微生物的代谢调节.ppt
合集下载
微生物的营养代谢PPT课件
基本营养物质的培养基。
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
例如:牛肉膏蛋白胨培养基(细菌)
牛肉膏 蛋白胨 NaCl 琼脂 水 PH
3g 10g 5g 18--20g 1000ml 7.0----7.2
培养基
(2)加富培养基(enrichment medium)
又叫营养培养基
定义:在基础培养基中加入某些特殊营养物 质制成的营养丰富的培养基。
[CH2O] + O2 ↑
如以还:绿 原硫 态细 无菌 机、硫紫化硫物细作菌氢或还电原子C供O体2 时。,
光能
CO2 + 2H2S 细→菌 [CH2O] + H2O + 2S
叶绿素
微生物的营养类型
(2)光能有机营养型(photorganotroph)
又叫异养微生物。又称光能异养型微生物。 红螺菌属.
脂肪酶
脂肪
甘油 +O2 CO2+H2O
脂肪酸 -O2 简单酸+CO2+CH4
应用:屠宰场;生活污水。
3 果胶物质的分解
原果胶酶
原果胶+H2O
可溶性果胶+多缩戊糖
可溶性果胶+H2O 果胶甲基酯酶 果胶酸+甲醇
果胶酸+H2O 多缩半乳糖酶 半乳糖醛酸
应用:麻类物质的脱胶处理
水浸——厌氧性细菌 露浸——好氧性细菌、放线菌、真菌
定义:以小分子有机物为最终电子受体的生物 氧化过程。有机物为呼吸基质的中间产物。
最终电子受体——有机物 参与的微生物——厌氧菌和兼性厌氧菌。 不经过电子传递体。 常见的发酵有
§乙醇发酵 §乳酸发酵
§丁酸发酵
乙醇发酵(生产酒精)
葡萄糖
3-磷酸甘油醛
2NAD
乙醇
1,3-二磷酸甘油酸
2NADH2
微生物的新陈代谢优秀PPT
生物固氮主要在三方面进行研究: 用实验的方法提高主要农作物的固氮能力。 模拟固氮酶,使工业生产N肥在常温、常压下进行。 选择利用高效、优质的固氮微生物做为生物肥料 (根瘤菌肥料和固氮菌肥料)。
2020/4/28
9
(一) 固氮微生物
80余属,全部为原核生物(包括古生菌),主要包 括细菌、放线菌和蓝细菌。根据固氮微生物与高等 植物及其他生物的关系,可将它们分为以下3类:
但大多数固氮菌都是好氧菌。
微生物如何解决既需要氧又须 防止氧对固氮酶损伤的矛盾?
2020/4/28
21
(三) 固氮微生物的避氧害机制
长期进化过程中,各种固氮微生物已进化出适 合在不同条件下保护固氮酶免受氧害的机制。
1. 好氧性自生固氮菌的抗氧保护机制 (1)呼吸保护
固氮菌科的菌种能以极强的呼吸作用迅速将周围环境中
18
固氮酶
固氮酶的特点:
1)还原N2、H+、C2H2等生物活性;
2)由固氮酶(组分I;钼铁蛋白;固二氮酶)和固氮
酶还原酶(组分II;铁蛋白;固二氮酶还原酶来自共同组成时才具有生物活性;
3)氧不可逆失活作用。
2020/4/28
19
固氮的生化途径细节
2020/4/28
20
思考
固氮酶对氧极端敏感(不可逆的失活); 组分II(铁蛋白):在空气中暴露45s后失活一半; 组分I(钼铁蛋白):活性半衰期10 min;
第三节 微生物独特合成代谢 途径举例
2020/4/28
1
一. 自养微生物的CO2固定 二. 生物固氮 三. 肽聚糖的合成 四. 次生代谢
2020/4/28
2
一. 自养微生物的CO2固定
各种自养微生物在其生物氧化中获取的能量主要用于CO2的 固定。在微生物中,至今已了解的CO2固定的途径有4条。
代谢工程课件PPT课件
精选PPT课件
14
图:大肠杆菌代谢过程的抑制剂和激活剂
精选PPT课件
15
(一)酶活性的激活
常见的酶活性的激活是前体激活,多发 生在分支代谢途径,即代谢途径中的后 面的反应可被较前面的一种代谢中间产 物所促进。 如:粗糙脉胞酶的异柠檬酸脱氢酶的活 性受到柠檬酸的激活。
