广州广东中考数学压轴题集锦
广州各区数学中考一模压轴题汇总
一、选择填空2、如图6,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是* .(二)黄浦区图6(三)铁一中学1、定义[]c b a ,,为函数c bx ax y ++=2的特征函数,下面给出特征数为[]m m m 2-11,,+-的函数的一些结论:①当3=m 时,函数图像的顶点坐标是()8-1-,;②当1>m 时,函数图像截x 轴所得的线段长度定点。
其中正确的结论有( ) A .1个 B .2个C .3个D . 4个2、如图,在平面直角坐标系中,矩形OABC的顶点CA、分别在x轴的负半轴、y轴的正半轴上,点B(四)白云区第16题图(六) 番禺区1、抛物线92-=x y 与x 轴交于A 、B 两点,点P 在函数xy 3=的图像上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )【A 】2个; 【B 】3个; 【C 】4个; 【D 】6个.2、直线y=x-2与x 轴、y 轴分别交于点B 、C ,与反比例函数xk y =(k>0)的图象在第一象限交于点A ,连接OA ,若S △AOB :S △BOC=1:2,则k 的值为( )(七)海珠区10、正方形ABCD 中,对角线AC 、BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ’。
点F 是DE 的中点,连接AF 、BF 、E ’F ’。
若AE=2.下列结论:①AD垂直平分EE ’;②tan ∠ADE=12-;③122-=-∆∆ODE ADE C C ;④223'+=AEFE S 四边形。
其中结论正确的是( )第16题图16、设关于x 的方程04)4(2=--+k x k x 有两个不相等的实数根21,x x ,且2120x x <<<,那么k 的取值范围是(八)花都区10. 如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60AFG ∠=︒,2GE BG =,则折痕EF 的长为( D ) A .4 B. C .2 D.16.如图,30MON ∠=︒,点1B 在边OM上,1OB =过点1B 作11A B OM ⊥交ON 于点1A ,以11A B 为边在11B OA ∆外侧作等边三角形111C B A ∆,再过点1C 作22A B OM ⊥,分别交OM ,ON 于点2B 、2A ,再以22A B 为边在22B OA ∆的外侧作等边三角形222C B A ∆……按此规律进行下去,则第3个等边三角形333C B A ∆的周长为 ,第n 个等边三角形n n n C B A ∆的周长为 .(用含n 的代数式表示)272 136()2n -(九)华工附中10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根,下列结论:①240b ac -<;②0abc >;③0a b c -+<;④2m >-.其中,正确的个数有( ). A .1 B .2C .3D .416.已知二次函数222y x mx =++,当2x >时,y 的值随x 值的增大而增大,则实数m 的取值范围是__________.(十)广雅10.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至'''B A O △的位置,此时点'A 的横坐标为3,则点'B 的坐标为( )A.(4,32)B.(3,33)C.(4,33)D.(3,32)16.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC,垂足为点F ,连接DF.分析下列四个结 论:①△AEP ∽△CAB ;②CF=2AF ;③DF=DC ;④43tan =∠CAD .其中正确的结论是_____.(十一)四中10.如图,PA 、PB 切○O 于A 、B 两点,CD 切○O 于点E 交PA ,PB 于C ,D. 若○O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A. B.C.D.16.如图,已知:点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限,随着点A的运动,点C得位置也不断变化,但点C始终在双曲线>上运动,则k的值是。
2024广东中考数学压轴题
2024广东中考数学压轴题一、在直角坐标系中,抛物线y = ax2 + bx + c与x轴交于点A(-3,0)和B(1,0),且与y 轴交于点C(0,3)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 抛物线的对称轴是直线x = -1(答案:D)二、已知三角形ABC的三边长为a,b,c,且满足a2 + b2 + c2 = 10a + 6b + 8c - 50。
则下列判断三角形ABC的形状中,正确的是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案:D)三、函数y = (x - 1)/(x + 2)中,当x的值增大时,y的值会:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 保持不变(答案:C)四、已知四边形ABCD是平行四边形,且AB = 6,BC = 8,对角线AC与BD相交于点O,则下列关于O点到AB和BC的距离d1和d2的说法正确的是:A. d1 + d2 = 14B. d1 × d2 = 24C. d1/d2 = AB/BCD. d12 + d22 = AB2 + BC2(答案:B)五、圆O的半径为5,点P在圆O外,且OP = 8。
过点P作圆O的两条切线,分别与圆O 相切于点A和B。
则弦AB的长度为:A. 6B. 4√3C. 5√2D. 2√15(答案:A)六、在数轴上,点A表示的数为-2,点B表示的数为3。
若点C表示的数为x,且满足AC + BC = 8,则x的值为:A. -3或4B. -4或3C. -3或-1D. 2或-5(答案:B)七、已知二次函数y = ax2 + bx + c的图像经过点(1,0),(2,0)和(3,4)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 函数的顶点在x轴上(答案:A)八、正方形ABCD的边长为4,点E在边AB上,且AE = 1。
广州中考数学压轴题(学生版)
1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。
P 为线段上一动点,作直线⊥,交直线1于点C 。
过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。
(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。
说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。
广州中考数学压轴题汇总
广州中考压轴题汇总选择题(2014·广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2?S△EFO=b2?S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个(2015·广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10(2016·广州)定义运算:a?b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b?b﹣a?a的值为()A.0 B.1 C.2 D.与m有关(2017·广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.(2017·广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2 C.m2 D.1009m2填空题(2014·广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.(2015·广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.(2016·广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB 绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.(2017·广州)如图,平面直角坐标系中O是原点,?OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).(2018·广州)如图,CE是?ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)解答题(2014·广州24)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.(2014·广州25)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.(2015·广州24)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.(2015·广州25)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1?x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.(2016·广州24)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.(2016·广州25)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.(2017·广州24)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.(2017·广州)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.(2018·广州24)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.(2018·广州25)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.。
挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)
