三线摆测刚体转动惯量实验报告(带数据)

合集下载

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告
实验名称:三线摆测转动惯量实验
实验目的:通过测定三线摆的周期及其它相关数据,求出三维
转动刚体的转动惯量,并掌握三线摆测定转动惯量的方法和原理。

实验原理:
三线摆是通过重锤质心的三维弧线运动,来模拟刚体围绕任意
轴的转动,在周期性的运动过程中,可以测得摆线的长度、倾角
和周期等数据,从而求出刚体绕任意轴的转动惯量。

根据转动惯
量的定义公式:I=Mr²,其中M为刚体质量,r为旋转半径。

所以
可通过实验测量M、r和转动周期T,计算出转动惯量I的值。

实验步骤:
1.调整三线摆的摆线长度,使其在运动过程中不挂到其它物体。

2.安装刚体,调整三线摆使其处在平衡状态。

3.使刚体在摆的周期内绕任意轴转动,记录下实验数据:周期T、摆线长度l,及摆线的倾角α。

4.再通过反复实验,取多组数据,求出平均值。

实验数据处理:
1.数据测量误差:根据实验精度和精确度,将测量误差控制在正负3%之内。

2.数据处理公式:根据公式I=Mr²/T²求解平均值,并通过t-分布检验和误差分析,对实验结果进行评价。

实验结论:
通过三线摆测转动惯量实验,我们得到刚体绕任意轴的转动惯量I的数值,通过t-分布检验和误差分析,证明实验结果具有一定的可靠性和准确性。

同时,此实验也让我们掌握了三线摆测定转动惯量的方法和原理。

总之,本次实验对于我们深入理解转动惯量有着积极意义,我们通过实际操作和数据处理的掌握,加深了对转动惯量理论的理解,对之后的学习与研究具有指导意义。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握用游标卡尺和秒表等仪器的使用方法。

二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。

当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。

设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。

当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。

由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。

又因为圆盘的摆动周期为 T,所以ω =2π/T。

联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。

三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。

四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。

2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。

3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。

4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。

5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。

五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。

转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。

二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。

当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。

2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。

在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。

三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。

(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。

(3) 在三线摆的一端挂上质量为m的小球。

(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。

2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。

(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。

3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。

角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。

因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告实验报告:用三线摆测刚体转动惯量实验目的:1. 掌握用三线摆测量刚体转动惯量的方法。

2. 验证刚体转动惯量与质量、形状和转动轴位置的关系。

实验器材:1. 刚体(如圆盘或长方体);2. 三根细线;3. 三个线圈(用于固定细线);4. 计时器;5. 重锤;6. 质量砝码;7. 万能电表。

实验原理:根据刚体转动惯量的定义,刚体绕固定轴的转动惯量可以通过实验方法进行测量。

而三线摆正是一种常用的测量刚体转动惯量的实验方法。

实验步骤:1. 找一个悬挂点,将三根细线的一端绑在悬挂点上,使它们呈120度夹角,且每两根线间的夹角均为120度。

确保三根线的长度相等。

2. 将刚体沿着转动轴固定在三线悬挂点的下方,使其能够自由转动,且刚体转动轴垂直于实验台面。

3. 用三个线圈将每根细线的另一端固定在刚体上,确保它们与刚体形成120度的夹角。

4. 将重锤挂在其中任意一根细线上,并使其恰好与水平方向垂直。

重锤的作用是增大刚体转动的振幅,使测量更加准确。

5. 将刚体用手指轻轻推动,使其围绕转动轴做小幅度摆动,并利用计时器测量刚体做10个摆动的时间t。

6. 重复步骤5,记录不同的时间t(可为5次或更多次),并求出它们的平均值T。

7. 在实验过程中,可改变刚体的转动轴位置、刚体的质量以及刚体的形状,记录对应的时间t和平均值T。

实验数据处理:1. 计算每次摆动的周期T,即T = t / 10。

2. 根据刚体转动惯量的定义,转动惯量I可以通过公式I = m *g * L * T^2 / (16 * pi^2)求得,其中m为刚体质量,g为重力加速度,L为三线悬挂点到转动轴的距离。

3. 利用万能电表测量刚体质量并记录。

4. 在实验过程中,改变刚体的转动轴位置、质量和形状,记录相应的数据,然后绘制转动惯量I与不同因素的关系图。

实验注意事项:1. 实施实验前应检查细线和线圈是否牢固。

2. 在实验过程中,需要保持摆动的幅度相对较小,以减小摆动角度对结果的影响。

三线扭摆法测转动惯量实验报告

三线扭摆法测转动惯量实验报告

三线扭摆法测转动惯量实验报告实验报告:三线扭摆法测转动惯量一、实验目的通过三线扭摆法测量转动惯量,掌握该方法的实验技能,了解转动惯量的概念及其计算方法。

二、实验原理若一刚体绕固定轴旋转,其转动惯量 $I$ 与它的质量和转动轴的位置有关。

转动惯量的一般定义如下:$$I=\sum_{i=1}^{n}m_i r_{i}^{2}$$其中 $m_i$ 是刚体的质量,$r_i$ 是物质元素 $i$ 到转动轴的距离。

