工程力学知识点总结

合集下载

工程力学知识点

工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。

(适用于任何物体)d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。

(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。

2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系。

b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。

c,空间汇交力系:力的作用线汇交于一点的空间力系。

d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。

3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶。

但绝不可能是一个力偶。

b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。

4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。

b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。

工程力学知识点全集总结

工程力学知识点全集总结

工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。

力的大小用力的大小和方向来描述,通常用矢量表示。

2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。

根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。

3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。

而反之,一个力也可以根据其方向和大小,被分解为若干个分力。

4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。

5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。

物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。

6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。

二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。

刚体的转动可以分为平移和转动两种。

2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。

当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。

3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。

可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。

4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。

在不同受力条件下,梁的受力分析方法会有所不同。

通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。

5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。

摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。

6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。

工程力学知识点

工程力学知识点

工程力学知识点工程力学是一门研究物体机械运动和受力情况的学科,它在工程领域中具有极其重要的地位。

通过对工程力学的学习,我们能够更好地理解和设计各种结构和机械系统,确保其安全性、稳定性和可靠性。

接下来,让我们一起深入了解一些关键的工程力学知识点。

一、静力学静力学主要研究物体在静止状态下的受力情况。

首先是力的基本概念,力是物体之间的相互作用,具有大小、方向和作用点三个要素。

力的合成与分解遵循平行四边形法则,通过这个法则可以将多个力合成为一个合力,或者将一个力分解为多个分力。

平衡力系是静力学中的一个重要概念。

如果一个物体所受的力系能够使物体保持静止,那么这个力系就称为平衡力系。

在平衡力系中,所有力的矢量和为零。

此外,还有约束和约束力的知识。

约束是限制物体运动的条件,而约束力则是约束对物体的作用力。

常见的约束类型有光滑接触面约束、柔索约束、铰链约束等,每种约束产生的约束力都有其特定的规律。

二、材料力学材料力学关注的是材料在受力时的变形和破坏情况。

首先是拉伸与压缩,当杆件受到沿轴线方向的拉力或压力时,会发生伸长或缩短。

通过胡克定律可以计算出杆件的变形量,其应力与应变之间存在线性关系。

剪切与挤压也是常见的受力形式。

在连接件中,如铆钉、螺栓等,会受到剪切力和挤压力的作用。

我们需要计算这些力的大小,以确保连接件的强度足够。

扭转是指杆件受到绕轴线的外力偶作用时发生的变形。

对于圆轴扭转,其切应力分布规律和扭转角的计算是重要内容。

弯曲则是工程中常见的受力情况,梁在受到垂直于轴线的载荷时会发生弯曲变形。

我们需要掌握梁的内力(剪力和弯矩)的计算方法,以及正应力和切应力的分布规律,从而进行梁的强度和刚度设计。

三、运动学运动学研究物体的运动而不考虑其受力情况。

点的运动可以用直角坐标法、自然法等方法来描述。

例如,用直角坐标法可以表示点的位置、速度和加速度。

刚体的运动包括平移、定轴转动和平面运动。

平移时,刚体上各点的运动轨迹相同,速度和加速度也相同;定轴转动时,刚体上各点的角速度和角加速度相同;平面运动可以分解为随基点的平移和绕基点的转动。

工程力学重点总结

工程力学重点总结

P2 刚体:在力的作用下不会发生形变的物体。

力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。

二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。

2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。

3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。

(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。

(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。

5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。

三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。

工程力学的基础知识点总结

工程力学的基础知识点总结

工程力学的基础知识点总结工程力学的基础知识点主要包括以下内容:1.向量的基本概念向量是工程力学中经常使用的重要概念。

向量有大小和方向,可以用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

向量的加法和减法等运算也是工程力学中需要掌握的重要概念。

此外,向量的分解、合成和共线向量等也是工程力学中常见的概念。

2.力的基本概念力是工程力学的基本概念之一。

力是物体之间的相互作用,可以改变物体的状态和形状。

力的大小和方向可以用向量来表示。

在工程力学中,力可以分为内力和外力。

内力是物体内部分子间的相互作用力,外力是物体外部其他物体施加在物体上的作用力。

力的平行四边形定律、力矩和力偶等也是工程力学中需要掌握的重要概念。

3.受力分析受力分析是工程力学中非常重要的内容。

在受力分析中,需要观察物体受到的外力和内力,然后通过受力平衡条件和动力学原理等来分析物体的受力情况。

受力分析可以帮助工程师设计合理的结构,确保结构的稳定和安全。

4.平衡条件在静力学中,平衡条件是非常重要的内容。

平衡条件包括平衡点的概念和平衡方程的建立等。

平衡条件在工程力学中应用广泛,可以帮助工程师设计合理的结构和确定结构的安全系数。

5.应力和应变应力和应变是材料力学中的重要概念。

应力是单位面积上的力,可以用力和面积的比值来表示。

应变是物体在受力作用下的形变量,也可以用长度变化量与长度的比值来表示。

6.拉力和压力拉力和压力是工程力学中重要的概念。

拉力是物体两端受到的拉伸力,压力是物体受到的挤压力。

拉力和压力是材料在受力作用下的重要表现形式,可以帮助工程师设计合理的材料和结构。

7.刚度和强度刚度和强度是材料力学中的重要概念。

刚度是材料受力后发生形变的能力,强度是材料抵抗破坏的能力。

刚度和强度是工程师设计材料和结构时需要考虑的重要因素。

8.弹性、塑性和断裂弹性、塑性和断裂是材料力学中的重要现象。

弹性是材料在受力作用下可以恢复原状的能力,塑性是材料在受力作用下会产生永久形变的能力,断裂是材料在受力作用下会发生破裂的现象。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是一门研究物体受力、变形以及力学性质的学科。

