哈工大概率论参考答案习题
哈尔滨工业大学概率论答案习题六(精)
n n m∑ Xi (1)Y1 = i =1 m∑ X i2 ; 2 i n+m (2) Y2 = i =1 n+m n n i = n +1 ∑X n ∑ X i2 i = n +1 解∑X i =1 i ~ N (0, nσ 2 ,1 nσ n ∑X i =1 i ~ N (0,1, n+m i = n +1 X i ~ N (0, σ 2 ,所以n X i2 1 ~ χ 2 (1 ,2 2 σ σ 1 nσ 1 σ2 n ∑X 2 i ~ χ 2 ( m ,m∑ Xi (1)Y1 = i =1 n+m ∑X i =1 2 i i = 2 i n+m i = n +1 ~ t (m; /m n n i = n +1 ∑X ∑X 1 n 2 ∑X /n σ 2 i =1 i n =1 (2)Y2 = n + m = ~ F (n, m. 1 n +m 2 2 n ∑ Xi ∑ Xi / m σ 2 i = n+1 i = n +1 m∑ X i2 13 .设 X 1 ,⋯ , X n , X n +1 是来自总体N ( µ , σ 2 的样本,X = 1 n ∑ Xi ,n i =1 S *2 = 1 n X −X ( X i − X 2 ,试求统计量T = n +1 * ∑ n i =1 S n −1 的分布。
n +1 解于是X n+1 − X ~ N (0, n +1 2 nS *2 σ ,2 ~ χ 2 (n − 1 n σ X n+1 − X ~ N (0,1 n +1 σ n X n+1 − X X − X n −1 n + 1/ nσ ~ t (n − 1 . T = n +1 * = S n +1 nS *2 /(n − 1 σ2 14.设样本 X 1 ,⋯ , X n 和 Y1 ,⋯ , Yn 分别来自相互独立的总体N ( µ1 , σ 12 和1 2 N ( µ 2 , σ ,已知σ 1 = σ 2 ,α 和β 是两个实数,求随机变量 2 2 ·87·α ( X − µ1 + β (Y − µ 2 2 (n1 − 1 S12 + (n2 − 1 S 2 α2 β 2 ( + n1 + n2 − 2 n1 n2 的分布解所以α ( X − µ1 ~ N (0, 2 α 2σ 12 β 2σ 2 ,β (Y − µ 2 ~ N (0, ,又σ 1 = σ 2n1 n2 α ( X − µ + β (Y − µ 2 ~ N (0, ( α ( X − µ + β (Y − µ 2 α2 β2 + σ n1 n2 而所以α2 β 2 2 + σ n1 n2 ~ N (0,1 2 (n1 − 1 S12 + (n2 − 1 S 2 ~ χ 2 (n1 + n2 − 2 2 σ α ( X − µ1 + β (Y − µ 2 2 ⎛α2 β 2 ⎞ (n1 − 1 S12 + (n2 − 1 S 2 + ⎜⎟ n1 + n2 − 2 ⎝ n1 η2 ⎠ [α ( X − µ1 + B(Y − µ 2 ] / = ~ t (n1 + n2 − 2 . 2 (n1 − 1 S12 + (n2 − 1 S 2 /(n1 + n2 − 2 σ2 15.从正态总体 N (3.4, 6 2 中抽取容量为 n 的样本,如果要求样本均值位于区间(1.4, 5.4)内的概率不小于 0.95,问样本容量 n 至少应多大?解α2 β 2 + σ n1 n2 0.95 ≤ P(1.4 < = 2Φ ( 1 n 5.4 − 3.4 1.4 − 3.4X i < 5.4 = Φ ( n − Φ( n ∑ n i =1 6 6 n −1 3 即Φ( n n ≥ 0.975 ,查正态分表得≥ 1.96 即n ≥ 34.57 . 3 3 故样本容量至少应为 35。
哈工大概率论与数理统计期末试卷及标准答案B卷(2006)
一.判断题(5210⨯=分分)1. ()1P A =,则A 为必然事件. ( )2. 设X Y 与不相关,则X Y 与相互独立. ( )3. 参数的无偏估计是唯一的. ( )4. A B 与独立,则A B 与互相互独立. ( )5. 假设检验中,取伪表示事件{拒绝01H H 真} ( ) 二.选择题(5315⨯=分分)6. 设,,A B C 为三个事件,则”这,,A B C 中至多发生一个”的事件为( )()()()()A A B C B AB AC BC C A BC ABC ABCD ABC ABCU U U U U U U7. 设X Y 与相互独立,()4,()2,D X D Y == 则(32)D X Y -=( ) ()8()16()28()44A B C D8. 设(0,1),21X N Y X =-:,则Y : ( ) ()(0,1)()(1,2)()(1,8)()(1,9)A N B N C N D N ---9. 设总体212(3,3),,,,n X N X X X :L 为X 的样本,则下列结果正确的是( )33()(0,1)()(0,1)392()(0,1)((0,1)3X X A N B N X X C N D N n ---::::10. 设2(),()E X D X μσ==,则由切比雪夫不等式可知{2}P X μσ-≥≤ ( )1113()()()()2484A B C D三.填空题(5315⨯=分分)11. 设X 的概率密度为31,0(),30,0xe xf x x -⎧>⎪=⎨⎪≤⎩则()D X =_____________.12. 设事件A B 与相互独立,()0.4,()0.6,P A P A B ==U 则()P B A =_____________. 13. 设()X πλ:,且{3}{4},P X P X ===则λ=____________. 14.设(,)X Y 的概率密度为:6,00(,),0,x x y f x y ≤≤≤⎧=⎨⎩其他则(1)P X Y +≤=__________.15. 设(),X t n :则2X -:______________. 四.计算题(共60分)16. 设()4,12X U :,求关于t 的方程290t Xt -+=有解的概率.(6分)17. 设二维随机变量(,)X Y 的联合分布律如下:问α,β取何值时, ,X Y 相互独立?(6分)18. 设X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其他,Y 表示对X 四次独立重复观察事件 12X ⎧⎫≥⎨⎬⎩⎭出现的次数.求{}1P Y =.(8分)19. 设X 的概率密度为,02(),240,ax x f x bx c x <<⎧⎪=+≤<⎨⎪⎩其他,已知(){}32,13,4E X P X =<<=,,.a b c 求(8分)20. 袋中有6只全新的乒乓球,每次比赛取出2只用完之后放回,已知第三次取得的2只球都是新球,求第二次取到的只有1只新球的概率. (8分)21. 某保险公司经多年的资料统计表明索赔户中被盗赔户占20%,在随意抽查的10000家索赔户中被盗的索赔户设为随机变量X ,试用中心极限定理估计被盗索赔户在1920户到2080户之间的概率. ()()()()2.50.994,20.977,0.6250.732ΦΦΦ===(8分)22.