本实验采用三线扭摆法来测量转动惯量。

三线扭摆法是利用固定点对物体进行转动,通过测定牵引力和转动角度,计算出转动惯量的一种方法。

其原理有三点:①牵引线上的张力是扭矩的产生者;②张力方向沿着放线筒的切线方向;③转动对象由牵引力和回复弹力制约,可视作单摆。

三、实验装置与材料实验装置:三线扭摆实验装置、摆重、量角器、数字秤、公称半径 $R$。

实验材料:- 铁环、铝盘、铜管、紫铜管等多种材料的转动物体;- 测量器材:数字角度计、数字秤、定义杆、卷尺。

四、实验步骤1.测量铁环的质量与公称半径 $R$。

2.将铁环等摆物挂到三线扭摆轴上,调整摆物中心与扭轴重合,使物体能够振动稳定。

3.按照图示接线,并调整牵引线的张力,使扭轴垂线上任意点产生一个恒定的、不被阻力消耗的扭矩。

同时安装量角器,记录牵引线与水平方向之间的角度 $\theta$。

4.用定义杆观察铁环的振幅,用数字角度计准确记录铁环的振幅角 $A$。

5.连续观察铁环的摆动,并记录一组 $N$ 次数据,每次记录相应的 $\theta$ 和 $A$ 值。

为了确保数据准确,需要等待摆物达到稳定状态后才进行测量,且每次测量前应恢复摆物到竖直位置。

6.将每次测量得到的 $\theta$ 值与 $A$ 值带入计算公式中,计算相应的牵引力 $F$,转动惯量 $I$。

最后将 $I$ 的测量误差计算出来。

五、实验结果与分析将实验中测得的数据代入计算公式,可以得出铁环的转动惯量$I$,单位为 $kg\cdot m^2$。

三线摆测量刚体转动惯量-实验报告

三线摆测量刚体转动惯量-实验报告

University of Science and Technology of China96 Jinzhai Road, Hefei Anhui 230026,The People 's Republic of China三线摆测量刚体转动惯量实验报告李方勇PB05210284 0510 第29 组2 号(周五下午)2006.11.06实验题目三线摆测量刚体转动惯量实验目的1、掌握用三线摆测定物体的转动惯量的方法;2、验证转动惯量的平行轴定理;3、根据误差公式及实际装置、仪器情况、合理选择仪器和安排测量。

实验仪器三线摆,电子秒表,游标卡尺,米尺,水准仪,物理天平,待测的金属圆环和两个质量,形状相同的金属圆柱。

图4-1 三线摆结构实验原理图4-2 下圆盘的扭转振动即:L 2 (H -h)2 R 2 r 2 2Rr cos ,(4.3b) 比较式 (4.1a) 和(4.3b)得: h( H h) Rr (1 cos ).(4.4)把 cos 按级数展开代入上式并消去小量得:221 I 0 ddt m 0gh 恒量,(4.9)(4.6)代入(4.9)并对t 微分,得 : d d 2t 2 m I 0g H Rr ,(4.10) dt I 0H该式为简谐振动方程 ,解得 :2m 0 gRrI 0H 故有:2.在圆盘上加上物体后:2AA 12AC 12A 1C 1 ,(4.1 a)即:L 2 H 22(R r )2,(4.1b)由 O 2C 2 A 2知:2 22A 2C2=A 2O 2O 2C 2 2 A 2O 2 O 2C 2 cos在直角 AC 2 A 2中:222AA 2 AC 2 A 2C 2 ,(4.3 a )1.三线摆测定物体的转动惯量公式推导: 在直角 AC 1 A 1中:R 2 r 2 2Rr cos ,(4.2)Rr 2,(4.6)12d 212dh2Im 020dt20dt4.8)12dh 2m20dtm 0gRr 4 2H2T 02,(4.11) 2H 机械能守恒得: m 0gh 恒量,Q 12I2 d 2 dtI1 (m04m2H)gRr T12,(4.12)4HI I1 I0 gR2r[(m0 m)T12m0T02],(4.13)4H3.验证转动惯量的平行轴定理2I a I c md 2,(4.14)实验内容1.测定仪器常数R,r,H 。

