场效应管及其基本放大电路-2
2.基本放大电路(2)
+
~
Re
RL U O
(a)电路图
图 2.5.1 共集电极放大电路
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
三、电流放大倍数
Ii b Ib
e Ie Io
Ii Ai
Ib Io Ii
Io
Ie Ib
Ie 所以
(1
RS
U S
Ic Rc
e+
Re Ie vo
-
AV
Vo Vi
( 1) IbRe Ib[rbe (1 )Re ]
( 1) Re rbe (1 )Re
Ri
Vi Ii
rbe
(1 )Re
Ro
Re
//
rbe
1
莆田学院三电教研室--模拟电路多媒体课件
(1
1 )rbe2
e
显然,、rbe 均比一个管子 1、rbe1 提高了很多倍。
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
3.构成复合管时注意事项
(1). 前后两个三极管连接关系上,应保证前级输 出电流与后级输入电流实际方向一致。
(2). 外加电压的极性应保证前后两个管子均为发 射结正偏,集电结反偏,使管子工作在放大区。
U o Ib (rbe Rs)
式中
Rs Rs // Rb RS
而 所以
Io Ie (1 )Ib
Ro
U o Io
rbe Rs
1
e Ie Io
rbe
第七章 场效应管及其基本放大电路
N沟道增强型MOS管的输出特性曲线
7
(3) uDS和uGS同时作用时
uDS一定,uGS变化时 给定一个uGS ,就有一条不同的 iD – uDS 曲线。
iD / mA 预夹断临界点轨迹 uDS = uGS - Uth 可变电阻区 7V
8 6 4 2 0 饱和区 6V 5V 4V uGS = 3V 截止区 0 5 10 15 20 uDS / V
低频跨导:
gm iD u GS
U
DS
夹断区(截止区)
常量
不同型号的管子UGS(off)、IDSS将不同。
20
7.3场效应管的分类
工作在恒流区时g-s、d-s间的电压极性
N 沟道 ( u GS < 0, u DS > 0 ) 结型 P 沟道 ( u GS > 0, u DS < 0 ) N 沟道 ( u GS > 0, u DS > 0 ) 场效应管 增强型 P 沟道 ( u GS < 0, u DS < 0 ) 绝缘栅型 N 沟道 ( u GS 极性任意, u DS > 0 ) 耗尽型 P 沟道 ( u GS 极性任意, u DS < 0 )
场效应管工作在恒流区的条件是什么?
17
3. JFET特性
iD / mA 可变电 阻区 -1V 恒流区 -2V -3V -4V -5V 0 (a) 输出特性曲线 夹断区 uDS / V UP -6 -5 -4 -3 -2 -1 0 uGS / V (b) 转移特性曲线 预夹断轨迹 uGS = 0V iD / mA IDSS
各种场效应管的特性比较(2)
结构类型
工作 方式 增 强 型
电路符号
转移特性曲线
场效应管原理及放大电路
图6-47 分压式偏置电路
/info/flashshow/0079614.html(第 8/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-47为分压式偏置电路,RG1和RG2为分压电阻。 栅-源电压为(电阻RG中并无电流通过) (6-24) 式中,UG为栅极电位。对N沟道耗尽型场效应管,UGS为负值,所以RSID>UG;对N沟道增强型场效应管,UGS为正值,所以RSID<UG。 当有信号输入时,我们对放大电路进行动态分析,主要是分析它的电压放大倍数及输入电阻与输出电阻。图6-48是图6-47所示分压式偏置放大电路的交流通 路,设输入信号为正弦量。 在图6-47的分压式偏置电路中,假如RG= 0,则放大电路的输入电阻为
故其输出电阻是很高的。在共源极放大电路中,漏极电阻RD和场效应管的输出电阻rDS是并联的,所以当rDS ro≈RD (6-26)
RD时,放大电路的输出电阻
这点和晶体管共发射极放大电路是类似的。 输出电压为 (6-27) 式中 ,由式(6-23)得出 。
电压放大倍数为
/info/flashshow/0079614.html(第 9/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-43 N沟道耗尽型场效应管的输出特性曲线
图6-44 N沟道耗尽型场效应管的转移特性曲线 以上介绍了N沟道绝缘栅场效应增强型和耗尽型管,实际上P沟道也有增强型和耗尽型,其符号如图6-45所示。