它是工程学的基础学科之一,广泛应用于工程设计、结构分析和材料力学等领域。

在本文中,我将对工程力学的一些重要知识点进行总结,希望能够帮助读者更好地理解和应用工程力学的原理和方法。

第一部分:力的基本概念和平衡条件力是工程力学的核心概念之一,它可以引起物体的形状和运动发生变化。

在工程力学中,力的三要素是大小、方向和作用点。

力的大小可以用矢量表示,它的方向可以用箭头表示,作用点是力所作用的物体上的一点。

对于一个物体的平衡条件,有三种可能:静力平衡、动力平衡和稳定平衡。

静力平衡是指物体在受到多个力的作用下,力的合力为零,物体处于静止状态。

动力平衡是指物体在受到多个力的作用下,力的合力不为零,物体处于运动状态。

稳定平衡是指物体在受到微小扰动后能够自动恢复到原来的平衡状态。

第二部分:受力分析和结构受力受力分析是工程力学的基础,它通过分析物体所受到的外力和内力,来确定物体的运动状态和受力情况。

在受力分析中,我们常常使用自由体图和受力分解的方法来求解受力问题。

自由体图是指将物体从结构中分离出来,在图上标识出所受到的外力和内力,便于分析和计算。

结构受力是工程力学的重要内容之一,它研究物体在受到外力作用下的变形和应力情况。

常见的结构受力包括轴力、剪力、弯矩和应力等。

轴力是指物体沿着轴线方向受到的拉力或压力,剪力是指物体内部两个相邻截面之间的力,弯矩是指物体在受力作用下发生的弯曲时所产生的力矩,应力是指物体受到的单位面积上的力。