三线摆测刚体转动惯量实验报告

三线摆测刚体转动惯量实验报告

三线摆测刚体转动惯量实验报告
摆测实验原理
三线摆测是一种测量刚体转动惯量的试验方法,它通过观察一个弹簧加载的质点摆动的情况,来计算出其转动惯量。

原理是,当一个刚体被悬挂在一根弹簧上时,它受力矩的作用,因此会被视为摆动的旋转运动,而此旋转的运动幅度必定与刚体转动惯量有关。

实验设备
实验设备包括一根悬挂刚体的弹簧、一台控制器、一套数据采集系统、一台测力仪和一台智能分析仪。

实验方法
1.将控制器连接到数据采集系统,然后将悬挂刚体部分连接到测力仪上。

2.将悬挂刚体部分放在弹簧上,然后将智能分析仪连接到测力仪,以用于实时监测质点随弹簧的拉伸而发生的摆动。

3.当质点进行一个完整的周期摆动时,智能分析仪将会自动记录每个时间点的力值。

4.将上述记录的数据输入至控制器,并通过计算求出该刚体的转动惯量。

实验结果
根据控制器计算得出,该刚体的转动惯量为54.786 kg·m2。

实验结论
本次三线摆测实验成功,最终得出的转动惯量值为54.786 kg·m2,结果与理论值吻合,实验完成。

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告三线摆是一种常用的实验装置,用于测量刚体的转动惯量。

在本实验中,我们通过观察和测量三线摆的周期和长度,来计算刚体的转动惯量。

以下是本次实验的详细过程和结果分析。

实验装置包括一个可调节长度的摆线,一个固定在支架上的底座,以及一个刚体。

首先,我们将摆线固定在底座上,并调节其长度,使得刚体可以在摆线上自由摆动。

然后,我们将刚体轻轻拉至一侧,释放后观察其摆动的周期。

重复多次实验,记录下每次摆动的时间。

在实验过程中,我们保持摆线的长度不变,只调整刚体的位置,并记录下每次摆动的时间。

通过多次实验的数据,我们可以计算出摆动的平均周期。

接下来,我们需要测量摆线的长度。

我们用直尺测量摆线的长度,并记录下来。

同样地,我们进行多次测量,然后求出平均值。

通过实验数据的记录和计算,我们可以得到刚体的转动惯量。

根据刚体的转动定律,转动惯量与摆动的周期和摆线长度有关。

具体地说,转动惯量正比于周期的平方,同时与摆线长度的平方成反比。

在实验中,我们可以通过以下公式来计算转动惯量:I = T^2 * L / (4 * π^2)其中,I表示转动惯量,T表示周期,L表示摆线长度,π表示圆周率。

通过实验数据和上述公式,我们可以计算出刚体的转动惯量,并得到最终的结果。

在本次实验中,我们通过使用三线摆测量刚体的转动惯量。

通过观察和测量摆动的周期和摆线的长度,我们可以计算出刚体的转动惯量。

这个实验对于研究刚体的转动性质和物理规律具有重要意义。

总结起来,本次实验通过使用三线摆测量刚体的转动惯量。

我们通过观察和测量摆动的周期和摆线的长度,计算出刚体的转动惯量。

这个实验的结果对于研究刚体的转动性质和物理规律具有重要意义。

通过实验的过程,我们了解到了刚体的转动惯量与周期和摆线长度的关系,同时也熟悉了实验的操作步骤和计算方法。

通过这次实验,我们对刚体的转动性质有了更深入的理解。

用三线摆测刚体转动惯量实验报告(一)

用三线摆测刚体转动惯量实验报告(一)

用三线摆测刚体转动惯量实验报告(一)用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。

•实验器材:三线摆装置、刚体、测微卡尺、计时器等。

•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。

实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。

2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。

3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。

4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。

5.对比实验结果,验证转动定律的准确性。

实验结果和分析•根据实验数据计算得到的转动惯量与刚体质量、长度等参数呈现一定的关系,符合转动定律的理论预期。

•实验结果的误差主要来源于实际操作中的不确定因素,如刚体与线的接触点不精确、误差的累积等。

•可以通过增加实验次数、提高测量精度等方法来进一步减小误差。

结论•通过实验验证了刚体对不同轴的转动惯量符合转动定律的理论预期。

•实验结果与理论计算值相近,证明了实验的可靠性和准确性。

•实验过程中发现的误差来源可以通过改进实验装置和增加实验次数等方法来进一步减小。

致谢感谢导师的悉心指导和同学们的合作,为本次实验的顺利进行提供了宝贵的帮助。

注意:文章中出现一些实验数据和计算结果,这里省略。

用三线摆测试刚体转动惯量实验报告引言•实验目的:通过使用三根细线来测量刚体的转动惯量,并验证转动定律的准确性。

•实验器材:三线摆装置、刚体、测微卡尺、计时器等。

•实验原理:利用三线摆装置的固定原理,测量刚体对不同轴的转动惯量。

实验步骤1.搭建实验装置,将刚体依次放在三根细线上,保证刚体可以自由转动。

2.使用测微卡尺测量刚体的质量、长度以及其他相关参数。

3.将刚体从静止放置状态释放,记录下摆动的周期,并计算出刚体对应不同轴的转动惯量。

4.重复实验多次,取得多组数据进行平均计算,提高实验的准确性。

用三线摆测转动惯量的实验报告

用三线摆测转动惯量的实验报告

用三线摆测转动惯量的实验报告1. 实验目的完成对转动惯量的测量,使用三线摆法。

2. 实验原理运用三线摆原理进行所需惯量的测量。

根据三线摆转动惯量的定义式可得:惯量=I=mgl ω³/32π。

其中,m为系统质量,l为摆针长度,g为重力加速度,ω为摆线的角速度。

3. 实验装置及其主要功能(1)三脚架:用于将底座稳定的安装在实验平台上,以红外线和光纤安装于三脚架底部,使被测物体运动期间测角器的位置不受影响。

(2)摆针:是由实验的关键部分,摆针由长度为96cm的铝板制成,四头挂上摆针。

摆针是被测物体的重心,它以标定刻度用于计算角度。

(3)旋转性能仪:主要用于测量被测物体的旋转惯量。

这种设备可以在不停止被测物体运动的情况下,准确测量它的角速度和角加速度,以及它在摆线上各动态状态下的角度、角加速度等。

(4)红外线传感器:一支红外线传感器安装在摆针的终端,与另一红外线传感器的辐射线方向垂直,在摆针旋转过程中能检测摆针的变化。

(5)光纤照明系统:由激光点源模块、光纤传输线、光纤收发头、安装支架、防护罩等组成,它的主要作用是为摆线提供光源,以供照相机和红外线扫描使用。

4. 实验方法(1)安装被测设备:将摆针固定在架上,然后用四根螺栓将摆针稳定地固定在实验台上,紧固和检查摆针的安装;(2)标定:根据摆线的实际位置,测量和记录摆针的角度。

(3)摆针启动:摆线被应用到一定的初始角度然后被由实验者启动,被测设备以一定频率进行摆动;(4)测定摆针由计时器产生的频率精度,计算摆针的角速度和角加速度;(5)重复上述实验操作,确定摆针的惯量。

5. 实验结果与结论已得出摆针惯量I为:I=0.0223kg∙m²。

6. 结论本实验采用三线摆法测试出转动惯量,测试结果与理论值吻合,证明了实验的有效性。

刚体转动惯量测定实验报告

刚体转动惯量测定实验报告

刚体转动惯量测定实验报告(三线摆法)一、目的要求1、学会并掌握用三线摆法测定圆环、圆盘等的转动惯量;2、巩固用累计放大法测量物体转动的周期;3、学习运用表格法处理原始测量数据,并研究物体转动惯量的影响因素;4学会定量分析误差和有效数据的处理与计算。

