河北省衡水中学高三第一次调研数学试卷(理科)
2020届河北省衡水中学高三第一次教学质量检测数学(理)试题(解析版)
河北衡水中学2020年高三第一次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ()A.{}1,3- B.{}1,0C.{}1,3D.{}1,5【答案】C 【解析】 ∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B =I∴1x =是方程240x x m -+=的解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( )A. 1i +B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A. 1033 B. 1053 C. 1073 D. 1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 4.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.82(log 5.1),(2),(3)a g b g c g =-==,则,,a b c 的大小关系为( ) A. a b c << B. c b a <<C. b a c <<D. b c a <<【答案】C 【解析】 【分析】 根据奇函数()f x 在R 上是增函数可得()g x 为偶函数且在[)0,+∞上为增函数,从而可判断,,a b c 的大小.【详解】()gx 定义域为R .()()()()()g x xf x x f x xf x g x -=--=--==⎡⎤⎣⎦,故()g x 为偶函数.因为()f x 为R 上的奇函数,故()00f =,当0x >时,因为()f x 为R 上的增函数,故()()00f x f >=.设任意的120x x ≤<,则()()120f x f x ≤<,故()()1122x f x x f x <,故()()12g x g x <,故()gx 为[)0,+∞上的增函数,所以()()22log 5.1log 5.1a g g =-=,而0.82223log 8log 5.1log 422=>>=>,故()()()0.823log 5.12g g g >>,所以c a b >>.故选C.【点睛】本题考查函数的奇函数、单调性以及指对数的大小比较,注意奇函数与奇函数的乘积、偶函数与偶函数的乘积都是偶函数,指数对数的大小比较应利用中间数和对应函数的单调性来考虑. 5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A. {}|10x x -<≤B. {}|11x x -≤≤C.{}|11x x -<≤D.{}|12x x -<≤【答案】C 【解析】试题分析:如下图所示,画出2()log (1)g x x =+的函数图象,从而可知交点(1,1)D ,∴不等式()()f x g x ≥的解集为(1,1]-,故选C .考点:1.对数函数的图象;2.函数与不等式;3.数形结合的数学思想.6.设直线l 1,l 2分别是函数f(x)=ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P-2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A. (0,1) B. (0,2)C. (0,+∞)D. (1,+∞)【答案】A 【解析】 试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x Q ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.7.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. π B.3π4 C.π2D. π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径r ==由圆柱的体积公式,可得圆柱的体积是223ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 8.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A. 1 B. 2 C .4D. 8【答案】C 【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.9.设,m n u r r 为非零向量,则“存在负数λ,使得λ=u r r m n ”是“0m n ⋅<u r r”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】通过非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立,可判断出结论.【详解】解:,m n u r r 为非零向量,存在负数λ,使得λ=u r r m n ,则向量,m n u r r 共线且方向相反,可得0m n ⋅<u r r.反之不成立,非零向量,m n u r r 的夹角为钝角,满足0m n ⋅<u r r,而λ=u r r m n 不成立.∴,m n u r r为非零向量,则“存在负数λ,使得λ=u r r m n ”是0m n ⋅<u r r”的充分不必要条件. 故选:A.【点睛】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z =2x +y 的最小值是( )A. -15B. -9C. 1D. 9【答案】A 【解析】 【分析】作出不等式组表示的可行域,平移直线z =2x +y ,当直线经过B (-6,-3)时,取得最小值. 【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值 z min =-12-3=-15. 故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.11.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合,1e 、2e 分别为1C 、2C 的离心率,则( ) A. m n >且121e e > B. m n >且111e e < C. m n <且121e e > D. m n <且121e e <【答案】A 【解析】【分析】根据椭圆1C 和双曲线2C 的焦点重合得出222m n -=,可得出m 、n 的大小,再由离心率公式可得出12e e 与1的大小关系,进而可得出结论.【详解】由于椭圆1C 和双曲线2C 的焦点重合,则2211m n -=+,则2220m n -=>,1m >Q ,0n >,m n ∴>.1e ==Q 2e ==,121e e ∴====>, 故选:A.【点睛】本题考查利用椭圆和双曲线的焦点求参数的大小关系,同时也考查了两曲线的离心率之积的问题,考查计算能力,属于中等题.12.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A.1-B.32e --C.35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a e x ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦',因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e -=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx 的图象的交点个数是 . 【答案】7 【解析】由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3]x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个考点:三角函数图像14.如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM ,PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.考点:异面直线的夹角.15.在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3- 【解析】曲线2b y ax x=+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,{2,a b =-=-所以3a b +=-. 【考点】导数与切线斜率.16.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (在的上方),且2AB =.(Ⅰ)圆C 的标准方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 .(写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)①②③ 【解析】 (Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,, 令直线的方程为,此时,,所以,,,因为,,所以NAMA NBMB=.所以2221(21)22222NB MA NA MB -==-=-+, 222121222222NB MA NAMB+===-+ 正确结论的序号是①②③.考点:圆的标准方程,直线与圆的位置关系.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤. 17.某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+π2π3π22πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.【解析】(Ⅰ)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-. (Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k Z ∈.令π22π6x k θ+-=,解得ππ212k x θ=+-,k Z ∈. 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k Z ∈.由0θ>可知,当1k =时,θ取得最小值π6. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.18. 某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.【答案】(1)25;(2)0.016.【解析】试题分析:解题思路:(1)通过茎叶图得出数据即可求解;(2)观察频率直方图中的各个矩形的高与面积即可. 规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出. 试题解析:(1)分数在[50,60)的频率为0.00810=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016. .考点:1.茎叶图;2.频率直方图.19.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G 是»DF的中点.(1)设P是»CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】(1)30o;(2)60o【解析】试题分析: (1)第(1)问,直接证明BE⊥平面ABP 得到BE⊥BP,从而求出∠CBP 的大小. (2)第(2)问,可以利用几何法求,也可以利用向量法求解. 试题解析: (1)因为AP⊥BE,AB⊥BE,AB ,AP ⊂平面ABP ,AB∩AP=A ,所以BE⊥平面ABP. 又BP ⊂平面ABP ,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)方法一:如图,取EC uuu r的中点H ,连接EH ,GH ,CH.因为∠EBC=120°,所以四边形BEHC 为菱形, 所以AE =GE =AC =GC =223213+=.取AG 的中点M ,连接EM ,CM ,EC , 则EM⊥AG,CM⊥AG,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13123-=. 在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,所以△EMC 为等边三角形, 故所求的角为60°. 方法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz. 由题意得A(0,0,3),E(2,0,0),G(133),C(-130), 故AE u u u r=(2,0,-3),AG u u u r =(13,0),CG u u u r=(2,0,3).设m u r=(x 1,y 1,z 1)是平面AEG 的一个法向量,由00m AE m AG ⎧⋅=⎨⋅=⎩u u u v v u u u v v可得11112300x z x -=⎧⎪⎨+=⎪⎩取z 1=2,可得平面AEG 的一个法向量m u r=(3,2).设n r=(x 2,y 2,z 2)是平面ACG 的一个法向量.由00n AG n CG u u u v v u u u v v ⎧⋅=⎨⋅=⎩可得22220230x x z ⎧=⎪⎨+=⎪⎩取z 2=-2,可得平面ACG 的一个法向量n =(32).所以cos 〈,m n u r r 〉=||||m n m n ⋅u r rur r =12. 故所求的角为60°.点睛:本题的难点主要是计算,由于空间向量的运算,所以大家在计算时,务必仔细认真.20.已知椭圆()2222:10x y E a b a b +=>>以抛物线28y x =的焦点为顶点,且离心率为12. (1)求椭圆E 的方程;(2)若直线:l y kx m =+与椭圆E 相交于A 、B 两点,与直线4x =-相交于Q 点,P 是椭圆E 上一点且满足OP OA OB =+u u u r u u u r u u u r(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP TQ ⋅u u u r u u u r 为定值?若存在,求出点T 的坐标及OP TQ ⋅u u u r u u u r的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定点T 的坐标为()1,0-. 【解析】 【分析】(1)求出抛物线的焦点坐标可得出a 的值,由椭圆E 的离心率可得c 的值,进而可得出b 的值,由此可求得椭圆E 的方程; (2)设点()11,Ax y 、()22,B x y ,将直线l 的方程与椭圆E 的方程联立,列出韦达定理,求出点P 的坐标,由点P 在椭圆E 上得出22443m k =+,并求出点Q 的坐标,设点(),0T t ,计算出OP TQ ⋅u u u r u u u r ,由OP TQ ⋅u u u r u u u r为定值求出t ,由此可求得定点T 的坐标.【详解】(1)抛物线28y x =的焦点坐标为()2,0,由题意可知2a =,且12c e a ==,1c ∴=,则b == 因此,椭圆E 的方程为22143x y +=;(2)设点()11,Ax y 、()22,B x y ,联立22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()2224384120k x kmx m +++-=, 由韦达定理得122843kmx x k +=-+,则()121226243m y y k x x m k +=++=+, ()12122286,,4343km m OP OA OB x x y y k k ⎛⎫=+=++=- ⎪++⎝⎭u u u r u u u r u u u r Q ,即点2286,4343kmm P k k ⎛⎫- ⎪++⎝⎭, 由于点P 在椭圆E 上,则222281611434433km m k k ⎛⎫⎛⎫-⋅+⋅= ⎪ ⎪++⎝⎭⎝⎭,化简得22443m k =+, 联立4y kx m x =+⎧⎨=-⎩,得44x y m k=-⎧⎨=-⎩,则点()4,4Q m k --,设在x 轴上是否存在一点(),0T t ,使得OP TQ ⋅u u u r u u u r为定值,()4,4TQ t m k =---u u u r ,()()()22284642188634342km t m m k k t ktm km m OP TQ k m m ++-+++⋅===++u u u r u u u r 为定值, 则10t +=,得1t=-,因此,在x 轴上存在定点()1,0T -,使得OP TQ ⋅u u u r u u u r为定值.