第3章动态规划3_0-1背包问题..

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

0_1背包问题的多种解法

0_1背包问题的多种解法

一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+ni iiW yw x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

0_1背包问题的多种解法

0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。

注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。

在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。

2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。

用蛮力法、动态规划法和贪心法求解0 1背包问题

用蛮力法、动态规划法和贪心法求解0 1背包问题
}
printf("\n");
}

以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>

0_1背包问题的多种解法

0_1背包问题的多种解法

、问题描述0/1背包问题:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W,价值为正整数V,背包能承受的最大载重量为正整数V,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)、算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i Wi i ⑴X i {0,1(1 i n)nmax v i x (2)i 1于是,问题就归结为寻找一个满足约束条件( 1),并使目标函数式(2)达到最大的解向量首先说明一下0-1背包问题拥有最优解假设(X1, X2,X3,……,X n)是所给的问题的一个最优解,则 (X2,X3,……,X n)是下面问题的一个最优解:nWi 2X i {0,1}(2W1X1 maxi n) inv i X。

如果不是的话,设(y2> y3>....2..,y n)是这个问题的一个最优解,则n nV i y i V i X ii 2 i 2,且 W1X1n nW i y i W。

因此,V1X1 V i y ii 2 i 2n nV1X1V j X VX i,这说明i 2 i 1(X1,y2,y3, ....... , y n)是所给的0-1背包问题比(X1,X2,X3, ............ , X n)更优的解,从而与假设矛盾穷举法:用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于精品(X1, X2,X3,……X n)。

程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

(a)四个物品和一个容量为10的背包(b)用回溯法求解0-1背包问题的过程递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

用动态规划法求解0-1背包问题

用动态规划法求解0-1背包问题

0 — 1背包 问题 的解 决 方法 多 种 多样 ,常用 的算法 有贪 心算 法 、 回溯法 、 分 枝一限界法 等 。本文 采用 动态
规 划 原理 来 求 解 0 一 l背 包 问题 也不 失 为 一 种 简单 明 了、 清 晰 易懂 的方法 。 参考 文献 :
[ 1 ] 王 晓东. 计算机 算法设计与分析 [ M] . 北京: 电子 工业 出版社
w h i l e( m【 i Ⅱ c 】 = = m[ i 一 1 ] [ c ] ) i - - ; w h i l e( i > 0 ) { j = i 一 1 ; w h i l e( m『 j 1 [ c ] 一 m [ j 】 【 c ] != v i i - 1 ] & &- j > 0 )
[ i ] [ j 】 是 下 面两 个 量 的最 大值 : m[ i + 1 ] [ j ] 和 m【 i + 1 】 【 j — w [ i 】
] + V 嘲


f o r ( j = 0 ; j < = c ; j + + ) p r i n t f ( ” %3 d . t , m f i 1 【 j 】 ) ; p i f n f ( ” \ I 1 ” ) ;}
等于 v 『 n 1 ;
k n a p s a c k ( ) ;d i s p O ; p r i n t f ( ” 最 大价值= %d \ n ” , m 【 n ] [ c 】 ) ;
o f r ( i _ 0 ; i < = n ; i + + )
②当前的背包容量 J 大于等于物品重量 w [ i ] 时, m
2 0 07 .
i n t n , C , w [ M A X ] , v [ MA X ] , m [ MA x】 [ MA x 】 = { 0 } ; v o i d k n a p s a c k 0 {i n t i ;

C语言动态规划之背包问题详解

C语言动态规划之背包问题详解

C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。

问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。

根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。

它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。

输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。

输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。

按照题⽬要求进⾏打表,列出对应的dp表。

W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。

第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。

第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。

动态规划中的0-1背包模型

动态规划中的0-1背包模型

动态规划中的0-1背包模型 看完题后能否形成⼀个清晰思路的关键就在于能否根据题意的描述构建出⼀个恰当的模型,适合这道题⽬本⾝同时⼜能联系⾃⼰之前头脑库中的模型。

⽽对于01背包这类模型来说,形成的关键思维就在想最后⼀个n,即⽤⼀种抽象的语⾔把最终的结果给描述出来。

01背包的例⼦就不举了,这⾥先给出⼀个简单的01背包变形的例⼦: 按照之前的逻辑,我们⽤抽象的语⾔描述这道题的结果就是:给定⼀个长度为n的数列,问从这n个数中获取某些的数的和,使这个和最⼤同时⼜不超过某个值k,问能取⼏个或者这个和是多少。