设总体X 具有分布律其中(01)θθ<<为未知参数.已知取得样本值1231,2,1x x x ===,试求θ的最大似然估计值. (8分)23.有一批枪弹,出厂时,其初速2(950,10)v N :,经过较长时间储存,取9发进行测试得x =945 米/秒.问这批枪弹得初速度是否有显著变化()0.1α=?()0.050.11.645, 1.28u u ==(8分)一.判断题(5210⨯=分分)× × × √ × 二.选择题(5315⨯=分分)B D D D B三.填空题(5315⨯=分分)11、9 12、2313、4 14、6. 15、(,1)F n 四.计算题(共60分)16. 解:因为1,412()80,x f x ⎧<<⎪=⎨⎪⎩其他,(2分)所以{}{}{}122613036066.84P P X P X X dx ∆≥=-≥=≤-≥==⎰或(4分) 17. 解:因为,X Y 相互独立,所以13=13α+⨯23,29=29β+⨯23(4分)所以α=16,β=19.(2分)18. 解:因为12011224P X xdx ⎧⎫≥==⎨⎬⎩⎭⎰,(3分)所以1(4,),4Y b :(3分){}131413271.4464P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(2分) 19. 解: 22()0.7,()0.7,()0.5,()0.5,E X E X E Y E Y ====Q (2分)()0.21,()0.25D X D Y ∴== (2分)()0.2,(,)()()()0.15E XY COV X Y E XY E X E Y =∴=-=-Q (2分)所以XY ρ∴=== (2分)20. 解:设i A ,i 表示第二次取到只新球0,1,2i =;A 表示第三次取到2只新球.()()()21122244012222666186,,151515C C C C P A P A P A C C C ======()()()222342012222666631|,|,|151515C C C P A A P A A P A A C C C ======.(2分)()16836136151515151515225P A =⨯+⨯+⨯=.(3分) ()18321515|.363225P A A ⨯==(3分) 21. 解: 因为(10000,0.2)X b :,所以()()2000,1600E X D X ==(4分) 所以{}()200019202080222210.954.40X P X P Φ-⎧⎫≤≤=-≤≤=-=⎨⎬⎩⎭(4分)22. 解: ()2252(1)2(1)L θθθθθθθ=⋅-⋅=-,()ln ln 25ln ln(1)L θθθ=++-(4分)()ln 5101d L d θθθθ=-=-,所以5.6θ=)(4分)23. 解: 提出假设0010:,:H H μμμμ=≠拒绝域为2αμμ≥,2αμ≥(4分)又因为00.05945,950,10,9, 1.645x n μσμ=====,所以21.5,x u u αμ==-≤,所以拒绝0H ,枪弹的初速度无显著变化. (4分)。
概率论与数理统计 习题八 参考答案及过程 许承德 哈尔滨工业大学出版社
习 题 八1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域.解 00:H λλ≥ 选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。
设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.025 1.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。
解 问题是在2σ已知的条件下检验假设0:1600H μ≥ 0H 的否定域为/2u u α<-,其中158016005.1 1.02100X u -==⨯=-.0.05 1.64u -=-. 因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u =因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=? 解 问题是在2σ未知的条件下检验假设0: 3.25H μ= 0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99..1,100.5问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
哈工大概率论与数理统计期末考题及答案(2008)
2
2
1 X Y ,设 Z , (1)求 EZ 和 DZ (2)求 XZ 2 3 2
、
草
纸
(草纸内不得答题)
第 3 页 (共 5 页)
试 题:
1 , x 六、 (14 分) .设总体 X 的分布函数为: F ( x; , ) x 0, x
其中未知参数 0, 1 ,设 X 1 , , X n 为来自总体 X 的简单随机样本. (1)当 1 时,求未知参数 的矩估计和极大似然估计; (2)当 2 时,求未知参数 的极大似然估计。 、
草
纸
(草纸内不得答题)
第 4 页 (共 5 页)
试 题:
七(6 分)设 X , Y 服从 G x, y | 1 x 3,1 y 3 上均匀分布,
1 3.设随机变量 X 的密度函数为 f ( x) e | x| ,则对随机变量 | X | 与 X ,下列结论成立的是 2 (A)相互独立; (B)分布相同; (C)不相关; (D)同期望. 【 】 1 1 4.设随机变量 X 服从参数为 的指数分布, Y ~ U (0,6) ,且 XY ,根据 3 3 切比晓夫不等式有: P (4 X Y 4) 1 5 1 2 (A) . (B) . (C) . (D) . 【 】 8 8 4 9 2 2 2 5.设 X1 , X2 ,, Xn 是总体 X ~ N ( , ) 的样本, EX , DX , X 是样本均值, S 是样本方差,
哈工大
2008
年 秋 季学期
概率论与数理统计
题号 分数 一 二 三 四 五 六 七
试
八
Байду номын сангаас
哈工大概率论参考答案习题
习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S =(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
概率论习题(哈工程版)1-1
数学科学与技术学院 应用数学教研室 胡金燕 lionfr@
概率论的诞生— 概率论的诞生—赌徒学
1654年的某一天梅尔和保罗赌钱 1654年的某一天梅尔和保罗赌钱, 他们 年的某一天梅尔和保罗赌钱, 事先各出6 枚金币, 并约定先胜三局者为胜, 事先各出 6 枚金币 , 并约定先胜三局者为胜 , 取得全部12 枚金币. 由于出现意外情况, 12枚金币 取得全部 12 枚金币 . 由于出现意外情况 , 在 梅尔胜2 局保罗胜1 局时, 不得不终止赌博, 梅尔胜 2 局保罗胜 1 局时 , 不得不终止赌博 , 如果要分赌金,该如何分配才算公平?