03挑战压轴题(解答题一)(1)尺规作图:将法);(2)在(1)所作的图中,连接V①求证:ABD②若tan BAC∠2.(2022·广东广州·统考中考真题)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆的AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD = 1.6m,BC =5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE = 1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.(1)求A 、B 两点的坐标;(2)设PAO V 的面积为S ,求S 关于x 的函数解析式:并写出x 的取值范围;(3)作PAO V 的外接圆C e ,延长PC 交C e 于点Q ,当POQ △的面积最小时,求C e 的半径.(1)沿AC BC 、剪下ABC V ,则ABC V 是_______三角形(填“锐角______.(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H .已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);2.(2022上·陕西西安·九年级校考期中)如图,在等边ABC V 中,点D 是AB 边上的一个动点(不与点A ,B 重合),以CD 为边作等边EDC △,AC 与DE 交于点F ,连接AE .(1)求证:ADF BCD △∽△;(2)若:5:2AB BD =,且20AB =,求ADF △的面积.3.(2022·安徽合肥·统考一模)如图,在正方形ABCD 中,9AB =,E 为AC 上一点,以AE 为直角边构造等腰直角AEF △(点F 在AB 左侧),分别延长FB ,DE 交于点H ,DH 交线段BC 于点M ,AB 与EF 交于点G ,连结BE .(1)求证:AFB AED≅V V (2)当62AE =时,求sin MBH ∠的值.(3)若BEH △与DEC V 的面积相等,记△(1)当点D 与圆心O 重合时,如图2所示,求DE 的长.(2)当CEF △与ABC V 相似时,求cos BDE ∠的值.6.(2023下·安徽蚌埠·九年级校考开学考试)如图,矩形ABCD 中,8AB =厘米,12BC =厘米,P 、Q 分别是AB 、BC 上运动的两点,若点P 从点A 出发,以1厘米/秒的速度沿AB 方向运动,同时,点Q 从点B 出发以2厘米/秒的速度沿BC 方向运动,设点P ,Q 运动的时间为x 秒.(1)设PBQ V 的面积为y ,求y 与x 之间的函数关系式及自变量x 的取值范围;(2)当x 为何值时,以P ,B ,Q 为顶点的三角形与BDC V 相似?7.(2021下·湖北随州·七年级统考期末)阅读材料:在平面直角坐标系中,二元一次方程0x y -=的一个解11x y =⎧⎨=⎩可以用一个点(1,1)表示,二元一次方程有无数个解,以方程0x y -=的解为坐标的点的全体叫作方程0x y -=的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程0x y -=的图象称为直线0x y -=.直线x -y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x -y ≤0,那么点M (x 0,y 0)就在直线x -y =0的上方区域内。
2024届广东省广州市越秀区广东实验中学中考数学押题卷含解析
2024届广东省广州市越秀区广东实验中学中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.对于不为零的两个实数a ,b ,如果规定:a ★b =()()a b a b a a b b+<⎧⎪⎨-≥⎪⎩,那么函数y =2★x 的图象大致是( ) A . B . C . D .2.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A .16B .13C .12D .23 3.下列计算正确的是( ) A .(﹣8)﹣8=0 B .3+=3 C .(﹣3b )2=9b 2 D .a 6÷a 2=a 34.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点D D .点B 和点C5.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒6.如图,矩形ABCD 中,AB=3,AD=4,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC′E′.当线段BE′和线段BC′都与线段AD 相交时,设交点分别为F ,G .若△BFD 为等腰三角形,则线段DG 长为( )A.2513B.2413C.95D.857.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.68.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)9.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A.1.6×104人B.1.6×105人C.0.16×105人D.16×103人10.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为()0,1,表示慕田峪长城的点的坐标为()5,1--,则表示雁栖湖的点的坐标为______.12.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.13.正十二边形每个内角的度数为.14.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.15.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.16.化简11-(1)1mm⎛⎫⋅-=⎪-⎝⎭__________.三、解答题(共8题,共72分)17.(8分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.18.(88﹣(﹣2016)0+|﹣3|﹣4cos45°.19.(8分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)21.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?22.(10分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).23.(12分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)24.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.求证:DE是⊙O的切线;设△CDE的面积为S1,四边形ABED的面积为S1.若S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=2O的半径长.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【题目详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【题目点拨】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.2、D【解题分析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263,故选D.3、C【解题分析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.4、C【解题分析】根据相反数的定义进行解答即可.【题目详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【题目点拨】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.5、B【解题分析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.6、A【解题分析】先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=258,则AF=4-258=78.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【题目点拨】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.7、C【解题分析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.8、A【解题分析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.9、A【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】用科学记数法表示16000,应记作1.6×104,故选A.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.10、D【解题分析】由△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,据此可判断C ;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【题目详解】解:∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确;则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确.故选D .【题目点拨】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、()1,3-【解题分析】直接利用已知点坐标得出原点位置,进而得出答案.【题目详解】解:如图所示:雁栖湖的点的坐标为:(1,-3).故答案为(1,-3).【题目点拨】本题考查坐标确定位置,正确得出原点的位置是解题关键.12、1【解题分析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC =∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【题目详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°, ∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为:1.【题目点拨】此题考查旋转的性质,即图形旋转后与原图形全等.13、150︒【解题分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【题目详解】 试题分析:正十二边形的每个外角的度数是:36012︒=30°, 则每一个内角的度数是:180°﹣30°=150°.故答案为150°.14、1.【解题分析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.15、2【解题分析】把点(2,1)代入y=﹣x 2+(m ﹣1)x+3,即可求出m 的值.【题目详解】∵抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),∴1= -4+2(m-1)+3,解得m=2,故答案为2.【题目点拨】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.16、2-m【解题分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.【题目详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭ =(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭= =1-m+1=2-m .故答案为:2-m .【题目点拨】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.三、解答题(共8题,共72分)17、(1)y 1=﹣x+1,(1)6;(3)x <﹣1或0<x <4【解题分析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB 的分割线,求得△AOB 的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可. 试题解析:(1)设点A 坐标为(﹣1,m ),点B 坐标为(n ,﹣1)∵一次函数y 1=kx+b (k≠0)的图象与反比例函数y 1=﹣的图象交于A 、B 两点∴将A (﹣1,m )B (n ,﹣1)代入反比例函数y 1=﹣可得,m=4,n=4∴将A (﹣1,4)、B (4,﹣1)代入一次函数y 1=kx+b ,可得 ,解得∴一次函数的解析式为y 1=﹣x+1;,(1)在一次函数y 1=﹣x+1中,当x=0时,y=1,即N (0,1);当y=0时,x=1,即M (1,0) ∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y 1>y 1时,x 的取值范围为:x <﹣1或0<x <4考点:1、一次函数,1、反比例函数,3、三角形的面积18、1.