话说到这⾥,就很容易和0-1背包⼀⼀对应起来了,这个k就是0-1中的最⼤背包容量,某些数的最⼤和就是0-1背包中所有物品的最⼤价值。

不过0-1背包中的value和weight两个量在这道题⽬中缩成了num这⼀个变量。

下⾯给出两个例题,都是这样的思路。

饭卡Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18818 Accepted Submission(s): 6584Problem Description电⼦科⼤本部⾷堂的饭卡有⼀种很诡异的设计,即在购买之前判断余额。

如果购买⼀个商品之前,卡上的剩余⾦额⼤于或等于5元,就⼀定可以购买成功(即使购买后卡上余额为负),否则⽆法购买(即使⾦额⾜够)。

所以⼤家都希望尽量使卡上的余额最少。

某天,⾷堂中有n种菜出售,每种菜可购买⼀次。

已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。

Input多组数据。

对于每组数据:第⼀⾏为正整数n,表⽰菜的数量。

n<=1000。

第⼆⾏包括n个正整数,表⽰每种菜的价格。

价格不超过50。

第三⾏包括⼀个正整数m,表⽰卡上的余额。

m<=1000。

n=0表⽰数据结束。

0-1背包问题动态规划详解及代码

0-1背包问题动态规划详解及代码

0/1 背包问题动态规划详解及C代码动态规划是用空间换时间的一种方法的抽象。

其关键是发现子问题和记录其结果。

然后利用这些结果减轻运算量。

比如01背包问题。

/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为P1,P2,...,Pn.若每种物品只有一件求旅行者能获得最大总价值。

输入格式:M,NW1,P1W2,P2......输出格式:X*/因为背包最大容量M未知。

所以,我们的程序要从1到M一个一个的试。

比如,开始任选N 件物品的一个。

看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。

怎么能保证总选择是最大价值呢?看下表。

测试数据:10,33,44,55,6c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。

加谁??很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。

总的最佳方案是5+4为9.这样.一排一排推下去。

最右下放的数据就是最大的价值了。

(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#include<stdio.h>int c[10][100];/*对应每种情况的最大价值*/int knapsack(int m,int n){int i,j,w[10],p[10];printf("请输入每个物品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%d,%d",&w[i],&p[i]);for(i=0;i<10;i++)for(j=0;j<100;j++)c[i][j]=0;/*初始化数组*/for(i=1;i<=n;i++)for(j=1;j<=m;j++){if(w[i]<=j) /*如果当前物品的容量小于背包容量*/{if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上背包剩下的空间能放的物品的价值*//*大于上一次选择的最佳方案则更新c[i][j]*/c[i][j]=p[i]+c[i-1][j-w[i]];elsec[i][j]=c[i-1][j];}else c[i][j]=c[i-1][j];}return(c[n][m]);}int main(){int m,n;int i,j;printf("请输入背包的承重量,物品的总个数:\n");scanf("%d,%d",&m,&n);printf("旅行者背包能装的最大总价值为%d",knapsack(m,n)); printf("\n");return 0;}。

0-1背包问题

0-1背包问题

0-1背包问题背包问题:n种物品,每种物品有重量w和价值v,背包所能承受的最⼤重量为c。

如何挑选物品可以使总物品的价值最⼤。

0-1背包问题:限定每种物品的个数只能是0或1.如:5个物品,质量分别为3,5,7,8,9,价值分别为4,6,7,9,10。

背包所能承受重量为22.给物品从0开始编号,挑选物品1,3,4(价值分别为6,9,10)时,总价值最⼤为25,此时重量为22.运⽤动态规划思想,可以构造有效的⽅法。

算法基本思路:1.构造最优表,获取最⼤价值;构造表mv[0...n][0...c],mv[i][j] 表⽰前 i 项物品(即0到i-1)中挑选物品放⼊承受重量为 j 的最⼤价值。

显然,当 i 为0即没有物品时,mv[0][*] = 0;当 j 为0即最⼤重量为0时,mv[*][0] = 0。

(*表⽰任意)对于mv[i][j]只有两种可能的情况,(要注意的是,i 表⽰前i 项物品,物品编号从0开始,即 i-1 表⽰第i 项物品)(1)当w[i-1] > j 即当前物品重量⼤于当前最⼤承受重量时,只能放弃当前物品即 mv[i][j] = mv[i-1][j];(2)当w[i-1] <= j 即当前物品重量⼩于当前最⼤承受重量时,通过⽐较取此物品后的最⼤价值(即mv[i-1][j-w[i-1]] + v[i-1])与不取此物品的最⼤价值(即mv[i-1][j]),挑出较⼤值即 mv[i][j] = max(mv[i-1][j], mv[i-1][j-w[i-1]])。