第三部分:材料力学和变形性能材料力学是工程力学中的重要分支,它研究物体的材料在受力作用下的变形和破坏情况。

常见的材料力学知识点包括杨氏模量、屈服强度、伸长率和断裂韧性等。

杨氏模量是描述材料刚度的指标,它反映了材料在受力作用下产生的弹性变形程度。

屈服强度是指材料在受到一定载荷后开始发生塑性变形的临界点。

伸长率是指材料在拉伸过程中的长度变化百分比,它可以反映材料的延展性能。

(完整word版)工程力学复习知识点

(完整word版)工程力学复习知识点

一、静力学1.静力学基本概念(1)刚体刚体:形状大小都要考虑的,在任何受力情况下体内任意两点之间的距离始终保持不变的物体.在静力学中,所研究的物体都是指刚体。

所以,静力学也叫刚体静力学。

(2)力力是物体之间的相互机械作用,这种作用使物体的运动状态改变(外效应)和形状发生改变(内效应)。

在理论力学中仅讨论力的外效应,不讨论力的内效应。

力对物体的作用效果取决于力的大小、方向和作用点,因此力是定位矢量,它符合矢量运算法则。

力系:作用在研究对象上的一群力.等效力系:两个力系作用于同一物体,若作用效应相同,则此两个力系互为等效力系。

(3)平衡物体相对于惯性参考系保持静止或作匀速直线运动。

(4)静力学公理公理1(二力平衡公理)作用在同一刚体上的两个力成平衡的必要与充分条件为等大、反向、共线。

公理2(加减平衡力系公理)在任一力系中加上或减去一个或多个平衡力系,不改变原力系对刚体的外效应。

推论(力的可传性原理)作用于刚体的力可沿其作用线移至杆体内任意点,而不改变它对刚体的效应.在理论力学中的力是滑移矢量,仍符合矢量运算法则。

因此,力对刚体的作用效应取决于力的作用线、方向和大小。

公理3(力的平行四边形法则)作用于同一作用点的两个力,可以按平行四边形法则合成。

推论(三力平衡汇交定理)当刚体受三个力作用而平衡时,若其中任何两个力的作用线相交于一点,则其余一个力的作用线必交于同一点,且三个力的作用线在同一个平面内。

公理4(作用与反作用定律)两个物体间相互作用力同时存在,且等大、反向、共线,分别作用在这两个物体上。

公理5(刚化原理)如变形物体在已知力系作用下处于平衡状态,则将此物体转换成刚体,其平衡状态不变。

可见,刚体静力学的平衡条件对变形体成平衡是必要的,但不一定是充分的。

(5)约束和约束力1)约束:阻碍物体自由运动的限制条件。

约束是以物体相互接触的方式构成的.2)约束力:约束对物体的作用。

约束力的方向总与约束限制物体的运动方向相反.表4.1-1列出了工程中常见的几种约束类型、简图及其对应的约束力的表示法。

大二工程力学知识点

大二工程力学知识点

大二工程力学知识点工程力学是一门研究物体在受力作用下的运动和变形规律的学科,是工程类专业中必修的一门基础课程。

它主要包括静力学和动力学两个方面的内容。

下面将介绍一些大二工程力学的关键知识点。

一、静力学基础知识1. 受力概念:力的基本概念是力的大小、方向和作用点三要素。

常见的力有重力、弹力、摩擦力等。

2. 力的合成与分解:多个力合成一个力的作用等效于单个力的作用,而单个力的作用可以分解为多个分力的作用。

二、平面力系的平衡1. 条件方程:平面力系平衡的条件是力的合力与力的力矩同时为零,即动力学平衡方程和力矩平衡方程。

2. 平衡定理:平面力系平衡定理包括共点力的平衡、共线力的平衡等。

三、平面刚体力学1. 刚体的概念:刚体是指其内部各点之间的相对位置不变的物体。

2. 刚体的平衡条件:刚体平衡的条件是合力为零,力矩为零。

四、杆件与桁架1. 杆件的受力特点:杆件一般受拉、受压和受弯三种力的作用。

2. 杆件的内力分析:杆件受力分析可以通过平衡条件和轴力图、剪力图、弯矩图的叠加原理进行。

五、摩擦力学1. 摩擦力的概念:摩擦力是物体相对运动或者准备相对运动时所产生的阻碍运动的力。

2. 静摩擦力与动摩擦力:静摩擦力与物体接触面之间的压力有关,动摩擦力与物体间相对速度有关。

六、牛顿定律与动力学1. 牛顿第一定律:物体在不受外力作用下将保持静止或匀速直线运动的状态。

2. 牛顿第二定律:物体的加速度与作用力成正比,与物体的质量成反比。

3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。

七、动力学平衡与简单机械1. 动力学平衡的条件:物体在动力学平衡时,除了合外力为零外,合外力矩也为零。

2. 简单机械的计算与应用:如杠杆原理、滑轮组原理、齿轮原理等。

以上是大二工程力学的一些重要知识点,通过学习和理解这些知识,可以为工程类专业的后续学习打下坚实的基础。

同时,在实际工程应用中,这些知识点也是解决工程问题的基础和核心。

大一工程力学的知识点总结

大一工程力学的知识点总结

大一工程力学的知识点总结一、向量力学1.向量的基本概念和运算:向量的表示法、向量加法和乘法运算、向量分解2.向量的合成与分解:平面向量的合成与分解、三维向量的合成与分解3.单位矢量:基本矢量、单位向量的概念与运算4.物体的运动:位矢、位移与平均速度、瞬时速度与瞬时加速度二、力和力的平衡1.力的基本概念:力的定义、力的分类、力的单位2.力的合成与分解:力的合成、力的分解、平面力系的合成3.力的平衡:力的平衡条件、平面力系的平衡条件、力的图示法三、刚体的平衡1.刚体的基本概念:刚体的定义、质点与刚体的区别2.刚体平衡的条件:转动力矩的概念、矢量叉积、平面力系的力矩平衡条件3.刚体的静力学分析:平面问题的解法、近似计算方法四、摩擦力与支持反力1.摩擦力的基本概念:静摩擦力与滑动摩擦力2.静摩擦力的分析:静摩擦力的大小与方向、静摩擦力的极限值3.支持反力的分析:平衡问题的解法、不同支持条件下的反力分析五、动力学1.牛顿第二定律:牛顿第二定律的表述、质点的加速度与作用力关系2.动力学分析:质点的自由体图、质点的运动学分析和力学分析3.牛顿第三定律:牛顿第三定律的表述和应用六、重力1.重力的基本概念:重力的定义、重力的计算公式2.重力的分析:自由落体运动、竖直上抛运动、重力加速度的测定七、力的作用点运动1.力的作用点运动:力矩的概念、力矩与转动动力学的关系2.刚体的旋转:转动惯量的概念、刚体的动力学分析八、弹性力学1.弹性力学的基本概念:应力与变形的关系、弹性力学的前提假设2.线性弹性力学:胡克定律、杨氏模量、梁的弯曲以上是大一工程力学的主要知识点总结,希望能够对你的学习有所帮助。

当然,工程力学是一门基础性课程,还有很多细节和衍生的内容需要进一步学习和探索。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是一门研究物体机械运动和受力情况的学科,它对于解决工程实际问题具有重要的意义。

