概率统计和随机过程课件第六章大数定律与中心极限定理
大数定律与中心极限定理通用课件
01
中心极限定理
定义
中心极限定理:在大量独立同散布的 随机变量下,这些随机变量的平均值 的散布趋近于正态散布,即使这些随 机变量的散布本身并不一定是正态散 布。
中心极限定理是概率论和统计学中的 一个基本概念,它在许多领域都有广 泛的应用,如金融、生物、社会科学 等。
适用范围
中心极限定理适用于大量独立同散布的随机变量,这些随机变量的散布可以是任何散布,不一定是正 态散布。
实际应用案例
股票市场分析
总结词
股票市场分析
详细描述
大数定律和中心极限定理在股票市场分析中有着广泛的应用。股票价格的波动受到多种 因素的影响,包括市场情绪、公司事迹、宏观经济状况等。通过运用大数定律和中心极 限定理,投资者可以对股票价格进行概率分析和预测,从而做出更加理性的投资决策。
保险精算
总结词:保险精算
深化理论分析
虽然大数定律和中心极限定理已有较为完善的理论体系,但在某些特定场景下,其理论分析仍需进一步深化和完善。 例如,对于非独立同散布样本的情况,这两个定理的适用性和证明方法仍需进一步探讨和研究。
与其他理论的结合
大数定律和中心极限定理可以与其他概率论和统计学中的理论相结合,形成更为完善的理论体系。例如 ,可以与贝叶斯统计、马尔科夫链蒙特卡洛方法等理论相结合,用于解决更为复杂和实际的问题。
本课件采用了理论分析和实证研究相 结合的方法,对大数定律和中心极限 定理进行了深入探讨。通过分析大量 的实证数据,我们发现这两个定理在 许多实际场景中都得到了验证和应用 ,为相关领域的研究和实践提供了重 要的理论支持和实践指点。
未来研究方向
拓展应用领域
随着科技的发展和研究的深入,大数定律和中心极限定理的应用领域将不断拓展。例如,在人工智能和大数据领域, 这两个定理可以用于设计和优化算法,提高数据分析和预测的准确性和效率。
概率论与数理统计(浙大版)第五章第六章课件大数定律和中心极限定理
Yn x
lim P i1 n
n
x
x
证明略。
在实用上,n≥30
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
关键词: 总体 个体 样本 统计量
2 分布 t 分布 F 分布
23
引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。 例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。
24
§1 总体和样本
总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样本:随机抽取的n个个体的集合(X1,X2,…,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,…,Xn)称
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
大数定律及中心极限定理.ppt
高斯在研究误差理论时已经用到正态分布,以炮弹射击误
差为例,设靶心是坐标原点,多次射击的结 Y
果,炮弹弹着点为(X,Y),它是二维随机变 量,都认为它服从正态分布,它的每一 个
M (X,Y)
y
分量X和Y服从正态分布,这到底为什么? 要搞清误差是怎样?