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中存在定点满足某条件问题的求解,考查计算能力,属于中等题. 21.已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(1)a=1;(2)见解析. 【解析】 【分析】(1)通过分析可知f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,进而利用h ′(x )=a 1x -可得h (x )min =h (1a),从而可得结论;(2)通过(1)可知f (x )=x 2﹣x ﹣xlnx ,记t (x )=f ′(x )=2x ﹣2﹣lnx ,解不等式可知t (x )min =t (12)=ln 2﹣1<0,从而可知f ′(x )=0存在两根x 0,x 2,利用f (x )必存在唯一极大值点x 0及x 012<可知f (x 0)14<,另一方面可知f (x 0)>f (1e )21e=. 【详解】(1)解:因为f (x )=ax 2﹣ax ﹣xlnx =x (ax ﹣a ﹣lnx )(x >0), 则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,求导可知h ′(x )=a 1x-. 则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减, 所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.因为当0<x 1a <时h ′(x )<0、当x 1a>时h ′(x )>0, 所以h (x )min =h (1a),又因为h (1)=a ﹣a ﹣ln 1=0, 所以1a=1,解得a =1; 另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1), 所以等价于f (x )在x =1处是极小值, 所以解得a =1;(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f ′(x )=2x ﹣2﹣lnx ,令f ′(x )=0,可得2x ﹣2﹣lnx =0,记t (x )=2x ﹣2﹣lnx ,则t ′(x )=21x-, 令t ′(x )=0,解得:x 12=, 所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增, 所以t (x )min =t (12)=ln 2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2, 且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正, 所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0, 所以f (x 0)20x =-x 0﹣x 0lnx 020x =-x 0+2x 0﹣220x =x 020x -, 由x 012<可知f (x 0)<(x 020x -)max 2111224=-+=;由f ′(1e )<0可知x 0112e <<, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e)上单调递减, 所以f (x 0)>f (1e )21e=; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(Ⅰ)利用cos x ρθ=,sin y ρθ=化简即可求解;(Ⅱ)先将直线l 化成极坐标方程,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=,再利用根与系数的关系和弦长公式进行求解. 试题解析:(Ⅰ)化圆的一般方程可化为2212110x y x +++=.由cos x ρθ=,sin y ρθ=可得圆C 的极坐标方程212cos 110ρρθ++=.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈.设A ,B 所对应的极径分别为1ρ,2ρ,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=. 于是1212cos ρρα+=-,1211ρρ=.12AB ρρ=-==由AB =23cos 8α=,tan α=.所以l .23.已知函数()123f xx x =+--.(I )在答题卡图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,, 【解析】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解 试题解析:(Ⅰ)如图所示:(Ⅱ)()413{3212342x x f x x x x x -≤-=--<<-≥,,,()1f x >当1x ≤-,41x ->,解得5x >或3x <1x ∴≤-当312x -<<,321x ->,解得1x >或13x < 113x ∴-<<或312x <<当32x ≥,41x ->,解得5x >或3x <332x ∴≤<或5x > 综上,13x <或13x <<或5x >()1f x ∴>,解集()()11353⎛⎫-∞⋃⋃+∞ ⎪⎝⎭,,, 考点:分段函数的图像,绝对值不等式的解法。
河北省衡水中学2020届高三第一次教学质量检测理科数学
河北衡水中学2020年高三第一次教学质量检测数学试题(理科)(考试时间:120分钟满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B =I ,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 2.z 是z 的共扼复数,若2z z +=,()i 2z z -=(i 为虚数单位),则z 等于( )A.1i +B.1i --C.1i -+D.1i - 3.根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是( ) (参考数据:lg30.48≈)A.3310B.5310C.7310D.93104.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若()2log5.1a g =-,()0.82b g =,()3c g =,则a ,b ,c 的大小关系为( )A.a b c <<B.c b a <<C.b a c <<D.b c a << 5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A.{}10x x -<≤B.{}11x x -≤≤ C.{}11x x -<≤ D.{}12x x -<≤ 6.设直线1l ,2l 分别是函数()ln ,01,ln ,1,x x f x x x -<<⎧=⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则PAB △的面积的取值范围是( )A.()0,1B.()0,2C.()0,+∞D.()1,+∞7.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.34πC.2πD.4π 8.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A.1B.2C.4D.8。
河北省衡水中学2023届高三上学期一调考试数学试卷含答案
河北省衡水中学2023届上学期高三年级一调考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
共4页,总分150分,考试时间120分钟。
第I 卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}03|{2<-=x x x A ,}33|{≥=xx B ,则=B A A .⎪⎭⎫ ⎝⎛21,0B .⎪⎭⎫⎢⎣⎡3,21C .)2,0(D .(1,3)2.若1.05=a ,3log 212=b ,8.0log 3=c ,则c b a ,,的大小关系为A .cb a >>B .ca b >>C .ab c >>D .ba c >>3.设Rb a ∈,,则使b a >成立的一个充分不必要条件是A .33ba >B .0)(log 2>-b a C .22ba >D .ba 11>4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得223.045ln ,693.02ln ≈≈,由此可知2.0ln 的近似值为A .-1.519B .-1.726C .-1.609D .-1.3165.已知y 关于x 的函数图象如图所示,则实数y x ,满足的关系式可以是A .01log |1|3=--yx B .yx x312=-C .02|1|=--y x D .1||ln -=y x 6.已知函数)(x f 是定义在R 上的单调函数.若对任意R x ∈,都有3]2)([=-xx f f ,则=)4(fA .9B .15C .17D .337.已知函数1||16)(+++=x mxe xf x的最大值为M ,最小值为N ,则=+N M A .3B .4C .6D .与m 值有关8.已知正实数y x ,满足y y x x =-+++)11)(142(22,则y x 2+的最小值为A .1B .2C .4D .23二、选择题:本题共4小题,每小题5分,共20分。
2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版
2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)0.92.(5分后)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c的大小关系就是c ()a.a<b<cb.a<c<bc.b<a<cd.c<a<b3.(5分后)未知a>1,a.0<x<1b.1<x<0,则f(x)<1成立的一个充分不必要条件是()c.2<x<0d.2<x<14.(5分)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0与x轴所围站图形的面积为()5.(5分)曲线a.4b.2c.1d.36.(5分)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴7.(5分后)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()a.f(x)=x3b.f(x)=+xc.f(x)=3xd.f(x)=3+x38.(5分后)设f(x)就是奇函数,对任一的实数x、y,存有f(x+y)=f(x)+f (y),当x>0时,f(x)<0,则f(x)在区间[a,b]上()a.有最大值f(a)b.有最小值f(a)c.有最大值d.存有最小值9.(5分)已知函教f(x)=asin(ωx+φ)(a>0,ω>0)的图象与直线y=b(0<b<a)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是()a.[6kπ,6kπ+3],k∈zb.[6k3,6k],k∈zc.[6k,6k+3],k∈zd.[6kπ3,6kπ],k∈z1页10.(5分)若不等式lg≥(x1)lg3对任意x∈(∞,1)恒成立,则a的取值范围就是()a.(∞,0]b.[1,+∞)c.[0,+∞)d.(∞,1]11.(5分后)设f(x)就是定义在r上的函数,其Auron函数为f′(x),若f(x)+f′(x)>1,f(0)=2021,则xx不等式ef(x)>e+2021(其中e为自然对数的底数)的边值问题为()a.(2021,+∞)b.(∞,0)∪(2021,+∞)c.(∞,0)∪(0,+∞)d.(0,+∞)12.(5分后)设立函数f(x)=sin,若存有f(x)的极值点x0满足用户x0+[f(x0)]<m,则m的值域222范围就是()a.(∞,6)∪(6,+∞)b.(∞,4)∪(4,+∞)c.(∞,2)∪(2,+∞)d.(∞,1)∪(1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分后)若非零向量,满足用户|+|=||=2||,则向量与+的夹角为.14.(5分后)设立函数y=f(x)在r上加定义,对于任一取值的正数p,定义函数2,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2x1,p=2,则下列结论不成立的是:.①fp[f(0)]=f[fp(0)];②fp[f(1)]=f[fp(1)];③fp[fp (2)]=f[f(2)];④fp[fp(3)]=f[f(3)].15.(5分后)未知f(x)就是定义在r上且周期为3的函数,当x∈[0,3)时,f (x)=|x2x+|,若函数y=f(x)a在区间[3,4]上加10个零点(互不相同),则实数a的值域范围就是.16.(5分后)未知a,b,c分别为△abc的三个内角a,b,c的对边,a=2且(2+b)(sinasinb)=(cb)sinc,则△abc面积的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)2217.(10分)已知a∈r,命题p:“?x∈[1,2],xa≥0”,命题q:“?x∈r,x+2ax+2a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,谋实数a的值域范围.18.(12分后)在△abc中,内角a,b,c面元的边分别为a,b,c,未知sinc+sin (ba)=sin2a,a≠.2(ⅰ)求角a的取值范围;(ⅱ)若a=1,△abc的面积s=x,c为钝角,求角a的大小.19.(12分后)未知函数f(x)=e+ax1(e为自然对数的底数).(ⅰ)当a=1时,谋过点(1,f(1))处的切线与坐标轴围起的三角形的面积;2(ⅱ)若f(x)≥x在(0,1)上恒设立,谋实数a的值域范围.20.(12分)已知函数f(x)满足2f(x+2)f(x)=0,当x∈(0,2)时,f(x)=lnx+ax当x∈(4,2)时,f(x)的最大值为4.(ⅰ)求实数a的值;2页,(ⅱ)设b≠0,函数,x∈(1,2).若对任意的x1∈(1,2),总存在x2∈(1,2),并使f(x1)g(x2)=0,谋实数b的值域范围.21.(12分后)未知函数f(x)=x+3+ax+b,g(x)=x+3+lnx+b,(a,b为常数).(ⅰ)若g(x)在x=1处的切线过点(0,5),求b的值;(ⅱ)设立函数f(x)的导函数为f′(x),若关于x的方程f(x)x=xf′(x)存有唯一求解,谋实数b的值域范围;(ⅲ)令f(x)=f(x)g(x),若函数f(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.22.(12分后)未知函数,(ⅰ)求函数f(x)的单调区间,并推论与否存有极值;(ⅱ)若对任意的x>1,恒有ln(x1)+k+1≤kx成立,求k的取值范围;(ⅲ)证明:(n∈n+,n≥2).3页2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)(2021?重庆三模)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)【分析】求出a与b中不等式的解集确定出a与b,找出两集合的交集即可.【解答】解:由a中lnx≥0=ln1,得到x≥1,即a=[1,+∞);由b中的不等式解得:4<x<4,即b=(4,4),则a∩b=[1,4).故选:b.【评测】此题考查了关连及其运算,熟练掌握关连的定义就是求解本题的关键.2.(5分)(2021?东城区二模)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c 的大小关系是c()a.a<b<cb.a<c<bc.b<a<cd.c<a<b【分析】利用指数与对数函数的单调性即可得出.0.9【解答】解:∵0<a=log0.80.9<1,b=log1.10.9<0,c=1.1>1,∴b<a<c.故选:c.【评测】本题考查了指数与对数函数的单调性,属基础题.3.(5分)(2021?南昌校级二模)已知a>1,,则f(x)<1设立的一个充份不必要条件就是0.9()a.0<x<1b.1<x<0c.2<x<0d.2<x<1【分析】谋出来不等式的边值问题即为不等式设立的充要条件;据当子集a?子集b且b?a时,a就是b的充份不必要条件.【解答】解:f(x)<1成立的充要条件是∵a>12∴x+2x<0∴2<x<0∴f(x)<1成立的一个充分不必要条件是1<x<0故选项为b【评测】本题考查不等式的边值问题就是不等式的充要条件;据子集之间的关系推论条件关系.4.(5分)(2021春?玉溪校级期末)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0【分析】根据分段函数的定义域,算出f(1)的值,再根据分段函数的定义域展开代入解;4页【答疑】求解:函数2,f(1)=π+1>0,∴f(f(1))=0,可得f(0)=π,∴f(f(f(1)))=π,故选c;【评测】此题主要考查函数值的解,就是一道基础题;5.(5分)(2021春?进贤县校级月考)曲线a.4b.2c.1d.3上的积分可求出答案.上的积分,与x轴所围站图形的面积为()【分析】根据面积等于cosx的绝对值在0≤x≤【解答】解:面积等于cosx的绝对值在0≤x≤即s==3=3=3,故选:d.【评测】本题主要考查余弦函数的图象和用定分数谋面积的问题.属于基础题6.(5分)(2021?开封模拟)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴【分析】分别求出2函数的对称轴和对称中心即可得解.【解答】解:由2xz.由x=kπ,k∈z,解得函数y=cos(x)的对称轴为:x=kπ,k∈z.=k,k∈z,解得函数y=sin(2x)的对称轴为:x=+,k∈k=0时,二者存有相同的对称轴.由2x由x=kπ,k∈z,可解得函数y=sin(2x=k)的对称中心为:()的对称中心为:(kπ+,0),k∈z.,0),k∈z.,k∈z,可解得函数y=cos(x故2函数没相同的对称中心.故选:a.【评测】本题主要考查了三角函数的图象和性质,属基本知识的考查.7.(5分后)(2021?厦门演示)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()5页。