以下是对工程力学一些关键知识点的总结。

一、静力学静力学主要研究物体在静止状态下的受力平衡问题。

1、力的基本概念力是物体间的相互作用,具有大小、方向和作用点三个要素。

力的单位是牛顿(N)。

2、力的合成与分解遵循平行四边形法则,可以将一个力分解为多个分力,也可以将多个力合成为一个合力。

3、约束与约束力约束是限制物体运动的条件,约束力是约束对物体的反作用力。

常见的约束有柔索约束、光滑接触面约束、铰链约束等。

4、受力分析对物体进行受力分析是解决静力学问题的关键步骤。

要明确研究对象,画出其受力图,包括主动力和约束力。

5、平衡方程对于平面力系,有∑Fx = 0、∑Fy = 0、∑Mo(F) = 0 三个平衡方程;对于空间力系,则有六个平衡方程。

二、材料力学材料力学主要研究杆件在受力作用下的变形和破坏规律。

1、内力与应力内力是杆件内部由于外力作用而产生的相互作用力。

应力是单位面积上的内力,分为正应力和切应力。

2、应变应变是杆件变形量与原始尺寸的比值,分为线应变和切应变。

3、拉伸与压缩杆件在受到轴向拉伸或压缩时,会产生轴向变形和横截面上的应力分布。

4、剪切与挤压在剪切面上会产生切应力,在挤压面上会产生挤压应力。

5、扭转圆轴扭转时,横截面上会产生切应力,其分布规律与扭矩有关。

6、弯曲梁在弯曲时,会产生弯矩和剪力,横截面上会有正应力和切应力分布。

7、强度理论用于判断材料在复杂应力状态下是否发生破坏,常见的有第一、第二、第三和第四强度理论。

三、运动学运动学研究物体的运动规律,而不考虑引起运动的力。

1、点的运动描述点的运动可以用直角坐标法、自然法和极坐标法。

2、刚体的平动和转动平动时刚体上各点的运动轨迹相同,速度和加速度也相同;转动时刚体绕某一固定轴旋转。

3、角速度和角加速度用于描述刚体转动的快慢和变化率。

4、点的合成运动包括牵连运动、相对运动和绝对运动,通过速度合成定理和加速度合成定理来分析。

工程力学知识总结

工程力学知识总结

工程力学知识总结工程力学是研究物体受力和运动规律的一门学科,它对于工程领域的发展和实践具有重要的作用。

在工程力学中,有许多基本概念和原理需要我们理解和掌握,下面我将就几个关键点进行总结。

一、静力学静力学是工程力学的基础,主要研究物体在平衡状态下受力的情况。

其中,最为重要的概念是力的平衡和向量的分解。

在工程实践中,我们经常需要分析物体受力平衡的问题,例如悬臂梁的计算、弹簧的力学特性等。

了解静力学原理,可以帮助我们更准确地预测物体在受力下的变形和破坏情况,从而做出合理的设计和决策。

二、动力学动力学是研究物体在受力下运动情况的学科。

在工程实践中,我们经常需要分析物体的加速度、速度和位移等动力学参数,来评估物体的运动特性和受力情况。

同时,动力学也与工程设计密切相关,例如汽车的制动距离计算、电梯的速度限制等都需要基于动力学原理进行分析和计算。

三、材料力学材料力学是研究材料受力和变形规律的学科。

在工程中,我们经常需要对各种材料的力学性能进行评估和分析。

例如,钢材的强度、混凝土的抗压能力、塑料的形变特性等都属于材料力学的范畴。

了解材料力学原理,可以帮助我们选择合适的材料,从而提高工程的可靠性和安全性。

四、结构力学结构力学是研究物体构件之间力学相互作用和受力特性的学科。

在工程设计中,往往需要设计各种强度合适、刚度满足要求的结构,而结构力学能够提供必要的分析工具和方法。

例如,房屋结构、桥梁设计、机械零部件等都需要依靠结构力学原理进行计算和分析。

了解结构力学原理,可以帮助我们做出合理的结构设计和优化。

五、流体力学流体力学是研究流体运动和受力规律的学科。

在工程领域中,流体力学的应用非常广泛,例如水力学、空气动力学等都属于流体力学的范畴。

在设计水利、空调、风力发电等工程时,我们需要对流体的流动特性和受力情况进行分析和计算。

熟悉流体力学原理,可以帮助我们更好地理解和控制流体的运动,从而提高工程的效率和可靠性。

综上所述,工程力学涵盖了静力学、动力学、材料力学、结构力学和流体力学等多个领域,它们共同构成了工程力学的基础和核心。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结
静力学:静力学部分主要研究受力物体平衡时作用力所应满足的条件,同时也研究物体受力的分析方法以及力系的简化的方法等。

例如,二力平衡公理指出,作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

加减平衡力系公理表明,在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

此外,还有平行四边形法则等。

材料力学:材料力学部分研究构件在外力作用下的变形与破坏(或失效)的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。

例如,构件应具备足够的强度、刚度和稳定性,以保证在规定的使用条件下不发生意外断裂、显著塑性变形、过大变形或失稳。

工程力学的研究方法主要包括理论方法和试验方法。

在对事物观察和实验的基础上,经过抽象化建立力学模型,形成概念。

例如,在研究物体受外力作用而平衡时,可以采用刚体模型;但要分析物体内部的受力状态,必须考虑到物体的变形,建立弹性体的模型。

总的来说,工程力学涵盖了原有理论力学(静力学部分)和材料力学两门课程的主要经典内容,不仅与力学密切相关,而且紧密联系于广泛的工程实际。

如需更详细的知识点总结,建议查阅力学相关书籍或咨询力学专业人士。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是工程学的基础学科,涵盖了力学的基本原理和应用方法。