一般来说,如果某个随机变量是由大量相互独立的随机因 素综合影响形成的,而其中每一项因素对总和的影响是“均 匀微小的”,那么可以断定这个随机变量服从或近似服从正 态分布中心极限定理是用极严格的数学推导来论证这一事 实。下面介绍中心极限定理的基本形式。
二、两个中心极限定理
定理3(同分布的中心极限定理)设随机变量X1, X2, …,X n…独立同分布,且E(Xk)= ,D(Xk)=2≠0,
n n
引人随机变量
Xk
1,在第k次试验中A发生 0,在第k次试验中A不发生, k
1,2,, n
n
因而 n
X
,
k
k 1
X
1,X
,
2
X
n
相互独立均服从两点分布,
EXk p,DXk p1 p,
由切比雪夫大数定律,有
1
lim
n
P
|
n
n
Xk
k 1
p
|
l i m P | n
n n
p | 1
X = X1 + X2 + X3 + X4 + ······
而且这些小误差可以看成彼此相互是独立的,因此要讨论 X的分布,就要讨论独立随机变量和的分布问题,中心极限 定理就是研究在什么条件下独立随机变量序列和的极限分布 服从正态分布的一系列定理的总称。由于正态分布在概率论 理论和应用中占有中心地位,因此这些定理称为中心极限定 理。
概率论与数理统计完整ppt课件
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率统计大数定律与中心极限定理课件
在样本量较大时,利 用大数定律证明统计 量的收敛性和稳定性 。
在样本量较大时,利 用大数定律提高估计 的准确性。
03
中心极限定理
棣莫弗-拉普拉斯定理
棣莫弗-拉普拉斯定理是中心极限定理的一种特殊形式,它描 述了当试验次数趋于无穷时,二项分布的累积分布函数收敛 于正态分布。
棣莫弗-拉普拉斯定理指出,当试验次数n足够大时,二项分 布B(n,p)的累积分布函数近似于正态分布N(np, np(1-p)),其 中p是成功概率。这个定理在概率论和统计学中有着广泛的应 用,因为它提供了二项分布和正态分布之间的联系。
THANKS
感谢观看
中心极限定理的应用
中心极限定理在统计学、金融、社会学等领域有着广 泛的应用,它帮助我们理解大量数据的分布规律和预 测未来的趋势。
中心极限定理的应用非常广泛。在统计学中,它用于 分析样本数据并推断总体特征,如计算置信区间和假 设检验。在金融领域,中心极限定理用于分析股票价 格、收益率等金融数据的分布,从而进行风险评估和 投资决策。在社会学中,中心极限定理用于研究人口 普查、选举投票等数据的分布规律,以了解社会现象 和预测未来趋势。此外,中心极限定理还在许多其他 领域中有着广泛的应用。
离散型随机变量
离散型随机变量的取值是 离散的,其概率分布可以 用概率质量函数或概率函 数表示。
连续型随机变量
连续型随机变量的取值是 连续的,其概率分布可以 用概率密度函数表示。
02
大数定律
弱大数定律
弱大数定律定义
在独立同分布的随机试验中,随 着试验次数的增加,样本均值的
期望值趋近于总体均值。
弱大数定律的证明
的结论。
区别
大数定律主要研究随机变量的平均值的稳定性,即当随机变量的数量趋于无穷大时,它们的 平均值将趋近于某个常数。而中心极限定理则研究随机变量和的分布特性,即当独立同分布 的随机变量数量趋于无穷大时,它们的和的分布趋近于正态分布。
概率统计中的大数定律与中心极限定理-教案
概率统计中的大数定律与中心极限定理-教案一、引言1.1概率统计的基本概念1.1.1随机事件与概率1.1.2随机变量与分布函数1.1.3数学期望与方差1.1.4大数定律与中心极限定理的关系1.2大数定律与中心极限定理的应用领域1.2.1自然科学领域1.2.2社会科学领域1.2.3工程技术领域1.2.4经济学领域1.3教学目标与教学方法1.3.1理解大数定律与中心极限定理的基本原理1.3.2学会运用大数定律与中心极限定理解决实际问题1.3.3培养学生的数据分析能力与逻辑思维能力1.3.4采用案例教学、讨论式教学等方法提高教学效果二、知识点讲解2.1大数定律2.1.1大数定律的定义2.1.2大数定律的证明2.1.3大数定律的应用2.1.