 二 8, ED = 2,求<30的半径.
23.(6分)如图,M为直径,肚切于氏CO交00交于D,肋的延长线交氏于E若ZC= 25°,求Z/1的度数。

24.(6分)如图,AB是00的直径,BC是00的切线,D是00上一点, 且AD〃OC。

(1)求证:AADB^AOBC;
(2)若AB二2, BC=V5 ,求AD的长。

(结果保留根号)
C
25・(6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB = 16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
2 5题图
26・(6分)如图,PA、丹是00的切线,A.万为切点,Z0AB=30o• (1)求Z也叨的度数;(2)当0A=3时,求力尸的长.
(第26题)
27・(8分)如图,已知月万是(D0的直径,直线G?与相切于点G 平分Z DAB.(1)求证:ADLDC;(2)若AD=2, AC=艮求丽的长.
29・(9分)如图,在等腰梯形ABCD中,AD〃BC. O是CD边的中点,以O 为圆心,OC长为半径作圆,交BC边于点E.过E作EH丄AB,垂足为H・已知0O与AB边相切,切点为F
(1)求证:OE//AB:
(2)求证:EH=-AB;
⑶若罟求需的值.
2。

相关文档
最新文档