通过上述⾃底向上打表,可构造出最优值mv[n][c]。

2.通过最优表,获取构造路线即挑出可以得到最⼤价值的物品。

通过上述可知,当w[i-1] > j 时,mv[i][j] = mv[i-1][j];当w[i-1] <= j 时,mv[i][j] = max(mv[i-1][j], mv[i-1][j - w[i-1]] + v[i-1])。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

0-1背包问题的递归方法

0-1背包问题的递归方法

0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。

定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。

递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。

1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。

代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。

01背包问题三维组数转移方程

01背包问题三维组数转移方程

01背包问题三维组数转移方程01背包问题是一种经典的动态规划问题,主要解决的是在给定的背包容量和物品集合下,如何选择物品使得总价值最大化的问题。

普通的01背包问题以物品数量和背包容量为两个维度,而三维01背包问题则在此基础上增加了一个维度,即物品数量的限制。

下面将详细介绍三维01背包问题以及相关的转移方程。

一、背包问题概述背包问题是计算机算法中一个经典的问题,它可以追溯到20世纪50年代,最早由Bellman和Dantzig提出。

背包问题可以分为多种类型,其中最基础的是01背包问题。

在01背包问题中,有一系列物品,每个物品有自己的价值和重量,同时有一个背包容量限制。

问题的目标是在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大化。

二、三维01背包问题定义三维01背包问题是在普通的01背包问题基础上增加了一个维度,即每个物品的数量有限制。

具体定义如下:假设有n种不同的物品,每种物品有自己的价值v[i]、重量w[i]和数量c[i],其中1 <= i <= n。

现有一个容量为V的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。

要求:每种物品最多只能选择c[i]个(0 <= c[i] <= 100)。

每种物品最多只能选取1个,并且只有选取某个物品的数量达到上限c[i]时,才能继续选取该物品。

三、三维01背包问题的转移方程三维01背包问题的转移方程与普通的01背包问题类似,只是多了一个维度。

我们可以使用动态规划来解决三维01背包问题,其中dp[i][j][k]表示前i种物品,在背包容量为j的情况下,选择物品数量达到k时的最大价值。

那么转移方程如下:dp[i][j][k] = max(dp[i-1][j - w[i]*l][k-l] + v[i]*l),其中0 <= l <= min(k, j/w[i])。

上述转移方程的含义是在选择第i种物品时,我们有l个物品的数量达到上限c[i],放入背包中,此时总价值为dp[i-1][j -w[i]*l][k-l] + v[i]*l。

背包问题的各种求解方法

背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。

因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。

则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。

如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。

这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。

1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。

则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。

由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。

因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。

背包问题 动态规划

背包问题 动态规划

背包问题动态规划背包问题是一个经典的动态规划问题,主要是在给定的一些物品中选择一部分物品放入背包中,使得放入背包的物品总价值最大。

背包问题是动态规划中的一个重要问题,可以用来解决多种实际问题,比如旅行商问题、资源分配等。

在背包问题中,我们有一个容量为W的背包和n个物品,每个物品都有一个重量和一个价值。

我们需要选择一些物品放入背包中,使得放入背包的物品总重量不超过背包容量,并且总价值最大。

动态规划是一种算法解决问题的思想,其基本思路是将问题划分为重复的子问题,并利用子问题的解来构建原问题的解。

在背包问题中,动态规划可以分为以下几步:1. 状态定义:定义一个二维数组dp[i][j],表示在前i个物品中,背包容量为j时的最大价值。

2. 状态转移方程:dp[i][j]的状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

3. 边界条件:当i=0时,dp[0][j] = 0,表示没有物品可选时的情况;当j=0时,dp[i][0] = 0,表示背包容量为0时,无论有多少物品可选,最大价值都为0。