4大数定律与频率稳定性2.2中心极限定理2.2.1中心极限定理的定义2.2.2中心极限定理的证明2.2.3中心极限定理的应用2.2.4中心极限定理与正态分布2.3大数定律与中心极限定理的关系2.3.1大数定律是中心极限定理的基础2.3.2中心极限定理是大数定律的推广2.3.3大数定律与中心极限定理在实际应用中的联系2.3.4大数定律与中心极限定理在理论分析中的联系三、教学内容3.1大数定律的教学内容3.1.1大数定律的基本概念与性质3.1.2大数定律的证明方法3.1.3大数定律在实际问题中的应用3.1.4大数定律与频率稳定性在教学中的实例分析3.2中心极限定理的教学内容3.2.1中心极限定理的基本概念与性质3.2.2中心极限定理的证明方法3.2.3中心极限定理在实际问题中的应用3.2.4中心极限定理与正态分布在教学中的实例分析3.3大数定律与中心极限定理的关系教学内容3.3.1大数定律与中心极限定理的联系与区别3.3.2大数定律与中心极限定理在实际应用中的相互依赖3.3.3大数定律与中心极限定理在理论分析中的相互补充3.3.4大数定律与中心极限定理在教学中的综合运用实例分析四、教学目标4.1知识与技能目标4.1.1掌握大数定律和中心极限定理的基本概念4.1.2理解大数定律和中心极限定理的数学表达和证明方法4.1.3能够应用大数定律和中心极限定理解决实际问题4.1.4培养学生的数据分析能力和逻辑推理能力4.2过程与方法目标4.2.1通过实例引入,让学生体会从具体到抽象的学习过程4.2.2采用小组讨论,培养学生合作学习和交流表达能力4.2.3利用数学软件进行模拟实验,增强学生的实践操作能力4.2.4通过问题解决,训练学生的批判性思维和创造性思维4.3情感、态度与价值观目标4.3.1培养学生对概率统计学科的兴趣和热情4.3.2强调数学知识在实际生活中的应用价值4.3.3增强学生的科学精神和求真态度4.3.4培养学生的团队合作精神和责任感五、教学难点与重点5.1教学难点5.1.1大数定律和中心极限定理的数学证明5.1.2大数定律和中心极限定理在实际问题中的应用5.1.3学生对概率统计概念的理解和运用5.1.4学生数据分析能力的培养5.2教学重点5.2.1大数定律和中心极限定理的基本概念和性质5.2.2大数定律和中心极限定理的数学表达和直观理解5.2.3大数定律和中心极限定理在生活中的实际应用5.2.4学生数据分析技能的提升六、教具与学具准备6.1教具准备6.1.1多媒体教学设备(投影仪、电脑等)6.1.2数学软件(如MATLAB、R等)用于模拟实验6.1.3实物模型或教具(如骰子、硬币等)用于演示6.1.4教学课件和讲义6.2学具准备6.2.1笔记本电脑或平板电脑(用于数学软件操作)6.2.2笔和纸(用于笔记和练习)6.2.3预习资料和阅读材料6.2.4小组讨论记录表七、教学过程7.1导入新课7.1.1通过生活实例引入大数定律的概念7.1.2提问学生对概率统计的基本理解7.1.3介绍大数定律和中心极限定理的历史背景7.1.4阐述本节课的学习目标和重要性7.2主体教学7.2.1详细讲解大数定律的定义和数学表达7.2.2通过数学软件演示大数定律的实验验证7.2.3讲解中心极限定理的原理和数学证明7.2.4分析中心极限定理在实际问题中的应用案例7.3练习与讨论7.3.1分组进行数学软件模拟实验7.3.2小组讨论实验结果和理论联系7.3.3解答学生在实验和讨论中的疑问7.4.1回顾本节课的主要内容和重点难点7.4.2强调大数定律和中心极限定理的实际应用7.4.3布置相关的练习题和思考题7.4.4预告下一次课的内容和学习要求八、板书设计8.1大数定律与中心极限定理基本概念8.1.1大数定律的定义8.1.2中心极限定理的定义8.1.3大数定律与中心极限定理的关系8.1.4实际应用案例8.2大数定律与中心极限定理的数学表达8.2.1大数定律的数学表达8.2.2中心极限定理的数学表达8.2.3数学证明的关键步骤8.2.4数学表达在实际问题中的应用8.3大数定律与中心极限定理的教学实例8.3.1大数定律的教学实例8.3.2中心极限定理的教学实例8.3.3教学实例中的关键点分析九、作业设计9.