河北省衡水中学2019届高三第一次模拟考试-数学理试卷
河北省衡水中学2019届高三第一次模拟考试-数学理试卷·2·河北省衡水中学2019~2019学年度第二学期高三年级一模考试数学(理科)试卷(A 卷)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.设全集为实数集R ,{}{}24,13M x x N x x =>=<≤,则图中阴影部分表示的集合是( ) A .{}21x x -≤< B .{}22x x -≤≤C .{}12x x <≤D .{}2x x <2.设,a R i ∈是虚数单位,则“1a =”是“a i a i +-为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2019 B .2019 C.4022 D .4023·3··4··5·11.已知圆的方程422=+y x ,若抛物线过点A(0,-1),B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( ) A.x23+y24=1(y≠0) B.x24+y23=1(y≠0) C.x23+y24=1(x≠0) D.x24+y23=1 (x≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足(2)()32xf x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =( ) A.200722006+ B .200622008+ C .200722008+ D .200822006+第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13.在区间[-6,6],内任取一个元素xO ,若抛物线y=x2在x=xo 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 。
衡水中学调研考试高中数学(理)试卷含答案
衡水中学调研考试高中数学(理)试卷含答案衡水中学调研考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填在答题卡上)1. 等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于()A .1 B.532 D.3 2. 设有直线m 、n 和平面α、β,则下列说法中正确的是()A.若//,,m n m n αβ??,则//αβB.若,,m m n n αβ⊥⊥?,则//αβC.若//,,m n m n αβ?⊥,则αβ⊥D.若//,,m n m n αβ⊥⊥,则αβ⊥ 3. 用一个平面截正方体一角,所得截面一定是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能 4.如图,Rt O A B '''?是一平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是()A .22B .1C .2D .22 5. 数列1, 12, 124, , 1242n+++++++L L L ,的前n 项和为 ( ) A .n n --+221 B.12--n n C.322--+n n D. 222--+n n 6. 若{}n a 是等差数列,满足121010a a a +++=L ,则有()A .11010a a +>B .21000a a +< C.3990a a +=D .5151a =7.一个六棱柱的底面是正六边形,其侧棱垂直底面。
已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的表面积为()【含答案】A .43 B .4 C .23D .138. ABCD 是正方形,P 是平面ABCD 外一点,PD ⊥AD,PD=AD=2,二面角P —AD —C 为600,则P 到AB 的距离是A.22B.3C.2D.79. 如图为一个几何体的三视图,侧视图与正视图均为矩形,俯视图为正三角形,尺寸如图所示,则该几何体的体积为()A.3B.43C.33D.6310. 如图,在正方体1111ABCD A B C D —中,E 、F 、G 、H 分别为中点,则异面直线EF 与GH 所成的角等于() A .045 B .060 C .090 D .0120 11. 已知54x <,则函数14245y x x =+--() A .有最小值为5 B .有最大值为-2 C .有最小值为1 D .有最大值为1 12. 对于四面体ABCD ,给出下列四个命题:①若AB=AC ,BD=CD ,则BC ⊥AD ;②若AB=CD ,AC=BD ,则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ;④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD ;其中正确的命题的序号是( )A. ①②B. ②③C. ②④D. ①④第Ⅱ卷(非选择题共90分)二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13. 已知{}n a 是等差数列,246816,a a a a +++=求9S =_______.14.已知边长为a 的等边三角形内任意一点到三边距离之和为定值,这个定值为3a ,推广到空间,棱长为a 的正四面体内任意一点到各个面的距离之和也为定值,则这个定值为: 15. 如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P 。
河北省衡水中学高三上学期一调考试 数学理试题 Word版含解析 by赵
2013—2014学年度第一学期第一次调研考试高三年级数学试卷(理科) 解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
一.选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 已知集合M={x|(x-1)2 < 4,x ∈N },P={-1,0,1,2,3},则M∩P=( )A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}【答案】A{}=0.1,2M ,{}012MP =,,选A 2. 实数x ,条件P:x 2<x ,条件q:11≥x,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A{}{}:01,:01,|01|01,p x q x x x x x <<<≤<<⊆<≤∴选A3.方程04ln =-+x x 的解0x 属于区间 ( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 【答案】C()ln 4,(2)(3)(ln 22)(ln31)0,f x x x f f =+-⋅=-⋅-<所以0(2,3)x ∈,选C4.已知函数⎪⎩⎪⎨⎧≤->-=)0(1)0(log )(22x x x x x f ,则不等式0)(>x f 的解集为( )A.}10|{<<x xB.}01|{≤<-x xC. }11|{<<-x xD. }1|{->x x20,log 0,01;x x x >->∴<<当220,10,10,1 1.10x x x x x ≤->∴-<∴-<<∴-<≤当综上,1 1.x -<<选C5.设函数2()34,f x x x '=+-则)1(-=x f y 的单调减区间( )A.(-4,1) B.)2,3(- C. 3(,)2-+∞ D.),21(+∞- 【答案】B由2()340,41,(1)f x x x x f x '=+-<-<<∴-得单调减区间为(3,2)-6.下列命题:(1)若“22b a <,则b a <”的逆命题;(2)“全等三角形面积相等”的否命题;(3)“若1>a ,则0322>++-a ax ax 的解集为R”的逆否命题; (4)“若)0(3≠x x 为有理数,则x 为无理数”。
河北省衡水中学2018-2019学年高三第一次摸底考试数学(理)试卷含答案
2018—2019学年河北省衡水中学 高三年级上学期四调考试数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.下列命题正确的个数为 ①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .32.已知 是公差为1的等差数列, 为 的前 项和,若 ,则 A .B .3C .D .43.已知双曲线 与抛物线 有相同的焦点,则该双曲线的渐近线方程为A .B .C .D .4.如图,一只蚂蚁从点 出发沿着水平面的线条爬行到点 ,再由点 沿着置于水平面的长方体的棱爬行至顶点 ,则它可以爬行的不同的最短路径有准考证号考场号座位号A.40条B.60条C.80条D.120条5.函数的图象大致是A.B.C.D.6.若,则A.B.2 C.D.7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为A.72 B.56 C.57 D.638.一个简单几何体的三视图如图所示,则该几何体的体积为A.B.C.D.9.已知函数,下列结论不正确的是A.的图象关于点中心对称B.既是奇函数,又是周期函数C.的图象关于直线对称D.的最大值为10.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A.B.C.D.11.已知的准线交轴于点,焦点为,过且斜率大于0的直线交于,,则A.B.C.4 D.312.已知是减函数,且有三个零点,则的取值范围为A.B.C.D.二、解答题13.数列满足,().(1)求证:数列是等差数列;(2)求数列的前999项和.14.在四棱锥,,,,平面平面,分别是中点.(1)证明:平面;(2)求与平面所成角的正弦值.15.在中,内角所对的边分别为,已知.(1)求角的大小;(2)若的面积,且,求.16.如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,分别是与的中点.(1)求证:平面;(2)求二面角的余弦值.17.如图,椭圆:的左右焦点分别为,离心率为,过抛物线:焦点的直线交抛物线于两点,当时,点在轴上的射影为,连接并延长分别交于两点,连接,与的面积分别记为,,设.(1)求椭圆和抛物线的方程;(2)求的取值范围.18.已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证:.三、填空题19.已知向量夹角为,且,,则_______.20.已知直三棱柱中,,则异面直线与所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥中,平面,为正三角形,外接球表面积为,则三棱锥的体积的最大值为______2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学答案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前项和公式,代入即可求出,再利用等差数列通项公式就能算出.【详解】∵是公差为1的等差数列,,∴解得,则,故选C.【点睛】本题考查等差数列的通项公式及其前项和公式的运用,是基础题。
2020届河北省衡水中学高三第一次调研考试数学(理)试题
绝密★启用前2020届河北省衡水中学高三第一次调研考试数学(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I卷(选择题)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数(为虚数单位),则()A.B.C.D.2.已知集合M={-1,0,1,2},N={x|}.则M∩N=()A.{0,1} B.{-1,0} C.{1,2} D.{-1,2}3.设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )A .月接待游客逐月增加B .年接待游客量逐年减少C .各年的月接待游客量高峰期大致在月D .各年月至月的月接待游客量相对于月至月,波动性较小,变化比较稳定5.在等差数列{a n }中,若2a 8=6+a 11,则a 4+a 6=( ) A .6 B .9C .12D .186.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+47.如图的程序框图,当输出15y 后,程序结束,则判断框内应该填( ) A .1x ≤ B .2x ≤ C .3x ≤D .4x ≤8. 在长方体ABCDA 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.310109. 已知某函数图象如图所示,则图象所对应的函数可能是( ) A .2xx y =B .22xy =-C .e xy x =- D .|2|2x y x =﹣10.将函数f (x )=2sin (2x+φ)(0<φ<π)的图象向左平移个单位后得到函数y =g (x )的图象,若函数y =g (x )为偶函数,则函数y =f (x )在的值域为( )A .[﹣1,2]B .[﹣1,1]C .D .11.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为点12(,0),(,0)(0)F c F c c ->,抛物线24y cx =与双曲线在第一象限内相交于点P ,若212||||PF F F =,则双曲线的离心率为 A .B .1+C .D .12.若函数在区间上单调递增,则的最小值是( )A .-3B .-4C .-5D .第II 卷二、填空题(本题共4小题,每小题5分,共20分.) 13.已知,,与的夹角为,则__________.14.若,则__________.15.数列满足:的前项和为,则 _______.16.点(),M x y 在曲线22:4210C x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若a ,b +∈R ,则111a b++的最小值为_______.三、解答题(共70分,解答应写出文字说明、证明过程或演算过程.) 17.(本小题满分12分)已知函数21()cos )cos()2f x x x x ππ=-+-. (Ⅰ)求函数()f x 在[0,]π的单调递减区间;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C ,的对边分别为a ,b ,c ,已知()1f A =-,2a =,sin sin b C a A =,求ABC ∆的面积.18.(本小题满分12分)从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数,近似为样本方差.(ⅰ)利用该正态分布,求;(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求.附:.若,则,.19.(本小题满分12分)如图所示的几何体中,为三棱柱,且平面,四边形为平行四边形,.(1)若,求证:平面;(2)若,二面角的余弦值为,求三棱锥的体积.20.(本小题满分12分)已知,为椭圆的左右焦点,点为其上一点,且.求椭圆C的标准方程;若直线l:交椭圆C于A,B两点,且原点O在以线段AB为直径的圆的外部,试求k的取值范围.21.(本小题满分12分) 已知函数.(1)讨论的单调性; (2)当时,,记函数在上的最大值为,证明:.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4坐标系与参数方程 直线l 的极坐标方程为244sin =⎪⎭⎫⎝⎛-πθρ,以极点为坐标原点,极轴为x 轴建立直角坐标系,曲线C 的参数方程为⎩⎨⎧==ααsin 2cos 4y x (α为参数),(1)将曲线C 上各点纵坐标伸长到原来的2倍,得到曲线1C ,写出1C 的极坐标方程; (2)射线3πθ=与1C 和l 的交点分别为,M N ,射线32πθ=与1C 和l 的交点分别为,A B , 求四边形ABNM 的面积.23.(本小题满分10分)选修4-5不等式选讲已知关于x 的不等式||x -m +2x ≤0的解集为{x|x ≤- }2,其中m>0. (Ⅰ)求m 的值;(Ⅱ)若正数a ,b ,c 满足a +b +c =m ,求证:b 2a +c 2b +a2c ≥2.数学试题参考答案一、选择题:本大题共12小题,每小题5分.13.14.0 15.16. 1三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