它在工程领域中起着重要的作用,为工程师提供解决各种问题的基础知识和技能。

在本文中,我们将对工程力学的一些重要知识点进行总结和讨论。

一、刚体力学刚体力学是工程力学的基础,它研究的是在受力作用下不产生形变的物体。

刚体受力分析的关键在于力的平衡和力的合成分解。

刚体平衡的条件是合力和合力矩都为零。

利用这些基本原理,我们可以解决各种静力学问题,如平衡杆、悬挂物体等。

二、力的作用原理力是工程力学中最基本的概念之一。

它描述了物体之间相互作用的效果。

力的作用原理包括牛顿第一、第二、第三定律。

牛顿第一定律指出物体会保持静止或匀速直线运动,除非有外力作用于其上。

第二定律描述了力和物体的加速度之间的关系,即F=ma。

第三定律说明了物体之间的作用力总是相互作用,大小相等、方向相反。

三、受力分析受力分析是工程力学解决问题的基础步骤。

通过确定作用在物体上的力的大小、方向和作用点,我们可以确定物体的运动状态和受力情况。

受力分析包括两种常见情况:平面力系统和空间力系统。

在平面力系统中,我们将力向量分解为水平和垂直分量,然后应用力的平衡条件进行计算。

在空间力系统中,我们需要考虑力的三个分量(x、y、z轴),并利用向量运算进行分析。

四、力的矩和力偶力的矩和力偶是描述力的作用效果的重要概念。

力的矩是力相对于某个点的偏转效果,它等于力的大小与力臂(力与参考点之间的垂直距离)的乘积。

力的矩可以产生力矩偶,力矩偶是相互作用的两个力的矩的代数和。

力的矩和力偶在结构力学分析和机械设计中有广泛的应用。

五、阻力和摩擦力阻力和摩擦力是物体与周围介质相互作用时存在的力。

阻力是物体与流体介质之间相互作用产生的力。

它的大小与物体的速度和介质的特性有关。

摩擦力是物体表面之间的相互作用力,它的大小与物体表面的粗糙程度有关。

阻力和摩擦力在流体力学和运动学中有重要的应用。

六、弹性力学弹性力学是工程力学中一个重要的分支,它研究的是物体在受力作用下的形变和应力。

工程力学笔记

工程力学笔记

工程力学是工程学的基础学科,它研究物体在受力作用下的平衡和运动。

以下是一些工程力学的基本概念和笔记,供参考:第一章:力和力的分析1.1 力的定义力是一种导致物体产生运动或形状变化的作用。

1.2 力的特征力的大小(标量)力的方向(矢量)力的点对点作用1.3 力的单位国际单位制中,力的单位是牛顿(N),1N等于1千克米/秒²。

第二章:力的分解和合成2.1 力的分解将一力分解成两个或多个分力,便于分析和计算。

2.2 力的合成将多个力合成为一个等效的单一力。

第三章:平衡3.1 平衡的条件物体在受到一组外力作用下,如果合力为零且合力矩(力矩的合成)也为零,则物体处于平衡状态。

3.2 平衡的类型静平衡:物体保持静止。

动平衡:物体以恒定速度运动,但不改变其状态。

第四章:杆件和结构4.1 杆件的力分析应力:单位截面上的内部力。

应变:物体单位长度上的变形。

4.2 杆件的弹性变形需要考虑杆件的材料特性和截面形状。

第五章:摩擦力5.1 静摩擦力静摩擦力的大小受到两个物体之间的正压力和静摩擦系数的影响。

5.2 动摩擦力动摩擦力通常小于或等于静摩擦力,它的大小取决于动摩擦系数。

第六章:质点的运动6.1 运动的描述位置、位移、速度和加速度等描述物体运动的参数。

6.2 牛顿的三大运动定律第一定律:惯性定律第二定律:力的作用导致加速度第三定律:作用与反作用第七章:工程结构的分析7.1 杆件和梁的内力分析利用平衡条件和截面平衡来分析结构内力。

7.2 支持反力分析利用平衡方程来计算支持反力。

这些笔记覆盖了工程力学的基本概念和主要内容。

工程力学是工程学的重要基础,它对于设计和分析各种工程结构和系统都具有重要意义。

(完整版)工程力学知识点

(完整版)工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。

(适用于任何物体)d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。

(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。

2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系。

b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。

c,空间汇交力系:力的作用线汇交于一点的空间力系。

d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。

3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶。

但绝不可能是一个力偶。

b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。

4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。

b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是研究物体在受力作用下的运动和静力平衡的一门学科。

它是工程学的基础课,通过研究物体的平衡状态、受力分析和运动规律,为设计和建造工程结构提供理论依据。

在工程力学中,有许多重要的知识点,下面将对其进行总结。

1. 基本力学概念在工程力学中,有几个基本的力学概念需要掌握。

首先是质点的概念,质点是指具有质量但没有尺寸的物体。

其次是力的概念,力是改变物体状态的推动或阻碍物体运动的作用。

另外,还有向量的概念,向量是具有大小和方向的量。

2. 受力分析受力分析是工程力学的重要内容,它主要研究物体所受到的各个力的大小、方向和作用点等。

受力分析的基本原理是牛顿第二定律,即物体所受合力等于物体的质量乘以加速度。

通过受力分析,可以确定物体的平衡状态和运动规律。

3. 平衡条件在工程力学中,平衡是一个重要的概念。

平衡可以分为静力平衡和动力平衡。

静力平衡要求物体所受合力和合力矩都为零,而动力平衡要求物体所受合力和合力矩的矢量和等于零。

根据平衡条件,可以确定工程结构的稳定性和安全性。

4. 静力学静力学是研究物体在力的作用下的静力平衡问题的学科。

它包括受力分析、力的合成与分解、力的平衡条件等内容。

静力学是工程力学的重要基础,对于工程设计和分析具有重要的意义。

5. 动力学动力学是研究物体在力的作用下的运动规律的学科。

它包括质点的运动学和动力学、牛顿第二定律、力学能等内容。

通过动力学的研究,可以确定物体的运动规律以及所受的力和加速度之间的关系。

6. 弹簧力学弹簧力学是研究弹性物体受力和变形规律的学科。

弹簧力学主要涉及胡克定律、弹性势能、弹性系数等内容。

在工程力学中,弹簧力学是研究结构变形和力学性能的重要工具。

7. 梁的受力分析梁的受力分析是工程力学的重要内容,它研究物体所受的内力、外力和弯矩等。

梁的受力分析可以通过挠曲方程和受力平衡方程来进行。

根据梁的受力分析,可以确定梁的强度和刚度,为工程设计提供理论依据。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结1. 引言工程力学是一门研究物体静力学与动力学的学科,是工程学的基础课程之一。