【解题分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【题目详解】解:原式21+3﹣4×22=1. 【题目点拨】本题考查实数的运算及特殊角三角形函数值.19、 3(2)①23【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可. ()2①证明:在图3中,取AB 中点E,证明OEE '≌OBF ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF 四边形OE BF '的面积等于OEB S=3. 详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD //,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB = ∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE '≌OBF ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF∴四边形OE BF '的面积等于OEB S 3点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、90(31)米【解题分析】解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.∵∠DEC=90°,∴四边形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=DE AD,∴DE=180•sin30°=180×12=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=BF BD,∴BF=180•sin60°=180×39032(米).∴BC=BF+FC=903+90=90(3+1)(米).答:小山的高度BC为90(3+1)米.21、(1)甲80件,乙20件;(2)x≤90【解题分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【题目详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【题目点拨】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.22、【解题分析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tan CDCAD∠=3x,根据AD+BD=AB列方程求解可得.【题目详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCD CADAD ∠=,∴AD=tan CDCAD∠=tan30x︒33,由AD+BD=AB3+x=10,解得:x=35,答:飞机飞行的高度为(35)km.23、此时轮船所在的B处与灯塔P的距离是98海里.【解题分析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【题目详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3,在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cos cos45PCBPC=∠︒6≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【题目点拨】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.24、(1)见解析;(1)tan∠BAC=22;(3)⊙O的半径=1.【解题分析】(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.(1)由S1=5 S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得AD:BD22=.则tan∠BAC 的值可求;(3)由(1)的关系即可知DB BCAD AB=,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.【题目详解】解:(1)连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(1)∵S1=5 S1∴S△ADB=1S△CDB∴AD2 DC1=∵△BDC∽△ADB∴AD DB DB DC ⋅=∴DB1=AD•DC∴DB2 AD2=∴tan∠BAC 2.(3)∵tan ∠BAC =DB 2AD 2= ∴22BC AB =,得BC =22AB ∵E 为BC 的中点∴BE =24AB ∵AE =32,∴在Rt △AEB 中,由勾股定理得2222(32)AB AB 4⎛⎫=+ ⎪ ⎪⎝⎭,解得AB =4 故⊙O 的半径R =12AB =1.【题目点拨】本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.。
广东中考数学压轴题
广东09压轴题127.(广东省)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时,Rt △ABM ∽Rt △AMN ,并求此时x 的值.128.(广东省广州市)如图,二次函数y =x2+px +q (p <0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.M B CND A129.(广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.130.(广东省深圳市)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?备用图131.(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式. (2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标. ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.132.(广东省珠海市)已知抛物线y =x2-32mx 与x 轴相交于点A 、B ,抛物线的顶点为C .(1)试用含m 的代数式表示AB 的长度; (2)当△ABC 为等边三角形时,求点C 的坐标; (3)在(2)的条件下,如何平移抛物线,使AC =213AB ?133.(广东省佛山市)如图1,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB =4,BC =4,CC 1=5时,求蚂蚁爬过的最短路径的长; (3)求点B 1到最短路径的距离. A Bxy O 图1C A B x y O PD E图2 C A BPxy O D E 图3 C 备用图 图1134.(广东省茂名市)已知:如图,直线l :y =31x +b ,经过点M (0,41),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0)(n 为正整数),设x 1=d (0<d <1). (1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.135.(广东省湛江市)已知矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系;点P 是OA 边上的动点(与点OA 不重合),现将△POC 沿PC 翻折得到△PEC ,再在AB 边上选取适当的点D ,将△P AD 沿PD 翻折,得到△PFD ,使得直线PE 、PF 重合.(1)若点E 落在BC 边上,如图①,求点P 、C 、D 的坐标,并求过此三点的抛物线的函数关系式;(2)若点E 落在矩形纸片OABC 的内部,如图②,设OP =x ,AD =y ,当x 为何值时,y 取得最大值?(3)在(1)的情况下,过点P 、C 、D 三点的抛物线上是否存在点Q ,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.136.(广东省肇庆市)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求证:AM ∥BN ;(2)求y 关于x 的关系式;(3)求四边形ABCD 的面积S ,并证明:S≥2.137.(广东省清远市)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,∠B 和∠C 都为锐角,M 为AB 上一动点(点M 与点A 、B 不重合),过点M 作MN ∥BC ,交AC 于点N ,在△AMN 中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将△AMN 沿MN 折叠,使△AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为A 1,△A 1MN 与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?138.(广东省梅州市)如图,矩形ABCD 中,AB =5,AD =3.点E 是CD 上的动点,以AE 为直径的⊙O 与AB 交于点F ,过点F 作FG ⊥BE 于点G . (1)当E 是CD 的中点时:①tan ∠EAB 的值为______________; ②证明:FG 是⊙O 的切线;(2)试探究:BE 能否与⊙O 相切?若能,求出此时DE 的长; 若不能,请说明理由.NB C N M A139.(广东省梅州市)如图,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.1。
(完整版)广东中考数学省卷压轴题汇总