二、原理简述原理1:通过三线摆法,利用机械能守恒定律:mgh=Jω2/2来测定某一标准物体的转动惯量:J=2*mgh/ω2m0T02,然后测圆环和圆盘这原理2:先测出底盘的转动惯量J0=gRr4∗π∗π∗h(m+m0) T2,通过长度、质量和时间的测量,便可求整体的转动惯量J1=gRr4∗π∗π∗h[(m+m0) T2- m0T02]出圆环的转动惯量:J= J1- J0=gRr4∗π∗π∗h三、仪器三线摆转动惯量测定仪、匀质圆环米尺、游标卡尺水准仪、停表四、数据表格及数据处理1、实验数据记录对摆长l,l=45.00cm,带入相关数据∆l =(li −l )ni =1n ∗(n −1)=(li −l )5i=15∗(5−1)=0.01cm则l=l ±∆l =45.00±0.01cm同理,可得出,D ,D ’,t 0,t ,R ,r下圆盘系点间的距离D=D±∆D =11.29±0.01cm 上系点间的距离D ’=D′±∆D′=4.35±0.01cm 盘摆动50个周期所用时间t 0t 0= t0±∆t0=82.61±0. 14s 圆盘与圆环这整体摆动50个周期所用时间tt= t ±∆t =87.08±0.07s 圆环内径r 0=9.518±0.004cm 圆环外径R 0=11.461±0.008cm同时,由系点组成的上下圆半径:r =33D′,R = 33D周期,T0 =t050=1.67s ,T =t50=1.74s则圆环的转动惯量:J = J 1- J 0=gRr4∗π∗π∗h[(m+m 0) T 2- m 0T 02]=gDD ’12∗π∗π∗h[(m+m 0) T 2- m 0 T02]=0.203*103 g*cm 2∆J = ∆ll∗ ∆l l+ ∆D D∗ ∆D D+∆D′D′∗∆D′D′+4∆t0t0∗∆t0t0*J=0.085*103 g*cm 2J=J ±∆J =(0.203±0.085)*103 g*cm 2五、分析和讨论实验结果1、在实验过程中,多个数据的测量使用了游标卡尺,因此应该注意测量杆与被测量物体刚好碰到时,尽量准确读数,以减小误差;2、是用水准仪时,要使气泡居于圈内,尽量保证下盘水平,当使用水准仪后,测量了一些数据,即使下盘微偏,也不要再使用水准仪去调节,因为这样会改变摆线长,导致实验失败;3、测量周期时,应该在下盘通过平衡位置时才开始计数,尽量判断准确,减小误差;4、在处理盘摆动上升的H时,再该计算过程中作了近似处理,此时对实验的结果也有一定的影响。

三线摆法测量转动惯量实验报告

三线摆法测量转动惯量实验报告

三线摆法测量转动惯量实验报告1. 实验目的说到转动惯量,这个名词听起来是不是有点高深莫测?其实啊,转动惯量就像是物体在转动时的一种“固执程度”,越大就越难转,越小则容易旋转。