结果有可能为: 结果有可能为: 1, 2, 3, 4, 5 或 6.
实例4 实例4 从一批含有正品和次品的产品中任 意抽取一个产品. 意抽取一个产品. 其结果可能为: 其结果可能为: 正品 ,次品. 次品. 实例5 过马路交叉口时, 实例5 过马路交叉口时, 遇上的交通指挥 灯的颜色. 灯的颜色. 其结果可能为: 其结果可能为: 红灯 ,绿灯. 绿灯.
实例: 实例:
H → 字面朝上 T → 花面朝上 S1 = { H , T }. 2个样本点
实例: 实例:
S2 = {1, 2, 3, 4, 5, 6}.
6个样本点
实例: 实例:
S3 = { t t ≥ 0}.Biblioteka 其中 t 为灯泡的寿命 .
无限多个样本点
如果试验是将一枚硬币抛掷两次, 如果试验是将一枚硬币抛掷两次, 则样本空间由如下四个样本点组成: 则样本空间由如下四个样本点组成: S={(H,H), (H,T), (T,H), (T,T)} ={(H,H), (H,T), (T,H), (T,T)} 样本空间在如下 其中 第1次 第2次 次 次 意义上提供了一个理 H H (H,H): 想试验的模型: 想试验的模型: (H,T): : (T,H): (T,T): :
哈工大概率论与数理统计期末试卷及标准答案A卷(2006)
第1页一、判断题(每小题2分,共10分)1、()0P A =,则A 为不可能事件. ( )2、设X Y 与相互独立,则X Y 与一定不相关. ( )3、µµ12,θθ为θ的两个估计量,µµ12()(),D D θθ<则µ1θ更有效. ( ) 4、A B 与互不相容,则A B 与互不相容.( ) 5、假设检验中,弃真表示事件{接收01H H 真}. ( ) 二、选择题(每小题3分,共15分) 6、设,A B 为两个事件,则“这两个事件至少有一个没发生”可表示为( )()()()()A ABB AB ABC A BD AB U U7、设X Y 与相互独立,()4,()1,D X D Y == 则(23)D X Y -=( )()5()11()7()25A B C D 8、设(0,1),21X N Y X =-:,则Y : ( ) ()(0,1)()(1,4)()(1,3)()(1,1)A N B N C N D N ---9、设总体212(2,4),,,,n X N X X X :L 为X 的样本,则下列结果正确的是( )22()(0,1)()(0,1)416X X A N B N ::-- 2()(0,1)((0,1)2X C N D N ::-10、设2(),()E X D X μσ==,由切比雪夫不等式得{3}P X μσ-≥≤ ( )第2页 1218()()()()339A B C D三、填空题(每小题3分,共15分)11、设X 的概率密度为41,0(),40,0xe xf x x -⎧>⎪=⎨⎪≤⎩则()D X =____________.12、设事件A B 与相互独立,()0.4,()0.7,P A P A B ==U 则()P B A = ______13、设()X πλ:,且{2}{3},P X P X ===则λ=____________.14、设(,)X Y 的概率密度为:,01(,),0,cx x y f x y ≤≤≤⎧=⎨⎩其他则c =_________.15、设(),X t n :则2X :______________.四、计算题(共60分)16、(6分)设()4,10X U :,求关于t 的方程2160t Xt -+=有解的概率.17、(6分)设二维随机变量(,)X Y 的联合分布律如下: 问α,β取何值时, ,X Y 相互独立?……………密………………………………封……………………………………装………………………………订…………………第3页18、(8分)设X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其他,Y 表示对X 三次独立重复观察事件12X ⎧⎫≥⎨⎬⎩⎭出现的次数.求{}2P Y =.19、(8分)设随机变量(,)X Y 的分布律为求XY ρ.20、(8分)袋中有6只全新的乒乓球,每次比赛取出2只用完之后放回,已知第三次取得的2只球都是新球,求第二次取到的也是2只新球的概率.………………密………………………………封………………级 学号 姓名………………………………装………………………………订………………第4页21、(8分)某保险公司经多年的资料统计表明索赔户中被盗赔户占20%,在随意抽查的10000家索赔户中被盗的索赔户设为随机变量X ,试用中心极限定理估计被盗索赔户在1900户到2100户之间的概率.()()( 2.50.994,20.977,ΦΦ==()0.625Φ0.732)=其中(01)θθ<<为未知参数.已知取得样本值121,2,x x ==31x =,试求θ 的矩估计值. 23、有一批枪弹,出厂时,其初速2(950,10)v N :,经过较长时间储存,取9发进行测试得x =928米/秒.问这批枪弹的初速度是否有显著变化()0.1α=?()0.050.11.645, 1.28u u ==(8分)………………密……………封………………………………线…………………学院 专业 级 学号 姓名………………………………装………………………………订………………………………线…………………第5页一.判断题(5210⨯=分分)× √ × × × 二.选择题(5315⨯=分分)C D B B C三.填空题(5315⨯=分分)11、16 12、0.5 13、3 14、6. 15、(1,)F n四.计算题(共60分)16. 解:因为1,410()60,x f x ⎧<<⎪=⎨⎪⎩其他, (2分)所以{}{}{}102811064088.63P P X P X X dx ∆≥=-≥=≤-≥==⎰或 (4分) 17. 解:因为,X Y 相互独立,所以19=19α+⨯13,118=118β+⨯13 (4分)所以α=29,β=19.(2分)第6页18. 解:因为12011224P X xdx ⎧⎫≥==⎨⎬⎩⎭⎰, (3分)所以1(3,),4Y b :(3分){}2231392.4464P Y C ⎛⎫=== ⎪⎝⎭ (2分) 19. 解: 22()0.6,()0.6,()0.5,()0.5,E X E X E Y E Y ====Q (2分)()0.24,()0.25D X D Y ∴== (2分)()0.1,(,)()()()0.2E XY COV X Y E XY E X E Y =∴=-=-Q (2分)所以3XY ρ∴===- (2分)20. 解:设i A ,i 表示第二次取到只新球0,1,2i =;A 表示第三次取到2只新球.()()()21122244012222666186,,151515C C C C P A P A P A C C C ======()()()222342012222666631|,|,|151515C C C P A A P A A P A A C C C ======.(2分)()16836136151515151515225P A =⨯+⨯+⨯=.(3分)()01611515|.366225P A A ⨯== (3分)21. 解: 因为(10000,0.2)X b :,所以()()2000,1600E X D X ==(4分) 所以{}()200019002100 2.5 2.52 2.510.988.40X P X P Φ-⎧⎫≤≤=-≤≤=-=⎨⎬⎩⎭(4分) 22. 解:()221()122(1)3132E X μθθθθθ==⋅+⋅-+⋅-=- (4分)第7页()11412133A =++=4532,.36θθ∴-==) (4分)23. 解: 提出假设0010:,:H H μμμμ=≠拒绝域为2αμμ≥,2αμ≥(4分)又因为00.05928,950,10,9, 1.645x n μσμ=====,所以26.6,x u u αμ==-≥,所以拒绝0H ,枪弹的初速度有显著变化. (4分)。
哈尔滨工业大学《概率论与数理统计》历年期末考试
n
i 1, n , 则 b ai X i i 1
~
N b
n i 1
ai i ,
n i 1
ai2 i 2
亦为正态变量(
a1,, an不全为0
3分
)且
五、解: X ~ B(2, 1) Y ~ U[0,1] 3
0, x 0
FY
(
y
)
x,
0 x 1
1, x 1
FZ (z) P(Z z) P(X Y z)
于是有:
A Ai A i 1
P(A)
i 1
P( Ai )P( A Ai )
i 1
i i!