广东省卷压轴题汇总选择题(2009·广东)如图所示的矩形纸片,先沿虑线按箭头方向向右对折,接着将对折后的纸片沿虑线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )(2010广东5) 左下图为主视方向的几何体,它的俯视图是( )(2015·广东)如图,已知正△ABC 的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE=BF=CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .C .D . A . B .(2016·广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.(2017·广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③ B.②③ C.①④ D.②④(2018·广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.填空题(2009)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).……(1)(2)(3)第10题图(2010广东10)如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .(2011广东10)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.(2012•广东)如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 _________ (结果保留π).题10图(1)A 1BCD AFEBCD A FEB CD A FEB 1C 1F 1 D 1 E 1 A 1B 1C 1F 1 D 1 E 1 A 2B 2C 2F 2 D 2E 2 题10图(2)题10图(3)(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是_________ (结果保留π).(2014•广东)如图,ABC∠=︒,∆绕点A顺时针旋转45︒得到△AB C'',若90BAC==,则图中阴影部分的面积等于.AB AC(2015.广东)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是.(2016·广东)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、PC,若PA=a,则点A到PB和PC的距离之和AE+AF= .(2017·广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.(2018·广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.解答题(2009.广东)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△;(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.DM AB C第22题图N(2010广东20)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.∆是等腰三角形;(1)求证:EGB∆绕点F逆时针旋转最小____度时,四边形ACDE成为以(2)若纸片DEF不动,问ABCED为底的梯形(如图(2)).求此梯形的高.(2011广东22)如图,抛物线1417452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接C M ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.(2012•广东21)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.(2012•广东22)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).(2013•广东24)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.(2013•广东25)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA 方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= _________ 度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.(2014•广东24)如图,O是ABC⊥于点D,∆的外接圆,AC是直径,过点O作OD AB延长DO交O于点P,过点P作PE AC⊥于点E,作射线DE交BC的延长线于F点,连接PF.π(1)若60AC=,求劣弧PC的长;(结果保留)POC∠=︒,12(2)求证:OD OE=;(3)求证:PF是O的切线.(2014•广东25)如图,在ABC=,8=.点AD cmBC cm⊥于点D,10∆中,AB AC=,AD BCP从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(0)t>.(1)当2t=时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的PEF∆的面积最大时,求∆的面积存在最大值,当PEF 线段BP的长;(3)是否存在某一时刻t,使PEF∆为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.(2015•广东24)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.(2015•广东25)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A →D,C→B方向运动,当N点运动到B点时,M、N两点同时停止运动,连接MN,求当M、N 点运动了x秒时,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)(2016·广东24)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.(2016·广东25)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.(2017·广东24)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)(2017·广东25)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C 的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.(2018·广东24)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF的长.(2018·广东24)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?。
广东中考数学专题训练解答题 压轴题
广东中考数学专题训练(一):代数综合题(函数题)一、命题特点与方法分析以考纲规定,“代数综合题”为数学解答题(三)中的题型,一般出现在该题组的第1题(即试卷第23题),近四年来都是对函数图像的简单考察.近四年考点概况:由此可见,近年来23题考点范围趋向综合,命题主体可以是一次函数与反比例函数或者一次函数与二次函数,但难度基本都不太大.主要的命题形式有以下3种:1.求点的坐标或求直线解析式中的待定系数.这种题一般考查列方程解答,难度较低,在试题的前两问出现.2.考察图像的性质.如14年第(1)问和16年第(2)(3)问,都是对函数图象的性质来设问,要求对图像性质有清晰的记忆.3.考查简单的几何问题.考查简单的解析几何的内容,基本上出现在试题的第(3)问,一般都利用基本的模型出题,几何部分难度不会太大,可以尝试了解高中解析几何的基础知识.二、例题训练1.如图,在直角坐标系中,直线y =?x ?5与反比例函数y =b x(x >0)交于A ?1,4?、B 两点. (1)求b的值;(2)求点B 的坐标; (3)直线y =3与反比例函数图像交于点C ,连接AC 、CB ,另有直线y =m 与反比例函数图像交于点D ,连接AD 、BD ,此时△ACB 与△ADB 面积相等,求m 的值.2.如图,在直角坐标系中,直线y =x +b 与反比例函数y =?1x(x <0)交于点A ? m ,1?.直线与x 轴、y 轴分别交于点B 、C .(1)求m 的值;(2)求点B 、C 的坐标;(3)将直线y =x +b 向上平移一个长度单位得到另一条直线,求两直线之间的距离.3.如图,在直角坐标系中,抛物线y =?1?m ?x 2?mx ?m 2?4经过原点且开口向下,直线y =x +b 与其仅交于点A .(1)求抛物线的解析式;(2)求点A 的坐标;(3)求直线y =x +b 关于x 轴对称的直线的解析式.4.如图,在直角坐标系中,抛物线y =x 2?3x ??与x 轴交于点A 、B ,与y 轴交于点C ,连接BC .(1)求点A 、B 和C 的坐标;(2)求∠OBC 的度数;(3)将直线BC 向上平移5个单位,再向左平移m 个单位,得到的直线与原直线重合,求m 的值.三、例题解析答案:1.(1)b=4;(2)?4,1?;(3)m=43.【考点:一次函数、反比例函数,一元二次方程】2.(1)m=?1;(2)B?2,0?,C?0,2?;(3.【考点:一次函数、反比例函数、相似三角形】3.(1)y=?x2+2x;(2)A?12,34?;(3)y=?x?14.【考点:二次函数、一次函数、一元二次方程、轴对称】4.(1)A?1,0?,B?2,0?,C?0,2?;(2)45°;(3)m=5.【考点:二次函数、一次函数、等腰三角形】解析:主要的命题形式与例题对应:1.求点的坐标或求直线解析式中的待定系数.【题1(1)(2),题2(1)(2),题4(1)】2.考察图像的性质.【题3(1)】3.考查简单的几何问题.【题1(3),题2(3),题3(3),题4(2)(3)】广东中考数学专题训练(二):几何综合题(圆题)一、命题特点与方法分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明.近四年考点概况:也相对复杂.难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力.本题除了常规的证明以外,主要的命题特点有以下两种:1.改编自常考图形,有可能成为作辅助线的依据.如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线?垂直?半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力.2.利用数量关系求出特殊角.如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角.二、例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF⊥BC交BD于点G ,点G 为BE 中点,连接OG . (1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O为 ABC外接圆,AB为⊙O直径,AB=4.⊙O切线CD交BA延长线于点D,∠ACB平分线交⊙O于点E,并以DC 为边向下作∠DCF=∠CAB交⊙O于点F,连接AF.(1)求证:∠DCF=∠D+∠B;(2)若AF=32,AD=52,求线段AC的长;(3)若CE,求证:AB⊥CF.3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作»AD=»AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O 切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AH DE g =23,求证:OG ⊥AB .三、例题解析答案:1.(1)难度中等,关键是推出∠DBA=∠ACB ;(2)难度中等,关键是推出∠DBC=45°;(3)难度大,OA 与BD 交于点H ,关键是利用OG 为∆BEC 中位线推出GH=2DE ,再利用全等三角形推出FG=GH .【考点:圆的性质(垂径定理)、三角函数、三角形中位线、全等三角形】2.(1)难度中等,关键是推出∠DCA=∠B ;(2)难度中等,关键是推出∠F=∠B ,从而得出∆AFC ∽∆ACD ;(3)难度大,关键是通过作下角平分线的常规辅助线得到全等三角形,通过转化边长和∠ACE=45°的条件推出AB=4解出AC=2,推出30°.【考点:圆的性质、三角函数、相似三角形、全等三角形、角平分线的性质】3.(1)难度低,关键是推出∠G=∠DCB ;(2)难度中等,关键是推出BF=EF ,再推出三角形全等;(3)难度较大,利用平行截割推出2BF=FC ,再利用第(2)问结论转换边长推出∠G=30°,进而推出∠ADC=∠BAD=30°.【考点:圆的性质(切线)、三角函数、全等三角形、平行截割、等腰三角形】4.(1)难度中等,关键是推出∆AFC ∽∆ACB ;(2)难度中等,关键是利用AD ∥CO 得到∆DOE ≌∆BOE ;(3)难度大,关键是推出∆ A FO ∽∆ A BH ,进而推出AF ?AH=2OB 2OB=BE ,推出∠AOC=60°,利用∆ACG ≌∆AOG 得出OG ⊥AB .【考点:圆的性质(切线)、相似三角形、全等三角形、三角函数】解析:主要的命题特点与例题对应:1.