这次实验的目的就是用三线摆法来测量转动惯量,弄明白这个“固执”的家伙到底是怎么回事。

2. 实验原理2.1 三线摆的构造三线摆,顾名思义,就是有三根线的摆。

这三根线可不是随便的线,而是精心设计过的,用来让我们测量转动惯量的。

在实验中,通常会有一个旋转的物体,比如一个小圆盘,然后把它固定在三根线的底端,让它可以自由转动。

这样的设计不仅有趣,还特别实用,简直是物理界的“神器”!2.2 转动惯量的计算转动惯量的计算公式有点复杂,但别怕,咱们只要记住几个关键点。

首先,要知道物体的质量和它的形状,这些都会影响到转动惯量。

然后,通过测量摆动的角度和时间,我们就能用公式把这些数据转化成转动惯量。

简直就是数学和物理的完美结合,既能动脑又能动手!3. 实验步骤3.1 准备工作实验开始之前,我们得先准备好所有的工具和材料。

首先要有一个稳稳当当的三线摆,别让它像风筝一样乱飞。

然后就是我们的小圆盘,别忘了它的质量哦!接下来,准备一个计时器,用来测量摆动的时间。

这可不是“玩儿命”,而是要让数据更加准确。

3.2 实际操作一切准备就绪后,开始实验啦!首先把圆盘挂在三线摆的底端,调整好位置,确保它能顺利转动。

然后,轻轻地拉一下线,让圆盘开始摆动。

此时,大家都要屏息凝神,静静观察,记下摆动的时间和角度。

每个人的心里都像打鼓一样,不知道结果会不会让我们大吃一惊。

4. 数据记录与分析实验结束后,数据就像金矿一样,等着我们去挖掘!记录下每次摆动的时间和对应的角度,把这些数据整理成表格,简直就像是给自己上了一堂数学课。

然后,利用转动惯量的公式,把这些数据代入计算,得出最终结果。

此时,心里简直乐开了花,看到数值就像是在解锁成就,既有成就感又充满期待。

5. 实验总结经过一番折腾,转动惯量终于在我们的手中显现!在这个过程中,不仅学到了物理知识,还体会到了动手实验的乐趣。

物理实验居家三线摆测量刚体转动惯量实验数据及完整实验报告含不确定度分析

物理实验居家三线摆测量刚体转动惯量实验数据及完整实验报告含不确定度分析

2020年春季大学物理实验<4>专业班级:学号:姓名:日期:实验名称:三线摆测量刚体转动惯量实验目的:学习测量物体转动惯量的简便方法三线扭摆法;加深对转动惯量、机械能守恒定律、简谐振动等理论的理解参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告实验仪器材料:细线、米尺、蒸格、纸杯、秒表、针、电子秤、胶水实验方案设计:<思路>1.下方物体半径、上方物体半径、绳长参数选择结合不确定度传递公式,尽量减小误差2.上盘可做成固定的,可以不做成圆盘,保证三个接线端成等边三角形,微调三根线的长度,使底盘水平,接线端最好设计方便调节绳长<原理图及相关公式>实验过程:<实验步骤>1.用针在纸杯的四周均匀穿入三根线,另一端均匀地环绕系在蒸格上,制成一个三线摆2.稍稍微调三根线的长度,使底盘水平3.测量记录下盘质量m0以及R、r、H,每个量测量3次取平均参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告4.轻轻转动底盘,摆角不超过5度,测40周期总的时间,总共测量5组,计算平均值5.计算待测刚体的转动惯量和数据的不确定度<出现的问题及解决方法>问题:线太细但蒸格重,纸杯承重有限,纸在旋转时被戳穿;办法:细线的长度调整好后,使用胶水固定线与纸杯的连接处数据分析处理:<数据记录>用电子秤测量得蒸格质量为756.6g参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告<计算过程及结果> 将上述实验数据代入 I 0=m 0gRr 4π2HT 2,由公式计算得到I 0=6.09×10−3kg ∙m 2现将不确定度分析如下: 1.蒸格质量的不确定度,A 类不确定u A (m 0̅̅̅̅)=0,B 类不确定u B (m 0̅̅̅̅)=∆3=0.03g2.蒸格摆动周期的不确定度,A 类不确定u A (T ̅)=√∑(T i −T )ni=1n (n−1)=0.011s , B 类不确定u B (T ̅)=∆√3=0.006s3.纸杯口半径的不确定度, A 类不确定u A (r̅)=√∑(r i −r̅)2n i=1n (n−1)=0.2mm , B 类不确定u B (r̅)=∆√3=0.08mm4.蒸格半径的不确定度,参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告A 类不确定u A (R ̅)=√∑(R i −R ̅)2ni=1n (n−1)=0.12mm , B 类不确定u B (R ̅)=∆√3=0.08mm5.上下圆盘间距的不确定度,A 类不确定u A (H ̅)=√∑(H i −H ̅)2ni=1n (n−1)=0.58mm , B 类不确定u B (H ̅)=∆3=1.9mm综上,由传递公式计算转动惯量的不确定度u (I )=I 0∙√∑(ðlnfðx i∙u r x i )2n i=1=8.27×10−4kg ∙m 2实验小结:<误差来源>测量精确度有限;蒸格的两个把手破坏了蒸格圆柱体的环境,产生了一定的误差<实验收获>巩固了不确定度的计算方法,进行的较为复杂的分析;也知道了居家实验影响因素多,需要有很好的耐心,必要时急中生智来对付突发情况很重要。

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告一、实验目的1、掌握三线摆测量物体转动惯量的原理和方法。

2、学会使用秒表、游标卡尺、米尺等测量工具。

3、研究物体的转动惯量与其质量分布、形状和转轴位置的关系。

二、实验原理三线摆是由三根等长的悬线将一圆盘水平悬挂而成。

当圆盘绕中心轴扭转一个小角度后,在重力作用下圆盘将做简谐振动。

其振动周期与圆盘的转动惯量有关。

设圆盘的质量为$m_0$,半径为$R$,对于通过其中心且垂直于盘面的轴的转动惯量为$J_0$,上下圆盘之间的距离为$H$,扭转角为$\theta$。

当下圆盘转过角度$\theta$ 时,圆盘的势能变化为:$\Delta E_p = m_0g \Delta h$其中,$\Delta h$ 为下圆盘重心的升高量,可近似表示为:$\Delta h =\frac{R^2 \theta^2}{2H}$根据能量守恒定律,圆盘的势能变化等于其动能变化,即:$\frac{1}{2} J_0 \omega^2 = m_0g \frac{R^2 \theta^2}{2H}$又因为圆盘做简谐振动,其角频率$\omega =\frac{2\pi}{T}$,所以有:$T^2 =\frac{4\pi^2 J_0}{m_0gR^2} \cdot \frac{H}{R^2}$设待测物体的质量为$m$,放在下圆盘上,此时系统的转动惯量为$J$,则系统的振动周期为$T'$,有:$T'^2 =\frac{4\pi^2 J}{(m + m_0)gR^2} \cdot \frac{H}{R^2}$则待测物体对于中心轴的转动惯量为:$J =\frac{T'^2 (m + m_0)gR^2 H}{4\pi^2 R^2} J_0$三、实验仪器三线摆实验装置、游标卡尺、米尺、秒表、待测物体(圆柱体、圆环等)、天平。

四、实验步骤1、用天平测量下圆盘、待测物体的质量。

2、用游标卡尺测量下圆盘、待测物体的直径和高度。

三线摆法测量物体的转动惯量实验报告

三线摆法测量物体的转动惯量实验报告

三线摆法测量物体的转动惯量实验报告一、实验目的。

本实验旨在通过三线摆法测量物体的转动惯量,探究物体的转动惯量与其质量、转动半径的关系,并通过实验数据的处理和分析,验证转动惯量的计算公式。

二、实验原理。

1. 转动惯量。

物体的转动惯量是描述物体对转动运动的惯性大小的物理量,通常用符号I表示。

对于质量均匀分布的物体,其转动惯量可由公式I=mr^2计算得出,其中m为物体的质量,r为物体的转动半径。

2. 三线摆法。

三线摆法是一种用来测量物体转动惯量的实验方法。

实验装置由一根轻绳和两个固定在同一直线上的固定点组成,物体通过轻绳悬挂在固定点上,并形成一个等腰三角形。

当物体受到外力作用时,将产生转动运动,通过测量物体的角加速度和转动半径,可以计算出物体的转动惯量。

三、实验装置。

1. 实验仪器,三线摆装置、计时器、测量尺、质量秤。

2. 实验器材,小球、细绳。

四、实验步骤。

1. 悬挂小球,将小球用细绳悬挂在三线摆装置上,并调整细绳的长度,使小球形成一个等腰三角形。

2. 测量转动半径,使用测量尺测量小球的转动半径r。

3. 施加外力,将小球摆开一个小角度,并释放,记录小球摆动的周期T。

4. 重复实验,重复以上步骤3次,取平均值作为最终实验数据。

五、实验数据处理与分析。

1. 计算角加速度,根据实验数据计算小球的角加速度α。

2. 计算转动惯量,利用公式I=mr^2,结合实验数据计算小球的转动惯量I。

3. 数据分析,对实验数据进行统计分析,绘制实验数据的图表,并进行数据的比较和讨论。

六、实验结果与结论。

通过实验数据处理和分析,得出小球的转动惯量I为x kg·m^2。

实验结果表明,物体的转动惯量与其质量和转动半径的平方成正比,验证了转动惯量的计算公式I=mr^2。

七、实验心得体会。

本次实验通过三线摆法测量物体的转动惯量,加深了对物体转动惯量的理解,同时也锻炼了实验操作和数据处理的能力。

在实验中,我们也发现了一些问题和不足之处,对于实验过程中的误差和影响因素,需要进一步探讨和改进。

三线摆测刚体转动惯量实验报告(带数据)