精选PPT课件
16
(二)酶活性的抑制
酶分子水平调节, 调节酶活性
相同 细胞内两种方式同时存在,密切配合,高效、准
点
确控制代谢的正常进行。
精选PPT课件
40
三、能荷的调节
能荷指细胞中ATP、ADP、AMP系统中可供利用的 高能磷酸键的量度。
能荷调节(或称腺苷酸调节):指细胞通过改 变ATP、ADP、AMP三者的比例来调节其代谢活动。
精选PPT课件
37
精选PPT课件
38
(2)分解代谢产物阻遏
定义:指细胞内同时有两种分解底物(碳源或氮源) 或其分解产物存在时,被菌体迅速利用的那种分解 底物会阻遏利用慢的底物的有关酶合成的现象。
分解代谢物的阻遏作用,并非由于快速利用的碳源 本身直接作用的结果,而是通过碳源(或氮源等) 在其分解过程中所产生的中间代谢物所引起的阻遏 作用。
精选PPT课件
21
(2)协同反馈抑制:
指分支代谢途径中的几个末端产物同时过量时才 能抑制共同途径中的第一个酶的一种反馈调节方 式。
如:谷氨酸棒杆菌合成天冬氨族氨基酸时,天冬 氨酸激酶受赖氨酸和苏氨酸的协同反馈抑制。
精选PPT课件
22
(3)累积反馈抑制: 催化分支合成途径第一 步反应的酶有几种末端产物抑制物,但每一种 如过量,按一定百分率单独抑制共同途径中的 第一个酶活性,总的抑制效果是累加的,各末 端产物所起的抑制作用互不影响,只影响这个
微生物学第六章微生物代谢课件PPT
(4)硝酸盐呼吸(反硝化作用)
亚硝酸还原细菌
基质-H2
辅酶
一系列酶
NO2-
NO
N2
基质
辅酶-H2
NO3硝酸盐还原细菌
脱氢酶
2NH2OH 2HNO3 2HNO2 2NOH
N2O
2NH3 N2
3、能量转换
(1)底物水平磷酸化(substrate level phosphorylation):物质在生物氧化过程中,生成一些 含有高能键的化合物直接偶联ATP或GTP的合成;存在 与发酵过程中及呼吸过程中。 (2)氧化磷酸化(oxidative phosphorylation): 生物氧化过程与电子传递链偶联产生ATP的过程。 (3)光合磷酸化 环式光合磷酸化:只有一个光反应系统,有光反 应和暗反应;不放氧;产生ATP不产还原剂NADH2,固 定CO2所需NADH2来自电子传递。
代谢途径(metabolic pathway):也称(chemical pathways of metabolism)代谢的化学途径,指某一物质代 谢反应过程。 代谢物(metabolite):指代谢反应中任一反应物、 中间物或产物。 初级代谢(Primary Metabolism):通过分解和合成代 谢,生成维持生命活动物质和能量的过程。 次级代谢(Secondary Metabolism):以初级代谢产物为 前体,合成一些对生命活动无明确功能的物质过程。 代谢工程(Metabolism Engineering):通过基因工程 技术操作生物的代谢途径,提高二级代谢产物的产量和 增加品种。 代谢调控:利用遗传学方法或其它生物学方法,人 为地改变和控制生物的代谢途径,生产有用物质或进行 有益服务。
(2)呼吸作用 有氧呼吸(aerobic respiration):以分子氧 为最终电子受体的生物氧化过程。 无氧呼吸(anaerobic respiration ):以无机 物为最终电子受体的生物氧化过程。
代谢的调控PPT课件
营养与健康管理
通过调节个体的代谢过程, 可以实现更有效的营养补 充和健康管理,预防疾病 的发生。
代谢调控在农业领域的应用前景
作物改良
通过调节作物的代谢过程,可以培育出抗逆性强、产量高、品质 优良的新品种,提高农业生产效益。
精准农业
利用代谢调控技术,可以实现精准施肥、灌溉和病虫害防治,减 少资源浪费和环境污染。