/info/flashshow/0079614.html(第 6/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
(6-28) 式中的负号表示输出电压和输入电压反相。 【例6-7】 在图6-47所示的放大电路中,已知UDD=20 V,RD=10 kΩ,RS=10 kΩ,RG1=100 kΩ,RG2=51 kΩ,RG=1 MΩ,输出电阻为RL=10 kΩ。场效应管的 参数为IDSS=0.9 mA,UP= 4 V,gm=1.5 mA。试求:(1)静态值;(2)电压放大倍数。 解:(1) 由电路图可知
场效应管放大电路原理
场效应管放大电路原理场效应管放大电路原理1. 介绍场效应管(Field Effect Transistor,简称FET)是一种常用的电子器件,广泛应用于放大、开关和调节电路中。
作为一名文章写手,我将为您详细介绍场效应管放大电路的原理。
2. 场效应管概述场效应管是由源极、栅极和漏极三个主要部分组成的。
其中,栅极与源极之间的电压可以控制漏极电流的大小,从而实现信号的放大和调节。
和双极晶体管相比,场效应管具有输入电阻高、无需偏置电流等优点,因此在电子工程中得到广泛应用。
3. 场效应管放大电路的基本原理场效应管放大电路的基本原理是利用场效应管的特性来放大输入信号。
当输入信号施加在栅极上时,栅极源极间的电压将改变栅极-源极电流的大小,从而改变漏极电流。
根据场效应管工作状态的不同,可分为共源放大器、共漏放大器和共栅放大器三种。
3.1 共源放大器共源放大器是应用最广泛的一种场效应管放大电路。
在共源放大器中,输入信号通过耦合电容施加到栅极上,当信号施加后,栅极-源极电压发生变化,控制栅极-源极电流的大小,进而改变漏极电流。
共源放大器具有放大增益高、输入输出阻抗匹配等特点,适用于多种应用场景。
3.2 共漏放大器共漏放大器是场效应管放大电路的一种重要形式。
在共漏放大器中,漏极连接到电源,源极接地,输入信号通过漏极电阻耦合到栅极。
共漏放大器具有输入电阻高、输出电阻低等特点,适用于对电压放大和阻抗转换要求较高的场合。
3.3 共栅放大器共栅放大器是场效应管放大电路的另一种形式。
在共栅放大器中,信号通过源极电阻耦合到栅极,漏极连接到电源。
共栅放大器具有输入输出阻抗匹配、频率响应宽等特点,适用于高频放大和对输入频率响应要求较高的应用。
4. 实际应用案例场效应管放大电路广泛应用于各种电子设备中。
以音频放大器为例,通过合理选择场效应管的类型和工作点,可以实现对音频信号的放大和调节,保证音频设备的音质。
5. 个人观点和理解场效应管放大电路作为一种常见的放大器,具有输入电阻高、无需偏置电流、放大增益高等技术优点。
场效应管及其基本放大电路
Uds=常数
∂ id
∂uds
PDM
最 大 漏 极id允v许gs功=常耗数, 与 三 极 管 类
似。
第34页/共51页
3)FET的三种工作组态
• 以NMOS(E)为例:
ID UDS
RD
UDS
D
B输
B
输 入
G S
UGS
输
G
输
出入
UGS RD
出
共源组态: 输入:GS 输出:DS
(1)栅源电压对沟道的控制作用
在栅源间加
令VDS =0
• 增强型IGFET象双结型三极管一样有一个开启电压
VT ,(相当于三极管死区电压)。
• 当UGS低于VT时,漏源之间夹断。ID=0
g = = •
当
时
m
UGS高于 I
的ID ∂ iD
∂uGS
DV=T 时I DUV,0GT(S漏
源
之
间
加电压 -1)2
2 2ID0(UGS-1)
后。
;
IDID0
VT VT
相当一个很大的电阻
G+ UGS
PN N结
PN
VDD
结N
P
- IS=ID
第5页/共51页
3)、JFET的主要参数
1)夹断电压VP:手册给出是ID为一微小值时的
VGS
32))、饱电和压漏控极制电电流流I系DS数S;
gm=
4)交流输出电阻 rds=
uds
id
V =0,时的I id
GS vgs
Uds=常数
结型场效应晶体管JFET
第3章 场效应管及其基本放大电路 参考答案
第 3章 场效应管及其基本放大电路3.1填空题(1)按照结构,场效应管可分为 。
它属于 型器件,其最大的优点是 。
(2)在使用场效应管时,由于结型场效应管结构是对称的,所以 极和 极可互换。
MOS 管中如果衬底在管内不与 极预先接在一起,则 极和 极也可互换。
(3)当场效应管工作于恒流区时,其漏极电流D i 只受电压 的控制,而与电压 几乎无关。
耗尽型D i 的表达式为 ,增强型D i 的表达式为 。
(4)一个结型场效应管的电流方程为2GS D 161mA 4U I=×− ,则该管的DSS I = ,p U = 。