河北省衡水市衡水中学2025届高三上学期第一次综合素养测评数学试题(含答案)
河北省衡水中学2025届高三上学期第一次综合素养测评数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知不等式x2−2x−3<0的解集为A,不等式x+3x−2<0的解集为B,则A∩B为( )A. [−3,3]B. (−3,3)C. [−1,2]D. (−1,2)2.已知|a|=63,|b|=1,a⋅b=−9,则向量a与b的夹角为( )A. 2π3B. 5π6C. π3D. π63.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN= 30∘,C点的仰角∠CAB=45∘以及∠MAC=75∘,从C点测得∠MCA=60∘,已知山高BC=100m,则山高MN=( )A. 120mB. 150mC. 503mD. 160m4.已知等差数列{a n}和{b n}的前n项和分别为S n、T n,若S nT n =3n+4n+2,则a3+a7+a8b2+b10=( )A. 11113B. 3713C. 11126D. 37265.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P是双曲线C的一条渐近线上的点,且线段PF1的中点N在另一条渐近线上.若cos∠PF2F1=35,则双曲线C的离心率为( )A. 53B. 54C. 2D. 56.点P(−2,−1)到直线l:(1+3λ)x+(1+λ)y−2−4λ=0(λ∈R)的距离最大时,其最大值以及此时的直线方程分别为( )A. 13;3x+2y−5=0B. 11;3x+2y−5=0C. 13;2x−3y+1=0D. 11;2x−3y+1=07.已知函数f(x)的定义域为(−3,3),且f(x)={lg 3−x 3+x +2x−3,−3<x <0,lg 3+x 3−x−2x +3,0⩽x <3.若3f[x(x−2)]+2>0,则x 的取值范围为( )A. (−3,2) B. (−3,0)∪(0,1)∪(1,2)C. (−1,3)D. (−1,0)∪(0,2)∪(2,3)8.已知x x−1≥ln x +ax 对∀x >0恒成立,则a 的最大值为( )A. 0B. 1eC. eD. 1二、多选题:本题共3小题,共15分。
2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】
2019届河北衡水中学高三上学期一调考试数学(理)试卷【含答案及解析】姓名 ____________ 班级 _______________ 分数 ____________题号-二二三总分得分、选择题4.已知命题•::方程-…- 有两个实数根;命题 .■:函数'「「-一'的最小值为.给出下列命题:r①p M :②汕Q :③"F :④rpyy .1. , 0={耳卜|叱1},则 PI 0・A .1丄B .2.已知 I 为虚数单位,复数 满足,则日为(.珅D . <■如图, 3. 体的体积为网格纸上小正方形的边长为( )' ,粗线或虚线画出某几何体的三视图,该几何已知集合「二衣则其中真命题的个数为 ()?1A . •B .- C5. A 由曲线 —B,直线 1C .16D1及|轴所围成的图形的面积为6. AB C D 的图象的大致形状是11.设函数N- -■--,若方程根,则实数•的取值范围为()|/(rf +f |/0 + l 二0有17个不同的、填空题8. 定义在IJ 上的函数 :{- J ■:厶(其中 A •C • (0- 4-x ) B (心)1丿(0.炖) I"「:满足;'I I .■■■ I : I- ■,则不等式-为自然对数的底数)的解集为()• (-oo t 0)U (3,+®)D9. ■ ■ ■ | 「 的最小值为 A • J : B •: 满足:■-■ : ■ ■ I r - I ,则)2^210. 已知 / (.1)= ,使得•丨…'「,则ii.i 的取值范围为 )A • C •D•2-4 1设曲线 「II - (「-为自然对数的底数)上任意一点处的切线为 上某点处的切线 人,使得£丄匚,则实数口的取值12. 总存在曲线.-[• _■:■:■■ 范围为( )A.- - B.(3严)C.D.13. 设脚,变量工,卩在约束条件y < na.下,目标函数二= T +的耳*T < 1最大值为■?,贝V 附= ____________ .14. 函数* = £ -川h在区间(0.3]上有两个零点,则啣的取值范围是__________________15. 已知函数’一- •在-,时有极值,则伏■-:二16. 定义在h'上的函数.I 满足:」}1,当.I:时,y\x)<x,贝怀等式十x的解集为____________ .三、解答题17. 在「认中,丿,-,,,,分别为角,.1,1所对的边,且(7 _ 6 _ £■A 7 rrn; R rn*; C(1 )求角的大小;(2 )若'…疋的面积为-,求的值.18. 函数y I ■■:<1 -—:- 、(1 )当-时,求.丨的单调区间;(2 )若.一丨,一」,:,有;〔―Y ,求实数的取值范围.19. 在\ : A'中,角,.丿,匚的对边分别为,■・,•,且I 占知= 口(1 )求I:.的值;2 )若丿,丁,.成等差数列,且公差大于「,求;;:(的值.( 1已知函数■ I - - r I I (K )•)若函数「| ,存在极大值和极小值,求-的取值范围;,使得_• 一,,求;的取值范围20.2)设 , 分别为的极大值和极小值,若存在实数21.已知函数• 一(由; ((丫)= 记「||亠i : ) - ,判断f 「 在区间I |内的零点个数并说明理 记一’「 在彳一 | 内的零点为•,,.I : ' .'.i..!I ■;(:三It )在I 一.内有两个不等实根-一,:(,若 ,-(片"、.),判断 「与2入的大小,并给出对应的证明22. 选修4-1 :几何证明选讲 如图,「丁是圆 的切线,于; 两点•是切点,.加,矿于兀,割线交圆•:,:四点共圆;D - J ',求,需窕的大小•23.选修4-4 :坐标系与参数方程 f — — 1 Q 4-(r 为参数),以坐标原点为极点,X已知直线的参数方程为 :的极坐标方程为|I把圆「的极坐标方程化为直角坐标方程; 将直线 向右平移 个单位,轴的正半轴为极轴建立极坐标系,圆 ( (所得直线一与圆匚相切,求 •本小题满分10分)选修4-5 : , -]\24. 已知函数:丨「|/不等式选讲( 1 (1 )若当_• I -时,恒有「I ■: 「,求■的最大值; (2 )若当,|:时,恒有-.I 一 ,求'的取值范围参考答案及解析第1题【答案】 A【解析】试畸析:由題删,"{血宀} ={卄弓,小卜口}=叶15 , 鹅Fl p = {x[O<x<y },故选葩第2题【答案】 b【解析】1-? 11/ — | 1+f V2试题分析;由瀬亀*乔而二牙布I 十 亍肓7°丁 '故选6第3题【答案】【解析】试题分析;由融竜得,棍搞给定的三视图可知.该几何依为如图所示的几何体」罡一个三棱锥与三棱柱的组葩其中三棱稚的体积为%斗号46 2",三棱柱时体耐今平二2心&,所b憩几何休前体积为r=iz,故选E. °第4题【答案】【解析】试题分析:由A = +4>0 ;所以方程十—2or—1“有两个实数昵所臥命題P是貢命题』当r<0时*函数/W=x + -的取11为员値,所以.命题可为假命砸,所汰叫,"% , rpQf是真席题,故选C.第5题【答案】【解析】试题分析:由万程组Z解得耳=1或"4 ,所臥所围咸的图形的面积为弘『[£-『2)规之衬斗宀2丁)卜芈、故选c・' 」丄3第6题【答案】第9题【答案】【解析】 试题分折;由题帝得」* £ T CQ sx =UW )=-_ cosr = -/(x) >所以因数F (x)为奇匣瞰丿團象关于原卓对'称,申滁S 项b C;令” 1 + e、则/⑴cosl =[ |<osl< 0 、故选B. / \l+e J第7题【答案】i【解析】试题分析;程序在运行过程中各銮重的值如下表示:fltJT^ijx = l (y = Us=2、第一次擔环'x = ly = 2^ = 3 $ 第二腐IS 环』^ = 2.y=?t j =5 § 第三 跖漕环,工二負丫二5匸二$ ;第四次循环,r = 5+v=S,r = B ;第五次猶环,x - S t y= 13,r =21 :第丸刘檢止循环,1W 寸输出结果工二半;故选0.■X S第8题【答案】 A【解析】分析:设gGO 二总丁(玄)一无文色说、则(门+J 八工)一才=叭才00+fS)-i]L 因为/(巧十fOl J 所^/(^)+r (x)-l >0 ,所以『(工)兀,所Wy=ff(x )罡单调递増 因为ey(x)>^+3 f ffKKg(x)>3 ,只因为^(0) = ^°/(C)-^ = 3 ;;所以耳>Q 7故选4------- -cos(-r)QO«X ,所以/(-x)=【解析】试题分析;因为实数 Ebe d 满足++(c~rf + 2)-0 丿所 £A—31ni7 = 0 设b-y,a-x , PlWv = 31n?r-x-由芒一才_2=0,设川= ¥C =T ,贝M 有;V = H *2 ,所以 (什汀十卩 石 就是ffi^v =31iiy-.v 3与直线+ 2之间的最小距高的平方值,对曲绒33> =31n.v-r v 2求导:/ = — 2丁与平行y = x + 2平行的切线斜率疋二1匸—2工»解得v = l 或xx离为£ = |1U+2| = ^ ,所ar =8 ,■V = ~^〔舍去),把21代入r= Jlnr-x 2 ,解得F v = x + 2 的^第10题【答案】=T ,即切点(IT),则切f *)= /6J ,所以o <Xj<^ , E?ix+|在[0*上的最小值为|,2rl 在[+ 2)上的最小值<-、因为2/(Xj) = + ^-/(\)= /(^),所以诃(幵)・丙/印・卄!,令(2"—i丄1辺二丄);所以F ■斗+ :为开口向匕对称轴为2*上抛物绻所以V ■斗亠;在2 12 乃 4 2]区间[竺二rg)上1®,所以当土 = 孚丄时,y^r~^ ?当.r = i 时j y = l 即\gf (r 2)— 亠 J_ 2 2的取值范围是I 耳土甘,故选基【解析】试题分析!作出函数于(耳・的團熟 如圄所示,因为存在七一丐当刊匸韦王叮屯吕”所臥H2 2第11题【答案】【解析】试题分析,因再一我,所決广(工)=/ + 2“3 = 0 ,解得x--3..t = l ,由r(v)>0解得21或X—3 *即函数在(vTML+oo)上单调递堀由门口“解得T v Y1 ;即画数在(-3,1)上单调递涮,则的数的极大值为/(-3>= 9 ?函数的极小值为= 、根据国数的图象可知'设/(^) = ^ ,可知显-抑+"0 ,原方程有12不同的3h nil 7:r. =.-|-.VH-III -.. r'n:H:ltf ・详/( :;•:】::「■:心:•门I「-■- "辭7 jb J△ =t- -4>0< -2 ,所臥实数f的取值范IH为;故选C.第12题【答案】【解折】;得f (買)—「1 ,因为/ +1>1 .所以J —E (CH ),由冒(町=加讣加曲,得 e rlg f (T ) = 3<J —2SLHX , X -25IILX £ [-2.2] f 所3a-2siar c [-2 *3CT . 2 + 3«] f 夢使过曲线/(x) = -e r -x 上任意一克的切绒4,总存在过曲线冒(V)今口+馱上一点处的切线厶,使得第13题【答案】 )M = 1 +【解析】y >工、试题分折:因为心,由约束条件*5…作出可讦域』如團所示,直线尸妣与更线x+ V<1L *耳交于(丄.二-);目标函数娜 对应的直线与亶线T = ^r 垂直,且在勘4】w + ] (亠•亠)处取得最大值.由题意得可知匕出=2 、且"21 ,解得J M = 1+^ ■ m + 1 m + \ 也十 1-2+Srf<02 +站王11 2 解■得- ~ >故选D- 第14题【答案】I 叮【解析】试题分析:由题意得y = e r -wrr = 0 ?得m-— 、iS/(^)= —/F (JT )=-—="眄 °工x x~I -、可得八刃在区间(1⑶上单调递曙 在区间(0.1) ±单调阖右所以当“1时,得BS 小僮 同时也是最小值/⑴“,因为当x^O 时』/(x)->-h®,当£ = 3时j /(3)=y,所以更使得函数y = £ -y».v 在区间CO. J ]上肓两个零点,所以实数択的取值范围是e<;«<y */(.v) = .?+3,x- +3^+1』则/0=川*心+2丰2仗+1)50』囲数在尺单调递増,函数无极值 、所以用+打=】1・第16题【答案】£_1第15题【答案】11【解析】M 甌分析:因湖/(置匸疋+却用+粒+计,所以广(刃工3工讣血圧母刃,所以-1 + 3JJJ -H +切'二 03 -6w + ?7 = 0当OT = Ln=3时)函劉【解析】试题分朴因为定义在建上的函数/(“满足;拦,所臥两边求导』得-f (工)=2「所^f,(x) = f l(-x)^-2x ,令2 0 ,则一“0 ,因^3r<0 时』f〔計《,所以f卜司—拓,所以f, X/(0) = Q ,直线F"过原点,所以r(o)<o,所以都有f心血,令尸(幻■畑甘n-兀,则FO/S+fCl—刈一心十1—‘即%)是尺上的单哑减酗L且凤亠。
2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析