4. 最优解求取:根据状态转移方程,我们可以通过填充dp数组来求取最优解。

在填充dp数组时,需要注意边界条件和状态转移方程的递推关系。

5. 回溯求解:通过填充dp数组,我们可以得到最大价值,但是无法得到具体的物品组合。

为了得到具体的物品组合,我们可以采用回溯的方法,从dp数组中找到最大价值的物品。

从最后一个物品开始,倒着依次回溯,如果dp[i][j] > dp[i-1][j],表示第i个物品被选中,否则不被选中。

通过以上步骤,我们可以解决背包问题,并得到最优解。

背包问题的动态规划算法时间复杂度为O(nW),其中n表示物品的个数,W表示背包的容量。

由于需要填充dp数组,所以需要额外的空间来存储dp数组,空间复杂度为O(nW)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) vn j wn m(n, j ) (3.4.4) 0 0 j wn (2)
注:(3-4-3)式 此时背包容量为j,可选择物品为i。此时在对xi 作出决策之后,问题处于两种状态之一: 背包剩余容量是j,没产生任何效益; 剩余容量j-wi,效益值增长了vi . 从n推至i+1, i算出最优值m(i, j) ( i=n,…,1) 。 m(1,C)为最优值。 然后用算法traceback找出最优解xi ,其中i,C为整值。
算法复杂度分析: 从m(i,j)的递归式容易看出,算法knapsack需 要O(nc)计算时间; traceback需O(n)计算时间 ; 算法总体需要O(nc)计算时间。当背包容量c很 大时,算法需要的计算时间较多。例如,当 c>2n时,算法需要Ω(n2n)计算时间。
0-1背包问题
问题实例: 有5个物品,其重量分别是{2, 2, 的容量为10。
0 1 2 3 4 5 6 7 8 9 10
0
w1=2 v1=6 w2=2 v2=3 w3=6 v3=5 w4=5 v4=4 w5=4 v5=6
1
2 3 4 5
0-1背包问题
问题实例: 有5个物品,其重量分别是{2, 2, 6, 5, 4},价 值分别为{6, 3, 5, 4, 6},背包的容量为10。
6
6
6
10
6
10
6
0-1背包问题
问题实例: 有5个物品,其重量分别是{2, 2, 6, 5, 4},价 值分别为{6, 3, 5, 4, 6},背包的容量为10。
统计结果:
5.改进算法
为克服以上缺点,引入阶梯函数。利用序偶概念,改进 算法的计算时间复杂性为O(2n )。而当所给物品的重量wi是 整数时,其计算时间复杂性为 O(min{nc, 2n }) (略) 。 动态规划的其他应用实例(略) 凸多边形最优三角剖分 多边形游戏 图像压缩 电路布线 流水作业调度 最优二叉搜索树
对比
• 4. 分治法与动态规划适用条件: ① 分治法:原问题具有最优子结构性质的前提下,分解出的 子问题都绝对相互独立. ② 动态规划:原问题具有最优子结构性质的前提下,分解出 的子问题并不相互独立,求解一个子问题可能要用到已经求解 过的子问题的解,子问题间具有重叠性,即适合具有重叠子问 题性质的原问题. • 5. 分治法与动态规划复杂度分析: ① 分治法因为对子问题进行了多次求解,所以效率比动态规 划低一点.(时间复杂度相对高) ② 动态规划求解需要将子问题的解保存下来,所以会比分治 法多用一些空间.(空间复杂度相对高)
当wi(1 i n) 0-1背包问题的动态规划算法Knapsack如下: 为正整数时,用二 void knapsack( int []v, int []w, int c, int [][]m) 维数组m[][]来存 { 储m(i, j)相应的最 int n = v.length-1; 优值。 int jMax = min(w[n]-1, c) //背包剩余容量// for(int j = 0; j<=jMax; j++) //背包装不下w[n]的情况// m[n][j]=0; for(int j=w[n]; j<=c; j++) //背包装得下w[n]的情况// m[n][j]=v[n]; for(int i=n-1; i>1; i--) { jMax=min(w[i]-1, c); for(int j=0; j<=jMax; j++) //背包装不下w[i]的情况// m[i][j]=m[i+1][j]; //没产生任何效益// for(int j=w[i]; j<=c; j++) //背包装得下w[i]的情况// m[i][j]=max(m[i+1][j], m[i+1][j-w[i]]+v[i]); //效益值增长vi ?//
0 1
0 0 0
2
6 3 0
3
6 3 0
4
9 6 6
5
9 6 6
6
12 9 6
7
12 9 6
8
15 9 6
9
15 10 10
10
15 11 11
0
w1=2 v1=6 w2=2 v2=3 w3=6 v3=5 w4=5 v4=4 w5=4 v5=6
1
2 3 4 5
0 0 0
0
0
0
0
0
0
0
0
6
6
6
6
6
6
6