(5)某耗尽型MOS 管的转移曲线如习题3.1.5图所示,由图可知该管的DSS I = ,p U = 。
(6)N 沟道结型场效应管工作于放大状态时,要求GS 0u ≥≥ ,DS u > ;而N 沟道增强型MOS 管工作于放大状态时,要求GS u > ,DS u > 。
(7)耗尽型场效应管可采用 偏压电路,增强型场效应管只能采用 偏置电路。
(8)在共源放大电路中,若源极电阻s R 增大,则该电路的漏极电流D I ,跨导m g ,电压放大倍数 。
(9)源极跟随器的输出电阻与 和 有关。
答案:(1)结型和绝缘栅型,电压控制,输入电阻高。
(2)漏,源,源,漏,源。
(3)GS u ,DS u ,2GS D DSS P 1u i I U =− ,2GS D DO T 1u i I U=−。
(4)16mA ,4V 。
(5)习题3.1.5图4mA ,−3V 。
(6)p U ,GS p u U −,T U ,GS T u U −。
(7)自给,分压式。
(8)减小,减小,减小。
(9)m g ,s R 。
3.2试分别画出习题3.2图所示各输出特性曲线在恒流区所对应的转移特性曲线。
解:3.3在带有源极旁路电容s C 的场效应管放大电路如图3.5.6(a )所示。
若图中的场效应管为N 沟道结型结构,且p 4V U =−,DSS 1mA I =。
模拟电子技术第章场效应管及其放大电路
v O1
例在如图所示电路中,已知VDD=15V,Rg1=150kΩ, Rg2=300kΩ, Rg3=1MΩ, Rd= RL=5kΩ,Rs=0.5kΩ, MOS管的VT=2V, IDO=2mA 。 试求解:
(1)电路的静态工作点;R 2
(2)电路的电压放大倍数、输入
电阻和输出电阻;
解:(1)
vI vi
i
2.共源极放大电路的动态分析
R2
+
vO
vI vi
vo
vGS 2VT
fL
v2 R1 v2
vO1 /V
-
vGS 2
交流等效电路
VT1
Av
V T
VVo2i VT
vGS
g
mVGS (Rd VGS
// RL )
v GS1
g m RL vGS VT
f
Rivi
vI 2
Ro Rd
vO2 /V
第25页/共32页
5
0.15 0.3
Ri
Rg 3
Rg1
//
Rg 2
(2
)M 0.15 0.3
2.1M
vOR1o/
V
Rd
2k
vi
第28页/共32页
v GS1 vGS VT
fL
f vI 2
3.共漏极放大电路的动态分析
R2 vi
vI
V i vO
VGS g mVGS
v2 R1
VGG VGSQ I DQ RS
(1)
vGD VT
iD几乎仅仅受控于vGS
vGS的增大几乎全部用 来克服夹断区的电阻
第12页/共32页
R2 vI
(2)特性曲线和电流方程
第4章 场效应管及其基本放大电路
恒流区
IDSS/V
G
D S
+
-
VGG
+
V uGS
VDD
-
O
UGS = 0V -1 -2 -3 -4 -5 -6 夹断区 -7 U P 8V
击穿区
uDS /V
特性曲线测试电路
漏极特性
漏极特性也有三个区:可变电阻区、恒流区和夹断区。
各类场效应管的符号和特性曲线 种类 结型 耗 尽 N 沟道 型 结型 耗 尽 P 沟道 型 绝缘 增 栅型 强 N 沟道 型 符号
S
S
VGG
(c) UGS <UGS(off)
(b) UGS(off) < UGS < 0
(2) 漏源电压uDS 对漏极电流iD的控制作用
uGD = uGS -uDS (a)
P+
D
iD
(b)
D
iD
G
N
P+
VDD
+ P+ GP N
P+
VDD
S iS uGS = 0,uGD > UGS(Off) ,iD 较大。
uDS /V
O
UT 2UT
uGS /V
二、N 沟道耗尽型 MOSFET
制造过程中预先在二氧化硅的绝缘层中掺入正离子, 这些正离子电场在 P 型衬底中“感应”负电荷,形成“反 型层”。即使 UGS = 0 也会形成 N 型导电沟道。 UGS = 0,UDS > 0,产生 较大的漏极电流; UGS < 0,绝缘层中正离 子感应的负电荷减少,导电 沟道变窄,iD 减小; UGS = UP , 感应电荷被 “耗尽”,iD 0。
导电沟道是 N 型的, 称 N 沟道结型场效应管。
结型场效应管及其放大电路
MOS(Metal Oxide Semiconductor)
vGS=0,iD=0,为增强型管; vGS=0,iD0,为耗尽型管(有初始沟道)。
一、场效应管概述
2、符号:
一、场效应管概述
3、场效应三极管的型号命名方法 :
现行有两种命名方法
