人教版六年级下册数学圆柱的体积PPT课件
数学人教版六年级下册《圆柱的认识》课件
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
最新人教版六年级数学下册圆柱的体积精品课件5
…
r - =π 2 r
长等于圆周长的一半 宽等于圆的半径
C
-=π r
r
长方形的面积 = 长 × 宽 长等于圆周长的一半 圆的面积
C 2
= πr × r 宽等于圆的半径 =πr2
S
=πr2
能不能把圆柱转化成我们学过 的立体图形,来计算它的体积?
分的份数越多,拼成 拼成的长方体是标准 的图形越接近长方体。 的长方体吗? 1、圆柱拼成近似的长方体后,体积发生变化了吗? 2、圆柱拼成近似的长方体后,底面积与高发生变化了吗?
达标测评
三、计算下图圆柱体的体积。 12 (图中单位:cm)
V
=
π r² h
=3.14× (12÷ 2)² × 18
=3.14× 36× 18
18
=2034.72(cm³ )
圆柱的体积公式是如何推导出来的?
圆柱体积
长方体体积
圆柱体积
底面积
长方体体积
底面积
圆柱体积
底面积
高
长方体体积
底面积
圆柱体积
长方体体积
圆柱体积
底面积
长方体体积
底面积
圆柱体积
底面积
高
长方体体积
底面积
高
圆柱体积 = 底面积 × 高
长方体体积 = 底面积 × 高
圆柱体积 =底面积 × 高
V=Sh
猜一猜:
你猜对了圆柱的体 积公式吗?
圆柱的体积=底面积×高 V=Sh
√ ?
学以致用:
有一根圆柱形木料,底面积为75cm² , 长90㎝。它的体积是多少? V=sh =75×90 =6750(cm³ )
高
圆柱体积 = 底面积 × 高
六年级数学下册课件-3.1.3 圆柱体积——解决水瓶体积问题7-人教版
四、课堂小结
这节课你学习了哪些知识?
利用体积不变的特性,把不规则图形转化成规则图形来计 算,运用了转化的数学思想和策略。
空白演示
单击输入您的封面副标题
按特长评语 1. 优秀的成绩,娟秀的书法,逼真的绘画,优美的舞姿,娓娓动听的播音,落落大方的小小主持人,博得师生 的好评,是我们学校的骄傲。这都是你辛勤的汗水换来的,愿你获得新成绩。 2. 你是个受老师与同学们喜欢的好班长,也是一个德、智、体全面发展的学生。上课时你聚精会神的听讲,下 课时你的眼睛总是关注着班集体。同学们遇到困难都找你,你总是乐意帮助解决。每次评选三好学生时,你总 是全班同学全体举手通过。你的上进心很强,我曾经说你要是字再写的好一些就好了,你就暗下功夫练字很快 就大有进步了。要是你发言讲话,声音再大一些,就更好了。 3. 如果我们班的每位同学都是夜空的繁星,那么你就是其中最璀璨的一颗。看着同学们异口同声地推举你当班 长;看着你俨然一位小老师,热心地帮助每一位需要帮助的同学;看着你犹如一匹活泼的小马驹,奔驰在操场 上……我真为你而感到高兴,但老师要提醒你山外有山,人外有人,谦虚谨慎永远是成功的法宝。 4. 你是个文静的女孩。默默地学习,作业本上那工整的字迹,是你文静开出的花朵。课间活动,体育场上,你 文静有余而活动不足。愿你多一些活泼,多一些微笑。 5.你是个关心集体,热爱劳动的女孩,每天都可以看到你为净化校园弯腰扫地的身影。桌椅歪了,你主动摆好, 字纸篓满了,你主动到掉。世上无难事,只怕有心人,如果你不怕困难,勤奋学习,你也能把学习搞好。 6.你是一个聪明漂亮、文静可爱的小姑娘。你能坚持培养自己健康的兴趣爱好,学画画能吃苦,多次为班为校 争光;你能严格要求自己,学习、表现堪为同学表率,作为班干部你能积极主动搞好本职工作,得到同学的信 任和支持,本学期被光荣地评为武昌区优秀少先队员。望你再接再厉更上一层楼。
人教版数学六年级下册教学课件《利用圆柱的体积求不规则物体的体积》
这个瓶子是圆柱吗? 怎样求它的容积?
分成两个圆柱 可行吗?说出 你的想法。
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
说一说:你还发现 了什么?
7cm 18cm
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖
拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。
这个瓶子的容积是多少? 正放
倒置
7cm 18cm
倒置前后水的形状变
了,体积没有变。
前
后
瓶子容积=水的体积+空瓶子体积
探究新知
一个底面内直径是8cm的瓶子里,水的高度是7cm,把瓶盖 拧紧,把瓶子倒置、放平,无水部分是圆柱形,高度是18cm。 这个瓶子的容积是多少?
人教版 数学 六年级 下册
3 圆柱与圆锥
利用圆柱的体积求 不规则物体的体积
复习导入
还记得五年级想要计算不规则物体的体积用的什么
方法吗?
“排水法”
看量杯的刻度变化。
复习导入 想一想:如果量杯的刻度被磨掉了,你还会计算梨 的体积吗?