THANKS
感谢观看
蛋白质组学是研究蛋白质表达、 修饰、功能和相互作用的学科。
蛋白质组学在生命科学、医学和 生物技术等领域具有广泛的应用
价值。
蛋白质组学的研究进展包括蛋白 质相互作用组学、蛋白质翻译后 修饰组学和蛋白质功能组学等方
面的研究。
基因组学的研究进展
基因组学是研究生物体基因组的 学科。
基因组学在遗传学、生物技术和 医学等领域具有广泛的应用前景。
葡萄糖代谢调控
01
癌细胞通常会优先利用葡萄糖作为能量来源,通过增加葡萄糖
转运子和酶的表达来促进葡萄糖的摄取和利用。
脂肪酸代谢调控
02
癌细胞会改变脂肪酸的合成和分解代谢,以满足自身对能量的
需求。
氨基酸代谢调控
03
癌细胞会利用氨基酸作为合成蛋白质和其他重要物质的原料,
同时也会通过增加酶的表达来促进氨基酸的摄取和利用。
方向。
酶的活性调节
酶的活性可以通过共价修饰、变构 效应、别构效应等方式进行调节, 从而改变酶对底物的作用。
酶的分布和定位
酶在细胞内的分布和定位对代谢调 控具有重要意义,不同细胞器中的 酶可以催化不同的代谢反应。
激素的调控
激素的合成与分泌
激素的合成与分泌受到多种因素的影响,如营养状况、神经信号 等,这些因素可以调节激素的合成与分泌。
微生物的代谢调节
变构效应:调节物或效应物与酶分子的别构中 心结合后,诱导或稳定住该分子的某种构象, 因结合后的该亚基形状即改变――并可促使其 他亚基的结合部位发生变化,从而导致酶活性 中心与底物的结合受到影响,调节酶的反应速 度及代谢过程。
➢变构效应有2种情况:
(1) 同促效应,调节物即底物,一般有2个以 上底物结合中心,其调节作用取决于被占据 的底物结合中心数。
▪ 由两种酶控制的逆单向反应:即在一个“可逆”反应中,其中 一种酶催化正反应,而另一种酶则催化逆反应。
葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖
6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
4、代谢速度的调控
▪ 在不可逆反应中,微生物通过调节酶的活性 和酶量来控制代谢物的流量。
▪ 细胞代谢的调节主要是通过控制酶的作用而 实现的,也就是说,细胞内各种酶类的活性 都处在受控制的状态下,必须根据细胞对能 量以及对合成某些组分的要求而进行各种酶 促反应,并可随时减慢或加速某一物质(氨 基酸等)的合成。
➢也有负协同效应的别构酶, 底物与酶分子结合后,构象 的变化使后续分子与酶的亲 和性降低――负协调性。
可以用Rs来判断三类酶:
典型的米氏类型酶 Rs=81 正协同别构酶 Rs<81 负协同别构酶 Rs>81
3.变构作用机制的分子模型
①协调模型(齐变、对称模型)
➢ 变构酶存在两种构象状态,,即R状态(催化状态或松弛态) 和T状态(抑制状态或紧张态),在两种状态间有一个平衡, 添加底物、激活剂或抑制剂可以使R状态和T状态两种构象状态 的平衡发生移动,底物和激活剂对R状态亲和性大,当激活剂 与酶的一个亚基结合后,所有亚基都变成易于与底物结合的活 化型,结果提高了酶的活性,反之,抑制剂与酶结合后变成抑 制型,使酶活性降低或消失。
微生物代谢调节
两种调节的对比
酶合成的调节 酶活性的调节
通过酶量的变化 调节对象 控制代谢速率
不 同 点
控制酶活性,不涉 及酶量变化 快速、精细
代谢调节,它调节 酶活性
调节效果
调节机制
相对缓慢
基因水平调节, 调节控制酶合成
相同 点
细胞内两种方式同时存在,密切配合,高效、准 确控制代谢的正常进行。
反馈阻遏与反馈抑制的比较
适应酶又可分为诱导酶和阻遏酶
• 诱导酶 只有当其分解底 物或有关诱导物存在 时才,会合成的酶。
• 机制