第一种命名方法: 与双极型三极管相同,第三位字母J代表结型场效应管,O 代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅, 反型层是N沟道;C是N型硅P沟道。 例如:3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘 栅型N沟道场效应三极管。
对于n沟道各极间的外加电压变为ugs漏源之间加正向电压即uds当gs两极间电压ugs改变时沟道两侧耗尽层的宽度也随着改变由于沟道宽度的变化导致沟道电阻值的改变从而实现了利用电压ugs场效应管工作原理二结型场效应管二结型场效应管场效应管两侧的pn结均处于零偏置形成两个耗尽层如图a所示
第八章:场效应管
一、场效应管概述 二、结型场效应管结构与原理 三、结型场效应管放大器 四、MOS场效应管介绍
2、判定栅极 用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是
正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以
区分。源极与漏极间的电阻约为几千欧。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,
第三章 场效应管放大电路讲解
d
结构图
B衬底 g
s
电路符号
回主页 总目录 章目录 上一页 下一页 退出
因此在栅源电压为零时,在正的vDS作用下,也有较 大的漏极电流iD由漏极流向源极。
当vGS>0时,由于绝缘层的存在,并不会产生栅极电 流 iG ,而是在沟道中感应出更多的负电荷,使沟道变 宽。在vDS作用下,iD将具有更大的数值。
回主页 总目录 章目录 上一页 下一页 退出
3.1.2 N沟道耗尽型MOSFET
⒈ 结构和工作原理简述 这种管子在制造时,
SiO2绝缘层 中掺有大量
正离子
由于二氧化硅绝缘层中掺
有大量的正离子,即使在
vGS= 0时,由于正离子的 作用,也和增强型接入正
N型沟道
栅源电压并使vGS>VTh时相 似,能在P型衬底上感应 出较多的电子,形成N型 沟道,将源区和漏区连通
② 可变电阻区 (vDS≤vGS-VTh )
iD Kn 2 vGS VTh vDS vD2S
iD/mA
可变电阻区 饱和区
电导常数Kn单位是mA/V2。
8 6
在特性曲线原点附近,vDS很 4
7V A
6V B
5V C
4V
小,则
2
D
vGS=3V
iD 2Kn vGS VTh vDS
E 截止区
5 10 15 20 vDS/V
电压vGS对漏极电流iD的控制
特性,即 iD f vGS vDS常数
由于饱和区内,iD受vDS的影
iD/mA 8
A
B
6 VDS =10V C
4
D
响很小,因此饱和区内不同vDS 下的转移特性基本重合。
场效应管及其基本电路详解
uGS uGSo(ufG f S)thuGS uGSo(ufG f S)th
P - F E TuGD uGSo (ufG f S)thuGD uGSo (ufG f S)thuGS uGSo(ufG f S)th
uDS
(a)输出特性
图3―8输出特性
01 恒流区
02 uGS>UGSth 预夹断后所对应的区域。
03
uGD<UGSth(或uDS>uGS-UGSth) ○ 曲线间隔均匀,uGS对iD控制能力强。 ○ uDS对iD的控制能力弱,曲线平坦。
三、转移特性
iD≥0
当uGS<UGSth时,iD=0。
01
P沟
UGS /V
结型 P沟
iD
结型
MOS N沟
N 沟 耗尽型 增强型
UGS /V
0 -1
3 2
9 8
-2 1 7
-3 0 6
-4 -1 5
-5 -2 4
-6 -3 3
0
uDS
线性可变电阻区
uDS uG SuGS(o uG ff S)th
(b)输出特性
图3―12各种场效应管的转移特性和输出特性对比
2024/8/28
一、简介
二、分类
0 1
MOSFE T
0 2
N沟道
0 7
增强型
0 8
耗尽型
0 3
P沟道
0 4
增强型
0 5
NEMOSF
ET
0 9
NDMOS
FET
1 0
PEMOSF
ET
1 1
DMOS FET
0 6
耗尽型
2024/8/28
场效应管放大电路
i ②转移特性曲线 Df(VGS)VDSC
输入电压VGS对输出漏极电流ID的控制
iD / v G Q S d D /d iG v Q S g m m s
精选课件
结型场效应管的特性小结
N 沟 道 耗
结尽 型型
场
效P 应沟 管道
耗 尽 型
精选课件
金属-氧化物-半导体场效应管
绝缘栅型场效应管Metal Oxide Semiconductor —— MOSFET