三线摆测刚体转动惯量实验报告(带数据)

曲阜师范大学实验报告实验日期:2020.5.24 实验时间:8:30-12:00姓名:方小柒学号:**********年级:19级专业:化学类实验题目:三线摆测刚体转动惯量一、实验目的:1.学会用三线摆法测定物体转动惯量原理和方法。

2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。

二、实验仪器:三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪三、实验原理:转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。

三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。

下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。

三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。

三摆线示意图当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。

根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量:下盘:J=下盘+圆环:J1=圆环:J= J1- J0=(条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合)因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。

四、实验内容:1.了解三线摆原理以及有关三线摆实验器材的知识。

2.用三线摆测量圆环的转动惯量,并验证平行轴定理(1)测定仪器常数H、R、r恰当选择测量仪器和用具,减小测量不确定度。

自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。

(2)测量下圆盘的转动惯量线摆上方的小圆盘,使其绕自身转动一个角度,借助线的张力使下圆盘作扭摆运动,而避免产生左右晃动。

自己拟定测量下圆盘转动惯量的方法。

(3)测量圆环的转动惯量盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和内、外直径。

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告

用三线摆测刚体转动惯量实验报告实验目的:1. 掌握使用三线摆测定刚体转动惯量的方法;2. 理解刚体转动惯量的概念及其在物体转动中的作用。

实验器材:1. 三线摆实验装置:包括一个固定在架子上的支持轴、一个可绕轴转动的支架;2. 不同形状和质量的刚体:如圆柱体、长方体等;3. 黄铜环:用于挂载刚体;4. 轻质细线:用于连接黄铜环和支架;5. 增重片:用于调整刚体的质量。

实验原理:1. 刚体转动惯量的定义:刚体绕轴的转动惯量J定义为刚体转动时,由质量分布带来的转动惯量关于转轴的积分,即J=∫r^2dm,其中r为质点到转轴的距离,dm为质量微元。

2. 三线摆实验方法:利用物体绕支撑点转动时的平衡条件,通过在不同位置附加不同质量的增重片,使物体绕转轴发生周期性摆动。

通过测量周期和刚体实际质量,计算出刚体的转动惯量。

实验步骤:1. 将三线摆装置安装于平稳的实验台上,并将刚体挂载在黄铜环上,使其悬吊在三线摆装置上;2. 调整黄铜环的位置,使刚体能够自由摆动,并找到刚体摆动的平衡位置;3. 测量刚体的长度L,以及黄铜环与刚体重心的距离d;4. 测量刚体的质量m,并记录刚体的形状;5. 在黄铜环上附加适量的增重片,使刚体产生微小摆动;6. 启动计时器,并记录刚体进行n个周期的时间T;7. 根据实验数据,计算刚体的转动惯量J=4π²(L+d)⁴m/nT²。

实验数据记录与处理:在进行实验时,根据实际情况记录以下数据:1. 刚体的形状、质量和长度;2. 增重片的质量;3. 进行n个周期的时间T。

根据记录的数据,利用实验原理中的公式计算刚体的转动惯量,并进行数据处理与分析。

实验注意事项:1. 实验过程中要小心操作,避免刚体与装置碰撞或摩擦造成误差;2. 实验时要确保刚体摆动的幅度足够小,以保证计算中的近似条件成立;3. 注意记录实验数据时的精确度,尽量减小测量误差;4. 实验完成后要对仪器进行清理,保持实验室的整洁。

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告一、实验目的本次实验的主要目的是通过三线摆测量物体转动惯量的实验,帮助同学们更好地理解转动惯量的概念,掌握三线摆的原理和使用方法,提高实验操作能力和数据处理能力。

二、实验原理转动惯量(也叫转动阻力)是描述物体在受到外力作用下,围绕某一点或轴线旋转时所表现出的抵抗运动改变的能力。

简单来说,就是物体在旋转过程中,抵抗自身发生旋转的能力。

转动惯量的单位是千克·米2。

三、实验器材1. 三线摆:一根长杆,中间连接一个质量块,下面吊一个质量块,形成一个三角形。

2. 计时器:用于记录物体旋转的时间。

3. 加速度计:用于测量物体的加速度。

4. 角度仪:用于测量物体旋转的角度。

5. 数据处理软件:用于处理实验数据,计算出物体的转动惯量。

四、实验步骤1. 将三线摆调整到水平状态,然后将质量较大的物体放在三角形的顶点,质量较小的物体放在底端。

确保两个物体之间的距离适中,以免影响实验结果。

2. 用角度仪测量物体开始旋转前的角度,然后启动计时器,记录物体旋转一周所需的时间。

重复多次,取平均值作为实验数据。

3. 在物体旋转过程中,用加速度计测量其加速度。

同样地,取多次实验数据的平均值作为实验数据。

4. 将实验数据导入数据处理软件,按照公式计算出物体的转动惯量。

五、实验结果与分析通过本次实验,我们成功地测量出了物体的转动惯量。

在实验过程中,我们需要注意以下几点:1. 确保三线摆的状态稳定,避免因为摆动过大而影响实验结果。

2. 在测量加速度时,要保持加速度计与物体的距离恒定,以免误差过大。

3. 在计算转动惯量时,要严格按照公式进行计算,避免出现错误。

通过这次实验,我们不仅掌握了三线摆测量物体转动惯量的原理和方法,还锻炼了自己的实验操作能力和数据处理能力。

希望大家在今后的学习生活中,能够将所学知识运用到实际中去,不断提高自己的综合素质。

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告

三线摆测物体转动惯量实验报告一、实验目的本次实验的主要目的是通过三线摆测物体转动惯量的实验,了解并掌握三线摆的基本原理、结构和使用方法,学会利用三线摆测量物体的转动惯量,为后续学习打下基础。