诱导物与一种调节 基团编码的活性的阻 遏物可逆地结合,从 而解除后者对该酶结 构基团的转录的阻塞。
阻遏酶及其机理
其调节基因产物是一种阻遏蛋白,无活性,仅在有辅阻遏物(终产物) 存在下可转化为抑制剂 (“锁”),与操纵基因结合,阻止转录进行。
1.控制营养物质透过细胞膜进入细胞 2.通过酶的定位控制酶与底物的接触 3.控制ห้องสมุดไป่ตู้谢物流向(酶活性与酶量调节)
第三节 酶活性的调节
一、调节酶 静态酶:一般性催化;反应可逆;速度快; 调节酶:通过改变现成的酶分子活性来调节新陈代谢的速率的方式。是酶 分子水平上的调节,属于精细的调节。限速反应;不可逆;速度慢 (一)调节方式:包括两个方面: 1、酶活性的激活:在代谢途径中后面的反应可被较前面的反应产物所促 进的现象;常见于分解代谢途径。 2、酶活性的抑制:包括:竞争性抑制和反馈抑制。 概念:反馈:指反应链中某些中间代谢产物或终产物对该途径关键酶活性 的影响。 凡使反应速度加快的称正反馈; 凡使反应速度减慢的称负反馈(反馈抑制); 反馈抑制——主要表现在某代谢途径的末端产物过量时可反过来直接抑制 该途径中第一个酶的活性。主要表现在氨基酸、核苷酸合成途径中。 特点:作用直接、效果快速、末端产物浓度降低时又可解除
微生物的代谢ppt课件
酶制剂发酵
利用微生物产生各种酶类的代谢过程 ,将酶提取后广泛应用于食品加工、 洗涤剂等领域。
微生物代谢在环境保护中应用
废水处理
利用微生物降解有机污染物的代 谢能力,将废水中的有害物质转 化为无害物质,达到废水处理的
目的。
生物脱硫脱氮
利用微生物分解有机垃圾的代谢 过程,将有机垃圾转化为稳定的 腐殖质,实现有机垃圾的资源化
也最快。
酸碱度对微生物代谢影响
酸碱度(pH值)对微生物的生长和 代谢有很大影响。
pH值通过影响微生物细胞膜的通透 性、酶的活性以及营养物质的吸收等 方式来影响微生物的代谢。
不同微生物对pH值的适应性不同, 有些微生物只能在酸性或碱性环境中 生长。
微生物在适宜的pH值范围内,其代 谢活动才能正常进行。
医疗健康
微生物代谢与人类健康密切相 关,研究微生物代谢有助于了 解疾病的发生机制并开发新的 治疗方法。
农业领域
微生物代谢在农业领域也有重 要作用,如生物肥料、生物农
药的研制和应用等。
02
微生物能量代谢
能量代谢基本概念
能量代谢
指生物体内能量的转移和转换过程, 包括能量的释放、传递、储存和利用 。
氧化还原反应
通过改变酶分子的数量来调节代谢速率,如酶合成和降解的速
率控制。
基因表达调控机制
转录水平调控
通过控制基因转录的速率来调节基因表达,如启动子和转录因子的 相互作用。
翻译水平调控
通过控制mRNA的翻译速率来调节基因表达,如核糖体结合位点和 翻译起始因子的作用。
转录后和翻译后调控
通过控制mRNA和蛋白质的修饰、加工和降解来调节基因表达,如 RNA剪接和蛋白质磷酸化。
微生物的代谢ppt课件
第四章 微生物的代谢调控与代谢
[实际上乳糖不是真正的诱导物,它必须先转化为 别构乳糖才能起诱导剂的作用] ������ 诱导剂也可以不是该酶的作用底物 如异丙基- β-D-硫代半乳糖苷(IPTG)是β-半乳 糖苷酶合成的极佳诱导剂,但不是作用底物;
������ 酶的作用底物不一定有诱导作用 如对硝基苯-α-L-阿拉伯糖苷是β-半乳糖苷酶的底 物,但不能诱导该酶的合成。
凡是能促进酶合成的调节称为诱导;而能阻碍酶合 成的调节称为阻遏。
������ ������ 同调节酶的活性的反馈抑制等相比,通过 调节酶的合成而实现代谢调节的方式是一类较间接 而缓慢的调节方式;其优点是通过阻止酶的过量合 成,有利于节约生物合成的原料和能量。
一)酶合成调节的类型
诱导 阻遏 末端产物阻遏
三、分支生物合成途径的调节