第二种命名方法是CS××#,CS代表场效应管, ××以数字代表型号的序号,#用字母代表同一型 号中的不同规格。例如CS14A、CS45G等。
精选课件
双极型三极管与场效应三极管的比较
双极型三极管
场效应三极管
结构
NPN型
结型 N沟道 P沟道
与
PNP型
绝缘栅 增强型 N沟道 P沟道
分类 C与E一般不可 绝缘栅 耗尽型 N沟道 P沟道
强
型
精选课件
耗尽型MOSFET
N沟道耗尽型MOS管,它是在栅极下方的SiO2绝缘层中掺入 了大量的金属正离子,在管子制造过程中,这些正离子已经在漏 源之间的衬底表面感应出反型层,形成了导电沟道。 因此,使 用时无须加开启电压(VGS=0),只要加漏源电压,就会有漏极 电流。当VGS>0 时,将使ID进一步增加。VGS<0时,随着VGS 的 减小ID 逐渐减小,直至 ID=0。对应ID=0 的 VGS 值为夹断电压 VP 。
至VGD=VT,即VGS-VDS=VT或VDS=VGS-VT
时,则漏端沟道消失,出现预精选夹课件断点。
当VDS增加到使
当VDS增加到使VGDVT时,预
小此匀当时时降V落,VDDS在VS为G基沟D0>本或道V均较中T,,V将称电下G缩为子,D=减预在仍VTV到夹 能时D刚断 沿S,电刚。 着漏场开源 沟极力启区 道处的的向的沟作情漏自道用况端由,夹 断 而 此 在断 未 , 该区点 夹 夹。VD由向 断 断S增于源沟区加预极道内的夹端部,部断延分而分区伸为沟基呈成低道本现小阻中上高的,的降阻夹因电落,
模拟电路场效应管及其基本放大电路
UGS(off)
信息技术学院
3. 特性
(1)转移特性
在恒流区
uGS 2 iD I DSS (1 ) U GS(off)
漏极饱 和电流
(U GS (off ) uGS 0)
夹断 电压
信息技术学院
(2)输出特性
iD f (uDS ) U GS 常量
IDSS g-s电压 控制d-s的 等效电阻
信息技术学院
P 沟道场效应管 D
P 沟道场效应管是在 P 型 硅棒的两侧做成高掺杂的 N 型区(N+),导电沟道为 P 型, 多数载流子为空穴。 d
P G
N+ 型 沟 道 N+
g
S
s 符号
信息技术学院
2. 工作原理
(1)栅-源电压对导电沟道宽度的控制作用
uDS=0
UGS(off)
沟道最宽 (a)uGS = 0
2)耗尽型MOS管
夹断 电压
信息技术学院
各类场效应管的符号和特性曲线
种类 结型 N 沟 道 符号 D 转移特性 ID /mA IDSS 漏极特性 UGS= 0V
ID
-
G
S D
UGS(off) O
UGS
O + + + ID O
o
UDS
ID
结型
P 沟 道
O UGS(off) UGS
G
IDSS
S D B
iD f (uGS ) U DS 常量
当场效应管工作在恒流区时,由于输出特性曲线可近似为横轴的一组平行 线,所以可用一条转移特性曲线代替恒流区的所有曲线。输出特性曲线的 恒流区中做横轴的垂线,读出垂线与各曲线交点的坐标值,建立uGS,iD坐 标系,连接各点所得的曲线就是转移特性曲线。
2-基本放大电路
2. 电压放大倍数的图解分析
此项分析需在静态工作点确定后进行! 由直流负载线方程 uBE VBB iB Rb
作出直流负载线,作出△uI。
uBE VBB uI iB Rb
I B1 I BQ iB
iC
I B1
直 流
uCE
u I
给定 uI i B iC uCE ( uO ) uO Au uI ( uO与uI 反相)
两种实用放大电路
(1)直接耦合放大电路
将两个电源 合二为一
- + UBEQ
有交流损失
有直流分量
两种实用放大电路:(2)阻容耦合放大电路
C1、C2为耦合电容!
+ - - ++
UCEQ
BE
UBEQ U
-
耦合电容的容量应足够 大,即对于交流信号近似 为短路。其作用是“隔离 直流、通过交流”。
静态时,C1、C2上电压? U C1 U BEQ,U C2 UCEQ 动态时, uBE=uI+UBEQ,信号驮载在静态之上。 负载上只有交流信号。
第二章 基本放大电路
第二章 基本放大电路
§2.1 放大的概念与放大电路的性能指标
§2.2 基本共射放大电路的工作原理
§2.3 放大电路的分析方法
§2.4 静态工作点的稳定
§2.5 晶体管放大电路的三种接法 §2.6 场效应管及其基本放大电路 §2.7 基本放大电路的派生电路
§2.1 放大的概念与放大电路 的性能指标
iC I CQ ic uCE U CEQ uce
3. 失真分析
• 截止失真:输出波形进入截止区 产生的失真。
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。 减小Rb能消除截止失真吗?