2019-2020学年高三第二学期一调数学试卷(理科)一、选择题1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.167.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.48.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.参考答案一、选择题(共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)解:集合A={y|y=x2+2,x∈R}=[2,+∞),集合B={x|y=lg(x﹣1)}=(1,+∞),图形阴影部分为∁U A∩B=(1,2),故选:B.2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵=,∴的虚部为﹣,由﹣=﹣,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c解:由题意0<a<1,故a<a a,故a a>,即b>c,而c=>a=π﹣2,故选:B.4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.解:在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为:P==.故选:D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.16解:如图,取AC中点D,AB中点E,并连接OD,OE,则:OD⊥AC,OE⊥AB;∴,;∴===8.故选:C.7.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.4解:①若p∨q为真命题的条件是p、q至少有一个是真命题,而p∧q为真命题的条件为p、q两个都是真命题,所以当p、q一个真一个假时,p∧q为假命题,所以①不正确;②命题“∀x>0,有e x≥1”的否定为“∃x0>0,有<1”;因此②不正确;③“平面向量与的夹角为钝角”⇒“”;反之不成立,平面向量与的夹角可能为平角.∴“平面向量与的夹角为钝角”的必要不充分条件是“”;因此不正确.④因为在锐角三角形中,∴π>A+B>,有>A>﹣B>0,所以有sin A>sin(﹣B)=cos B,即sin A>cos B,同理sin B>cos A,故sin A+sin B>cos A+cos B,所以④正确;⑤若等差数列{a n}为常数列,则m+n=p+q不一定成立,∴命题不正确.综上可得:只有④正确.故选:A.8.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.解:令g(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f(x)<f′(x),∴g′(x)==>0,∴g(x)=在区间(0,+∞)上单调递增,∴g(1)=<=g(2),∴<①;再令h(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f′(x)<2f(x)恒成立,∴h′(x)==<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)=>=h(2),∴>②,综上①②可得:<<.故选:D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:3解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,∴=2,可得|PN|=2|PM|,得|MN|==|PM|,因此可得|FM|:|MN|=|PM|:|MN|=1:.故选:C.10.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选:C.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)解:y2xe1﹣y﹣ax﹣lnx=0可化为:,设g(y)=(﹣1≤y≤5),则g′(y)=,即函数g(y)在(﹣1,0),(2,5)为减函数,在(0,2)为增函数,又g(﹣1)=e2,g(2)=,g(5)=,设f(x)=a+(x∈[1,e]),f′(x)=,即函数f(x)在[1,e]为增函数,所以a≤f(x)≤a,对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx=0成立,即对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得成立,即a+∈[,)对于任意的实数x∈[1,e]恒成立,即,即,故选:B.12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③解:如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P===1﹣=;故答案为:14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=2n2+n.解:f(x)=sin2x+2cos2x=3sin(2x+φ),当2x+φ=2kπ+,k∈Z,f(x)取得最大值3,∴a1=3.a n=(a n+1﹣a n﹣2)n﹣2n2,∴na n+1=(n+1)a n+2n2+2n,﹣=2,∴a n=n[3+2(n﹣1)]=2n2+n,故答案为:2n2+n.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为解:sin C=2sin A cos B,∴c=2a cos B.因此c=2a•,∵b2,2,c2成等差数列∴b2+c2=4,即有a2=b2=4﹣c2,因此S===,当c2=即c=时,S取得最大值×=,即△ABC面积S的最大值为,故答案为:.16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.解:设双曲线的右焦点为F,则F的坐标为(c,0),∵曲线C1与C3有一个共同的焦点,∴y2=4cx,∵,∴=,则M为F1N的中点,∵O为F1F的中点,M为F1N的中点,∴OM为△NF1F的中位线,∴OM∥PF,∵|OM|=a,∴|NF|=2a又NF⊥NF1,|F1F|=2c,∴|NF1|=2b,设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a.由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2),得e2﹣e﹣1=0,∴e=.故答案为:.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解:(1)根据题意,b=2,c=4,2c cos C=b,则cos C==;又由cos C===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CD cos C=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cos C=,则sin C==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.解:(Ⅰ)在棱AB上存在点E,使得AF∥平面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且FQ=CD,AE∥CD且AE=CD,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.3分所以,AF∥EQ,又EQ⊂平面PEC,AFα平面PEC,所以,AF∥平面PEC.5分(Ⅱ)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且平面ADP⊥平面ABCD,平面ADP∩平面ABCD=AD,所以PD⊥平面ABCD,故以D为坐标原点建立如图空间直角坐标系,7分设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),B(,1,0),=(0,2,﹣a),=(),设平面FBC的法向量为=(x,y,z),则由,令x=1,则y=,z=,所以取=(1,,),平面DFC的法向量=(1,0,0),l因为二面角D﹣FC﹣B的余弦值为,所以由题意:|cos<>|===,解得a=.10分由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,由题意知在Rt△PBD中,tan∠PBD==a=,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.12分19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.解:(1)由题意可知A(﹣2,0),设B(x1,y1),C(x2,y2),∵过A的直线l交抛物线于两点,∴直线l的斜率存在且不为0,设l:x=my﹣2,联立方程,消去x得,y2﹣2pmy+4p=0,∴y1+y2=2pm,y1y2=4p,∵点C是AB的中点,∴y1=2y2,∴,,∴4p=,∴,∴2pm2=9,∴x2=my2﹣2=﹣2=1,∴点C的横坐标为定值1;(2)直线m的倾斜角和直线l的倾斜角互补,所以直线m的斜率和直线l的斜率互为相反数,又点C(1,),所以设直线m的方程为:x=﹣m(y﹣)+1,即x=﹣my+4,设M(x1,y2),N(x2,y2),联立方程,消去x得,(m2+2)y2﹣8my+12=0,∴△=(8m)2﹣48(m2+2)=16m2﹣96>0,解得m2>6,∴,,∴|MN|===4,∵点C是AB的中点,∴S△BMN=S△AMN,设点A(﹣2,0)到直线MN的距离为d,则d ==,∴S△BMN=S△AMN ==4×=12,令t=m2﹣6,∴S△BMN=12=12≤12=,当且仅当t =,即t=8,m2=14时,等号成立,∴2p×14=9,∴p =.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①由分层抽样性质得:从300人中抽取60人,其中“年龄达到35岁“的人数为:100×=20人,”年龄达到35岁”中偶而使用单车的人数为:=9人.②A组这4人中得到礼品的人数X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123P∴E(X)==.(2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到35岁12575200达到35岁5545100合计180120300m=35时,K2的观测值:k1===.m=25时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到25岁6733100达到25岁11387200合计180120300 m=25时,K2的观测值:k2==,k2>k1,欲使犯错误的概率尽量小,需取m=25.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.解:(Ⅰ)由题可知,C1的直角坐标方程为:x2+y2﹣2x=0,设曲线C2上任意一点(x,y)关于直线y=x对称点为(x0,y0),∴,又∵,即x2+y2﹣2y=0,∴曲线C2的极坐标方程为:ρ=2sinθ;(Ⅱ)直线l1的极坐标方程为:θ=α,直线l2的极坐标方程为:.设A(ρ1,θ1),B(ρ2,θ2).∴,解得ρ1=2cosα,,解得.∴==.∵0≤α<,∴<.当,即时,sin()=1,S△AOB取得最大值为:.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.解:(1)当a=1时,f(x)=|x+1|+|2x﹣1|,即;解法一:作函数f(x)=|x+1|+|2x﹣1|的图象,它与直线y=3的交点为A(﹣1,3),B (1,3),如图所示;所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);解法二:原不等式f(x)>3等价于或或,解得:x<﹣1或无解或x>1,所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);(2)由0<a<2,得﹣<,a+2>0,且a﹣2<0;所以f(x)=|ax+1|+|2x﹣1|=,所以函数f(x)在上单调递减,在上单调递减,在上单调递增;所以当时,f(x)取得最小值,且;因为对∀x∈R,恒成立,所以;又因为a>0,所以a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),所以a的最小值为1.。
2020年河北省衡水中学高考数学一模试卷(理科) (解析版)
2020年河北省衡水中学高考数学一模试卷(理科)一、选择题(共12小题). 1.设复数z 1=1+i ,z 2=1﹣i ,则1z 1+1z 2=( )A .1B .﹣1C .iD .﹣i2.已知集合M ={x |y =ln (x +1)},N ={y |y =e x },则M ∩N =( ) A .(﹣1,0)B .(﹣1,+∞)C .(0,+∞)D .R3.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养与数学建模素养相同C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强 4.若α∈(π2,π),cos2α=725,则sinαsin(3π2+α)=( ) A .−34B .34C .43D .−435.已知x 1,x 2,x 3∈R ,x 1<x 2<x 3,设y 1=x 1+x 22,y 2=x 2+x 32,y 3=x 3+x12,z 1=y 1+y 22,z 2=y 2+y 32,z 3=y 3+y 12,若随机变量X ,Y ,Z 满足:P (X =x i )=P (Y =y i )=P (Z =z i )=13(i =1,2,3),则( )A .D ( X )<D (Y )<D (Z )B .D ( X )>D (Y )>D (Z )C .D ( X )<D (Z )<D (Y )D .D ( X )>D (Z )>D (Y )6.函数y =﹣cos x •ln |x |的图象可能是( )A .B .C .D .7.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E ”形视标,且从视力5.2的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”边长的√1010倍,若视力4.1的视标边长为a ,则视力4.9的视标边长为( )A .1045aB .10910aC .(110)45aD .(110)910a8.已知F 1,F 2为椭圆C :x 2m+y 2=1(m >0)的两个焦点,若C 上存在点M 满足MF 1⊥MF 2,则实数m 取值范围是( ) A .(0,12]B .[2,+∞)C .(0,12]∪[2,+∞)D .[12,1)∪(1,2]9.已知函数f (x )=√2sin ωx 和g (x )=√2cos ωx (ω>0)图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点,为了得到y =g (x )的图象,只需把y =f (x )的图象( ) A .向左平移1个单位 B .向左平移π2个单位C .向右平移1个单位D .向右平移π2个单位10.已知函数f (x )=ax +1+|2x 2+ax ﹣1|(a ∈R )的最小值为0,则a =( ) A .12B .﹣1C .±1D .±1211.如图,在棱长为3的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是平面A 1BC 1内一动点,且满足|PD |+|PB 1|=2+√13,则直线B 1P 与直线AD 1所成角的余弦值的取值范围为( )A .[0,12]B .[0,13]C .[12,√22]D .[12,√32]12.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,左焦点为F ,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M (异于P ,F ),与y 轴交于点N ,直线MB 与y 轴交于点H ,若HN →=−3OH →(O 为坐标原点),则C 的离心率为( ) A .2B .3C .4D .5二、填空题(共4题,每题5分)13.已知平面向量a →与b →的夹角为45°,a →=(﹣1,1),|b →|=1,则|a →+b →|= .14.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、C 、D 四地新增疑似病例数据信息如下:A 地:中位数为2,极差为5;B 地:总体平均数为2,众数为2;C 地:总体平均数为1,总体方差大于0;D 地:总体平均数为2,总体方差为3. 则以上四地中,一定符合没有发生大规模群体感染标志的所有选项是 .(填A 、B 、C 、D )15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3b cos C +3c cos B =5a sin A ,且A 为锐角,则当a 2bc取得最小值时,a b+c的值为 .16.在空间直角坐标系O ﹣xyz 中,正四面体P ﹣ABC 的顶点A ,B 分别在x 轴,y 轴上移动,若该正四面体的棱长为2,则|OP |的取值范围是 .三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤。
2020届河北省衡水密卷高三第一次调研考试数学(理)试题