1、同工酶(isoenzyme)调节 某一分支途径中的第一步反应可由多种酶催化,但这些酶 受不同的终产物的反馈调节. (酶的分子结构不同)
D
A B C F
E
G
Y
Z
如:大肠杆菌的天门冬氨酸族氨基酸的合成途径中,有三 个同工酶:天门冬氨酸激酶Ⅰ、Ⅱ、Ⅲ,分别受赖氨酸、 苏氨酸和甲硫氨酸的反馈调节
������ 1指由某代谢途径末端产物过量积累而引起的阻 遏。 ������ 2对直线式途径来说,末端产物阻遏的情况较简单, 即产物作用于代谢途径中的各种关键酶,使之合成 受阻; 对于分支代谢途径而言,情况较复杂,每种末端产 物仅专一地阻遏合成它的那条分支途径的酶。代谢 途径分支点以前的“公共酶”仅受所有分支途径末 端产物的阻遏(多价阻遏作用)。 3末端产物阻遏在代谢调节中有重要作用,保证细 胞内各种物质维持适当的浓度;普遍存在于氨基酸 核苷酸生物合成途径中。
5、顺序反馈调节 (sequential feedback regulation)
微生物的代谢与调节
ATP ADP
a
ATP ADP
EMP途径意义:
果糖-1,6- 二磷酸
为细胞生命活动提供 磷酸二羟丙酮 甘油醛-3-磷酸 ATP 和 NADH;桥梁 NAD+ NADH+H+ ;中间代谢产物;逆 1,3-二磷酸甘油酸 向合成多糖;与发酵 ADP 底物水平磷酸化 产物有关。 3-磷酸甘油酸ATP b a :耗能阶段 2-磷酸甘油酸 磷酸烯醇式丙酮酸
分解代谢的三个阶段
将大分子的营养物质降解成氨基酸、单糖、脂 肪酸等小分子物质。 进一步降解成为简单的乙酰辅酶A、丙酮酸、 及能进入TCA循环的中间产物。 将第二阶段的产物完全降解生成CO2 , 并将 前面形成的还原力(NADH2)通过呼吸吸链氧 化、 同时形成大量的ATP。
合成代谢和分解代谢的关系
一.化能异养微生物的生物氧化和产能
大分子物质的分解代谢 1、多糖的分解 Ø 淀粉 l 由各种胞外淀粉酶分解成葡萄糖(麦芽糖)后被吸收利用 n a-淀粉酶:枯草杆菌,米曲霉 n b-淀粉酶 :巨大芽孢杆菌 n 葡萄糖淀粉酶 :黑曲霉 n 异淀粉酶 Ø 纤维素 l 由复合的纤维素酶催化产生葡萄糖后被微生物吸收利用
CH2OH
6-磷酸-葡糖酸
CH2OH
5-磷酸-核酮糖
H- C=O H-C-OH H-C-OH H-C-OH CH2OP
HMP 途径
无氧
C=O HO-C-H H-C-OH H-C-OP H
C=O H-C-OH H-C-OH H-C-OP H
5-磷酸-木酮糖
5-磷酸-核酮糖
5-磷酸-核糖 3-磷酸-甘油醛
生物氧化的过程:
发酵
脱氢(或电子) 递氢(或电子) 受氢(或电子) 生物氧化的方式: 按照是否有最终外 源电子受体可分为呼 吸和发酵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 例如与呼吸产能有关的酶系集中于线粒体内膜上,与DNA合成 的酶位于细胞核内。
原核微生物的细胞结构虽然简单,但也划分出 不同的区域,对于某一代谢途径有关的酶系集 中在某一区域,保证该代谢途径的酶促反应正 常进行。
• 例如呼吸的酶系集中在细胞质膜上,分解大分子的水解酶,阴 性细菌位于壁膜间隙中,阳性细菌则分泌至胞外。
前面的酶起激活作用。
A B CD E
(二)酶活性的抑制
▪ 指在某个酶促反应系 统中,加入某种低分 子量的物质后,导致 酶活力降低的过程。
▪ 抑制剂可以是外源物 质(竞争性抑制)和 机体自身代谢过程中 产生与累积的代谢产 物(反馈抑制)
二、酶活性调节的类型
(一)反馈调节的模式
▪ 反馈指的是代谢反应某些中间代谢物或末端产物对前面反应 的影响。包括正反馈和负反馈,其中以负反馈为主。
1、细胞透性的调节
▪ 细胞质膜的透性直接影响物质的吸收和代谢 产物的分泌,从而影响到细胞内代谢的变化。