e (1)i 2
e
( )i 2
e (e 2
1) e 2
e
i1 i!
2分 2分
2011年《概率论与数理统计》期末考试试题及答案解析
一、填空题(每小题 3 分,共 5 小题,满分 15 分)
(z)
n
2
1 1
(
2z 2 1
) n1 ,1
z
2
0,
其它
EZ
2 1
zf Z
( z )dz
2 n 1
n
n
11
1, 但EZ
1(n
)
x(1)为1的渐进无偏估计。
4分
七、解:令 A. 表示器皿产生了甲类细菌而没有产生乙类细菌事件,而 Ai 表示产 生了 i 个细菌的事件( i 1,2,3,)。
于是 1 , 2
矩估计为
ˆˆ12
x x
3s 3s
s s2
4分 4分
(2)似然函数
Lx1,,
xn ;1 , 2
哈工大概率论与数理统计课后习题答案五
习 题 五1.假设有10只同种电器元件,其中两只废品,从这批元件中任取一只,如果是废品,则扔掉重新取一只,如仍是废品,则扔掉再取一只,试求在取到正品之前,已取出的废品只数的数学期望和方差。
解 设X 为已取出的废品只数,则X 的分布为012828218101091098X P ⋅⋅⋅即012881104545XP所以 82245459EX =+=, 2844,454515EX =+=224488().1581405DX EX EX =-=-= 2.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若1周5个工作日里无故障,可获利10万元;发生一次故障仍可获利5万元,发生两次故障所获利润零元;发生三次或三次以上故障就要亏损2万元。
求1周内期望利润是多少? 解 设一周所获利润为T (万元),则T 的可能值为10,5,0,2-.又设X 为机器一周内发生故障的次数,则~(5,0.2)X B ,于是,5(10)(0)(0.8)0.3277P T P X =====145(5)(1)0.2(0.8)0.4096P T P X C ====⨯=类似地可求出T 的分布为205100.05790.20480.40960.3277T P -所以一周内的期望利润为20.057950.4096100.3277ET =-⨯+⨯+⨯5.209=(万元)3.假设自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12为不合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (元)与零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X ⎧-<⎪=≤≤⎨⎪->⎩若若若问平均内径μ取何值时,销售一个零件的平均利润最大. 解1(10)20(1012)5(E T P X P X P X =-⨯<+⨯≤≤-⨯>10()20[(12)(10)]5[1(12)]1μμμμ-=-Φ+Φ--Φ---Φ-25(12)21(10)5μμ=Φ--Φ--25(12)21(10)dETd ϕμϕμμ=--+-22(10)(12)2221250μμ----=-即221[(12)(10)]22125e μμ----= 两边取对数得 21222ln25μ-= 即12511ln221μ=-. 时,平均利润最大.4.从学校到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望. 解 2~(3,)5X B ,分布律为3323()()()0,1,2,3.55k k k P X k C k -===即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 54722415061251251251255EX =++==5.设随机变量服从几何分布,其分布列为1()(1)k P X k p p -==-,01,1,2,p k <<=求EX 与DX 解1 111111(1)()k k kk k k k k x qx qEX k p p p kqp x p x ∞∞∞∞--======'⎛⎫'=-=== ⎪⎝⎭∑∑∑∑其中1q p =-由函数的幂级数展开有 011k k x x∞==-∑, 所以21111.1(1)x qx qEX p px x p=='⎡⎤=-==⎢⎥--⎣⎦ 因为221211()(1)k k x q x qk k x EX k pqp x x p x ∞∞-====''⎡⎤⎡⎤'===⎢⎥⎢⎥-⎣⎦⎣⎦∑∑22p p -=, 所以2222221().p qDX EX EX p p p -=-=-=解22123k EX P pq pq kpq -=+++++21(123),k p q q kq -=+++++设21123,k S q q kq -=+++++ (1) 则2323,k qS q q q kq =+++++(2)(1)–(2)得211(1)11k q S q q q q--=+++++=-, 所以2211(1)S q p ==-,从而,得 211EX pS p p p==⋅=.22222123n EX p pq pq n pq -=+++++222211(123)n p q q n q pS -=+++++,22232123,n qS q q q n q =+++++2112(1)135(21),n q S q q n q S --=++++-+23235(21),n qS q q q n q =++++-+21222(1)12()111n q qq S q q q q p--=+++++=+=+-,2212q S p p =+, 于是 212312S qS p p p==+, 所以 22321212()q qEX p p p p p =+=+, 故得X 的方差为2222221211().q q pDX EX EX p p p p p-=-=+-==6.