改编自常考图形.【题1(1),题2(1),题4(2)】2.利用数量关系求出特殊角.【题1(2),题2(3),题3(3),题4(3)】广东中考数学专题训练(三):代数与几何综合题(动态压轴题)一、命题特点与方法分析以考纲规定,“代数与几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第3题(即试卷压轴第25题),近四年都是以简单几何图形的动态问题作背景,综合考察几何证明与代数计算问题.题较为灵活,几何部分的难度一般比24题要低,重点在于对数形结合的考察.前些年的25题对计算量要求较高(尤其是15年),近两年有所降低.本题第(1)问近3年都是送分题,用于拉高平均分,基本没有讨论价值,而其余两问基本采取以下命题形式:1.最值问题,基本是必考问题,如14年第(2)问,15年第(3)问,16年第(3)问,17年第(3)问②.此处的最值问题基本是通过二次函数关系式求得,所以一般会先要求推出关系式.一般而言这类题是面积最值问题,用字母表示出面积的做法,无外乎作高现和割补,而17年求面积的思路则有较高要求.2.特殊时刻,如14年第(1)(3)问,17年第(2)问.对特殊时刻的设问无外乎某图形成为等腰、直角和相似三角形或者某点落在边上等.这类问题一般分两类做法:一是重代数,抓住各边的等量关系,列出式子解方程;二是重几何,寻找该时刻的特殊几何意义(全等,相似和特殊角),利用几何推理得出结果.第一种做法计算量大,第二种做法则更重视几何推理,两种做法没有绝对的界限,一般两种都有涉猎.3.纯几何证明,如16年第(2)问,17年第(3)问①.要注重几何证明与接下来的设问的关系,类似于17年第(3)问,①中的结论用于①,降低难度,几何证明的结论很可能对接下来的解答有所帮助.此类问题有以下命题特点:1.对基本图形的考察,而且常常需要作辅助线来补全基本图形.例如13年“触礁问题”,14年相似求高,15年面积割补,17年“一线三等角”,这些基本图形大多出自课本且常见,像“一线三等角”,即便考过也应该加强,很可能改头换面再出现.2.结合几何证明在近年来,动态问题中的构图慢慢复杂,比起类似于13、15年的纯计算动态问题,类似于16、17年的几何意义比较丰富的动态问题更加受到重视.16、17年都是改编自经典的正方形证明问题,平时应该重视这类问题的改编题.3.基本出现分类讨论,而且常有提示.特别是16、17年都配有两个图作为提示,在解答时二、例题训练1.如图,在平面直角坐标系中,四边形AOBC 为正方形,点A ?0,2?.点D 为OB 边上一动点,连接AD ,向上作DE ⊥AD 并在DE 上取DE=AD 交BC 于点F ,连接CD 、CE 和BE ,设点D 的坐标为?x ,0?.(1)填空:点C 的坐标为____;(2)设y=S ∆CDE ,求y 关于x 的关系式,并求y 的最小值;(3)是否存在这样的x 值,使∆CBE 为等腰三角形?若存在,求出对应的x 值;若不存在,请说明理由.2.如图,Rt ∆ABC 和Rt ∆CDE 全等(点B 、C 、E 共线),∠B=∠E=90°,AB=CE=6cm ,∠ACB=∠CDE=30°,连接CE ,并取CE 中点F .点M 、N 分别为BC 、CD 边上动点,和2cm/s 的速度以点B →C ,点C →D 的方向运动,连接FM 、MN 和FN ,设运动的时间为t ?s ??0≤t≤2?.(1)填空:∠CAD =____°;(2)设S=S ∆FMN ?cm 2?,求S 关于t 的关系式,并求S 的最大值;(3)是否存在这样的t 值,使FN 与CD 的夹角为75°?若存在,求出对应的t 值;若不存在,请说明理由.3.如图,在平面直角坐标系中,四边形OABC是矩形,点0),点C?0,2?.点D为BC边上一动点,将COD沿OD对折成EOD,将点B沿点O和BA边上一点F的连线对折使其落在射线DE上的点G处.(1)填空:∠ODF =____°;(2)设点D?x,2?,点F?y?,求y关于x的关系式,并求出当x从0增大到2时,点F的运动路程;(3)在(2)的条件下,当点G落在x轴上时:①求证:CD=AG;②求出此时x的值.图(1)图(2)4.如图,在等腰三角形ABC 中,BC=6cm ,.点M 、N 分别从点B 、C 出发,分别用1cm/s的速度在BA 、CD 边上运动到点A 、B 停止,以MN 为斜边以如图所示方式在其右上方作等腰直角三角形MNO ,设运动时间为t t ?s ??.(1)填空:∠BAC =____°;(2)设S=S ∆MNO ?cm 2?,求S 关于t 的关系式,并求S 的最大值;??????(?)是否存在这样的t 值,使点O 落在∆ABC 的边上?若存在,求出对应的t 值;若不存在,请说明理由.三、例题解析答案:1.(1)?2,2?;(2)把∆CDE 分割成∆CDF 和∆CFE ,分别作出CF 边上的高,把面积的变化转化为CF长度的变化,再利用∆AOD ∽∆DBF 表示BF 的长度;y=22x ?x+2=12?x ?1?2+32;(3)①当CE=BE 时,x=1;②当BC=BE 时,;③当BC=CE 时,x=2.【考点:正方形的性质、全等三角形、相似三角形、二次函数、等腰三角形】2.(1)45;(2)连接FC ,S ∆FMN =S ∆FCM +S ∆FCN ?S ∆MCN ,利用二次函数的性质求出S 的最大值;2t ?3S max(3)用含t 的式子表示FC 的长;①当∠FND=75°,②当∠FNC=75°,t=3【考点:全等三角形、三角函数、二次函数、解直角三角形】3.(1)90;(2)利用相似求出关系式,路程分开y 从2到最小值和从最小值到2两段;y=22x 12?x 2+12;运动路程长为3;(3)①连接BG ,四边形BGOD 为平行四边形;②利用①和相似得出结论,此时 【考点:矩形的性质、相似三角形、平行四边形、二次函数】4.(1)120;(2)把∆MNO 的面积用MN 2表示,而MN 2用勾股定理求得;S=74?x ? 2+243196;(3)①当落在AB 边上,;②当落在BC 边上,;③当落在AC 边上,过点M 、N 向AC 边做垂直,证出全等, 【考点:等腰三角形、三角函数、勾股定理、二次函数、全等三角形、解直角三角形】 解析:主要的命题形式与例题对应:1.最值问题.【题1(2),题2(2),题3(2),题4(2)】2.特殊时刻.【题1(3),题2(3),题3(3),题4(3)】【题1(2)过程,题3(3)①,题4(3)过程】。
广东数学中考压轴题汇编
16. 如图,Rt △ABC 的直角边BC 在x 轴上,直线3232-=x y 经 过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例 函数xky =图像上,则k = . 23.如图,在平面直角坐标系中,直线2+=x y 与坐标轴交于A 、B 两点,点A 在x 轴上, 点B 在y 轴上,C 点的坐标为(1,0),抛物线c bx ax y ++=2经过点A 、B 、C . (1)求该抛物线的解析式;(2)根据图像直接写出不等式2)1(2>+-+c x b ax 的解集;(3)点P 是抛物线上一动点,且在直线AB 上方,过点P 作AB 的 垂线段,垂足为Q 点.当PQ=22时,求P 点坐标.24.如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE=∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB=4,AC=6,求sin ∠ACB 的值; (3)若32=FO DF ,求证:CD=DH .25. 如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE=PC ,过点P 作 PF ⊥OP 且PF=PO (点F 在第一象限),连结FD 、BE 、BF ,设OP=t . (1)直接写出点E 的坐标(用含t 的代数式表示): ; (2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.10.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )23. 如图所示,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2)求证:EG 2=GF×AF;,则矩形ABCD 的 (第23题图)24. 如图所示,△OAB 中,OA=OB=10,∠AOB=80°,以点O 为圆心,6为半径的优弧MN ⌒分别交OA 、OB 于点M 、N. (1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′. 求证:AP = BP ′; (2)点T 在左半弧上,若AT 与弧MN ⌒相切于点T ,求点T 到OA 的距离; (3)设点Q 在优弧MN ⌒上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.25. 如图所示,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点 (点A 在点B 左侧),与y 轴交于点C(0,-3),对称轴是直线x =1, 直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式;(2)求直线BC 的函数表达式; (3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P在第三象限.①当线段PQ 34AB =时,求tan∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.24.如图,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)延长DC ,FP 交于点G ,连接OE 并延长交直线DC 于H ,问是否存在点P ,使△EFO ∽△EHG (E ,F ,O 分别与E ,H ,G 为对应点),如果存在,试求(2)中x 和y 的值,如果不存在,请说明理由.25.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y=x ﹣2交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求证:△ABC 是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作MN⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.23.如图,已知一次函数y=23x ﹣3与反比例函数xky =的图象相交于点A (4,n ),与x 轴相交于点B .(1) 填空:n 的值为 ,k 的值为 ; (2) 以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3) 考察反比函数xky =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.24.如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作DE⊥AC 于E . (1)求证:AB=AC ;(2)求证:DE 为⊙O 的切线; (3)若AB=13,sinB=,求CE 的长.25.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA⊥NA,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.24. 如图,⊙O 是四边形ABCD 的外接圆,AC 是直径,分别延长AB 、CD 相交于点E ,AC=AE ,过点D 作DF∥BC 于点F. (1)求证:DF 是⊙O 的切线; (2)求证:AC·DF = AD·DE;(3)若M 是弧AB 的中点,连接MD 交弦AB 于点H , 若AB :AF=3:5,证明:AH = AF.25. 已知,把Rt △ABC 和Rt △DEF 按图1摆放(点C 与E 重合),点B ,C ,E ,F 始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10.如图2,△DEF 从图1位置出发,以每秒1个单位的速度沿CB 向△ABC 匀速运动,同时,点P 从点A 出发,沿AB 以每秒1个单位的速度向点B 匀速运动,AC 与△DEF 的直角边相交于点Q ,当E 到达终点B 时,△DEF 与点P 同时停止运动,连接PQ ,设移动的时间为t (s ).解答下列问题: (1)当D 在AC 上时,求t 的值;(2)连接PE ,设四边形APEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在P 点运动过程中,是否存在点P ,使△APQ 为等腰三角形?若存在,求出t 的值;若不存在,说明理由.22、正方形ABCD 边长为4,M,N 分别是BC ,CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直。