▪ 大多数基质输入细胞需要借助透性酶和能量, 所以通过控制透性酶本身的合成及ATP的供 应,可以调节基质的输入。
2、代谢途径区域化
▪ 真核微生物细胞内,各种酶系被细胞器隔离分 布,底物分别储存在各种有膜的细胞器内,从 而影响酶与底物的作用。
第五章 微生物的 代谢调节
微生物在生长过程中,机体内的复杂的代 谢过程可以互相协调,相辅相成,导致微 生物的生理活动过程同环境高度地统一起 来,这是通过代谢调节的方式来实现的。
第一节 微生物代谢调节概论
生物体的代谢是和其周围环境分不开的。生 物具有适应环境的能力,只有随着环境的变 化,生物机体才能同时调整和改变其体内的 代谢过程去适应新的环境,才能生存和发展, 否则只能被淘汰。
▪ 2、酶合成调节——属基因调节,调节酶分子的合成 量(遗传学水平);
✓ 酶合成的调节(基因调节)主要通过酶量的变化来 控制代谢速率。主要通过:
诱导式 导致酶的合成
阻遏式 阻止酶的合成 以上两种调节均能改变代谢途径中的物质流,可使
细胞系统中的物质既不会堆积起来造成浪费,也不 会因代谢短缺而供不应求,始终能保持各种代谢物 的浓度相对稳定或代谢过程的动态平衡。
▪ 单向途径的反馈调节( 2种)
✓ 单价终产物的反馈抑制 ✓ 前馈作用
▪ 分支途径的反馈抑制(5种)
✓ 协同反馈抑制 ✓ 累积反馈抑制 ✓ 增效反馈抑制 ✓ 顺序反馈抑制 ✓ 同功酶调节
1.单价终产物的反馈抑制(负反馈,negative feedback)终产物X抑制限速酶
2.前馈作用 ▪ 前体代谢物的激活(前馈激活)----指前体代
▪ 由两种酶控制的逆单向反应:即在一个“可逆”反应中,其中 一种酶催化正反应,而另一种酶则催化逆反应。
葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖
6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
4、代谢速度的调控
▪ 在不可逆反应中,微生物通过调节酶的活性 和酶量来控制代谢物的流量。
▪ 细胞代谢的调节主要是通过控制酶的作用而 实现的,也就是说,细胞内各种酶类的活性 都处在受控制的状态下,必须根据细胞对能 量以及对合成某些组分的要求而进行各种酶 促反应,并可随时减慢或加速某一物质(氨 基酸等)的合成。
3、代谢流向的调控
▪ 微生物在不同的条件下可以通过控制各代谢途径中某 个酶促反应的速率来控制代谢的流向。这种控制可按 以下方式进行:
▪ 由一个关键酶控制的可逆反应:同一个酶可以通过不同的辅基 或辅酶控制代谢物的流向。
• 例如:3-磷酸甘油醛脱氢酶,在EMP途径中催化3-磷酸甘油醛氧化成3-磷酸 甘油酸;但在卡尔文循环中则催化3-磷酸甘油酸还原成3-磷酸甘油醛,前者 是NAD+为辅酶,后者则以NADP+为辅酶。
第二节 酶活性的调节
酶活性的调节是通过改变代谢途径中一个或 几个关键酶的活性来调节代谢速度的调节方 式。包括酶活性的激活和抑制。
一、酶活性的激活和抑制
(一)酶活性的激活
▪ 指在某个酶促反应系统中,加入某种低分子量的物质 后,导致原来无活性或活性很低的酶转变为有活性或 活性提高,从而使酶促反应速度提高的过程。
▪ 激活剂可以是外源物质、金属离子或机体代谢过程中 产生与累积的代谢产物(主要)。
▪ 代谢调节的激活作用主要是指代谢物对酶的激活,主 要有两种情况:前体激活和代谢中间产物的反馈激活 (较少见)。
前体激活:代谢途径中后面的酶促反应可被
该途径中较前面的一个中间物所促进。
A B CD E
反馈激活:代谢途径中间产物对该途径中
谢物对催化后阶段 反应中某酶的激活 作用。
▪ 前馈抑制:指前体代谢物对催化后阶段反应 中某酶的抑制作用。