二、实验原理1. 三线摆是什么?三线摆就是一个由三条平行的杆子组成的摆,我们称之为“三线摆”。

它是一种简单而有趣的物理实验装置,可以用来研究物体在不同角度下的受力情况,从而计算出物体的转动惯量。

2. 三线摆的结构三线摆主要由三条平行的杆子组成,其中一条杆子固定不动,称为“摆柱”;另外两条杆子可以在一定范围内摆动,称为“摆臂”。

这两根摆臂通过一个铰链与摆柱相连。

3. 三线摆的工作原理当摆臂受到外力作用时,它们会绕着摆柱做周期性的摆动。

这种摆动会产生一个角加速度a,使得物体沿着圆周运动。

根据牛顿第二定律F=ma,我们可以得出物体所受的合力F等于它的质量m乘以角加速度a。

因此,通过测量三线摆在不同角度下的受力情况,我们就可以计算出物体的转动惯量I。

4. 如何测量物体的转动惯量?首先需要将三线摆调整到合适的位置和角度,然后让物体挂在上面。

接着记录下物体在不同角度下的受力情况(包括重力、支持力、摩擦力等),并用公式I=mg2/r2计算出物体的转动惯量。

最后再将结果进行单位换算即可得到最终结果。

三、实验步骤1. 首先组装好三线摆,并将其调整到合适的位置和角度。

注意要保证三个支点在同一平面内且相互垂直。

2. 然后将待测物体挂在三线摆上,并记录下物体的质量m和长度l。

这些数据对于计算转动惯量非常重要。

3. 接着让三线摆自由摆动一段时间,直到它停止为止。

在此过程中要注意观察物体的运动轨迹和受力情况,并及时记录下来。

4. 最后根据实验数据计算出物体的转动惯量I,并进行单位换算。

如果结果不够准确,可以适当调整三线摆的位置和角度重新进行实验。

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告

三线摆测转动惯量实验报告一、实验目的1、掌握三线摆测定物体转动惯量的原理和方法。

2、学会使用秒表、游标卡尺、米尺等测量工具。

3、加深对转动惯量概念的理解,以及其与物体质量分布和转轴位置的关系。

二、实验原理三线摆是由三根长度相等的摆线将一匀质圆盘悬挂在一个水平的圆盘支架上构成的。

当摆盘绕中心轴扭转一个小角度后,在重力作用下,摆盘将作周期性的扭摆运动。

设下圆盘质量为$m_0$,半径为$R_0$,上圆盘质量为$m$,半径为$r$,两圆盘之间的距离为$H$,扭转角为$\theta$。

当下圆盘扭转一个小角度$\theta$ 后,其势能的改变为:$\Delta E_p = m_0 g \Delta h$其中,$\Delta h$ 为下圆盘重心下降的高度。

由于扭转角度很小,$\sin\theta \approx \theta$,则:$\Delta h =\frac{R_0^2\theta^2}{2H}$根据能量守恒定律,摆动过程中势能与动能相互转化,且机械能守恒。

当下圆盘摆动到最大角度时,动能为零,势能最大;当下圆盘经过平衡位置时,势能为零,动能最大。

设下圆盘摆动的周期为$T_0$,则其转动惯量$I_0$ 为:$I_0 =\frac{m_0gR_0^2T_0^2}{4\pi^2H}$对于质量为$m$ 的待测物体放在下圆盘上时,系统的转动惯量为$I$,摆动周期为$T$,则有:$I = I_0 + m\left(\frac{r^2}{2} + H^2\right)$从而可求得待测物体的转动惯量$I$ 为:$I =\frac{m_0gR_0^2T^2}{4\pi^2H} m_0\left(\frac{r^2}{2} + H^2\right)$三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测物体(圆环、圆柱等)。

四、实验步骤1、调节三线摆装置调节底座水平,使上、下圆盘处于水平状态。

调节三根摆线等长,且长度约为 50cm 左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲阜师大学实验报告
实验日期:2020.5.24 实验时间:8:30-12:00
:方小柒学号:**********
年级:19级专业:化学类
实验题目:三线摆测刚体转动惯量
一、实验目的:
1.学会用三线摆法测定物体转动惯量原理和方法。

2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。

二、实验仪器:
三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪
三、实验原理:
转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。

三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。

下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。

三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。

三摆线示意图
当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。

根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量:
下盘:J
=
下盘+圆环:J1=
圆环:J= J1- J0=
(条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合)
因此,通过长度、质量和时间的测量,便可求出刚体绕某
轴的转动惯量。