第四章:场效应管及放大电路讲解
iD
vGS 0 VT
(1-34)
模拟电子
输出特性曲线 iD
vGS>0
0
v DS
(1-35)
耗尽型N沟道MOS管的特性曲线
模拟电子
耗尽型的MOS管VGS=0时就有导电沟道, 加反向电压才能夹断。
iD
转移特性曲线
vGS VT 0
(1-36)
模拟电子
输出特性曲线 iD
vGS>0
vGS=0
vGS<0
P NN
P沟道结型场效应管 D
G
S源极
S
(1-6)
模拟电子
(2)工作原理(以P沟道为例) VDS=0时
PN结反偏,
VGS越大则耗
D
尽区越宽,导 电沟道越窄。G
P
VDS
NN
VGS S
(1-7)
VGS越大耗尽区越 宽,沟道越窄, 电阻越大。
G
但 尽区当宽VG度S较有V小限DS时=,0,时模存耗拟电子 在导电沟道。DS间 D 相当于线性电阻。
Vgs
-
gmVgs
s
+
Rg2
R RL Vo -
(1-56)
中频电压增益
模拟电子
Vo gmVgs (R // RL )
Vgs Vi Vo
Vo gm (Vi Vo )( R // RL )
A Vm
Vo Vi
gm (R // RL ) 1 gm (R // RL )
Rg2 47k
Rg1 2M
Rd 30k
d
g
Rg3
s
10M
R
2k
场效应管及放大电路
场效应管是利用电场效应来控制电流 大小,与双极型晶体管不同,它是多子导 电,输入阻抗高,温度稳定性好、噪声低。 场效应管有两种: 绝缘栅型场效应管MOS 结型场效应管JFET
分类:
JFET 结型 MOSFET (IGFET) 绝缘栅型
N沟道
P沟道
(耗尽型) N沟道
FET 场效应管
ID=f(VDS)VGS=const
输出特性曲线
vGS 在恒流区,iD I D 0 ( - 1) 2 VT
I D 0是vGS 2VT时的iD值
输出特性曲线
(1) 截止区(夹断区) VGS< VT以下区域就是截止区 VGS VT ID=0
iD
(2) 放大区(恒流区) 产生夹断后,VDS增大,ID不变的 区域,VGS -VDS VP VDSID不变 处于恒流区的场效应管相当于一 个压控电流源 (3)饱和区(可变电阻区) 未产生夹断时,VDS增大,ID随着增大的区域 VGS -VDS VP VDSID 处于饱和区的场效应管相当于一个压控可变电阻
夹断 电压
在恒流区时 uGS 2 iD I DSS (1 ) Up
uGD=UGS(off)时称为 预夹断
3. 主要参数
① 夹断电压VP (或VGS(off)): 漏极电流约为零时的VGS值 。 ② 饱和漏极电流IDSS: VGS=0时对应的漏极电流。 ③ 低频跨导gm: 低频跨导反映了vGS对iD的控制作用。gm 可以在转移特性曲线上求得,单位是mS(毫西门子)。
2. 静态工作点
Q点: VGS 、 ID 、 VDS 已知VP ,由
vGS = - iDR
VDS = VDD - ID (Rd + R )
场效应管及其基本放大电路
场效应管及其基本放大电路3.2.3.1 场效应管( FET )1.场效应管的特色场效应管出生于 20 世纪 60 年月,它主要拥有以下特色:①它几乎仅靠半导体中的多半载流子导电,故又称为单级型晶体管。
②场效应管是利用输入回路的电场效应来控制输出回路的电流,并以此命名。
③输入回路的内阻高达 107 -1012Ω;此外还拥有噪声低、热稳固性好、抗辐射能力强、耗电小,体积小、重量轻、寿命长等特色,因此宽泛地应用于各样电子电路中。
场效应管分为结型和绝缘栅型两种不一样的构造,下边分别加以介绍。
2.结型场效应管⑴结型场效应管的符号和N 沟道结型场效应管的构造结型场效应管(JFET)有 N 沟道和 P 沟道两种种类,图3-62(a) 所示为它们的符号。
N沟道结型场效应管的构造如图 3-62(b) 所示。
它在同一块 N型半导体上制作两个高混杂的P 区,并将它们连结在一同,引出电极,称为栅极 G; N 型半导体的两头分别引出两个电极,一个称为漏极 D,一个称为源极 S。
P 区与 N 区交界面形成耗尽层,漏极与源极间的非耗尽层地区称为导电沟道。