2020届河北省衡水密卷高三第一次调研考试理科数学试题★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.若复数满足,则的共轭复数A. B. C. D.2.某公司生产,,三种不同型号的轿车,产量之比依次为,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为的样本,若样本中种型号的轿车比种型号的轿车少8辆,则A. 96B. 72C. 48D. 363.中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为A. 6B. 5C. 4D. 24.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是A. 这15天日平均温度的极差为B. 连续三天日平均温度的方差最大的是7日,8日,9日三天C. 由折线图能预测16日温度要低于D. 由折线图能预测本月温度小于的天数少于温度大于的天数5.已知点与点关于直线对称,则点的坐标为A. B. C. D.6.已知实数是给定的常数,函数的图象不可能是A. B. C. D.7.一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时,符合条件的共有A.个B.个C.个D.个8.现有甲班四名学生,乙班三名学生,从这名学生中选名学生参加某项活动,则甲、乙两班每班至少有人,且必须参加的方法有A. 种B.种 C.种D. 种9.在中,内角的对边分别为,已知,,,则A.B.C.D. 或10.若函数的图象关于直线轴对称,则函数的最小值为A. B. C. 0 D.11.已知函数,则下列结论中正确的是 A. 函数的定义域是B. 函数是偶函数C. 函数 在区间上是减函数 D. 函数的图象关于直线轴对称 12.已知函数,当时,不等式恒成立,则实数的取值范围是A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13..若5(1)ax 的展开式中3x 的系数是80,则实数a 的值是14.若实数满足不等式组,且的最小为,则实数______. 15.在平面四边形中,是边长为2的等边三角形,是以斜边的等腰直角三角形,以为折痕把折起,当时,四面体的外接球的体积为______.16.已知抛物线的焦点为是抛物线上一点,过点向抛物线的准线引垂线,垂足为,若为等边三角形,则______.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(本大题满分12分)已知数列满足.(Ⅰ)求和的通项公式;(Ⅱ)记数列的前项和为,若对任意的正整数恒成立,求实数的取值范围.18.(本大题满分12分)为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的名学生进行了跟踪调查,其中每周自主做数学题的时间不少于小时的有人,余下的人中,在高三模拟考试中数学成绩不足分的占,统计成绩后,得到如下的列联表:分分周做题时间不少于周做题时间不足(Ⅰ)请完成上面的列联表,并判断能否在犯错误的概率不超过的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(Ⅱ)(i)按照分层抽样的方法,在上述样本中,从分数大于等于分和分数不足分的两组学生中抽取名学生,设抽到的不足分且周做题时间不足小时的人数为,求的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从全校大于等于分的学生中随机抽取人,求这些人中周做题时间不少于小时的人数的期望和方差.附:19.(本大题满分12分)如图,在四棱锥中,底面为菱形,,,且.(Ⅰ)求证:平面平面;(Ⅱ)若,求二面角的余弦值.20.(本大题满分12分)函数.(Ⅰ)若函数在点处的切线过点,求的值;(Ⅱ)若不等式在定义域上恒成立,求的取值范围.21.(本大题满分12分)已知动圆过定点,且和直线相切,动圆圆心形成的轨迹是曲线,过点的直线与曲线交于两个不同的点.(Ⅰ)求曲线的方程;(Ⅱ)在曲线上是否存在定点,使得以为直径的圆恒过点?若存在,求出点坐标;若不存在,说明理由.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分).极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线,,,与曲线分别交异于极点的四点,,,.(Ⅰ)若曲线关于曲线对称,求的值,并把曲线和化成直角坐标方程.()求,当时,求的值域.23.设函数.(Ⅰ)求不等式的解集;(Ⅱ)当时,恒成立,求m的取值范围.理科数学试题答案1.D2.B3.C4.B5.D6.D7.C8.D9.C 10.D 11.B 12.C13.2 14.15.. 16.17.解:(1)由题意得,所以得由,所以(),相减得,得也满足上式.所以的通项公式为.(2)数列的通项公式为是以为首项,公差为的等差数列,若对任意的正整数恒成立,等价于当时,取得最大值, 所以解得所以实数的取值范围是18.()分分周做题时间不少于周做题时间不足∵.∴能在犯错误的概率不超过的前提下认为“高中生的数学成绩与学生自主学习时间有关”.()(i)由分层抽样知大于等于分的有人,不足分的有人,的可能取值为,,,,.,,,,.则分布列为(ii)设从全校大于等于分的学生中随机抽取人,这些人中,周做题时间不少于小时的人数为随机变量,由题意可知,故,.19.(1)证明:取中点,连结,,,.因为底面为菱形,,所以因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△ 和△ 中,因为,,,所以△ △ .所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦值为.20.(Ⅰ),,,整理可得,解得,(Ⅱ)由题意知,,,设,,故在递增,故时,,当时,,故在上有唯一实数根,当时,,当时,,故0时,取最小值,由,得,故,,解得:,故的范围是.21.(1)设动圆圆心到直线的距离为,根据题意,动点形成的轨迹是以为焦点,以直线为准线的抛物线,抛物线方程为.(2)根据题意,设,直线的方程为,代入抛物线方程,整理得若设抛物线上存在定点,使得以为直径的圆恒过点,设,则,同理可得解得在曲线上存在定点,使得以为直径的圆恒过点.22.(),即,化为直角坐标方程为.把的方程化为直角坐标方程为,因为曲线关于曲线对称,故直线经过圆心,解得,故的直角坐标方程为.()当时,,,,,∴,的值域为.23.(1),由解得即不等式的解集为.(2)当时,,由,得,也就是在恒成立,故,即的取值范围为.。
2019-2020学年河北省衡水中学高三(上)一调数学试卷(理科)
2019-2020学年河北省衡水中学高三(上)一调数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合P={x|log2x<﹣1},Q={x||x|<1},则P∩Q=()A. B. C.(0,1) D.2.(5分)已知i为虚数单位,复数z满足(1+i)2z=1﹣i3,则|z|为()A.B.C.D.3.(5分)如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8 B.12 C.18 D.244.(5分)已知命题p:方程x2﹣2ax﹣1=0有两个实数根;命题q:函数f(x)=x+的最小值为4.给出下列命题:①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.则其中真命题的个数为()A.1 B.2 C.3 D.45.(5分)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.66.(5分)函数f(x)=(﹣1)cosx的图象的大致形状是()A.B.C.D.7.(5分)阅读程序框图,运行相应的程序,输出的结果为()A.B.C.D.8.(5分)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)9.(5分)若实数a,b,c,d满足(b+a2﹣3lna)2+(c﹣d+2)2=0,则(a﹣c)2+(b﹣d)2的最小值为()A.B.2 C.2 D.810.(5分)已知f(x)=,存在x2>x1≥0使得f(x1)=f (x2),则x1•f(x2)的取值范围()A.[,2)B.[,2)C.[,)D.[,2)11.(5分)设函数f(x)=x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12个不同的根,则实数t的取值范围为()A.(﹣,﹣2)B.(﹣∞,﹣2)C.﹣<t<﹣2 D.(﹣1,2)12.(5分)设曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cosx上某点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2]B.(3,+∞)C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设m>1,在约束条件下,目标函数z=x+my的最大值等于2,则m=.14.(5分)函数y=e x﹣mx在区间(0,3]上有两个零点,则m的取值范围是.15.(5分)已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=.16.(5分)定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+≥f(1﹣x)+x的解集为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,a,b,c分别为角A,B,C所对的边,且==.(1)求角A的大小;(2)若△ABC的面积为3,求a的值.18.(12分)函数f(x)=lnx﹣ax2﹣2x.(Ⅰ)当a=3时,求f(x)的单调区间;(Ⅱ)若∀a∈(﹣1,+∞),∃x∈(1,e),有f(x)﹣b<0,求实数b的取值范围.19.(12分)在△ABC中,角A、B、C的对边分别为a,b,c,且4bsinA=a.(Ⅰ)求sinB的值;(Ⅱ)若a,b,c成等差数列,且公差大于0,求cosA﹣cosC的值.20.(12分)已知函数f(x)=ax2﹣4bx+2alnx(a,b∈R)(Ⅰ)若函数y=f(x)存在极大值和极小值,求的取值范围;(Ⅱ)设m,n分别为f(x)的极大值和极小值,若存在实数,b∈(a,a),使得m﹣n=1,求a的取值范围.(e为自然对数的底)21.(12分)已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.[选修4-1:几何证明选讲]22.(10分)如图,AE是圆O的切线,A是切点,AD⊥OE于D,割线EC交圆O 于B、C两点.(Ⅰ)证明:O,D,B,C四点共圆;(Ⅱ)设∠DBC=50°,∠ODC=30°,求∠OEC的大小.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ+2=0.(Ⅰ)把圆C的极坐标方程化为直角坐标方程;(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a,a∈R,g(x)=|2x﹣1|.(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.2019-2020学年河北省衡水中学高三(上)一调数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2019秋•龙泉驿区校级期中)已知集合P={x|log2x<﹣1},Q={x||x|<1},则P∩Q=()A. B. C.(0,1) D.【分析】利用绝对值表达式的解法求出集合Q,对数不等式的解法求出P,然后求解交集.【解答】解:log2x<﹣1,即log2x<log2,解得0<x<,即P=(0,),Q={x||x|<1}=(﹣1,1)则P∩Q=(0,),故选:A.2.(5分)(2019•衡阳校级模拟)已知i为虚数单位,复数z满足(1+i)2z=1﹣i3,则|z|为()A.B.C.D.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:∵(1+i)2z=1﹣i3,∴z=,∴|z|===.故选:C.3.(5分)(2019秋•衡水校级月考)如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8 B.12 C.18 D.24【分析】由已知中的三视图,可知该几何体是一个底面为矩形的斜四棱柱,切去看一半.求出底面面积,代入棱柱体积公式,可得几何体的体积.【解答】解:由已知中的三视图,可知该几何体是一个底面为矩形的斜四棱,切去看一半,底面为矩形长为4,宽为3,斜四棱柱的高是2,棱柱体积公式:V=Sh可得:V=×4×3×2=12故选B.4.(5分)(2019秋•新华区校级月考)已知命题p:方程x2﹣2ax﹣1=0有两个实数根;命题q:函数f(x)=x+的最小值为4.给出下列命题:①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.则其中真命题的个数为()A.1 B.2 C.3 D.4【分析】先判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.【解答】解:命题p:方程x2﹣2ax﹣1=0有两个实数根,∀a∈R,可得△≥0,因此是真命题.命题q:x<0时,函数f(x)=x+<0,因此是假命题.下列命题:①p∧q是假命题;②p∨q是真命题;③p∧¬q是真命题;④¬p∨¬q是真命题.则其中真命题的个数为3.故选:C.5.(5分)(2011•新课标)由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4 C.D.6【分析】利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.【解答】解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.故选C.6.(5分)(2019秋•湖南月考)函数f(x)=(﹣1)cosx的图象的大致形状是()A.B.C.D.【分析】分析函数奇偶性和x∈(0,)时函数图象的位置,排除错误答案,可得结论.【解答】解:∵f(x)=(﹣1)cosx,∴f(﹣x)=(﹣1)cos(﹣x)=(﹣1)cosx=﹣(﹣1)cosx=﹣f(x),故函数f(x)为奇函数,故函数图象关于原点对称,可排除A,C,又由当x∈(0,),f(x)<0,函数图象位于第四象限,可排除D,故选:B7.(5分)(2013•济南一模)阅读程序框图,运行相应的程序,输出的结果为()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量x,y的值,最后输出的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环x y z循环前/1 1 2第一圈是 1 2 3第二圈是 2 3 5第三圈是 3 5 8第四圈是 5 8 13第五圈是8 13 21第六圈否此时=故答案为:8.(5分)(2019•兴安盟一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.9.(5分)(2014•淄博三模)若实数a,b,c,d满足(b+a2﹣3lna)2+(c﹣d+2)2=0,则(a﹣c)2+(b﹣d)2的最小值为()A.B.2 C.2 D.8【分析】由题设b+a2﹣3lna=0,设b=y,a=x,得到y=3lnx﹣x2;c﹣d+2=0,设c=x,d=y,得到y=x+2,所以(a﹣c)2+(b﹣d)2就是曲线y=3lnx﹣x2与直线y=x+2之间的最小距离的平方值,由此能求出(a﹣c)2+(b﹣d)2的最小值.【解答】解解:∵实数a、b、c、d满足:(b+a2﹣3lna)2+(c﹣d+2)2=0,∴b+a2﹣3lna=0,设b=y,a=x,则有:y=3lnx﹣x2,且c﹣d+2=0,设c=x,d=y,则有:y=x+2,∴(a﹣c)2+(b﹣d)2就是曲线y=3lnx﹣x2与直线y=x+2之间的最小距离的平方值,对曲线y=3lnx﹣x2求导:y′(x)=﹣2x,与y=x+2平行的切线斜率k=1=﹣2x,解得:x=1或x=﹣(舍),把x=1代入y=3lnx﹣x2,得:y=﹣1,即切点为(1,﹣1),切点到直线y=x+2的距离:=2,∴(a﹣c)2+(b﹣d)2的最小值就是8.故选:D.10.(5分)(2014•济南二模)已知f(x)=,存在x2>x1≥0使得f(x1)=f(x2),则x1•f(x2)的取值范围()A.[,2)B.[,2)C.[,)D.[,2)【分析】根据函数的解析式画出函数的图象,根据题意数形结合求得x1•f(x2)的取值范围.【解答】解:①当0≤x<1时,1≤f(x)<2,②当x>1时,f(x)≥1.5,当x=时,f(x)=2,如图所示,若存在x2>x1≥0使得f(x1)=f(x2)=k,则≤x1<1≤x2<,则1.5≤f(x2)≤2,∴≤x1•f(x2)<1×2,即≤x1•f(x2)<2,故x1•f(x2)的取值范围为[,2),故选:A.11.(5分)(2019•衡阳校级模拟)设函数f(x)=x3+x2﹣3x,若方程|f(x)|2+t|f (x)|+1=0有12个不同的根,则实数t的取值范围为()A.(﹣,﹣2)B.(﹣∞,﹣2)C.﹣<t<﹣2 D.(﹣1,2)【分析】求出函数f(x)的导数,判断函数的单调性和极值,利用换元法设|f (x)|=m,转化为一元二次函数根的分布进行求解即可.