乙酰CoA +CO2 +H2O +ATP 乙酰CoA羧化酶 丙二酸单酰CoA+ ADP+ Pi
▪ 中间代谢物的激活(反馈激活)----指中间代 谢物对途径中的前阶段或第一个酶活性的激 活。
3.协同反馈抑制(concerted feedba界存在 三种不同水平上的调节:
▪ 细胞内调节----微生物属此类,最原始的也是 基本的调节
▪ 激素调节----是高一级的调节方式
▪ 神经调节----最高级的调节方式
▪ 后两种在高等生物中进行,同时也进行细胞 内调节。
一、微生物代谢调节的方式
▪ 1、细胞透性的调节 ▪ 2、代谢途径区域化 ▪ 3、代谢流向的调控 ▪ 4、代谢速度的调控
有2种情况
①在分支代谢途径中有2个或2个以上终产物同时过量 时(E,G),可抑制共同途径的起始步骤,单独过量时 不表现抑制作用(协同反馈抑制或多价反馈抑制)。
微生物的代谢调节一般指反应速度的调节和 对代谢途径方向的控制两个方面,但后者必 须在前者的基础上进行。
二、细胞调节的类型:
▪ 1、酶活性调节——属代谢调节,对已有酶分子的活 性调节(酶化学水平);
✓ 酶活性的调节主要通过终产物或中间产物对已有的 酶分子活性的激活或抑制来控制代谢速率(也称反 馈抑制),包括正反馈、负反馈(分解代谢中较多见 如EMP),在代谢途径中的第一个酶一般称为限速 酶,反馈抑制中,终产物总是往往抑制限速酶,有 分支代谢途径的情况相对较复杂,因在分支途径中 也有“第一个酶”(限速酶)。
原核微生物的细胞结构虽然简单,但也划分出 不同的区域,对于某一代谢途径有关的酶系集 中在某一区域,保证该代谢途径的酶促反应正 常进行。
• 例如呼吸的酶系集中在细胞质膜上,分解大分子的水解酶,阴 性细菌位于壁膜间隙中,阳性细菌则分泌至胞外。
前面的酶起激活作用。
A B CD E
(二)酶活性的抑制
▪ 指在某个酶促反应系 统中,加入某种低分 子量的物质后,导致 酶活力降低的过程。
▪ 抑制剂可以是外源物 质(竞争性抑制)和 机体自身代谢过程中 产生与累积的代谢产 物(反馈抑制)
二、酶活性调节的类型
(一)反馈调节的模式
▪ 反馈指的是代谢反应某些中间代谢物或末端产物对前面反应 的影响。包括正反馈和负反馈,其中以负反馈为主。
1、细胞透性的调节
▪ 细胞质膜的透性直接影响物质的吸收和代谢 产物的分泌,从而影响到细胞内代谢的变化。
▪ 大多数基质输入细胞需要借助透性酶和能量, 所以通过控制透性酶本身的合成及ATP的供 应,可以调节基质的输入。
2、代谢途径区域化
▪ 真核微生物细胞内,各种酶系被细胞器隔离分 布,底物分别储存在各种有膜的细胞器内,从 而影响酶与底物的作用。
第五章 微生物的 代谢调节
微生物在生长过程中,机体内的复杂的代 谢过程可以互相协调,相辅相成,导致微 生物的生理活动过程同环境高度地统一起 来,这是通过代谢调节的方式来实现的。
第一节 微生物代谢调节概论
生物体的代谢是和其周围环境分不开的。生 物具有适应环境的能力,只有随着环境的变 化,生物机体才能同时调整和改变其体内的 代谢过程去适应新的环境,才能生存和发展, 否则只能被淘汰。
▪ 2、酶合成调节——属基因调节,调节酶分子的合成 量(遗传学水平);
✓ 酶合成的调节(基因调节)主要通过酶量的变化来 控制代谢速率。主要通过:
诱导式 导致酶的合成
阻遏式 阻止酶的合成 以上两种调节均能改变代谢途径中的物质流,可使
细胞系统中的物质既不会堆积起来造成浪费,也不 会因代谢短缺而供不应求,始终能保持各种代谢物 的浓度相对稳定或代谢过程的动态平衡。
▪ 单向途径的反馈调节( 2种)
✓ 单价终产物的反馈抑制 ✓ 前馈作用
▪ 分支途径的反馈抑制(5种)
✓ 协同反馈抑制 ✓ 累积反馈抑制 ✓ 增效反馈抑制 ✓ 顺序反馈抑制 ✓ 同功酶调节