四、实验容:
1.了解三线摆原理以及有关三线摆实验器材的知识。

2.用三线摆测量圆环的转动惯量,并验证平行轴定理
(1)测定仪器常数H、R、r
恰当选择测量仪器和用具,减小测量不确定度。

自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。

(2)测量下圆盘的转动惯量
线摆上方的小圆盘,使其绕自身转动一个角度,借助线的力使下圆盘作扭摆运动,而避免产生左右晃动。

自己拟定测量下圆盘转动惯量的方法。

(3)测量圆环的转动惯量
盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和、外直径。

利用公式求出圆环的转动惯量。

(4)验证平行轴定理
将质量和形状尺寸相同的两金属圆柱体对称地放在下圆盘上。

测量圆柱体质心到中心转轴的距离。

计算圆柱体的转动惯量。

五、实验步骤:
Ⅰ、流程简述:一、测三线摆空盘的转动惯量:
1.调节仪器:使用水平仪,调整上盘和下盘使它们保持水平。

2.分别测出上盘、下盘的半径r, R,以及两盘之间的高度H。

3.启动振动和测量周期:用秒表测出10次全振动所需的时间,重复5次,计算出平均周期。

4.利用测得周期,带入计算。

5.与圆盘的理论值比较,J
0=m
R2/2,求出相对误差。

二、测圆环的转动惯量:
1.把圆环放在下盘中,注意使环的质心恰好在转动轴上,重复以上步骤,测出载有圆环的转动周期,根据公式计算转动惯量。

2.用游标卡尺分别测出圆环的、外半径R和R外,计算理论结果J理论=(R2+ R 外
2)m/2。

3.将实验值和理论值相比较,给出相对误差。

Ⅱ、线上操作:
正式开始实验:
(1)开始实验后,从实验仪器栏中点击拖拽仪器至实验台上。

三线摆本身无法删除。

开始时实验仪器已经摆好在实验桌上。

将实验仪器栏,实验提示栏和实验容栏展开,将鼠标移至仪器各部分均会显示说明信息。

双击其左上部系统菜单图标关闭仪器图片窗口,在实验仪器列表窗口双击其左上部系统菜单图标关闭之。

(2)三线摆
双击桌面上三线摆小图标,弹出三线摆的操作窗体,包括三线摆振动系统、两个圆柱体、圆环、水平仪等。

(3)水平调节界面
将水平仪拖动到三线摆支架上方或下圆盘中,观察三线摆是否水平,如下图:
可以通过三线摆支架下方两个调节旋钮调节支架上方水平,三线摆上圆盘上方的六个旋钮调节下圆盘水平。

当调节下圆盘的水平时,要先将水平调节开关打
开。

(4)米尺测量上圆盘悬点之间的距离
双击桌面上的米尺后,出现米尺的操作主界面,如下图:
选择“上圆盘悬点之间的距离”,如下图所示:
可以通过点击米尺上的选择方向图标来旋转改变米尺的角度。

记下各个悬点之间的距离。

同理,测量下圆盘悬点之间的距离。

在测量下圆盘悬点之间的距的视图中,有一个放大的区域,有利于清晰地读出刻度数,如下图:
测量出各个悬点之间的距离,填入表中。

再用米尺测量出上下圆盘之间的距离,该步骤在米尺的主界面中完成,如下图:
可以拖动该图左边的白色矩形框,右边同步放大显示米尺和三线摆,也可以拖动中间的米尺,改变其上下位置。

(5)测量没有放置物品时三线摆的转动周期
双击桌面上的电子停表,将三线摆拖动一个小角度,松开后,记录三线摆转动20个周期的时间。

(6)游标卡尺测量圆环的径
双击桌面上的游标卡尺,出现游标卡尺的主视图,如下图:
点击开始测量按钮后,在该图的左边出现测量容,如下图:
右击锁定按钮,打开游标卡尺,拖动下爪一段距离;将圆环从待测物栏中拖动到两爪之间,如下图:
拖动游标卡尺进行测量,记下读数。

如果需要重复测量某一物品时,点击清除物品按钮后,再次将物品拖动到游标卡尺上(下)爪的测量位置。

(7)同理测量圆环的外径、圆柱体的直径以及在下圆盘上放好两圆柱体后两圆柱体之间的距离。

(8)测量三线摆加上圆环后的转动周期
将圆环拖动到三线摆的下圆盘中,当拖动圆环到下圆盘,放下圆盘时圆盘会自动停在下圆盘的对称位置。

如下图:
转动三线摆,用电子停表记下周期。

(9)测量下圆盘放好两圆柱体后的转动周期
将两圆柱体放在下缘盘上,当放好一个圆柱体后,拖动另一个圆柱体到下圆
盘,松下鼠标后,圆柱体会自动放在与上一个圆柱体对称的位置上。

如下图:
(10
)转动三线摆测量加上两圆柱体后的摆动周期
(11)完成实验。

按照实验容中的要求完成实验。

保存数据,单击记录数据按
钮弹出记录数据页面。

在记录数据页面的相应地方填写实验中的测量数据,点击关闭按钮,则暂时
关闭记录数据页面;再次点击记录数据按钮会显示记录数据页面。

六、实验数据:
表1.实验仪器各量的数据记录
下圆盘半径
R(cm)
上圆盘半径
r(cm)
上圆盘各悬点
间平均距离
a(cm)
下圆盘各悬点
间平均距离
b(cm)
上下盘之间的
距离H(cm)
下圆盘直径
D(cm)
圆环半径
R

(cm)
圆环外半径
R

(cm)
9.858 4.418 7.65 17.07 41.15 19.716 16.430 18.920
a=(7.75+7.70+7.50)/3=7.65
b=(17.05+17.22+16.95)/3=17.07
H=(41.15+41.17+41.13)/3=41.15
R=(16.430+16.428+16.432)/3=16.430
R外=(18.920+18.922+18.918)/3=18.920
r=4.418 R=9.858 D=19.716
表2.测圆盘、圆环转动惯量数据记录及处理
质量(g)
10个周期T(s) 1个周期
T(s)
测量值
I(g·cm2)
理论值
I(g·cm2)
相对误差
E
1 2 3 4 5
下盘质量
=358.5
13.50 13.53 13.54 13.48 13.57 1.352 17234.31 17419.54 1.06%
圆环质量
=385.5
15.56 15.51 15.57 15.53 15.49 1.553 29957.57 30191.03 0.77%
七、思考题:
1、调节三线摆的水平时,是先调节上圆盘水平还是先调节下圆盘水平?
答:先调节上圆盘水平
2、三线摆的振幅受空气的阻尼会逐渐变小,它的周期也会随时间变化吗?
答:周期不变,影响不大,它的周期只跟重力加速度有关
3、如何测定任意形状物体对特定轴的转动惯量?
答:可利用平行轴定理先测定物体绕与特定轴平行的过物体质心的轴的转动惯
量J',仪器可用扭摆或三线摆.若特定轴与过质心轴的距离为L,则物体绕特定
轴转动的转动惯量J=J'+mL^2。

相关文档
最新文档