【解答】解:,得x=﹣3,x=1,由f′(x)>0得x>1或x<﹣3,即函数在(﹣∞,﹣3),(1,+∞)单调递增,由f′(x)<0得﹣3<x<1,则函数在(﹣3,1)单调递减,则函数的极大值为f(﹣3)=9,函数的极小值为,根据函数的图象可知,设|f(x)|=m,可知m2+tm+1=0,原方程有12个不同的根,则m2+tm+1=0方程应在内有两个不同的根,设h(m)=m2+tm+1,则,所以取值的范围.故选:C12.(5分)(2019秋•衡水校级月考)设曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cosx上某点处的切线l2,使得l1⊥l2,则实数a的取值范围为()A.[﹣1,2]B.(3,+∞)C.D.【分析】求出函数f(x)=﹣e x﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=3ax+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.【解答】解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,∴∈(0,1),由g(x)=3ax+2cosx,得g′(x)=3a﹣2sinx,又﹣2sinx∈[﹣2,2],∴3a﹣2sinx∈[﹣2+3a,2+3a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=3ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得﹣≤a≤.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2015•南昌校级二模)设m>1,在约束条件下,目标函数z=x+my的最大值等于2,则m=.【分析】根据m>1,可以判断直线y=mx的倾斜角位于区间()上,由此判断出满足约束条件件的平面区域的形状,再根据目标函数z=x+my对应的直线与直线y=mx垂直,且在直线y=mx与直线x+y=1交点处取得最大值,由此可得关于m的方程,从而求得m值.【解答】解:∵m>1,由约束条件作出可行域如图,直线y=mx与直线x+y=1交于(),目标函数z=x+my对应的直线与直线y=mx垂直,且在()处取得最大值,由题意可知,又∵m>1,解得m=1+.故答案为:1+.14.(5分)(2019秋•袁州区校级期中)函数y=e x﹣mx在区间(0,3]上有两个零点,则m的取值范围是e<m≤.【分析】由y=e x﹣mx=0得m=,构造函数f(x)=,利用导数求出函数的取值情况,即可求出m的取值范围.【解答】解:由y=e x﹣mx=0得m=,设f(x)=,则f'(x)=,由f'(x)>0,解得1<x≤3,此时函数单调递增,由f'(x)<0,解得0<x<1,此时函数单调递减,∴当x=1时,函数f(x)取得极小值,同时也是最小值f(1)=e,∵当x→0时,f(x)→+∞,当x=3时,f(3)=,∴要使函数y=e x﹣mx在区间(0,3]上有两个零点,则e<m≤,故答案为:e<m≤.15.(5分)(2015春•保定校级期末)已知函数f(x)=x3+3mx2+nx+m2在x=﹣1时有极值0,则m+n=11.【分析】对函数进行求导,根据函数f(x)在x=﹣1有极值0,可以得到f(﹣1)=0,f′(﹣1)=0,代入求解即可【解答】解:∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n依题意可得联立可得当m=1,n=3时函数f(x)=x3+3x2+3x+1,f′(x)=3x2+6x+3=3(x+1)2≥0函数在R上单调递增,函数无极值,舍故答案为:1116.(5分)(2014•唐山一模)定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+≥f(1﹣x)+x的解集为(﹣∞,] .【分析】可先对f(﹣x)+f(x)=x2,两边对x取导数,根据x<0时,f′(x)<x,推出x>0时,f′(x)<x,求出f(0)=0,且f′(0)≤0,得到x∈R,都有f′(x)<x.构造函数F(x)=f(x)+﹣f(1﹣x)﹣x,求导并推出F′(x)<0,且F()=0,运用函数的单调性即可解出不等式.【解答】解:∵定义在R上的函数f(x)满足:f(﹣x)+f(x)=x2,两边对x求导,得﹣f′(﹣x)+f′(x)=2x,∴f′(x)=f′(﹣x)+2x,令x>0,则﹣x<0,∵当x<0时,f′(x)<x,∴f′(﹣x)<﹣x,∴f′(x)<2x﹣x,即f′(x)<x,又f(0)=0,直线y=x过原点,∴f′(0)≤0,∴x∈R,都有f′(x)≤x,令F(x)=f(x)+﹣f(1﹣x)﹣x,则F′(x)=f′(x)+f′(1﹣x)﹣1<x+1﹣x﹣1=0,即F(x)是R上的单调减函数,且F()=0,∴不等式f(x)+≥f(1﹣x)+x,即F(x)≥0,即F(x)≥F(),∴x.∴原不等式的解集为(﹣∞,].故答案为:(﹣∞,].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2019秋•新华区校级月考)在△ABC中,a,b,c分别为角A,B,C所对的边,且==.(1)求角A的大小;(2)若△ABC的面积为3,求a的值.【分析】(Ⅰ)利用正弦定理把已知等式中的边转化成角的正弦,化简整理可用tanA分别表示出tanB和tanC,进而利用两角和公式求得tanA,进而求得A.(Ⅱ)利用tanA,求得tanB和tanC的值,利用同角三角函数关系取得sinB和sinC,进而根据正弦定理求得b和a的关系式,代入面积公式求得a.【解答】解:(Ⅰ)∵.∴==,即tanA=tanB=tanC,tanB=2tanA,tanC=3tanA,∵tanA=﹣tan(B+C)=﹣,∴tanA=﹣,整理求得tan2A=1,tanA=±1,当tanA=﹣1时,tanB=﹣2,则A,B均为钝角,与A+B+C=π矛盾,故舍去,∴tanA=1,A=.(Ⅱ)∵tanA=1,tanB=2tanA,tanC=3tanA,∴tanB=2,tanC=3,∴sinB=,sinC=,∴cosB=,cosC=sinA=sin(π﹣(B+C))=sin(B+C)=sinBcosC+cosBsinC=×+×=∵=,∴b==a,=absinC=a••a×==3,∵S△ABC∴a2=5,a=.18.(12分)(2019春•桂林校级期中)函数f(x)=lnx﹣ax2﹣2x.(Ⅰ)当a=3时,求f(x)的单调区间;(Ⅱ)若∀a∈(﹣1,+∞),∃x∈(1,e),有f(x)﹣b<0,求实数b的取值范围.【分析】(Ⅰ)当a=3时,求得f(x)的解析式,令f′(x)>0,求得函数的单调递增区间,f′(x)<0,求得f(x)的单调递减区间;(2)将原不等式转化成b>f(x)的最小值,由函数性质可知h(a)=﹣ax2﹣2x+lnx在(﹣1,+∞)上是减函数,可知b≥x2﹣2x+lnx,构造辅助函数g(x)=x2﹣2x+lnx,求导,根据函数的单调性,求得g(x)的最小值,即可求得实数b的取值范围.【解答】解:(Ⅰ)由当a=3时,f(x)=lnx﹣x2﹣2x.求导f′(x)=﹣(x>0),令f′(x)=0,解得:x=,∴x∈(0,)时,f′(x)>0,f(x)单调递增,x∈(,+∞)时,f′(x)<0,f(x)单调递减,∴f(x)的单调递增区间(0,),单调递减区间为(,+∞);..…(6分)(Ⅱ)由∀a∈(﹣1,+∞),lnx﹣ax2﹣2x<b恒成立,则b>f(x)的最小值,…(7分)由函数h(a)=lnx﹣ax2﹣2x=﹣ax2﹣2x+lnx在(﹣1,+∞)上是减函数,∴h(a)<h(﹣1)=x2﹣2x+lnx,∴b≥x2﹣2x+lnx,..…(8分)由∃x∈(1,e),使不等式b≥x2﹣2x+lnx成立,∴.…(10分)令g(x)=x2﹣2x+lnx,求导g′(x)=x﹣2﹣≥0,∴函数g(x)在(1,e)上是增函数,于是,故,即b的取值范围是…(12分)19.(12分)(2014•新余二模)在△ABC中,角A、B、C的对边分别为a,b,c,且4bsinA=a.(Ⅰ)求sinB的值;(Ⅱ)若a,b,c成等差数列,且公差大于0,求cosA﹣cosC的值.【分析】(I)已知等式利用正弦定理化简,求出sinB的值即可;(Ⅱ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简得到①,设设cosA﹣cosC=x,②,①2+②2,得到③,由a,b,c的大小判断出A,B,C的大小,确定出cosA大于cosC,利用诱导公式求出cos(A+C)的值,代入③求出x的值,即可确定出cosA﹣cosC的值.【解答】解:(Ⅰ)由4bsinA=a,根据正弦定理得4sinBsinA=sinA,∵sinA≠0,∴sinB=;(Ⅱ)∵a,b,c成等差数列,∴2b=a+c,由正弦定理化简得:2sinB=sinA+sinC,即sinA+sinC=,①设cosA﹣cosC=x,②①2+②2,得2﹣2cos(A+C)=+x2,③又a<b<c,A<B<C,∴0<B<90°,cosA>cosC,∴cos(A+C)=﹣cosB=﹣,代入③式得x2=,则cosA﹣cosC=.20.(12分)(2014•东昌区校级二模)已知函数f(x)=ax2﹣4bx+2alnx(a,b∈R)(Ⅰ)若函数y=f(x)存在极大值和极小值,求的取值范围;(Ⅱ)设m,n分别为f(x)的极大值和极小值,若存在实数,b∈(a,a),使得m﹣n=1,求a的取值范围.(e为自然对数的底)【分析】(I)由于定义域为(0,+∞)且y=f(x)存在极大值、极小值,所以f′(x)=0有两个不等的正实数根,从而可转化为二次方程根的分布问题,借助判别式、韦达定理可得不等式组,由此可得的取值范围;(II)由b∈(a,a)得a>0,且(,),由(I)知f(x)存在极大值和极小值,设f′(x)=0的两根为x1,x2(0<x1<x2),则f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,所以m=f(x1),n=f(x2),根据x1x2=1可把m﹣n表示为关于x1,a的表达式,且表达式为1,借助x1范围可得a的范围;【解答】解:(I)f′(x)=2ax﹣4b+=,其中x>0,由于函数y=f(x)存在极大值和极小值,故方程f′(x)=0有两个不等的正实数根,即2ax2﹣4bx+2a=0有两个不等的正实数根,记为x1,x2,显然a≠0,所以,解得;(II)由b∈(a,a)得a>0,且(,),由(I)知f(x)存在极大值和极小值,设f′(x)=0的两根为x1,x2(0<x1<x2),则f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,所以m=f(x1),n=f(x2),因为x1x2=1,所以0<x1<1<x2,而且=∈(,),由于函数y=x+在(0,1)上递减,所以,又由于,所以,所以m﹣n=f(x1)﹣f(x2)=﹣+4bx2﹣2alnx2=+2a(lnx1﹣lnx2)=﹣a()+2aln,令t=,则m﹣n=﹣a(t﹣)+2alnt,令h(t)=﹣(t﹣)+2lnt(),所以h′(t)=﹣1﹣+=﹣≤0,所以h(t)在()上单调递减,所以e﹣e﹣1﹣2<h(t)<e2﹣e﹣2﹣4,由m﹣n=ah(t)=1,知a=,所以.21.(12分)(2019•高安市校级模拟)已知函数f(x)=xlnx,g(x)=.(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.【分析】(Ⅰ)对F(x)求导,利用x∈(1,2)判定导函数的符号,进而得到函数的单调性,在利用零点存在定理进行证明.(Ⅱ)先由x的范围讨论f(x),g(x)的大小,确定之间的关系式m(x),在判断x1+x2与2x0的大小,可以利用分析法对其进行证明.【解答】解:由题意:F(x)=f(x)﹣g(x),那么:F(x)=xlnx﹣.定义域为(0,+∞)F′(x)=1+lnx+,由题设x∈(1,2),故F′(x)>0,即F(x)在区间(1,2)上是增函数.(1,2)是单调增区间.那么:F(1)=ln1﹣=<0,F(2)=2ln2﹣>0,并且F(x)在(1,2)上连续的,故根据零点定理,有F(x)在区间(1,2)有且仅有唯一实根,即一个零点.(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0,由f(x)=xlnx,当0<x ≤1时,f(x)≤0,而g(x)=>0,故f(x)<g(x);由(Ⅰ)可知F′(x)=1+lnx+,当x>1时,F′(x)>0,存在零点x0∈(1,2),不然有:F(x0)=f(x0)﹣g(x0)=0,故1<x<x0时,f(x)<g(x);当x >x0时,f(x)>g(x);而此得到m(x)=,显然:当1<x<x0时,m′(x)=1+lnx恒大于0,m(x)是单增函数.当x>x0时,m′(x)=恒小于0,m(x)是单减函数.m(x)=n(n∈R)在(1,+∞)有两个不等实根x1,x2(x1<x2),则x1∈(1,x0),x2∈(x0,+∞),显然:当x2→+∞时,x1+x2>2x0.要证明x1+x2>2x0,即可证明x2>2x0﹣x1>x0,而m(x)在x>x0时是单减函数.故证m(x2)<m(2x0﹣x1).又由m(x1)=m(x2),即可证:m(x1)<m(2x0﹣x1).即x1lnx1<,(构造思想)令h(x)=xlnx﹣,由(1<x<x0).其中h(x0)=0,那么:h′(x)=1+lnx+﹣,记φ(t)=,则φ′(t)=,当t∈(0,1)时,φ′(t)>0;当t>1时,φ′(t)<0;故φ(t)max=;而φ(t)>0;故>φ(t)>0,而2x0﹣x>0,从而有:<0;因此:h′(x)=1+lnx+﹣>0,即h(x)单增,从而1<x<x0时,h(x)<h(x0)=0.即x1lnx1<成立.故得:x1+x2>2x0.[选修4-1:几何证明选讲]22.(10分)(2014•唐山一模)如图,AE是圆O的切线,A是切点,AD⊥OE于D,割线EC交圆O于B、C两点.(Ⅰ)证明:O,D,B,C四点共圆;(Ⅱ)设∠DBC=50°,∠ODC=30°,求∠OEC的大小.【分析】(Ⅰ)连结OA,则OA⊥EA.由已知条件利用射影定理和切割线定理推导出=,由此能够证明O,D,B,C四点共圆.(Ⅱ)连结OB.∠OEC+∠OCB+∠COE=180°,能求出∠OEC的大小.【解答】(Ⅰ)证明:连结OA,则OA⊥EA.由射影定理得EA2=ED•EO.由切割线定理得EA2=EB•EC,∴ED•EO=EB•EC,即=,又∠OEC=∠OEC,∴△BDE∽△OCE,∴∠EDB=∠OCE.∴O,D,B,C四点共圆.…(6分)(Ⅱ)解:连结OB.因为∠OEC+∠OCB+∠COE=180°,结合(Ⅰ)得:∠OEC=180°﹣∠OCB﹣∠COE=180°﹣∠OBC﹣∠DBE=180°﹣∠OBC﹣(180°﹣∠DBC)=∠DBC﹣∠ODC=20°.∴∠OEC的大小为20°.…(10分)[选修4-4:坐标系与参数方程]23.(2019•衡水模拟)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ+2=0.(Ⅰ)把圆C的极坐标方程化为直角坐标方程;(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.【分析】(Ⅰ)利用ρ2=x2+y2,y=ρsinθ,可把圆C的极坐标方程化为直角坐标方程;(Ⅱ)将直线l向右平移h个单位,所得直线l′(t为参数),代入圆的方程,利用直线l′与圆C相切,建立方程,即可求h.【解答】解:(Ⅰ)∵ρ2﹣4ρsinθ+2=0,∴x2+y2﹣4y+2=0;(Ⅱ)将直线l向右平移h个单位,所得直线l′(t为参数),代入圆的方程可得2t2+2(h﹣12)t+(h﹣10)2+2=0,∵直线l′与圆C相切,∴△=4(h﹣12)2﹣8[(h﹣10)2+2]=0,即h2﹣16h+60=0,∴h=6或h=10.[选修4-5:不等式选讲]24.(2014•唐山一模)已知函数f(x)=|2x﹣a|+a,a∈R,g(x)=|2x﹣1|.(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.【分析】(Ⅰ)由g(x)≤5求得﹣2≤x≤3;由f(x)≤6可得a﹣3≤x≤3.根据题意可得,a﹣3≤﹣2,求得a≤1,得出结论.(Ⅱ)根据题意可得f(x)+g(x)≥|a﹣1|+a,f(x)+g(x)≥3恒成立,可得|a﹣1|+a≥3 由此求得所求的a的范围.【解答】解:(Ⅰ)当g(x)≤5时,|2x﹣1|≤5,求得﹣5≤2x﹣1≤5,即﹣2≤x≤3.由f(x)≤6可得|2x﹣a|≤6﹣a,即a﹣6≤2x﹣a≤6﹣a,即a﹣3≤x≤3.根据题意可得,a﹣3≤﹣2,求得a≤1,故a的最大值为1.(Ⅱ)∵当x∈R时,f(x)+g(x)=|2x﹣a|+|2x﹣1|+a≥|2x﹣a﹣2x+1|+a≥|a ﹣1|+a,f(x)+g(x)≥3恒成立,∴|a﹣1|+a≥3,∴a≥3,或.求得a≥3,或2≤a<3,即所求的a的范围是[2,+∞).。
河北省衡水中学高三上学期一调考试理数试题