1基础练习题9.1.1大数定律的基本概念题9.1.2中心极限定理的基本概念题9.1.3大数定律与中心极限定理的关系题9.1.4实际应用案例分析题9.2数学软件模拟实验9.2.1大数定律的数学软件模拟实验9.2.2中心极限定理的数学软件模拟实验9.2.4实验中的关键点和难点解析9.3拓展阅读与思考9.3.1相关历史背景和数学家的研究9.3.2大数定律与中心极限定理在其他领域的应用9.3.3对概率统计学科未来发展的思考9.3.4学生自主研究项目提案十、课后反思及拓展延伸10.1教学效果评估10.1.1学生对大数定律与中心极限定理的理解程度10.1.2学生在实际问题中的应用能力10.1.3教学方法和教学内容的适应性10.1.4教学目标达成情况的评估10.2教学改进措施10.2.1针对学生的反馈调整教学内容和方法10.2.2增加更多的实际应用案例和讨论环节10.2.3引入更多的数学软件和工具进行辅助教学10.2.4鼓励学生进行自主研究和项目实践10.3拓展延伸方向10.3.1大数定律与中心极限定理在其他学科的应用10.3.2概率统计领域的前沿研究和最新发展10.3.3学生自主研究和项目实践的方向指导10.3.4与其他数学分支的联系和交叉研究重点关注环节补充和说明:1.教学内容的适应性:根据学生的反馈和理解程度,适时调整教学内容和难度,确保学生能够充分理解大数定律与中心极限定理的基本概念和原理。
大数定律及中心极限定理通用教学课件
VS
不同点
大数定律主要研究随机变量的算术平均值 在样本容量趋于无穷大时的性质,而中心 极限定理则研究随机变量的算术平均值在 样本容量趋于无穷大时的散布情况。
大数定律与中心极限定理的联系与区分
联系
大数定律和中心极限定理都是研究随机变量的性质和散布,它们都是概率论中的重要理论。
区分
大数定律主要研究随机变量的算术平均值在样本容量趋于无穷大时的性质,而中心极限定理则研究随机变量的算 术平均值在样本容量趋于无穷大时的散布情况。
总结词
金融风险管理中中心极限定理的应用
详细描述
中心极限定理在金融风险管理中有着广泛的 应用。通过将多个独立同散布的随机变量相 加,中心极限定理可以近似描述这些随机变 量的散布特征。在金融风险管理领域,可以 利用中心极限定理对投资组合进行优化,降
低投资组合的风险。
案例三
总结词
大数据分析中的大数定律与中心极限定理应用
社会科学等。
对未来学习的展望和建议
深入学习概率论和统计学
大数定律和中心极限定理是概率论和统计学中的基础知识,但它们的 应用范围非常广泛,需要进一步深入学习。
学习其他相关课程
除了概率论和统计学,还可以学习其他相关课程,如回归分析、时间 序列分析、多元统计分析等,以更全面地掌握数据分析的方法。
关注实际应用
详细描述
在大数据分析中,大数定律和中心极限定理可以共同发挥作用。通过收集大量数据,利 用大数定律计算出数据的统计特征,然后利用中心极限定理对数据进行近似描述。这种
方法可以应用于数据发掘、机器学习等领域,帮助我们更好地理解和分析大数据。
06
CATALOGUE
总结与展望
本课程的主要内容总结
理学大数定律及中心极限定理PPT课件
k 1
其中 X 1 ,, X n 相互独立且都服从于两点分布,且
EX k p,DX k pq
n
X k n
由定理1有结论成立。
lim P{ k1
n
n
x}
1
x t2
e 2 dt
2
第14页/共29页 目 录 前一页 后一页 退 出
第五章 大数定律及中心极限定理
推论:
lim
P{
n
np
n
npq
P{X r} 0.999
目 录 前一页 后一页 退 出 第16页/共29页
第五章 大数定律及中心极限定理
而 P{X r}
P{a n b}
( b np ) ( a np )
npq
npq
( r 200 0.6 ) ( 200 0.6 )
200 0.6 0.4
200 0.6 0.4
设不超过的界限为,则应有:
P
X 6000
-
1 6
0.99
由德莫佛-拉普拉斯定理 目 录 前一页 后一页 退 出 第20页/共29页
第五章 大数定律及中心极限定理
P
X 6000
-
1 6
n 6000, p 1 / 6.