设随机变量X 分别具有下列概率密度,求其数学期望和方差. (1)||1()2x f x e -=;(2)1||,||1,()0,||1;x x f x X -≤⎧=⎨>⎩ (3)2215(2),02,()160,x x x f x ⎧-≤≤⎪=⎨⎪⎩其他; (4),01,()2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他解 (1)||102x EX x e dx +∞--∞=⋅=⎰,(因为被积函数为奇函数)22||2012x x DX EX x e dx x e dx +∞+∞---∞===⎰⎰202x xx exe dx +∞+∞--=-+⎰2[] 2.x x xee dx +∞+∞--=-+=⎰(2)11(1||)0,EXx x dx -=-=⎰3411222310101(1||)2()2[]346x x DX EX x x dx x x dx -==-=-=-=⎰⎰. (3)2232543001515(2)(44)1616EX x x dx x x x dx =-=-+⎰⎰26450154415161166541615x x x ⎡⎤=-+=⋅=⎢⎥⎣⎦, 22654015(44)16EX x x x dx =-+⎰2765015448167657x x x ⎡⎤=-+=⎢⎥⎣⎦, 所以2281()177DX EX EX =-=-=. (4)223122220111128(2)313333x EXx dx x x dx x =+-=+-=+-=⎰⎰,1223230112114(2)(81)(161)43412EX x dx x x dx =+-=+---=⎰⎰,所以1411126DX =-=. 7.在习题三第4题中求11EX+解 因X 的分布为 012311112488X P所以11111111671224384896EX =+⨯+⨯+⨯=+.8.设随机变量X 的概率密度为,02,(),24,0,ax x f x cx b x ⎧<<⎪=+≤≤⎨⎪⎩其他.已知32,(13)4EX P X =<<=,求(1),,a b c 的值(2)随机变量XY e =的数学期望和方差.解 (1)2421()()f x dx axdx cx b dx +∞-∞==++⎰⎰⎰24422202226,22a c x x bx a b c =++=++24222()()xf x dx ax dx cx b xdx +∞-∞==++⎰⎰⎰856633a cb =++, 2312335()422axdx cx b dx a c b =++=++⎰⎰,解方程组13281856633252a b c a b c a b c ⎧++=⎪⎪++=⎨⎪⎪++=⎩得 14a =, 1b =,14c =-.(2)242202111()()(1)(1)444X x x x EYE e e f x dx xe dx x e dx e +∞-∞===+-+=-⎰⎰⎰,24222220211()()(1)44X x xx EY E e e f x dx xe dx x e dx +∞-∞===+-+⎰⎰⎰2222211(1)[(1)]44e e e =-+-222221()(1)4DY EY EY e e =-=-.9.游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟,25分钟和55分钟从底层起行。
哈工大工程概率分析作业(第二次)
n x
3 1 2 pY 1 1 p A 1 p A 1 C3 0.3 0.7 2 0.441
(c)20 年内桥没有倒塌的概率 发生一起强震 3 座桥均未倒塌的概率(二项分布) :
3 0 3 3 p X 3 3 p A 1 p A 0.7 0.343
Probability Concepts in Engineering
Name:XX XX NO.:14SD330
(a)若该建筑已抵抗 1500 吨地震力无损坏,那么能抵抗 3000 吨地 震力的概率
p X 3000 X 1500 p X 3000 X 1500 p X 1500 p X 3000 p X 1500 1 p X 3000 1 p X 1500 1 0.00326 3000,8.16 1 0.00326 1500,8.16 1 9.81,8.16 1 4.905,8.16 0.838
设 P=“在设计使用年限内结构在单一地震作用下损坏的概率” , 由地震的破坏效应是独立的:
pB 1 p A p
50
1 p 1 pB 50 / p A 1 50 1 0 . 99 / 0.01 0.02
已知变异系数(c.o.v.) : x 0.2 (a)龙卷风风速大于 120 英里的概率
p X 120 1 p X 120 ln 120 1 ln 120 4.48 1 0.2 1 0.938 0.062
24
1 ln y 2.44 2 1 exp 2 0 . 294 2 0.294 y
哈工大概率论与数理统计课后习题答案四
习题四1 •一个袋子中装有四个球,它们上面分别标有数字 1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以 X,Y 分别表示第一次,第二次取出的球上的标号,求 (X,Y )的分布列•解 (X,Y )的分布列为12 1 4 36余者类推。
2 •将一枚硬币连掷三次,以 X 表示在三次中出现正面的次数,以 Y 表示三次中出现正 面次数与出现反面次数之差的绝对值,试写出(X,Y )的分布列及边缘分布列。
一枚硬币连掷三次相当于三重贝努里试验,故 X 〜B (3,丄).2其中 P(X 1, Y 1)X ”1 2 3 11 16 12 21 1 16 6 61 1312 6P(X1)P(Y 1| X 1) P(X 1, Y 2) P(X 1)P(Y 2| X 1)2 2P(X 1, Y 1) P(X 1)P(Y 1|X 1) 余者类推。
3 •设(X,Y)的概率密度为 1 (6 x y), 0 x f (x,y) 80 2, 2 y4, ,其它. 又( 1) D {(x,y)|x 1,y 3}; (2) {(x, y)|x 1 3}。