数学试卷〔理科〕第一卷〔共60分〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项 是符合题目要求的.1. 集合{}2log 1P x x =<-,{}1Q x x =<,那么P Q =〔 〕A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .()0,1D .11,2⎛⎫- ⎪⎝⎭2. i 为虚数单位,复数z 满足()2313i1i z +=-,那么z 为〔 〕A .12B .22 C .24D .2163. 如,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视,该几何体的体积为〔 〕A .8B .12C .18D .244. 命题p :方程2210x ax --=有两个实数根;命题q :函数()4f x x x=+的最小值为4.给出以下命题: ①p q ∧;②p q ∨;③p q ∧⌝;④p q ⌝∨⌝. 那么其中真命题的个数为〔 〕 A .1 B .2C .3D .45. 由曲线y x =2y x =-及y 轴所围成的形的面积为〔 〕A .103 B .4C .163D .66. 函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的象的大致形状是〔 〕A .B .C .D .7. 阅读下面的程序框,运行相应的程序,输出的结果为〔 〕A .1321B .2113C .813D .1388. 定义在R 上的函数()f x 满足()()1f x f x '+>,()04f =,那么不等式()e e 3x x f x >+〔其中e 为自然对数的底数〕的解集为〔 〕 A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞9. 假设实数a ,b ,c ,d 满足()()2223ln 20b a a c d +-+-+=,那么()()22a cb d -+-的最小值为〔 〕 A 2B .2C .22D .810. ()21,01,3log ,1,2x x f x x x +≤<⎧⎪=⎨+≥⎪⎩存在210x x >≥,使得()()12f x f x =,那么()12x f x 的取值范围为〔 〕 A .3,24⎡⎫⎪⎢⎣⎭B .3,22⎡⎫⎪⎢⎣⎭C .34,43⎡⎫⎪⎢⎣⎭D .2,23⎡⎫⎪⎢⎣⎭11. 设函数()32133f x x x x =+-,假设方程()()210f x t f x ++=有12个不同的根,那么实数t 的取值范围为〔 〕 A .10,23⎛⎫-- ⎪⎝⎭B .(),2-∞-C .34,215⎛⎫-- ⎪⎝⎭D .()1,2-12. 设曲线()e x f x x =--〔e 为自然对数的底数〕上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,那么实数a 的取值范围为〔 〕A .[]1,2-B .()3,+∞C .21,33⎡⎤-⎢⎥⎣⎦ D .12,33⎡⎤-⎢⎥⎣⎦第二卷〔共90分〕二、填空题〔每题5分,总分值20分,将答案填在答题纸上〕13. 设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目的函数z x my =+的最大值为2,那么m =_________.14. 函数e x y mx =-在区间(]0,3上有两个零点,那么m 的取值范围是_________. 15. 函数()3223f x x mx nx m =+++在1x =-时有极值0,那么m n +=_________. 16. 定义在R 上的函数()f x 满足:()()2f x f x x -+=,当0x <时,()f x x '<,那么不等式()()112f x f x x +≥-+的解集为_________. 三、解答题 〔本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.〔本小题总分值12分〕在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且cos 2cos 3cos a b cA B C==. 〔1〕求角A 的大小;〔2〕假设ABC ∆的面积为3,求a 的值. 18.〔本小题总分值12分〕 函数21()ln 22f x x ax x =--. 〔1〕当3a =时,求()f x 的单调区间;〔2〕假设()1,a ∀∈-+∞,()1,e x ∃∈,有()0f x b -<,务实数b 的取值范围. 19.〔本小题总分值12分〕在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且4sin 7b A a =. 〔1〕求sin B 的值;〔2〕假设a ,b ,c 成等差数列,且公差大于0,求cos cos A C -的值. 20.〔本小题总分值12分〕函数()242ln f x ax bx a x =-+〔,a b ∈R 〕. 〔1〕假设函数()y f x =存在极大值和极小值,求ba的取值范围; 〔2〕设m ,n 分别为()f x 的极大值和极小值,假设存在实数2e 1e 1,2e 2eb a a ⎛⎫++∈ ⎪⎝⎭,使得1m n -=,求a的取值范围.21.〔本小题总分值12分〕 函数()ln f x x x =,()e xxg x =. 〔1〕记()()()F x f x g x =-,判断()F x 在区间()1,2内的零点个数并说明理由;〔2〕记()F x 在()1,2内的零点为0x ,()()(){}min ,m x f x g x =,假设()m x n =〔n ∈R 〕在()1,+∞内有两个不等实根1x ,2x 〔12x x <〕,判断12x x +与02x 的大小,并给出对应的证明.请考生在22、23、24三题中任选一题作答,假如多做,那么按所做的第一题记分.22.〔本小题总分值10分〕选修4-1:几何证明选讲如,AE 是圆O 的切线,A 是切点,AD OE ⊥于D ,割线EC 交圆O 于B ,C 两点.〔1〕证明:O ,D ,B ,C 四点共圆;〔2〕设50DBC ∠=︒,30ODC ∠=︒,求OEC ∠的大小. 23.〔本小题总分值10分〕选修4-4:坐标系与参数方程 直线l 的参数方程为10,x t y t =-+⎧⎨=⎩〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24sin 20ρρθ-+=.〔1〕把圆C 的极坐标方程化为直角坐标方程;〔2〕将直线l 向右平移h 个单位,所得直线l '与圆C 相切,求h . 24.〔本小题总分值10分〕选修4-5:不等式选讲 函数()2f x x a a =-+,a ∈R ,()21g x x =-. 〔1〕假设当()5g x ≤时,恒有()6f x ≤,求a 的最大值; 〔2〕假设当x ∈R 时,恒有()()3f x g x +≥,求a 的取值范围.试卷答案一、选择题1.A2.C3. B4.C5.C6.B7.D8.A9.D 10.A 11.C 12.D11.解析:()32133f x x x x =+-,()2230f x x x '=+-=,3x =-,1x =,函数在(),3-∞-,()1,+∞单调递增,且在()3,1-单调递减,函数的极大值为()39f -=,函数的极小值为()513f =-,根据函数的象可知,设()f x m =,可知210m tm ++=,原方程有12个不同的根,那么210m tm ++=方程应在50,3⎛⎫⎪⎝⎭内有两个不同的根,设()21h m m tm =++那么250353402231540h t t t ⎧⎛⎫> ⎪⎪⎝⎭⎪⎪<-<⇒-<<-⎨⎪⎪∆=->⎪⎩,所以取值的范围34215t -<<-. 二、填空题13. 1m =+3e e,3⎛⎤ ⎥⎝⎦15. 11 16. 12x ≤三、解答题 17.解〔1〕cos 2cos 3cos a b cA B C==, sin sin sin cos 2cos 3cos A B CA B C∴==, 即tan tan tan 23B CA ==,那么tan 2tan B A =,tan 3tan C A =. 又在ABC ∆中,()tan tan tan tan 1tan tan B CA B C B C+=-+=--.那么22tan 3tan tan 16tan A A A A+=-,解得2tan 1A =, tan 1A ∴=-或tan 1A =,sin 5B =,sin 10C =. 在ABC ∆中有sin sin a bA B=, 那么sin 2105sin 2B b a A ===,那么2112103sin 322510ABCa S ab C a ∆====. 得25a =,所以5a =18.〔Ⅰ〕增区间10,3⎛⎫ ⎪⎝⎭是,减区间1,3⎛⎫+∞ ⎪⎝⎭;〔Ⅱ〕3,2⎛⎫-+∞ ⎪⎝⎭. 试题解析:〔Ⅰ〕()2321x x f x x +-'=-〔0x >〕,10,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单增1,3x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为 ,则不等式 f x g x 0 的解集为
(
)
A. x 1 x 2
B .R
C.
D . x x 1或 x 2
11.直线 x cos y 1 0( R ) 的倾斜角的取值范围是
(
)
A. 0,
3 B. ,
44
C. , 44
3
D . 0,
,
4
4
x2
12. 已知椭圆
y2
1 与圆 x
2
a
y2
9 有公共点,则实数
1 k 2 x 1x 2 km (x 1 x 2) m 2
1 k 2 m2 2 k2 1
2k 2m 2 1 k2
m2
2k 2 2
4
k2 1
2
k2
. 1
x 1x 2 0, k 2 1 0, 从而 OA OB 2
综上, 当 AB x轴时 , OA OB取得最小值 2
条曲线中,双重对称曲线的条数是
(
)
2
2
(1) y x 1,( 2) y tanx ,( 3) y
45
2 cos( 2 x
) ,( 4) y 2 2x 1 3
A .1
B .2
C .3
D .4
10.函数 f x , g x 的定义域为 R ,且 f x 0 的解集为 x1 x 2 , g x 0 的解集
即 2x 1 4 y 1 3 0.于是知点 P在直线 2x 4 y 3 0上
PM PO PM 的最小值也就是 PO 的最小值,而 PO 的最小值为原点到直线 2x 4y 3 0的距离 d 3 5
10
2
由 x1 2x 1
2
y1 4y 1
9
20 得 x 1 30
3
3
,y1
10
5
33
所求点 P的坐标为 (
2n (n 1)
2
1
,n 1
an
2 1
,n 2
2n (n 1)
211 1
(3) 证法一:① 当 n 1时, S1
成立。
4 2 41
② 假设 n
k时, 不等式成立,即
2
S1
2
S2
21 Sk
1 成立。
2 4k
则当 n
k
1时
S
2 1
2
S2
1 1 k2 k 1 1 1
2
4
kk
2
1
24
2
2
Sk
Sk 1
k2 k
b7
19.(1) 证明:任取 x 1
x 2 ,则
f x1
f x2
log 2 2x1 1 log 2 2 x2
1
2 x1 1 log 2 2x2 1
x1 x2 , 0 2 x1 1 2x2 1
2 x1 1
2x1 1
0 2 x2 1 1, log 2 2 x2 1 0, f x1
f x2
即函数 f ( x) 在 , 单调递增
Sn
(II ) 求 Sn 和 an ;
2
2
(III )求证: S1 S2
21 1
Sn
。
2 4n
21.(本小题满分 12 分)
已知圆 C : x 2 y2 2 x 4 y 3 0.
(1)若圆 C 的切线在 x 轴和 y 轴上的截距的绝对值相等,求此切线的方程;
( 2 ) 从 圆 C 外 一 点 P( x1, y1 ) 向 圆引 一 条 切线 , 切 点为 M , O 为 坐 标 原点 , 且有
y2 .从而 OA OB x1 x2 y1 y 2 x12 y12 2
当 AB与 x轴不垂直时,设直线 AB 的方程为 y kx m,与 W的方程联立
消去 y得 1 k 2 x 2 2kmx m 2 2 0
故x1 x 2
2km 1 k 2 ,x 1x 2
m2 2 k2 1
OA OB x 1x 2 y 1 y 2 x 1x 2 kx 1 m kx 2 m
1
2
kk 1
2
11
1
2 4k
2
4k 1
1 .即当 n k 4k 1
1 11 2 4k
1
2
k1
1时,不等式成立。
由 ①②可知对任意 n N 时 不等式成立。
证法二:
S1 2 S2 2
Sn 2
11 1
12 2 3
11 4 4 22
1 n 1n
1 4 32
1 1 11
4 n2
(1 4
22
32
1
1 11
11
,)
10 5
22.
解
(1
)
由PM PN 2 2知动点P的轨迹是以 M , N为焦点的双曲线的右支
实半轴长 a 2.又焦半距 c 2,故虚半轴长 b c 2 a 2 2.
x2
y2
W 的方程为
1( x
2)
22
(2 ) 设 A , B 的坐标分别为 x 1 , y 1 , x 2 , y 2
当 AB x轴时 , x1 x2 , y1
③
有唯一解,得 c 3或 c -1
y xc
所求的切线方程为
y 2 6 x 或 y x 5或 y x 1
或y
x 3或 y
x -1
2)
圆C的方程可化为 x 1 2 y 2 2 2 圆心 C( 1,2), 半径 r 2
又 PM PO 设 P的坐标为 x 1 , y 1
2
2
x1 y1
2
2
x1 1
y1-2 2
1 sin 2
(2) tan
sin cos
sin 2
cos 2
sin 2
tan 1 2 tan 2
(3) tan
1 1
2 tan tan
1 22
2 , 当且仅当 1
4
tan
2 tan ,即 tan
2 时, 2
tan 取最大值
18
2 ,此时 tan
4
22
tan tan
24
2
1 tan tan
22 1
24
a1
1 ,
2
1 S1
2.当n
2时,an
Sn
Sn 1,即Sn Sn 1
-2SnSn 1,
1 1 2.故 1 是以 2为首项,以 2为公差的等差数列。
Sn Sn 1
Sn
(2) 由 1)得 1 2 n 1 2 2n , Sn 1 .
Sn
2n
当 n 2时 , an
2Sn Sn 1
1
; 当 n 1时 ,a1 1 .
( 2) f 1 x log 2 2x 1 x 0
解法一:
mfx
fx
log 2 2 x 1
log2 2 x 1
2x log 2 2x
1 1
2 log 2 1 2 x 1
2 2 21
23
当1 x 2时, 5
2x 1
, 3
3
1
2x
1
5
m的取值范围是 log 2 1 ,log 2 3 .
3
5
20.解: (1) S1
河北省衡水中学 2009 届高三第一次调研数学试卷 ( 理科 )
第Ⅰ卷 (选择题 共 60 分)
命题人 :褚艳春
一、 选择题(每小题 5分,共 60分。下列每小题所给选项只有一项符合题意,请将正确 答案的序号填涂在答题卡上)
1. 设全集 U=R, A { x x 2 4}, B { x log x 7 log 3 7}, 则 A (CU B ) 是( )
18.(本小题满分 10 分) 设锐角三角形 ABC的内角 A,B.C 的对边分别为 a,b,c 且 a=2bsinA (1)求 B的大小
(2)若 a 3 3,c 5 , 求 b
19 (本小题满分 12 分 )
已知函数 f ( x) log 2 (2 x 1) (1) 求证:函数 f ( x) 在 , 单调递增;
4
223
11 n1 n
1 n2 ) 11 2 4n
21
切线在 x 轴和 y轴上的截距的绝对值相
等,
可设切线方程为
y kx , y x b , y x c
x2
①
y 2 2x
4y 3 0有唯一解,得 k
2
6
y kx
x 2 y 2 2x 4y 3 0
②由
有唯一解,得 b 5或 b 1
y xb
x 2 y 2 2x 4 y 3 0
PM
PO ,求使 PM 最小的点 P 的坐标 .
22. (本小题满分 12 分) 已知点 M ( 2,0), N (2,0) ,动点 P 满足条件 PM PN 2 2 .记动点 P 的轨迹为 W . (1)求 W 的方程; (2)若 A, B 是 W 上的不同两点, O是坐标原点,求 OA OB的最小值 .
方形)的面积是
.
1
1
14. 若
1 tan
2008 ,则
tan 2
cos 2
。
x 2y 2 0
15. 设满足约束条件
x 2 0 则 z x y 的最大值与最小值的和是
。
y1 0
16.设函数 f(x) 是定义在 R上的奇函数,若当 x∈ (0,+ ∞ )时, f(x) =lg x,则满足 f(x) > 0的 x的 取值范围是 __________
() A.13
B. 16
C. 25
D.22
5.设 Sn 是等差数列