lim
P{
n
np
x}
( x)
n
npq
P
X 6000 1/ 6
6000
EX k , DX k 存在,令:
n
n
Yn ( Xk EXk ) /
k 1
k 1
n
DXk ,
k 1
若对任意 x R1 有
1 x t2
lim
n
P{Yn
大数定律和中心极限定理.ppt
n
X i n
i 1
n
3
近似服从标准正态分布
于是所求概率为
P
1 n
n i 1
Xi
P
n i1
Xi
n
n
n
P i1 X i n
3n
2
3n 1
n
3
(2)当n 36, 1/ 6时,所求概率为
(1)保险公司一年的利润不少于6万元的概率;
(2)保险公司亏本的概率。
解 设参加保险的一万人中一年内的死亡的人数为X ,
则X ~ b10000,0.006,其分布律为
PX
k
1k0000
0.006k
0.994 10000k
k 0,1,2,,10000
lim n
P
n np
np1 p
x
x
1
t2
e2
dt
Φ
x
2π
当n充分大时,对任意a b,有
Pa n b P
a np
np1 p
n np
np1 p
b np
np1 p
Φ
第五章 大数定律和中心极限定理
第一节 第二节
大数定律 中心极限定理
第一节 大数定律
定义1设Y1,Y2 ,,Yn ,是一个随机变量序列, a是一个常
数, 若对任何正数 , 有
limP Yn a 1
n
则称序列Y1,Y2 ,,Yn ,依概率收敛于a,记为Yn Pa 依概率收敛的序列有如下性质: 设X n Pa,Yn Pb,又设g(x, y)在点(a,b)连续,则
《概率论》课件
物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。
应用概率统计课件ch6_中心极限定理
于是
(1). P { X 1 4 .5} P{
2
1 n lim P{| Yn | } lim P{| X k | } 1 n n n k 1 1 n 或 lim P{| X k | } 0 n n k 1
定理(贝努里大数定律) 设 nA 是 n 次独立重复试验中事件 A 发生的次数, p 是事件 A 发生的概率, 则:对任意的 0 ,有
例3 设一批产品的强度服从期望为14,方差为4的分 布.每箱中装有这种产品100件. 求 (1)每箱产品的平均强度超过14.5的概率是多少. (2)每箱产品的平均强度超过期望14的概率是多少. 解: n=100,设Xi是第i件产品的强度, 每箱产品的平均 1 n 1 100 强度记为 X X i Xi . n i 1 100 i 1 根据期望、方差性质得
例 1 在上面不等式中,取 3 ,4 ,有:
P{| X | 3 } 0 .8889 P{| X | 4 } 0 .9375
定理(切比雪夫定理的特殊情况) 设随机变量 X1,, X n , 相互独立, 且具有相同的数学期
则:对任意的 0 ,有:
1 n 望及方差, EXk ,DXk ,k 1,2,, 令 Yn X k , n k 1
由中心极限定理有
X EX 2510 EX P{ X 2510} 1 P{ X 2510} 1 P{ } DX DX 1 ( 2510 2500 ) 1 ( 2) 50
大学课件-概率论之大数定律和中心极限定理
若D(X)存在,则对任意常数 >0,有
P( | X E( X ) | ) D( X ) 2
证明:用 (X E(X ))2将马尔科夫不等式中的X替代,
用 2代替
P(( X
E(X
))2
2)
E(X
E(X
2
))2
P(|
X
E(X
)
|
)
D( X
2
)
定理5.1.1 (切比雪夫弱大数定律)
证明:由X1, X 2, ,的独立性有
X
,
i
由511或512都可推得: lim P(| vn p | ) 0
n
n
例 设1,2 , ,n为一个相互独立的随机变量
序列,其中
P(n
2n )
1 22n1
,
P(n
2n )
1 22n1
,
P(n
0)
1
1 22 n
(n 1, 2,3,.....)
证明:序列{n}服从大数定理。
证:1,2 , ,n为一个相互独立的随机变量序列
D( Xk )
k 1
则称X1, X 2 , X n 服从中心极限定理
定理5.2.1 林德伯格—莱维中心极限定理
设 {Xn} 为独立同分布随机变量序列,数
学期望为, 方差为 2>0,则{Xn}服从中心极
限定理,即
lim
n
P
1
n (X1 X2
Xn
n)
x
1
x t2
e 2 dt
2
说明:和函数 Yn=X1+X2+…+Xn
P(t1
vn
t2 )
P
概率论与数理统计大数定律及中心极限定理
且具有相同的数学期望和方差:E( Xk ) ,
D( X k ) 2 (k 1, 2, ), 作前 n 个随机变量
的算术平均
X
1 n
n k 1
X
k
,
则对于任意正
数 有
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
X
k
1.