求 P{(X,Y) D}P{( x,y) D} 解 (1) P{(X,Y) 1 8 1 6 - 21 8 5 24设(X,Y)的概率密度为 D} 求(1) 1 0x(1 C(R J x 2 y 2), 0 2系数C ;(2)(X,Y)落在圆x f(x,y) (1 ) 1 C x 2 (R , x 2 y 2 R 2 312 83 8 1 (2)设 D(6 y)dxdxy x)dx R 32 R3 3{( x,y)|xP{(X,Y) D}x 2x 1 8(6 1[(3 0x y)dxdy2 x 其他.2 r (r R)内的概率 y 2)dxdy C R3 2r },所求概率为r 2x)24]dx R 2, £(R 、X 2 y 2)dxdy RR r 2drd5 •已知随机变量 X 和Y 的联合概率密度为求x 和Y 的联合分布函数.解i 设(X,Y)的分布函数为F(x, y),则f x (x) 2x,其他x If Y (y)2y,其 它 1,0 ,其他;0 ,其它.I , x 1. 0, y 0, y 2, 0y 1, 1 ,y 1.3R 3Rr 2乙丄至1兰R 3Rf (x, y)4xy, 0 x 1,0 0 ,其它.x yF(x, y)f(u,v)dudvx 0y4uvdudv 0 x 1, 0 y 1,x 10 04uydudy0 x 1, y 1,1 y0 4xvdxdv x 1, 0 y 1,0, x 2 2x y , 0 2x ,0 2y , x 1,x 1, y 1.0 或 y 0, x 1, 0 y 1, x 1, y 1, 1,0 y 1, 1, y 1.解2由联合密度可见,X,Y 独立,边缘密度分别为边缘分布函数分别为F X (x), F Y (y),则F x (x)xf x (u)du0, xx 2, 00, x 1,0 ,x 0 或 y 0,yF Y (y) f x (v)dv22x设(X,Y)的分布函数为F(x, y),则 0, x 0 J或 y 0,2 2x y , 0 x 1, 0 y 1 F(x, y) F x (x) F Y (V )x 2, 0 x 1, y 1, 2 y , x 1, 0 y1,1, x 1, y 1.6 •设二维随机变量 (X,Y) 在区域D : 0 x率密度。
哈工大概率论2022年秋季学期期末考题及答案
哈工大概率论2022年秋季学期期末考题及答案哈工大2022年秋季学期概率论与数理统计试题一、填空题(每小题3分,共5小题,满分15分)1.设大事A 、B 互相自立,大事B 、C 互不相容,大事A 与C 不能同时发生,且()()0.5P A P B ==,()0.2P C =,则大事A ,B 和C 中仅C 发生或仅C 不发生的概率为__________ .2.设随机变量X 听从参数为2的指数分布,则21e X Y-=-的概率密度为()Y f y =______ ____.3.设随机变量X 的概率密度为21e ,0()20, 0xx x f x x -?>?=??≤?,利用契比雪夫不等式估量概率≥+=0,00,11)(2x x x第1页/共10页x f . (B )0,157(),1116160, 1x f x x x x =?≤? . 【】5.设12,,,n X X X 为来自总体2~(,)X N μσ的一个样本,统计量2)(1μ-=X Sn Y 其中X 为样本均值,2S 为样本方差,则【】(A )2~(1)Y x n -(B )~(1)Y t n -(C )~(1,1)Y F n -(D )~(1,1)Y F n -.三、(8分)假设某段时光内来到百货公司的顾客数听从参数为λ的Poisson 分布,而在百货公司里每个顾客购买电视机的概率均为p ,且顾客之间是否购买电视机互相自立,试求=A “该段时光内百货公司售出k 台电视机”的概率(假设每顾客至多购买一台电视机)。
四、(8分)设随机变量[]~0,1X U ,求(1)241Y X X =-+的概率密度()Y f y ;(2)X 与Y 的相关系数XY ρ.第2页/共10页五、(8分)设随机变量X 和Y 的分布列分离为X 0 1 Y —1 0 1P 1/3 2/3 P 1/3 1/3 1/3且1)(22==Y X P ,求(1)二维随机变量),(Y X 的概率分布;(2)XY Z =的概率分布;(3)X 与Y 的相关系数XY ρ.六、(12分)设随机变量X 与Y 互相自立,且分离听从正态分布)2,(σμN 和)22,(σμN ,其中σ为未知参数且0σ>. 记Y X Z -=.(1)求的概率密度Z 2(;)f z σ;(2)设12,,,n Z Z Z 为来自总体Z 的容易随机样本, 求2σ的最大似然估量2σ∧第3页/共10页;(3)证实2σ∧是2σ的无偏估量量。
哈尔滨工业大学概率论答案习题三(精)
1150.99977(1(1(1!
k K N K N P X N P X N P X K e
k ∞
∞
−=+=+≤≤=−>=−==−∑∑即
5
1
50.00023!K K N e k ∞
−=+≤∑查泊松分布表知115N +=,故月初要库存14件以上,才能保证当月不脱销的概率在0.99977以上。
8.已知离散型随机变量X的分布列为:(10.2,(20.3P X P X ====,
解
从a b +个球中任取r个球共有r
a b C +种取法,r个球中有k个黑球的取
法有k
r k
b a
C C −,所以X的分布列为
(k r k
b a r
a b
C C P X k C −+==,max(0,,max(0,1,,min(,k r a r a b r =−−+⋯,此乃因为,如果r a <,则r个球中可以全是白球,没有黑球,即0k =;如果r a >则r个球中至少有r a −个黑球,此时k应从r a −开始。
8!!!k k k k q P X e e e k k ∞∞−−−=====−=∑∑(24
114(100.00284.
!