(a) 符号(b)N 沟道管的构造表示图图 3-62 结型场效应管的符号和构造表示图⑵结型场效应管的工作原理为使 N沟道结型场效应管正常工作,应在其栅 - 源之间加负向电压(即U GS0),以保证耗尽层蒙受反向电压;在漏- 源之间加正向电压u DS , 以形成漏极电流i D。
下边经过栅-源电压 u GS和漏-源电压 u DS对导电沟道的影响,来说明管子的工作原理。
①当 u DS=0V(即D、S短路)时, u GS对导电沟道的控制作用ⅰ当 u GS=0V时,耗尽层很窄,导电沟道很宽,如图3-63(a)所示。
ⅱ当 u GS增大时,耗尽层加宽,沟道变窄(图(b) 所示),沟道电阻增大。
ⅲ当u GS增大到某一数值时,耗尽层闭合,沟道消逝(图(c) 所示) , 沟道电阻趋于无穷大,称此时u GS的值为夹断电压U GS( off )。
第3章场效应管及其放大电路习题解
第3章场效应管及其放大电路习题解3.1教学内容与要求本章介绍了场效应管的结构、类型、主要参数、工作原理及其基本放大电路。
教学内容与教学要求如表1.1所示。
表3.1第3章教学内容与要求3.2内容提要3.1.1场效应晶体管1.场效应管的结构及分类场效应管是利用输入电压产生的电场效应来控制输出电流的,是电压控制型器件。
工作过程中起主要导电作用的只有一种载流子(多数载流子),故又称单极型晶体管。
场效应管有两个PN结,向外引出三个电极:漏极D、栅极G和源极S。
(1)栅源控制电压的极性对JFET,为保证栅极电流小,输入电阻大的特点,栅源电压应使PN结反偏。
N沟道JFET:UGS<0;P沟道JFET:UGS>0。
对增强性MOS管,N沟道增强型MOS管,参加导电的是电子,栅源电压应吸引电子形成反型层构成导电沟道,所以UGS>0;同理,P沟道增强型MOS管,UGS<0。
对耗尽型MOS管,因二氧化硅绝缘层里已经掺入大量的正离子(或负离子:N沟道掺入正离子;P沟道掺入负离子),吸引衬底的电子(或空穴)形成反型层,即UGS=0时,已经存在导电沟道,所以,栅源电压UGS 可正可负。
(2)夹断电压UGS(off)和开启电压UGS(th)对JFET和耗尽型MOS管,当|UGS|增大到一定值时,导电沟道就消失(称为夹断),此时的栅源电压称为夹断电压UGS(off)。
N沟道场效应管UGS(off)<0;P沟道场效应管UGS(off)>0。
对增强型MOS管,当UGS增加到一定值时,才会形成导电沟道,把开始形成反型层的栅源电压称为开启电压UGS(th)。
N沟道增强型MOS管UGS(th)>0;P沟道增强型MOS管UGS(th)<0。
(3)栅源电压uGS对漏极电流iD的控制作用场效应管的导电沟道是一个可变电阻,栅源电压uGS可以改变导电沟道的尺寸和电阻的大小。
当uDS=0时,uGS变化,导电沟道也变化但处处等宽,此时漏极电流iD=0;当uDS≠0时,产生漏极电流,iD≠0,沿沟道产生了电位梯度使导电沟道变得不等宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 输出特性
iD f (uDS ) UGS
技术
iD /mA
可
8V
变 电 阻
放恒饱大流和区区区 6 V
4V
区
O
截止uG区S =
2V uDS /V
可变电阻区 uDS < uGS UGS(th)
uDS iD ,直到预夹断
饱和(放大区) uDS,iD 不变 uDS 加在耗尽层上,沟道电阻不变
1) uGS 对导电沟道的影响 (uDS = 0)
a. 当 UGS = 0 ,DS 间为两个背对背的 PN 结;
b. 当 0 < UGS < UGS(th)(开启电压)时,GB 间的垂 直电场吸引 P 区中电子形成离子区(耗尽层);
c. 当 uGS UGS(th) 时,衬底中电子被吸引到表面, 形成导电沟道。 uGS 越大沟道越厚。
D iD
G P 沟道结S 型
iD /mA
UGS(off) IDSS
–5 O
uGS /V
5
iD /mA uGS = 0 V 0 V
–2V 2V
–5V 5V
O
uDS /V
模 拟电子技术
3.1.3 场效应管的主要参数
1. 开启电压 UGS(th)(增强型) 夹断电压 UGS(off)(耗尽型)
iD /mA
模 拟电子技术
5. 漏源动态电阻 rds
rds
uDS id
uGS 常数
6. 最大漏极功耗 PDM