挑战压轴题填空题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(解析版)
02挑战压轴题(填空题)<≤【答案】 1.23S【分析】根据三角形中位线定理可得形DEFG是平行四边形,结合【详解】解:∵点D,E分别是由题意得,DE AM ∥,且DE ∴1122DE AM x ==,又F 、G 分别是MN AN 、的中点,∴FG AM ∥,12FG AM =,【答案】120°/120度75°/75度【分析】如图,以AB为边向右作等边△ABE,连接EP′.利用全等三角形的性质证明∠BEP′=90°,推出点P′在射线EP′上运动,如图1中,设EP′交BC于点O,再证明△BEO是等腰直角三角形,可得结论.【详解】解:如图,以AB为边向右作等边△ABE,连接EP′.∵△BPP′是等边三角形,∴∠ABE=∠PBP′=60°,BP=BP′,BA=BE,∴∠ABP=∠EBP′,在△ABP和△EBP′中BA BEABP EBPBP BP'=⎧⎪∠=∠⎨='⎪⎩,∴△ABP≌△EBP′(SAS),∴∠BAP=∠BEP′=90°,∴点P′在射线EP′上运动,如图1中,设EP′交BC于点O,当点P′落在BC上时,点P′与O重合,此时∠PP′C=180°-60°=120°,当CP′⊥EP′时,CP′的长最小,此时∠EBO=∠OCP′=30°,51【点睛】本题考查了正方形的综合问题,掌握特殊四边形、相似三角形的判定与性质及等腰三角形的性质是解题的关键.【答案】15 4【分析】如图,连接PC交AB于直角三角形求出AC,PA,利用相似三角形的性质求出题.【详解】解:如图,连接PC交AB∵AC⊥BC,∴∠ACB=90°,∵BC=23,∠BAC=30°,∴AB=2BC=43,AC=3BC=6,∵∠EPB=∠EBP=60°,(1)∠AEB 的度数为 (2)若15EBA ∠=︒,【答案】 135° 【分析】(1)如图,连接∵E 是△ADC 的内心,∠∴∠ACE =12∠ACD ,∠EAC ∴∠AEC =180°−12(∠ACD 在△AEC 和△AEB 中,【详解】【答案】171++/117【分析】连接CE,AE',可证AE'=的圆,当E F'经过圆心半径为1【详解】解:如图,连接CE四边形ABCD是正方形,=∴∠=︒,AD CDADC90ADE CDE∴∠+∠=︒,90将DE绕D顺时针旋转∠=DE DE'∴=,EDE'∴22AF AD DF =+224117=+=,FE AF AE ''∴=+171=+;【答案】17【分析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,由V V,可得BE≅BDE BDF=,由勾股定理可求解.AE CF∠=BD DE,BDE2==∴∠=∠=︒,90BDE BDF()SAS∴≅V V,BDE BDF∠=∠BE BF∴=,BEA BFA【答案】8【分析】本题考查动点最值问题法求线段长等知识,在Rt PBE△中,求出在等腰ABCV中,∴在Rt△ABD中,ABsinAD ABDAB∴∠==在Rt PBE△中,sin313【答案】5【分析】本题考查了正方形的综合题,关键是借助相似三角形对应边成比例解决问题.先画出点E 运动的路线EE ',过E 作EF AQ ⊥,交AQ 于点F ,根据EAF CAB △∽△,可得EF AF =,设cm EF x =,则()3cm BF x =-,()4.5cm QF x =-,再根据EQF DQA V V ∽,可求得EF E F '、,利用勾股定理可得EE '.【详解】解:当点P 在点A 处时,如图,,23cm BP BQ BP == ,,15cm BQ .∴=,当点P 运动到点B 时,如图,,所以点E 运动的路线EE ',如图,,过E 作EF AQ ⊥,交AQ 于点F ,即90AFE EFQ ∠=∠=︒,∵四边形ABCD 为正方形,【答案】32【分析】本题考查了垂线段最短,等边三角形的性质,全等三角形的判定和性质等知识,取连接DK ,EK ,由V AE 绕点A 顺时针旋转∵ABC V 是等边三角形,∴60BAC ∠=︒,3AD =∵线段AE 绕点A 顺时针旋转∴60PAE ∠=︒,AE =∴60PAE BAC ∠=∠=︒【答案】23【分析】本题考查三角形的重心,涉及相似三角形的判定与性质,于G ,延长CG 交AB 于点F ,证明V 据3AC =,得21CD AD ==,,进而根据勾股定理求出【详解】解:过G 作GD AC ⊥于G ,延长∵ 90GD AC BAC ⊥∠=︒,,∴ DE AB ∥,90CDG CAF ==∠∠又∵ DCG ACF ∠=∠,∴ DCG ACF V V ∽,∴ CD DG CG ==,【答案】26【分析】连接,,OA AC OC ,OF CF ,先求出AD =后利用勾股定理求出OE 则52OA OC OF ===,12AOD AOC ∴∠=∠,弦CD AB ⊥于点E ,CD ∴142CE CD ==,∴2225BC CE BE =+=设OC x =,则2=-OE x ,2C BAD ∠=∠ ,设BAD ∠=α,则2C α∠=,90ABD ∠=︒ ,90ADB ADE α∠=︒-=∠ ,180EDC ADB ADE ∴∠=︒-∠-∠=ED EC ∴=,【答案】AP的长为25或2或10【分析】分三种情况:PA'平行于行于x轴时,过点C作CN PA⊥于的坐标,从而求得CM AM,,再由折叠性质得PA '平行于x 轴时,如图,过点设AP a =,点5512P m m ⎛⎫+ ⎪⎝⎭,,则则5512A m a m ⎛⎫++ ⎪⎝'⎭,,50,12M ⎛ ⎝当P 靠近A 且PA '平行于x 轴时,延长设AP a =,点5512P m m ⎛⎫+ ⎪⎝⎭,,则0m <,则5512A m a m ⎛⎫-+ ⎪⎝'⎭,,50,512M m ⎛⎫+ ⎪⎝⎭,∴555321212CM m m ⎛⎫=+-=+ ⎪⎝⎭,PM =综上,AP 的长为25或2或10.【点睛】本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的性质角平分线的性质,勾股定理,等积法,利用等积法是解题的关键与难点.17.(2024上·山东济南·八年级统考期末)平面直角坐标系中,点123B B B ⋯,,,在x 轴上,11122233OA B B A B B A B ⋯V V V ,,是等腰直角三角形.【答案】94,设22A C m =,33A C n =,点()111A ,,1111OC A C ∴==,【答案】8【分析】如图,记AB BC 、1122DP BC AB DQ ===,证明()SAS FDQ EDC V V ≌1124BM PM BP AB ===又∵D 是AC 的中点,∴DP DQ 、是ABC V 的中位线,∴1122DP BC AB DQ ===∴四边形BPDQ 是菱形,∴1122DP BQ BC AB ===∵等边DFE △,【答案】3212+2【分析】(1)连结AB,取AB的中点D,连结CD 以定点D为圆心,1为半径的圆上运动,所以当点即得OC的最小值;(2)连结AB,取AB的中点D,连结DM,ODC为AP的中点,M 为AC 的中点,1122DM BC ∴==,所以点M 在以定点D 为圆心,90AOB ∠=︒Q ,2OA =,OB 2222AB OA OB ∴=+=,1。
押广东广州卷第24-25题(二次函数、特殊四边形中动点问题)(原卷版)-备战2024年中考数学
押广东广州卷第24-25题押题方向一:二次函数3年广东广州卷真题考点命题趋势2023年广东广州卷第24题反比例函数和二次函数综合从近年广东广州中考来看,二次函数经常会与一次函数、反比例函数、几何图形结合一起来考查,依据几何图形的性质结合二次函数最值解决问题,综合难度较大;预计2024年广东广州卷还将继续重视对二次函数与其他函数和几何图形的综合考查。
2022年广东广州卷第24题一次函数和二次函数2021年广东广州卷第24题二次函数1.(2023·广东广州·中考真题)已知点(,)P m n 在函数2(0)y x x=-<的图象上.(1)若2m =-,求n 的值;(2)抛物线()()y x m x n =--与x 轴交于两点M ,(N M 在N 的左边),与y 轴交于点G ,记抛物线的顶点为E .①m 为何值时,点E 到达最高处;②设GMN ∆的外接圆圆心为C ,C 与y 轴的另一个交点为F ,当0m n +≠时,是否存在四边形FGEC 为平行四边形?若存在,求此时顶点E 的坐标;若不存在,请说明理由.2.(2022·广东广州·中考真题)已知直线l :y kx b =+经过点(0,7)和点(1,6).(1)求直线l 的解析式;(2)若点P (m ,n )在直线l 上,以P 为顶点的抛物线G 过点(0,-3),且开口向下①求m 的取值范围;②设抛物线G 与直线l 的另一个交点为Q ,当点Q 向左平移1个单长度后得到的点Q '也在G 上时,求G在45m ≤x ≤415m+的图象的最高点的坐标.3.(2021·广东广州·中考真题)已知抛物线()2123y x m x m =-+++(1)当0m =时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.1.二次函数(含参)最值讨论技巧:已知二次函数y =ax 2+bx +c (a ≠0)(下面以a >0为例进行讨论)。
广东中考数学省卷压轴题汇总
广东省卷压轴题汇总选择题(2009-广东)如图所示的矩形纸片,先沿虑线按箭头方向向右对折,接着将对折后的纸片沿虑线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()(2015•广东)如图,已知正AABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设AEFG的面积为y, AE的长为x,则y关于x的函数图象大致是()(2016-广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则的面积y与点P运动的路程x之间形成的函数关系图象大致是()(2017•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S aabf-S aadf;②S acdf-4S acef;③S aadf-2S acef;④S aadf-2S acdf,其中正确的是()A.①③B.②③C.①④D.②④(2018-广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A-B-C-D路径匀速运动到点D,设APAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为填空题(2009)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖块,第〃个图形中需要黑色瓷砖块(用含〃的代数式表示).(1)(2)(3)第10题图(2010广东10)如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形AiBiCiDi;把正方形ABCD边长按原法延长一倍得到新正方形A2B2C2D2(如图(2));以此下去…,则正方形ABCD的面积为.第10题图(2)第10题图(1)(2011广东10)如图(1),将一个正六边形各边延长,构成一个正六角星形4砌必它的面积为1;取和△必'各边中点,连接成正六角星形AiFBRGE"如图(2)中阴影部分;取左和左DER各边中点,连接成正六角星形A2F2&D.G&,如图⑶中阴影部分;如此下去…,则正六角星形AuFBRaEn的面积为.题10图(1)题10图(2)题10图(3)(2012«广东)如图,在"BCD中,AD=2,AB=4,ZA=30°画弧交AB于点E,连接CE,则阴影部分的面积是,以点A为圆心,AD的长为半径_____(结果保留").(2013-广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留n).(2014«广东)如图,\ABC绕点A顺时针旋转45。