本文将对工程力学的主要知识点进行总结,包括静力学和动力学的基本概念、力的平衡条件、力的分析方法、质点的运动学和动力学等内容。

2. 静力学静力学研究质点或物体处于平衡状态的力学性质。

静力学的主要知识点包括:2.1 力的平衡条件根据牛顿第一法则,一个物体处于静止或匀速直线运动状态时,合力为零。

根据这一原理,可以得出物体处于平衡状态时的力的平衡条件:合力为零、力矩为零。

2.2 力的分析方法力的分析方法包括分解力、合成力和力的三角法。

分解力是将一个力分解为多个分力,合成力是将多个分力合成为一个力,力的三角法是一种通过三角形关系求解力的大小、方向和作用点的方法。

2.3 物体的平衡物体的平衡分为平面问题和空间问题。

对于平面问题,可以通过求解力的合力和合力矩的平衡条件,得出物体处于平衡状态时的力的大小、方向和作用点。

对于空间问题,还需要考虑力的三维几何关系。

3. 动力学动力学研究质点或物体在力的作用下的运动状态。

动力学的主要知识点包括:3.1 质点运动的描述质点的运动描述可以从运动学和动力学两个方面进行。

运动学研究质点的位置、速度、加速度和轨迹等;动力学研究质点的运动与力的关系。

3.2 牛顿第二定律牛顿第二定律描述了力与质点运动的关系,它可以表示为F=ma,其中F表示合力,m表示质量,a表示加速度。

根据牛顿第二定律,可以求解质点在给定力作用下的运动。

3.3 力的分类力可以分为重力、弹力、摩擦力等。

重力是物体受到的地球吸引力,可以用mg表示;弹力是物体受到弹性体的作用力;摩擦力是物体在接触面上相互摩擦时产生的力。

3.4 动量和动量守恒动量是物体的运动状态的量度,可以表示为p=mv,其中p表示动量,m表示质量,v表示速度。

根据动量守恒定律,两个物体在碰撞过程中的总动量保持不变。

4. 结论工程力学是研究物体静力学和动力学的学科,对于工程学具有重要的意义。

工程力学知识点总结

工程力学知识点总结
牛顿第三定律
作用力和反作用力大小相等、方向相反、作 用在同一直线上。
牛顿第二定律
物体加速度与作用力成正比,与质量成反比。
应用
分析物体的运动状态、求解作用力的大小和 方向。
动量矩定理和动能定理
动量矩定理
刚体转动动量矩的变化 等于作用力矩与时间的 乘积。
动能定理
物体动能的变化等于合 外力所做的功。
应用
摩擦力与摩擦定律
详细描述:摩擦力是阻碍物体相对运动的力, 其方向与物体相对运动方向相反。
详细描述:摩擦定律指出滑动摩擦力的大小与接触面 的粗糙程度和正压力有关,而与接触面的面积无关。
总结词:摩擦力 总结词:摩擦定律
03 材料力学
材料的基本性质
弹性与塑性
材料在外力作用下发生形变,外力消失后恢复原状的性质 称为弹性;而外力作用后材料发生不可逆的形变,即塑性。
通过优化设计方法,寻求最优的结构 设计方案,以满足性能要求和降低成 本。
弹性力学基础
弹性力学基本方程
包括平衡方程、几何方程和物理方程,用于 描述弹性体的位移、应变和应力等。
弹性力学问题分类
根据问题的边界条件和载荷类型,将弹性力 学问题分为静力学问题和动力学问题。
弹性力学问题的求解方法
包括解析法和数值法,如有限元法、有限差 分法和边界元法等。
总结词
力的作用线
详细描述
力的作用线是连接力作用点与受力点的假想直线, 它决定了力的方向和大小。
总结词
力的平行四边形法则
详细描述
两个力合成时,以这两个力为邻边构成01
总结词:力的合成
02
详细描述:力的合成是通过求两个或多个力的合力来简化问题的方法。
3
加速度描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学知识点总结第0章1.力学:研究物体宏观机械运动的学科。

机械运动:运动效应,变形效应。

2.工程力学任务:A.分析结构的受力状态。

B.研究构件的失效或破坏规律。

C.分研究物体运动的几何规律D.研究力与运动的关系。

3.失效:构件在外力作用下丧失正常功能的现象称为失效。

三种失效模式:强度失效、刚度失效、稳定性失效。

第1章1.静力学:研究作用于物体上的力及其平衡的一般规律。

2.力系:是指作用于物体上的一组力。

分类:共线力系,汇交力系,平行力系,任意力系。

等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。

3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。

4.分力的方位角:力与x 轴所夹的锐角α:方向:由 Fx 、Fy 符号定。

5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。

(刚体是理想化模型,实际不存在)6.力矩:度量力使物体在平面内绕一点转动的效果。

方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。

(2) 力作用线过矩心。

力沿作用线移动时,力矩不会发生改变。

力可以对任意点取矩。

7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。

(例:不能()O M F Fd =±单手握方向盘,不能单手攻丝)特点:1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。