表 达
{| X | }是一个随机事件, 等式表
式 明,当n 时这个事件的概率趋于1,
切比雪夫大数定律 伯努利大数定律 辛钦大数定律
一、问题的引入
实例 频率的稳定性
随着试验次数的增加, 事件发生的频率逐渐稳 定于某个常数. 单击图形播放/暂停 ESC键退出
启示:从实践 中人们发现 大量测量值 的算术平均 值有稳定性.
二、基本定理
定理一(切比雪夫大数定律)
切比雪夫
设随机变量 X1, X 2 , , X n , 相互独立,
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| Xn|来自}limn
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
X
k
1 n
n k 1
E(Xk )
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
#五大数定律与中心极限定理
例: 将一颗骰子连掷100次,则点数之和不少于 500的概率是多少?
解 设Xk为第k 次掷出的点数,k=1,2,…,100,则
X1,…,X100独立同分布.
E(X1)7 2,D (X1)1 6i 61k24 49 1 32 5
由中心极限定理
100
P{Xi i1
5001007
伯努里大数定律: 设进行n次独立重复试验,每
次试验中事件A发生的概率为p,记fn为n次试验中 事件A发生的频率,则
p
fnp n
证明:设
1 第i次试验事件A发生
X
i
0
第i次试验事件A不发生
则
E (X i) p ,D (X i) p (1 p )
由切比雪夫大数定律
n
Xi P
fn
i 1
n
p
§2 中心极限定理
• 在一定条件下,许多随机变量的极限分布是正态分 布:“若一个随机变量X可以看着许多微小而独立的随 机因素作用的总后果,每一种因素的影响都很小,都有 不起压倒一切的主导作用,则X一般都可以认为近似 地服从正态分布.”
• 例如对某物的长度进行测量,在测量时有许多随机 因素影响测量的结果.如温度和湿度等因素对测量仪 器的影响,使测量产生误差X1;测量者观察时视线所产 生的误差X1;测量者心理和生理上的变化产生的测量 误差X3;…显然这些误差是微小的、随机的,而且相互 没有影响.测量的总误差是上述各个因素产生的误差 之和,即∑Xi.
• 解:易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心极
限定理知
20
Vk 205
Z k1
V100
2010/012 2010/012
《概率论与数理统计》课件-随机过程
06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
即对任意的 a < b,
liP m aY nnp b 1
bt2
e2dt
n n(1 p p ) 2 a
Y n ~ N (np , np(1-p)) (近似)
证明:事 实 上 , 据 二 项 分 布 的 定 义
n
Y n X i
i 1
其 中 X i 1 0事 事 件 件 A A 不 发 发 生 生
于常数 a , 记作
Yn
P a n
故
nA P p
n n
13
在 Bernoulli 定理的证明过程中, Y n 是相互 独立的服从 0-1分布的随机变量序列 {Xk} 的 算术平均值, Y n 依概率收敛于其数学期望 p .
结果同样适用于服从其它分布的独立随 机变量序列.
14
Chebyshev 大数定律 设随机变量序列 X 1 ,X 2 , ,X n , 相互独立, (指任意给定 n > 1, X 1 ,X 2, ,X n相互独立), X 1 ,X 2 , ,X n , 的数学 期望与方差设为
X ~ B(6000,1/6)
E (X)1000,D (X)npq5000 6
22
X近~似N100,506000
P X 10.01 60006
P X 10 6 0 0 0
10 61000 0941 0000
506 00 506 00
60 60
500 60 500 60
2 60 1 0.9624
且 X 1 ,X 2, ,X n具有相同的数学期望和方差
E 0有
ln im P1 nkn 1Xk0
或
ln i m P1 nkn 1Xk1
16
定理的意义: 具有相同数学期望和方差的独立随机变量序列 的算术平均值依概率收敛于数学期望. 当 n 足够大时,算术平均值几乎就是一个常数, 可以用算术平均值近似地代替数学期望.