2024届广东省广州市南沙区重点中学中考数学最后冲刺浓缩精华卷含解析
2024届广东省广州市南沙区重点中学中考数学最后冲刺浓缩精华卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .72.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .3.将一副三角尺(在Rt ABC ∆中,090ACB ∠=,060B ∠=,在Rt EDF ∆中,090EDF ∠=,045E ∠=)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF ∆绕点D 顺时针方向旋转α(00060α<<),DE '交AC 于点M ,DF '交BC 于点N ,则PM CN的值为( )A 3B .32C .33D .124.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-5.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2D.y=﹣2(x﹣1)26.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a7.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E8.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等9.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–3610.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩二、填空题(共7小题,每小题3分,满分21分)11.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)12.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m .13.方程21x x =-的解是__________. 14.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.15.如图,AC 、BD 为圆O 的两条垂直的直径,动点P 从圆心O 出发,沿线段线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是( )A .B .C .D .16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.A 、B 两地之间为直线距离且相距600千米,甲开车从A 地出发前往B 地,乙骑自行车从B 地出发前往A 地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B 地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s (千类)与甲出发的时间t (小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为_____千米.三、解答题(共7小题,满分69分)18.(10分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.19.(5分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(88﹣|﹣2|+(13)﹣1﹣2cos45°21.(10分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.22.(10分)如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB .求证:OC=OD .23.(12分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.24.(14分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =41°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =41°,∴BC =BC ′=4,根据勾股定理可得DC 22'BC BD +2234+.故选B .2、D【解题分析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是.故选D .3、C【解题分析】先根据直角三角形斜边上的中线性质得CD=AD=DB ,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM ∽△CDN ,得到PM CN =PD CD ,然后在Rt △PCD 中利用正切的定义得到tan ∠PCD=tan30°=PD CD ,于是可得PM CN 【题目详解】∵点D 为斜边AB 的中点,∴CD=AD=DB ,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD ,∵△EDF 绕点D 顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM ∽△CDN , ∴PM CN =PD CD , 在Rt △PCD 中,∵tan ∠PCD=tan30°=PD CD ,∴PM CN =tan30° 故选:C .【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.4、B【解题分析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.5、A【解题分析】根据“上加下减”的原则进行解答即可.【题目详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1.故选A .【题目点拨】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.6、B【解题分析】先根据同底数幂的乘法法则进行运算即可。
广州、广东中考数学压轴题集锦
广州市历年中考压轴题2018年24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣mm2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求ll rr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2017年24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD 的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=√5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA 匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,AAAA�=BBAA�,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD 所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②EEEE CCCC是否为定值?若是,请求出这个定值;若不是,请说明理由.2016年24.(14分)(2016•广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.25.(14分)(2016•广州)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.24.(14分)(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.(14分)(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(),求当x≥1时y1的取值范围.24.(14分)(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.25.(14分)(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.24.(14分)(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.25.(14分)(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.24.(14分)(2010•广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE 长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.25.(14分)(2010•广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.(14分)(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH 分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.25.(14分)(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.24.(14分)(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B 点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.25.(12分)(2007•广州)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.广东省历年中考压轴题2018年24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9.00分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B 路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2017年24.(9分)如图,AB是⊙O的直径,AB=4√3,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CCCC CCCC=34时,求劣弧BBAA�的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:CCEE CCEE=√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A 作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.24.(9分)(2015•广东)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.25.(9分)(2015•广东)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt △ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).。