k k P X e k ∞
−=>==∑7.某商店每月销售某种商品的数量服从参数为5的泊松分布,问在月初至少库存多少此种商品,才能保证当月不脱销的概率为0.99977以上。
解
设X为该商品的销售量,N为库存量,由题意
2
X B n ,X的分布列为
1(2n
k n P X k C ⎛⎞
==⎜⎟
⎝⎠
哈工大工程概率分析作业(第三次)
利用MATLAB计算:t0.02 4 =2.9985 1.0016 ,故 接受H 0
6.7 解: 由题意可知, f H h
h
e 2
1 h 2 2
最大似然函数为: , h 0 , 定义x1 , x2 ,..., x10。
1 4142+3405+3402+4039+3372 =3672 5
1 41422 +34052 +34022 +40392 +33722 5 36722 147444.5 4
未知 , 用
X ~ t n 1 来进行区间估计 , 1- =0.9 =0.1 ,得: s/ n
X P -t 2 n 1 t 2 n 1 0.9 s/ n
P X t 2 n 1 s / n X +t 2 n 1 s / n 0.9
,
代
入
X =3672, s2 =147444.5,n 5 ,得: =0.1,
= exp( exp( ( y u ))) , 7.2 解 : ( a ) 由 题 意 可 知 , 极值型CDF:FY ( y)
标准差S = (y u ) , P = exp( exp( S )) , S ln ln P , 其中P =
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X P S 69.3 0.0476 1.1133 70.6 0.0952 0.8550 72.3 0.1429 0.6657 72.9 73.5 74.8 75.8 75.9 76.0 76.1 76.4 77.1 77.4 78.2 78.2 78.4 79.3 80.8 81.8 85.2 0.1905 0.2381 0.2857 0.3333 0.3810 0.4286 0.4762 0.5238 0.5714 0.6190 0.6667 0.7143 0.7619 0.8095 0.8571 0.9048 0.9524 0.5058 0.3612 0.2254 0.0941 0.0355 0.1657 0.2985 0.4360 0.5805 0.7349 0.9027 1.0892 1.3022 1.5544 1.8698 2.3018 3.0202
哈工大2021年概率统计试题及答案
哈工大2021年概率统计试题及答案2021年哈工大概率统计试题一、填空题(每小题3分,共5小题,满分15分)1.设P?A??P?B??0.7,且A,B只发生一个的概率为0.5,则A,B都发生的概率为________________ .?e-x,x?0X2.设随机变量X的概率密度为fX(x)??,则随机变量Y?e的概率密度为?0,x?0fY(y)?______________ _ _ .3.设随机变量X, Y的相关系数为0.5,EX?EY?0,EX2?EY2?2,则E(X?Y)2?.4.生产一个零件所需时间X?N(?,?2),观察25个零件的生产时间得x?5.5秒,样本标准差s?1.73秒,则?的置信度为0.95的置信区间为__________________. 5.设随机变量X, Y相互独立,且均服从区间?0,3?上的均匀分布,则P{max(X,Y)?1}?______ .注:可选用的部分数值:t0.05(24)?1.7109, t0.025(24)?2.0639,t0.025(25)?2.0595,?(1.96)?0.975,?(1.645)?0.95.二、选择题(每小题3分,共5小题,满分15分)1.设0?P?B??1,P(A|B)?P(A|B)?1,则(A)A,B互不相容.(B)A,B互为对立事件. (C)A,B相互独立.(D)A,B不独立.【】 2.下列函数可作为随机变量的分布函数的是?x, x?01?Fx?,???x???(A)??.(B)F(x)??1?x .1?x2?? 0, x?0(C)F(x)?e,???x??.(D)F(x)?-x31?arctanx,???x??.【】42?3.设X1, X2, ?, Xn为来自总体N(1,22)的一个样本,其中X为样本均值,则下列结论中正确的是11n1n222(A)??Xi?1?~??n?.(B)??Xi?1?~F(n,1).4i?14i?1(C)X?1X?1(D)【】 ~N?0,1?.~t(n).2/n2/n144.设随机变量X~U[0, 6],Y~B(12, ),且X,Y相互独立,则根据切比雪夫不等式有P(X?3?Y?X?3)?__________.(A)1335.(B).(C).(D).【】 4541225.设X1, X2, ?, Xn是来自总体N(?, ?2)的简单随机样本,X与S分别为其样本均值和样本方差,则下列结论正确的是(A)2X2?X1~N(?,?).(B)2nX??S2??2~F(1,n?1).(C)S2?2X??~?2?n?1?.n?1~t(n?1).(D)【】S三、(9分)某人外出可以乘坐飞机,火车,轮船,汽车四种交通工具,其概率依次为0.05,0.15,0.30,0.5,而乘坐这几种交通工具能如期到达的概率依次为0.80,0.70,0.60,0.90,求:(1)该人如期到达的概率;(2)已知该人误期到达,求他是乘坐火车的概率。
概率论与数理统计习题 二解析【哈工大版】
A BC ,
所求概率为
P(C | A)
P( AC ) P(C ) C3 / C3 2 3 36 11 3 3 P( A) P( B C ) C6 / C11 C5 / C11 3
4.从 52 张朴克牌中任意抽取 5 张,求在至少有 3 张黑桃的条件下,5 张都是黑桃的概 率. 解 设 A ‘至少有 3 张黑桃’ , Bi ‘5 张中恰有 i 张黑桃’ , i 3, 4, 5 , 则
P( B1 A) P( B1 ) P( B1 ) P( A) P( B1 B2 ) 1 P( B1 B2 ) 0.6 0.75 . 1 0.4 0.5
1 1 1 ,求他们将此密码译 5 3 4
16.三人独立地破译一个密码,他们能译出的概率分别是 , , 出的概率. 解 1 设 A ‘将密码译出’ , Bi ‘第 i 个人译出’ 则
任取一枚,已知将它投掷 r 次,每次都得到国徽,问这枚硬币是正品的概率是多少? 解 设 A ‘任取一枚硬币掷 r 次得 r 个国徽’ , , B ‘任取一枚硬币是正品’ 则
A BA BA ,
所求概率为
P( B | A)
P( B) P( A | B) P( B) P( A | B) P( B ) P( A | B ) m 1 mn2
12. 玻璃杯成箱出售, 每箱 20 只, 假设各箱含 0,1, 2 只残次品的概率分别为 0.8,0.1, 0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品, 则买下该箱,否则退回。试求: (1)顾客买下该箱的概率 ; (2)在顾客买下的一箱中,确无残次品的概率 . 解 设 A ‘顾客买下该箱’ , , i 0,1, 2 , B ‘箱中恰有 i 件残次品’ (1) P ( A) P ( B0 ) P ( A | B0 ) P ( B1 ) P ( A | B1 ) P ( B2 ) P ( A | B2 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’;(2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
(5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===。
2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:(1)仅A 发生;(2),,A B C 中至少有两个发生;(3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
解 (1)ABC (2)AB AC BC 或ABCABC ABC ABC ;(3)AB C 或ABCABC ABC ABC ABC ABCABC ;(4)ABC ABC ABC ; (5)AB AC BC 或ABCABC ABC ABC ;3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。
解 (1)123A A A ;(2)123A A A ;(3)123123123A A A A A A A A A ;(4)121323A A A A A A 。
