农业温室大棚智能监控系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息与电气工程学院

电子信息工程CDIO一级项目(2014/2015学年第一学期)

题目:农业温室大棚智能监控系统

专业班级:电子信息

学生姓名:

学号:

指导教师:马永强老师

设计周数:16周(分散)

设计成绩:

2014年12月26 日

1 项目设计目的及任务

基于嵌入式和zigbee的农业温室大棚智能监控系统,该系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度等,通过模型分析,可以自动控制温室湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者推送实时监测信息、报警信息,实现温室大棚信息化、智能化远程管理,充分发挥物联网技术在设施农业生产中的作用保证温室大棚内环境最适宜作物生长实现精细化的管理,为作物的高产、优质、高效、生态、安全创造条件,帮助客户提高效率、降低成本、增加收益。

2 项目设计背景

近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用,种植环境中的温度、湿度、光照度、

CO浓度等环境因子对作物的生产有很大的影响。

2

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计,根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互联网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。

3 项目设计思路

3.1 智能报警系统

(1) 系统可以灵活的设置各个温室不同环境参数的上下阀值。一旦超出阀值,系统可以根据配置,通过手机短信、系统消息等方式提醒相应管理者。

(2) 报警提醒内容可根据模板灵活设置,根据不同客户需求可以设置不同的提醒内容,最大程度满足客户个性化需求。

(3) 可以根据报警记录查看关联的温室设备,更加及时、快速远程控制温室设备,高效处理温室环境问题。

(4) 可及时发现不正常状态设备,通过短信或系统消息及时提醒管理者,保证系统稳定运行。

3.2 远程自动控制

(1) 系统通过先进的远程工业自动化控制技术,让用户足不出户远程控制温室设备。

(2) 可以自定义规则,让整个温室设备随环境参数变化自动控制,比如当土壤湿度过低

时,温室灌溉系统自动开始浇水。

(3) 提供手机客户端,客户可以通过手机在任意地点远程控制温室的所有设备。

3.3历史数据分析

(1) 系统可以通过不同条件组合查询和对比历史环境数据。

(2) 支持列表和图表两种不同方式查看,用户可以更直观看到历史数据曲线。

(3) 与农业生产数据建立统一的数据模型,系统通过数据挖掘等技术可以分析更适合农作物生长、最能提高农作物产量的环境参数,辅助决策。

3.4手机客户端

(1) 用户可以通过文朗润诚-农业温室智能监控系统手机客户端,随时随地查看自己负责温室的环境参数。

(2) 用户可以使用手机端及时接受、查看温室环境报警信息。

(3) 通过手机端,用户可以远程自动控制温室环境设备,如自动灌溉系统、风机、顶窗等。(10米宽,60米长大约1亩。)

4 项目分析

4.1 系统组成

4.1.1大棚现场采集控制终端

大棚现场采集控制终端负责24小时采集温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数

4.1.2无线传输设备

前端采用四信F8914 ZigBee模块,通过232/485(端子接口)和采集器相连接,Zigbee 作为一种无线连接,可工作在2. 14 GHz(全球流行) 、868 MHz (欧洲流行)和915 MHz (美国流行) 3个频段上,分别具有最高至250 kbit/ s、20 kbit/ s、40 kbit/ s的传输速率。该型号设备一般为终端节点,完成信息的发送和接收。

ZigBee中心节点采用四信F8114 ZigBee+GPRS模块,中心节点收到的数据可以通过串口直接是输出到服务器上(前端与服务器的距离较近);还可有通过GPRS把其收到的数据发送的远端的服务器上,GPRS部分采用国际标准TCP/IP通信协议,且两种方式都是实现数据透明传输功能。省去了每个终端的GPRS模块,只需要中心节点一个,节约了成本。

数据中心对现场实时采集的温室内温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数进行分析处理,不仅进行完成的统计做出相应的统计报表,并做出趋势分析,且以直观的图表和曲线的方式显示给用户,并根据种植作物的需求提供各

种声光报警信息。当温湿度超过设定值的时候,自动开启或者关闭指定设备。

4.2 系统总架构

4.2.1 F8914 --- F8914组网

F8914(前端)通过标准的232/485与路灯监控一级终端里的PLC连接通信,获取的数据直接通过2.4G频率发送到F8914(中心节点)。F8914(中心节点)通过串口与服务器连接,把数据送到后台,后台管理软件对数据进行分析

4.2.2 F8914----F8114组网

4.2.2.1 原理框架

F8114首先进行GPRS拨号上网,然后自动向数据管理中心发起TCP连接,握手成功后开始数据透明传输。路灯监控终端把数据集中采集通过PLC把数据传给F8914,F8914接到数据后即时的将数据通过ZigBee网络传送到F8114。F8114通过GPRS数据管理中心将上传的数据进行分析处理,得出直观的结果和相应的指令通过GPRS网络发送给F8114,再通过ZigBee网络传送到F8914即时通过232/485传送给采集端,采集端根据指令对相应的控制处理。

4.3 系统总架构

4.3.1 F8914 --- F8914组网

F8914(前端)通过标准的232/485与路灯监控一级终端里的PLC连接通信,获取的数据直接通过2.4G频率发送到F8914(中心节点)。F8914(中心节点)通过串口与服务器连接,把数据送到后台,后台管理软件对数据进行分析。如图3所示

4.3.2 F8914----F8114组网

4.3.2.1 原理框架

F8114首先进行GPRS拨号上网,然后自动向数据管理中心发起TCP连接,握手成功后开始数据透明传输。路灯监控终端把数据集中采集通过PLC把数据传给F8914,F8914接到数据后即时的将数据通过ZigBee网络传送到F8114。F8114通过GPRS数据管理中心将上传的数据进行分析处理,得出直观的结果和相应的指令通过GPRS网络发送给F8114,再通过ZigBee网络传送到F8914即时通过232/485传送给采集端,采集端根据指令对相应的控制处理。

4.3.3系统实现功能

1:可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度、供电电压电流等各项参数情况,以数字、图形和图像等多种方式进行实时

相关文档
最新文档