1.单价终产物的反馈抑制(负反馈,negative feedback)终产物X抑制限速酶
2.前馈作用 ▪ 前体代谢物的激活(前馈激活)----指前体代
▪ 由两种酶控制的逆单向反应:即在一个“可逆”反应中,其中 一种酶催化正反应,而另一种酶则催化逆反应。
葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖
6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
4、代谢速度的调控
▪ 在不可逆反应中,微生物通过调节酶的活性 和酶量来控制代谢物的流量。
▪ 细胞代谢的调节主要是通过控制酶的作用而 实现的,也就是说,细胞内各种酶类的活性 都处在受控制的状态下,必须根据细胞对能 量以及对合成某些组分的要求而进行各种酶 促反应,并可随时减慢或加速某一物质(氨 基酸等)的合成。
3、代谢流向的调控
▪ 微生物在不同的条件下可以通过控制各代谢途径中某 个酶促反应的速率来控制代谢的流向。这种控制可按 以下方式进行:
▪ 由一个关键酶控制的可逆反应:同一个酶可以通过不同的辅基 或辅酶控制代谢物的流向。
• 例如:3-磷酸甘油醛脱氢酶,在EMP途径中催化3-磷酸甘油醛氧化成3-磷酸 甘油酸;但在卡尔文循环中则催化3-磷酸甘油酸还原成3-磷酸甘油醛,前者 是NAD+为辅酶,后者则以NADP+为辅酶。
第二节 酶活性的调节
酶活性的调节是通过改变代谢途径中一个或 几个关键酶的活性来调节代谢速度的调节方 式。包括酶活性的激活和抑制。
一、酶活性的激活和抑制
(一)酶活性的激活
▪ 指在某个酶促反应系统中,加入某种低分子量的物质 后,导致原来无活性或活性很低的酶转变为有活性或 活性提高,从而使酶促反应速度提高的过程。
▪ 激活剂可以是外源物质、金属离子或机体代谢过程中 产生与累积的代谢产物(主要)。
▪ 代谢调节的激活作用主要是指代谢物对酶的激活,主 要有两种情况:前体激活和代谢中间产物的反馈激活 (较少见)。
前体激活:代谢途径中后面的酶促反应可被
该途径中较前面的一个中间物所促进。
A B CD E
反馈激活:代谢途径中间产物对该途径中
谢物对催化后阶段 反应中某酶的激活 作用。
▪ 前馈抑制:指前体代谢物对催化后阶段反应 中某酶的抑制作用。
乙酰CoA +CO2 +H2O +ATP 乙酰CoA羧化酶 丙二酸单酰CoA+ ADP+ Pi
▪ 中间代谢物的激活(反馈激活)----指中间代 谢物对途径中的前阶段或第一个酶活性的激 活。
3.协同反馈抑制(concerted feedba界存在 三种不同水平上的调节:
▪ 细胞内调节----微生物属此类,最原始的也是 基本的调节
▪ 激素调节----是高一级的调节方式
▪ 神经调节----最高级的调节方式
▪ 后两种在高等生物中进行,同时也进行细胞 内调节。
一、微生物代谢调节的方式
▪ 1、细胞透性的调节 ▪ 2、代谢途径区域化 ▪ 3、代谢流向的调控 ▪ 4、代谢速度的调控
有2种情况
①在分支代谢途径中有2个或2个以上终产物同时过量 时(E,G),可抑制共同途径的起始步骤,单独过量时 不表现抑制作用(协同反馈抑制或多价反馈抑制)。
微生物的代谢调节一般指反应速度的调节和 对代谢途径方向的控制两个方面,但后者必 须在前者的基础上进行。
二、细胞调节的类型:
▪ 1、酶活性调节——属代谢调节,对已有酶分子的活 性调节(酶化学水平);
✓ 酶活性的调节主要通过终产物或中间产物对已有的 酶分子活性的激活或抑制来控制代谢速率(也称反 馈抑制),包括正反馈、负反馈(分解代谢中较多见 如EMP),在代谢途径中的第一个酶一般称为限速 酶,反馈抑制中,终产物总是往往抑制限速酶,有 分支代谢途径的情况相对较复杂,因在分支途径中 也有“第一个酶”(限速酶)。