2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。

3.力偶对其作用面内任一点的矩恒等于力偶矩。

即:力偶对物体转动效应与矩心无关。

三要素:大小,转向,作用面。

力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。

推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。

(只能在作用面内而不能脱离。

)推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力和力偶臂的大小,而不改变对刚体的作用。

8.静力学四大公理A.力的平行四边形规则(矢量合成法则):适用范围:物体。

B.二力平衡公理:适用范围:刚体(对刚体充分必要,对变形体不充分。

)注:二力构件受力方向:沿两受力点连线。

C.加减平衡力系公理:适用范围:刚体D.作用和反作用公理:适用范围:物体特点:同时存在,大小相等,方向相反。

注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。

(即:作用力反作用力不是平衡力)9.常见铰链约束及其性质(大题)第4章1.材料力学的任务:a.足够的强度:构件抵抗破坏的能力b.足够的刚度:构件抵抗变形的能力c.足够的稳定性:构件维持其原有平衡状态的能力。

2.材料力学的基本变形:轴向拉压,剪切,扭转,弯曲3.材料力学基本假定:a.均匀连续性假定b.各向同性假定c.小变形假定(弹性变形,塑性变形)4.四种基本变形在工程背景上的应用:轴向拉压:火车卧铺的撑杆剪切:连轴器中的螺栓扭转:汽车承重轴弯曲:钻床摇臂5.组合变形的判断:拉压:力沿轴向方向剪切:两个力的间距非常小且方向相反扭转:右手螺旋定则判断力方向沿轴向(与轴向平行)弯曲:右手螺旋定则判断力方向与轴向垂直。

(注意斜弯曲)6.基本变形的方向判断:轴向拉压:拉力为正,压力为负。

扭转:右手螺旋定则判断,拇指背离截面的外力偶矩为正,指向截面的外力偶矩为负。

剪力:使截面处的微段梁产生左上右下错动的剪力为正。

弯矩:使梁截面上部纵向受压、下部纵向受拉的弯矩为正。

第5章1.轴力图(大题)2.应力分析方法: A.表面变形B.平面假设:假设变形前的横截面变形后仍保持为平面 。

C.内部变形:设想杆由无数纵向纤维组成,各纤维伸长都相同,可知它们所受的力也相等 。

D.应力分布规律:轴力在横截面上均布,各点应力相同,垂直于截面,为正应力。

3.应力分布图: 若杆轴力为FN ,横截面面积为A ,则横截面上各点的应力为:4.材料力学性质实验(必考)1.)实验过程:(以拉伸实验为例)将低碳钢试件装入试验机夹头内,然后开动机器加载。

试件受到由0逐渐增加的拉力P 的作用,同时发生拉伸形变。

拉力P 缓慢增加,直至试件拉断。

2.)各阶段及特点A.弹性阶段:OA' 产生弹性变形。

OA 点弹性极限σe (微弯线AA ’,斜直线OA ’)AF N=σ特点:(1)应力与应变成正比,最高点 A 的应力称为比例极限σp。

(2)直线段斜率为材料的弹性模量E。

反映了材料抵抗弹性变形的能力。

B.屈服阶段:ABC特点:(1) 产生屈服(流动)现象:应力几乎不变,但应变却显著增加。

(2) 产生显著的塑性变形。

滑移线(与轴线约成450 )(3) 屈服极限σs:材料屈服时的应力,称为屈服极限(流动极限) 。

衡量材料强度的重要指标。

C.强化阶段:CD特点:(1)强化:材料重新具有抵抗变形的能力。

(2)绝大部分变形是塑性变形,试件的横向尺寸明显缩小。

(塑性:材料能产生塑性变形的性质。

)(3)强度极限(抗拉强度) σb。

是衡量材料的另一强度指标。

D.颈缩阶段:DE(局部变形阶段)特点:横向尺寸急剧缩小,产生颈缩现象。

3.)试件拉压形变面:铸铁:拉伸:曲线微弯,断裂时应力很小,断口平齐。

压缩:断面与轴线约成45°低碳钢:拉伸:有明显的塑性破坏产生的光亮倾斜面,倾斜面倾角与试样轴线近似成杯状断口。

压缩:试件越压越扁,没有强度极限σb。

4.)材料的塑性指标:(δ和ψ都表示材料拉断时其塑性变形所能达到的最大程度。

其值愈大,说明材料的塑性愈好。

)延伸率:(l1是拉断后的标距长度。

)δ≥5%的材料为塑性材料。

δ<5%的材料为脆性材料。

截面收缩率:(A 1是拉断后断口处横截面面积。

)4.)卸载规律和冷作硬化:卸载规律:当试件加载到强化阶段的任一点 f 后卸载,应力应变关系将沿着与弹性阶段几乎平行的直线回到h 点。

冷作硬化:对预拉伸的试件短期内重新加载,到f 点的应力后, 才出现塑性变形。

所以,这种预拉过的材料比例极限提高到f 点,材料的强度提高,但是塑性降低。

(弹性应变hg ,塑性应变Oh 。

) 5.)其他塑性材料的拉伸 1、都有弹性阶段,E 值接近。

2、强度、塑性有别。

3、无明显屈服阶段,取有0.2%塑性应变时的应力为屈服极限。

记为δ0.2。

5.拉压杆的胡克定律: (适用于弹性范围内,系数E 与材料的性质有关,称为材料的拉、压弹性模量。

)第6章1.外力偶矩计算公式:2.圆轴扭转特点:主动轮上的力偶与轴的转动方向一致,从动轮上的力偶与轴的转动方向相反。

3.圆轴扭转讨论应力方法(见下图)10100⨯-=A A A ψN F ll EA∆=Nm n=95504.薄壁圆筒应力分布:各点大小相等,沿壁厚均布,方向垂直半径。