押广东省卷第11-15题(因式分解、二次根式的运算、一元二次方程、不等式的应用、图形面积)(解析版)
押广东省卷第11-15题押题方向一:因式分解3年广州省卷真题考点命题趋势2023年广州省卷第11题因式分解从近年广州省卷中考来看,因式分解是近几年广州深圳的常考题,考查比较简单;预计2024年广州省卷还将继续重视因式分解的考查。
1.(2023·广东·中考真题)因式分解:2.9x -=.【答案】()()33x x -+【分析】本题考查了因式分解,根据算术平方根因式分解,即可求解.【详解】解:29x -=()()33x x -+,故答案为:()()33x x -+.因式分解是核心考点,常在填空题中出现。
多项式的因式分解,先提取公因式,再利用平方差、完全平方公式分解即可.1.因式分解:22024-=x x .【答案】()2024-x x 【分析】本题考查了分解因式.根据式子的特点将公因数提取出来即可.【详解】解:22024x x -式子中含有公因数x ,∴()220242024x x x x -=-,故答案为:()2024-x x .2.分解因式2363a a -+的结果是.【答案】()231a -/()231a -+【分析】本题考查了综合提取公因式法和公式法因式分解,解题的关键是正确找出公因式,熟练掌握完全平方公式()2222a b a ab b +=++.先提取公因式3,再利用完全平方公式进行因式分解即可.【详解】解:2363a a -+()2321a a =-+()231a =-,故答案为:()231a -.3.因式分解:()()224ax y b y x -+-=.【答案】()()()22x y a b a b -+-【分析】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.先提取公因式,再用平方差公式分解.【详解】解:()()224ax y b y x -+-()()224a x y b x y =---()()224x y a b =--()()()22x y a b a b =-+-.故答案为:()()()22x y a b a b -+-.6,7x y x y +=-=,则22.【答案】42【分析】本题考查因式分解,代数式求值,利用平方差公式法进行因式分解后,代值计算即可,掌握平方差公式法因式分解,是解题的关键.【详解】解:∵6,7x y x y +=-=,∴()()226742x y x y x y -=+-=⨯=;故答案为:42.5.若5x y -=,6xy =则22x y xy -=,2222x y +=.【答案】3074【分析】第一个空先利用提公因式法因式分解,再代入计算即可;第二个空利用完全平方公式变形后,代入计算即可.【详解】解:22()6530x y xy xy x y -=-=⨯=;()222222()22251274x y x y xy ⎡⎤+=-+=⨯+=⎣⎦.故答案为:30,74.【点睛】本题考查代数式求值,掌握因式分解法和熟练利用完全平方公式是解题关键.押题方向二:二次根式的运算3年广东省真题考点命题趋势2023年广东省卷第12题二次根式的运算从近年广东省中考来看,二次根式的运算是常考题型,难度简单;预计2024年广东省卷还将继续重视对二次根式的运算的考查。
广东省历年中考数学压轴题
广东省历年中考数学压轴题(1) 姓名:1.(2010年)阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯,)321432(3132⨯⨯-⨯⨯=⨯,)432543(3143⨯⨯-⨯⨯=⨯,由以上三个等式相加,可得2054331433221=⨯⨯=⨯+⨯+⨯.读完以上材料,请你计算下各题:(1)1110433221⨯++⨯+⨯+⨯ (写出过程); (2)=+⨯++⨯+⨯+⨯)1(433221n n ;(3)=⨯⨯++⨯⨯+⨯⨯+⨯⨯987543432321 .2.(2009年9分)小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面两个方程的解,并把你的解答过程填写在下面的表格,3.(2010年9分)某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?A 2A A 1 BB 1B 2 B 3 B 4 B 5 B 6 B 7A 3A 4A 5 A 6A 7 O广东省历年中考数学压轴题(2) 姓名:4.(2007年9分)已知等边OAB ∆的边长为a ,以AB 边上的高1OA 为边,按逆时针方向作等边11B OA ∆,11B A 与OB 相交于点2A .(1)求线段2OA 的长;(2)若再以2OA 为边按逆时针方向作等边22B OA ∆,22B A 与1OB 相交于点3A ,按此作法进行下去,得到33B OA ∆,44B OA ∆,…,n n B OA ∆ (如图)。
求66B OA ∆的周长.5.(2005年9分)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市历年中考压轴题2018年24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣mm2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求ll rr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2017年24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD 的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=√5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA 匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,AAAA�=BBAA�,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD 所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②EEEE CCCC是否为定值?若是,请求出这个定值;若不是,请说明理由.2016年24.(14分)(2016•广州)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.25.(14分)(2016•广州)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.24.(14分)(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.(14分)(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C(),求当x≥1时y1的取值范围.24.(14分)(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.25.(14分)(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.24.(14分)(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.25.(14分)(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.24.(14分)(2010•广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE 长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.25.(14分)(2010•广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.(14分)(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH 分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.25.(14分)(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.24.(14分)(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B 点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.25.(12分)(2007•广州)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.广东省历年中考压轴题2018年24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9.00分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B 路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2017年24.(9分)如图,AB是⊙O的直径,AB=4√3,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CCCC CCCC=34时,求劣弧BBAA�的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:CCEE CCEE=√33;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.24.(9分)(2016•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A 作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.25.(9分)(2016•广东)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.24.(9分)(2015•广东)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.25.(9分)(2015•广东)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC和Rt △ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm(1)填空:AD= (cm),DC= (cm)(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B方向运动,点N到AD的距离(用含x的式子表示)(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据sin75°=,sin15°=)24.(9分)(2014•广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F 点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)(2014•广东)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.24.(9分)(2013•广东)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)(2013•广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).。