PDM = uDS iD,受温度限制。
模 拟电子技术
3.2.3 场效应管与晶体管的比较
管子名称 导电机理 控制方式 放大能力 直流输入电
阻 稳定性
噪声
结构对称性
晶体管
利用多子和少子导电
电流控制
高 小 约几kΩ 受温度和辐射的影响较大
模 拟电子技术
二、耗尽型 N 沟道 MOSFET
D
B G
S
Sio2 绝缘层中掺入正离子在 uGS = 0 时已形成 沟道;在 DS 间加正电压时形成 iD, uGS UGS(off) 时,全夹断。
模 拟电子技术
iD /mA
2V
0V
2V
uGS = 4 V
O
uDS /V
输出特性
当 uGS UGS(off) 时,
指 uDS = 某值,使漏极
IDSS
电流 iD 为某一小电流时 的 uGS 值。
uGS /V
2. 饱和漏极电流 IDSS
UGS(off)O UGS(th)
耗尽型场效应管,当 uGS = 0 时所对应的漏极电流。
模 拟电子技术
3. 直流输入电阻 RGS
指漏源间短路时,栅、源间加 IDSS
iD /mA
中等 集电极和发射极不对称,不能互
换
场效应管 利用多子导电
电压控制 较低 大
JFET可达107Ω以上, MOS可达1010Ω 温度稳定性好、抗辐射能力强 很小
漏极和源极对称,可互换使用
适用范围
都可用于放大电路和开关电路等
截止区 uGS Uห้องสมุดไป่ตู้S(th) 全夹断 iD = 0
模 拟电子技术
(2) 转移特性
iD f (uGS) UDS
iD /mA
4 3
UDS = 10 V
2
1 UGS (th) 开启电压
O 2 4 6 uGS /V
当 uGS > UGS(th) 时:
iD
I
DO
( uGS U GS (th)
1)2
uGS = 2UGS(th) 时的 iD 值
模 拟电子技术
3.2 绝缘栅场效应管
N沟道绝缘栅场效应管
MOS 场效应管 (绝缘栅场效应管)
增强型
耗尽型 增强型
P沟道绝缘栅场效应管
耗尽型
模 拟电子技术
3.2.1 增强型MOS管
1、增强型 N 沟道 MOSFET
(Mental Oxide Semi— FET)
D
1. 结构与符号
S GD
N+
N+
耗 P 型衬底 尽 (掺杂浓度低)
模 拟电子技术
(2) 栅源电压对漏极电流的控制作用(uGS > UGS(th))
DS 间的电位差使 沟 道 呈 楔 形 , uDS , 靠近漏极端的沟道厚 度变薄。
预夹断(UGD = UGS(th)):漏极附近反型层消失。 预夹断发生之前: uDS iD。 预夹断发生之后:uDS iD 不变。
模 拟电子
层
B
B G
S
在层在属DS源G制用硅薄——绝铝极—作金扩片缘引S源漏S栅两属散i表O层出极和极极个铝的2面上栅漏绝SD引方GN生o喷 极极r缘ua出a法区一r金ti层GeDnce
模 拟电子技术
2. 工作原理
(1) 导电沟道的形成
uGS=0
反型层 (沟道) uGS>0 且uGS>UGS(th)
模 拟电子技术
iD /mA UGS(th) – 2 O 2 uGS /V
D iD
G
B
N 沟道S耗尽型
D iD
G
B
P 沟道S耗尽型
iD /mA UGS(off) IDSS
uGS /V
–5 O 5
模 拟电子技术
iDu/GmSA= 2 V –2 V 0V 0V
–2V 2V
–5V 5V
O
uDS /V
D iD
G S
N 沟道结型
反向电压呈现的直流电阻。 JFET:RGS > 107
uGS /V
UGS(off)O UGS(th)
MOSFET:RGS = 109 1015
模 拟电子技术
4. 低频跨导 gm
gm
iD uGS
UDS 常数
iD /mA Q uGS /V
O
反映了uGS 对 iD 的控制能力, 单位 S(西门子)。一般为几毫西 (mS)
iD /mA
夹断
IDSS
电压
UGS(off)O uGS /V 转移特性
饱和漏 极电流
iD
IDSS (1
uGS )2 UGS(of f )
模 拟电子技术
三、P 沟道 MOSFET 增强型
耗尽型
D
G
B
S
D
G
B
S
模 拟电子技术
FET 符号、特性的比较
D iD
B G N 沟道S增强型
D iD
G
B
S
P 沟道增强型