5.薄壁圆筒圆轴扭转公式:6.切应力互等定理:A.在互相垂直截面的交线处,切应力成对出现。

B.切应力大小相等,垂直于交线。

C.切应力方向共同指向交线或背离交线。

7.剪切弹性模量计算公式: 8.圆轴扭转的横截面切应力分布: 圆轴扭转时,横截面上的切应力与点到圆心距离成正比。

即原点处切应力为0,边缘切应力最大;同圆上切应力相等;切应力垂直TM r τπδ=222(1)EG μ=+半径。

9.实心/空心厚壁圆轴扭转横截面任意点应力:(MT ——横截面上的扭矩。

ρ——横截面上点到圆心的距离。

I P ——横截面对圆心的极惯性矩。

)10.实心/空心厚壁圆轴扭转横截面边缘各点应力: W P 称为抗扭截面系数, 单位m3。

11.距离为l 的两个截面在M T 作用下旋转角度:(GI P 称为圆轴的抗扭刚度。

反映了圆轴抵抗扭转变形的能力。

) 12.常见轴极惯性矩Ip 和扭转截面模量Wp (记)实心轴:Ip= Wp=空心轴:Ip= Wp=矩形:Iy= Iz=13.工程实用中使用空心轴而不使用实心轴原因:A.在相同扭矩作用下,对于相同材料的轴,强度相同时,空心轴节省材料。

B.对于相同材料的轴,横截面面积相同时,空心轴承载大。

2P D PI W =()41α-324D πT PM I ρρτ=TP MW max τ==T pM l GI ϕ3P 16D W π=324D π()43116απ-=D W P 123bh(实心圆轴中心部分的材料承载能力没有充分发挥,从理论上讲,将这部分材料移到离中心较远的位置,可以充分发挥承载能力。

)第7章1.平面弯曲的受力特点及变性特点:受力特点:外力(包括力偶)位于纵向对称面内。

变形特点:梁的轴线在纵向对称面内弯成一条平面曲线。

2.弯曲正应力纯弯曲:横截面上只有弯矩而没有剪力的弯曲。

横力弯曲:横截面上即有弯矩又有剪力的弯曲。

3.纯弯曲实验和假设A.表面变形(2)纵向线变成同心圆弧,顶侧缩短,底侧伸长。

(1)横向线仍为直线,相对有转动,仍与纵向线正交,且在同一平面内。

B.假设(1)平截面假设:横截面变形后保持平面,有相对转动,与梁轴线正交。

(2)单向受力假设:纵向纤维只承受单向拉、压,相互之间没有挤压。

C.内部变形将梁视为无数平行底面的纵向纤维层(垂直纵向对称面),则:(a)每层上的各条纤维伸、缩量相等。

(同层上的纤维条受力相同)(b )必然有一层纤维既不伸长,也不缩短,称为中性层。

中性层与横截面的交线为中性轴。

注:中性轴 z 垂直于梁的纵向对称面(加载平面) 纯弯曲变形的特点:横截面绕中性轴产生相对转动。

4.平面弯曲时梁横截面上的正应力:(σ——横截面上距中性轴为 y 的点的应力。

M ——横截面上的弯矩。

Iz ——横截面对中性轴 z 的惯性矩。

)注:绕z 轴旋转动,边缘最大。

公式的适用范围:A.理论和实验证明:对横力弯曲,当梁长l 大于5倍梁高时,应用该公式计算误差很小。

即该公式可用于横力弯曲。

B.适用于任何有竖向对称轴的截面梁,外力在该对称轴与轴线所确定的纵向对称面内(平面弯曲)。

D.只适用于平面弯曲。

E.在弹性范围内应用。

F.可近似用于曲率半径比梁高大的多的曲梁,以及变截面梁。

5.弯曲正应力分布图位于中性轴上正应力为0, ——上左下右(正),——上右下左zI My =σ6.抗弯强度计算公式:抗弯截面模量:矩形截面空心圆截面7.挠曲线近似微分方程:(y”与M的符号总是相同。

只讨论等截面直梁)8.转角方程和挠度方程转角方程:挠度方程:(每段梁有C、D两个积分常数。

)9.边界条件(必考)A.支座处:满足支座约束特点。

B.分段处:构件不断开,材料不重叠。

(连续光滑条件)固定端:y=0,y’=0(θ=0)角支座:y=0,y’≠0(θ≠0)例题:边界条件:A点:x=0 y(0)=0,B点:x=l y(l)=0边界条件:A点:x=0 y(0)=0,x=0 θ(0)=y’(0)=0边界连续(积分常数)条件:x1=0 y1(0)=0,x2=l y2(l)=0,x1=x2=a y1(a)=y2(a),x1=x2=a θ1(a)=θ2(a)。

相关文档
最新文档