50060
23
比较几个近似计算的结果
用二项分布(精确结果) P60X00160.010.9590
用Poisson 分布
P6X001 600.010.937
用Chebyshev 不等式 P6X001 600.010.768
用中心极限定理 P6X000160.010.9624
24
例2 某车间有200台车床,每台独立工作,开工 率为0.6. 开工时每台耗电量为 r 千瓦. 问供 电所至少要供给这个车间多少电力, 才能以 99.9% 的概率保证这个车间不会因供电不足 而影响生产?
另 一 方 面 , E Y n n p , V a r ( Y n ) n p q
据 定 理 1 , 知 结 论 成 立 。 21
例1 设有一大批种子,其中良种占1/6. 试估计 在任选的6000粒种子中,良种所占比例与 1/6比较上下不超过1%的概率.
解 设 X 表示6000粒种子中的良种数 , 则
e 2dt
n
n
2
18
注: 记
n
X k n
Yn k1 n
n
则 Y n 为 X k 的标准化随机变量.
k 1
ln iP m Y n x (x )
即 n 足够大时,Y n 的分布函数近似于标准正态 随机变量的分布函数
Yn近~ 似 N(0,1)
n
X k nYnn近似服从 N(n,n2)
k 1
19
定理2 德莫佛 — 拉普拉斯中心极限定理 (DeMoivre-Laplace )
Y n 是n次独立试验中事件A出现的次数,
p为A发生概率,即
Y n ~ B( n , p) , 0 < p < 1, n = 1,2,…
则对任一实数 x,有
liP m Y nnpx 1
x t2
e2dt
n n(1 pp) 2
设 P (X k1 )p,则 E (X k) p ,D (X k) pq
n
X 1 ,X 2, ,X n相互独立, nA Xk
k 1
记
Yn
1 n n k1
Xk ,
E(Yn)p,
D(Yn)pnq
由Chebyshev 不等式
10
0PnA p
n
n
Xk
n
Xk
P k1 E k1
n
若 E(X ) = , D(X ) = 2, 类似于正态分布的3
原理,由 Chebyshev 不等式可估计
P|X|310.1111
9
P|X|210.25
4 由 Chebyshev 不等式,可看出 D (X) 反映了 X
偏离 E(X ) 的程度. 固定 , 较小者,
P| X|22
较小.
n
P Y n E ( Y n )
1
2
pq n
故 lim PnAp0
n n
11
贝努里(Bernoulli) 大数定律的意义: 在概率的统计定义中,事件 A 发生的频率nn A “ 稳定于”事件 A 在一次试验中发生的概率是 指:
频率 n A 与 p 有较大偏差 nA p 是
n
n
Chebyshev 不等式对于 2 2 无实际意义 8
大数定律
贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
0有
lim PnAp0
n n
或 limPnAp1
n n
9
证 引入随机变量序列{Xk}
1, 第k次试A验 发生 Xk 0, 第k次试A验 发生
小概率事件, 因而在 n 足够大时, 可以用频率 近似代替 p . 这种稳定称为依概率稳定.
12
定义 设 Y 1,Y 2, ,Y n, 是一系列随机变量,
a 是一常数,若 0有
n l i m PY na0
(或 l n iP m Y n a 1)
则称随机变量序列 Y 1,Y 2, ,Y n, 依概率收敛
17
§6.2 中心极限定理
定理1 独立同分布的中心极限定理
设随机变量序列 X 1 ,X 2 , ,X n , 相互
独立,服从同一分布,且有期望和方差: E ( X k ) ,D ( X k ) 2 0 ,k 1 , 2 , 则对于任意实数 x ,
n Xk n
limPk1
x
1
x t2
E ( X k ) k , D ( X k ) k 2 2 ,k 1 , 2 ,
有 ln iP m 1 nkn 1Xk1 nkn 1 k 0
证明:由chebyshev不等式可得。
15
推论: 独立同分布时的 Chebyshev 大数定律
设随机变量序列 X 1 ,X 2 , ,X n , 相互独立,