4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。
解 设A =‘任取一电话号码后四个数字全不相同’,则4104126()0.50410250P P A ===5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。
解 (1)设A =‘5只全是好的’,则537540()0.662C P A C =;(2)设B =‘5只中有两只坏的’,则23337540()0.0354C C P B C =.6.袋中有编号为1到10的10个球,今从袋中任取3个球,求 (1)3个球的最小号码为5的概率; (2)3个球的最大号码为5的概率. 解 (1)设A =‘最小号码为5’,则253101()12C P A C ==;(2)设B =‘最大号码为5’,则243101()20C P B C ==.7.(1)教室里有r 个学生,求他们的生日都不相同的概率; (2)房间里有四个人,求至少两个人的生日在同一个月的概率. 解 (1)设A =‘他们的生日都不相同’,则365()365rrP P A =; (2)设B =‘至少有两个人的生日在同一个月’,则212223214121141241212441()1296C C P C C C P C P B +++==; 或412441()1()11296P P B P B =-=-=.8.设一个人的生日在星期几是等可能的,求6个人的生日都集中在一个星期中的某两天,但不是都在同一天的概率.解 设A =‘生日集中在一星期中的某两天,但不在同一天’,则2676(22)()0.011077C P A -==.9.将,,,,,,C C E E I N S 等7个字母随机地排成一行,那么恰好排成英文单词SCIENCE 的概率是多少?解1 设A =‘恰好排成SCIENCE ’将7个字母排成一列的一种排法看作基本事件,所有的排法:字母C 在7个位置中占两个位置,共有27C 种占法,字母E 在余下的5个位置中占两个位置,共有25C 种占法,字母,,I N C 剩下的3个位置上全排列的方法共3!种,故基本事件总数为22753!1260C C ⋅⋅=,而A 中的基本事件只有一个,故227511()3!1260P A C C ==⋅⋅; 解2 七个字母中有两个E ,两个C ,把七个字母排成一排,称为不尽相异元素的全排列。
一般地,设有n 个元素,其中第一种元素有1n 个,第二种元素有2n 个…,第k 种元素有k n 个12()k n n n n +++=,将这n 个元素排成一排称为不尽相异元素的全排列。
不同的排列总数为12!!!!k n n n n ,对于本题有141()7!7!12602!2!P A ===. 10.从0,1,2,,9等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==.333998233310101014()15C C C P A C C C =+-=,或182231014()1()115C P A P A C =-=-=,2833107()30C P A C ==.11.将n 双大小各不相同的鞋子随机地分成n 堆,每堆两只,求事件A =‘每堆各成一双’的概率.解 n 双鞋子随机地分成n 堆属分组问题,不同的分法共(2)!(2)!2!2!2!(2!)nn n =‘每堆各成一双’共有!n 种情况,故2!()(2)!n n P A n ⋅=12.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B解 ()1()1()()0.3P A B P A B P A P B =-=--= 因为,A B 不相容,所以A B ⊃,于是()()0.6P AB P A ==13.若()()P AB P AB =且()P A P =,求()P B . 解 ()1()1()()()P A B P A B P A P B P A B =-=--+由()()P AB P AB =得()1()1P B P A p =-=- 14.设事件,A B 及A B 的概率分别为,,p q r ,求()P AB 及()P A B解 ()()()()P AB P A P B P A B p q r =+-=+-()()()()()1()()()P AB P A P B P AB P A P B P A P AB =+-=+--+11q p q r p r =-++-=+-.15.设()()0.7P A P B +=,且,A B 仅发生一个的概率为0.5,求,A B 都发生的概率。
解1 由题意有0.5()()()P AB AB P AB P AB =+=+ ()()()()P A P AB P B P AB =-+- 0.72()P AB =-, 所以()0.1P AB =.解2 ,A B 仅发生一个可表示为A B AB -,故0.5()()()()2(),P A B P AB P A P B P AB =-=+-所以()0.1P AB =.16.设()0.7,()0.3,()0.2P A P A B P B A =-=-=,求()P AB 与()P AB .解 0.3()()()0.7(P A B P A P A B P A B =-=-=-, 所以()0.4P AB =, 故()0.6P AB =;0.2()()()0.4P B P AB P B =-=-. 所以()0.6P B = ()1()1()()()0.1P AB P AB P A P B P AB =-=--+=17.设AB C ⊂,试证明()()()1P A P B P C +-≤[证] 因为AB C ⊂,所以()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-故()()()1P A P B P C +-≤. 证毕. 18.对任意三事件,,A B C ,试证()()()()P AB P AC P BC P A +-≤.[证] ()()()()()()P AB P AC P BC P AB P AC P ABC +-≤+- ()P ABAC ={()}()P A B C P A =≤. 证毕.19.设,,A B C 是三个事件,且1()()(),()()04P A P B P C P AB P BC =====,1()8P AC =,求,,A B C 至少有一个发生的概率。
解 ()()()()()()()(P A B C P A P B P C P A B P A C P B C P A B C =++---+ 因为 0()()0P A B CP A B ≤≤=,所以()0P ABC =,于是315()488P A B C=-=20.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.解:半圆域如图设A=‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+ 21.把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 解1 设A =‘三段可构成三角形’,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .A 发生0,0,222a a ax y x y a ⇔<<<<<+< 不等式确定S 的子域A ,所以1()4A P A ==的面积S 的面积解2 设三段长分别为,,x y z ,则0,0,0x a y a z a <<<<<<且 x y z a ++=,不等式确定了三维空间上的有界平面域S .A 发生x y z ⇔+>x z y +>y z x +>不等式确定S 的子域A ,所以 1()4A P A ==的面积S 的面积.22.随机地取两个正数和,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.S . A =‘1,0.09x y xy +≤≥’则A 发生的 充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故0.90.10.9()(1)A P A x dx x ==--⎰的面积S 的面积0.40.18ln 30.2=-=23.(蒲丰投针问题)在平面上画出等距离(0)a a >的一些平行线,向平面上随机地投掷一根长()l l a <的针,求针与任一平行线相交的概率.解 设A =‘针与某平行线相交’,针落在平面上的情况不外乎图中的几种, 设x 为针的中点到最近的一条平行线的距离。