(2)能得一族解,有利分析结果是否有用或进行选择(决策), 且大大节省工作量。 (3)能利用经验,提高求解效率。动态规划方法反映过程逐段 演变的前后联系,与实际进程更紧密。 (4)有广泛应用背景
对比
• 1. 分治法与动态规划主要共同点: 二者都要求原问题具有最优子结构性质,都是将原问题分而治 之,分解成若干个规模较小(小到很容易解决的程序)的子问题. 然后将子问题的解合并,形成原问题的解.
(2)数值求解中,当问题中的状态变量个数太多,由于计算机 存储量及计算速度限制而无法对付“维数障碍”。
总结
动态规划的优越之处:
(1)易于确定全局解。动态规划方法是一种逐步改善的方法, 它把原问题化成一系列结构相似的最优化子问题,而每个子 问题的变量个数比原问题少得多,约束集合也简单得多,故 较易于确定全局最优。特别当处理离散类型问题时,动态规 划是求出全局最优化解的唯一方法。
max
v x
i i 2
n
i
n wi xi C w1 y1 s.t. i 2 x {0,1}, 2 i n i
证明:使用反证法. 若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而 (y2,y3,…,yn)不是它的最优解.显然有 ∑ vizi > ∑ viyi (i=2,…,n) 且 w1y1+ ∑ wizi C 因此 v1y1+ ∑ vizi (i=2,…,n) > ∑ viyi, (i=1,…,n) 说明(y1,z2, z3,…,zn)是(3-4-1)0-1背包问题的一个更优解,导出 (y1,y2,…,yn)不是背包问题的最优解,矛盾.
0 1 2 3 4 5 6 7 8 9 10
0
w1=2 v1=6 w2=2 v2=3 w3=6 v3=5 w4=5 v4=4 w5=4 v5=6
1
2 3 4 5
0 0 0 0 6 6 6 6 6 6 6
m[5][<4] = 0, m[5][>=4]=6
0-1背包问题
问题实例: 有5个物品,其重量分别是{2, 2, 6, 5, 4},价 值分别为{6, 3, 5, 4, 6},背包的容量为10。
}
3.算法描述
3.算法描述
m[1][c]=m[2][c]; //令m[1][c]=m[2][c]// if(c>=w[1]) //如果背包装得下w[1]// m[1][c]=max(m[1][c], m[2][c-w[1]]+v[1]); } void traceback(int [][]m, int []w, int c, int []x) //求最优解xi // { int n = w.length-1; for(int i=1; i<n; i++) knapsack算法的 if(m[i][c]==m[i+1][c]) x[i]=0; 一个缺点是要求 else { x[i]=1; 所给物品的重量 c= c- w[i]; } wi (1 i n) x[n]=(m[n][c]>0)?1:0; 是整数 } 说明:当wi为正整数时,用二维数组m[][]来存储m(i,j)相应的 最优值。
第3章 动态规划
(Dynamic Programming)
—3.4 0-1背包问题
0-1背包问题
问题描述: 给定n种物品和一背包。物品i的重量是wi, 其价值为vi,背包的容量为C。问应如何选择 装入背包中的物品,使得装入背包中物品的 总价值最大?
0-1背包问题: 对每种物品i装入背 包或不装入背包。不 能将物品i装入背包多 次,也不能只装入部 分的物品i。
• • • • • •
总结
动态规划算法适用于解最优化问题。 通常按以下几个步骤设计动态规划算法: (1)找出最优解的性质,并刻画其结构特征;
(2)递归地定义最优值;
(3)以自底向上的方式计算出最优值 (4)根据计算最优值时得到的信息,构造最优解。
总结
动态规划缺陷: (1)无一统一标准模型可供应用。利用“最优子结构性质”得 出递归关系式后,必须结合问题的特点,结合其他数学技巧 求解,且无统一处理方法。
2.递归关系
设所给0-1背包问题的子问题
n
max
v
k i
k xk
(3.4.2)
n wk xk j s.t . k i x {0,1}, i k n k

的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i, i+1,…,n时0-1背包问题的最优值。
2.递归关系
由0-1背包问题的最优子结构性质,可以建立计算 m(i,j)的递归式如下: 第i个物品装入背包
第i个物品不装入背包
(3.4.3)
j wi m(i 1, j ), m(i 1, j wi ) vi } max{ m(i, j ) 0 j wi m(i 1, j )
0-1背包问题
给定n种物品和一背包。物品i的重量是wi,其价值为vi, 背包的容量为C。问:应如何选择装入背包的物品,使得装 入背包中物品的总价值最大? 0-1背包问题描述:给定C >0, wi >0, vi >0 , 1≤i≤n.要求找一 n元向量(x1,x2,…,xn), xi∈{0,1}, ∑ wi xi≤C,且∑ vi xi达最大, 即一个特殊的整数规划问题。
相关文档
最新文档