将梨的体积转化成 上升水的体积。
“转化法”
7cm 18cm
探究新知
答:这个瓶子的容积是1256mL。
课堂练习
某公园要修一道围墙,原计划用土石35m³。后来多开了一 个厚度为25cm的月亮门(见右图),减少了土石的用量。 现在用了多少立方米的土石? 先求一个底面直径为2m2÷2)2×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³) 答:现在用了34.215立方米的土石。
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件
柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
人教版数学六年级下册 圆柱的体积课件(44张PPT)
=3.14×16×25
=1256(cm^3)
=1256(ml)
答:瓶子的容积是1256ml。
解:减少的表面积是两个底面面积 底面面积:25.12÷2=12.56(cm3)
底面半径为:
12.56÷3.14÷2=2(cm)
原圆柱的体积:
3.14×22×(20÷2)=125.6(cm3)
答:原来每个圆柱的体积为125.6cm3 。
答:这个圆柱的表面积是301.44cm2;体积是401.92cm3.
例7. 一个圆柱体底面周长和高相等。如果高缩短 2厘米,表面积就减少6.28平方厘米, 这个圆柱 体的体积是多少?
减少的6.28平方厘米 表面积是哪一块呢?
24cm
6.28平方厘米
C=6.28÷ 2=3.14(厘米) r=3.14÷ 3.14÷ 2=0.5(厘米) V=0.52× 3.14× 3.14=2.4649(立方厘米) 答:这个圆柱体的体积是2.4649立方厘米。
502.4 ml>498ml
答:能装下这袋奶。
例2. 若圆柱体的侧面展开后是一个边长为12.56分米正方形,求
这个圆柱的体积。
边长
r=12.56÷ 3.14÷ 2=2(分米12.)56厘米 S底=22× 3.14=12.56(平方分米) V=12.56× 12.56=157.7536(立方分米)
12.56分米
12.56 分米
答:这个圆柱的体积是157.7536立方分米。 “侧面展开 图是正方形”说明 什么呢?
例3.一个圆柱形粮囤,从里面量底面半径是2.5米,高是2米。如 果每立方米稻谷约重545千克,这个粮囤装的稻谷大约有多少千 克?
粮屯体积: 3.14×2.52×2 =3.14×6.25×2 =39.25(m2)
《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册
4.压路机前轮直径是1.6m,长2m,它转动一周,压路 的面积是多少平方米?
求圆柱侧面积
3.14×1.6×2=10.048(m2)
答:压路的面积是10.048平方米。
5.制作一个底面直径20cm,长50cm的圆柱形通风管,至少 要用多少平方厘米的铁皮?
求圆柱侧面积
3.14×20×50=3140(cm2) 答:至少要用3140平方厘米的铁皮。
S=πr 2
r
πr
S=πr ×r =πr 2
把圆柱的底面平均分的份数越多,切拼成的立体图形 越接近长方体。
思考: ①拼成的长方体的底面积与原来圆柱的底面积有什 么关系?为什么? ②拼成的长方体的高与原来圆柱的高有什么关系? 为什么? ③拼成的长方体的体积与原来圆柱的体积有什么关 系?为什么?
)里画
√
√
√
3. 转动长方形ABCD,生成右面的两个圆柱。说说
它们分别是以长方形的哪条边为轴旋转而成的,底面半 径和高分别是多少。
A
D
1cm
B 2cm C
(1)
(2)
那长方形ABCD如果以AD边为轴旋转,会形 成哪个圆柱呢?请你动手试一试。
答:长方形ABCD如果以AD边为轴旋转,会形成(2)号圆柱。 底面半径是1cm,高是2cm。
?cm S侧:18.84×10=188.4(cm2)
18.84cm 10cm r:18.84÷3.14÷2=3(cm) S底:3.14×32×2=56.52(cm2)
S表:188.4+56.52=244.92(cm2)
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么 粉刷树干的面积是指树的( B )。
有一个棱长为10厘米的正方体木块,把它削成一个最 大的圆柱体,应削多少体积的木头?
部编人教版六年级数学下册第三单元课件ppt第6课时 圆柱的体积
状元成才路
状元成才路
状元成才路
2.计算下面各圆状元柱成才路 的体积。(单位:c状m元成才路 )
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
3.14×状元成才5路 2×2=157(cm状3元成)才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
3.14×(4÷2) ×12 状元成才路
状元成才路
2状元成才路
状元成才路
=150.72(cm3) 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
18.84÷状元成才路3.14÷2=3(dm) 状元成才路
3.状1元成才4路 ×32×4=113.0状4元成才(路 dm3)
答:这个圆柱的体积是113.04dm 。 状元成才路
状元成才路
状元成才路
3
状元成才路
随堂演练
状元成才路
1.判断。
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
3.14×(1÷2)2×1状元成0才路 =7.85(立方米) 状元成才路 状元成才路
六年级下册圆柱的体积
课题:圆柱的体积教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算体积的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
教学重、难点:1、掌握圆柱体积的计算公式。
2、圆柱体积的计算公式的推导。
教学过程一、复习。
1、长方体的体积公式是什么?(长方体的体积=长x宽x高,长方体和正方体体积的统一公式“底面积x高”,即长方体的体积=底面积x高)2、观察一个圆柱体,知名学生指出圆柱的底面、高、侧面、表面各式什么,怎么求?3、复习圆面积的计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、授新课。
1、圆柱体积计算公式的推导。
例5(1)用将圆转化的成长方形来求出圆的面积的方法推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得大小相等的16块,把它们拼成一个近似长方体的立体图形------课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体,如果分成的扇形越多,拼成的立体图形就越接近长方体。
(课件演示将圆柱细分,拼成一个长方体)。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积x高,所以圆柱的体积=底面积x高,V=sh)2.教学补充例题出示例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?指名学生分别回答下面的问题:(1)这道题已知什么?求什么?(2)能不能根据公式直接计算?(3)计算之前要注意什么?(计算既要分析已知条件和问题,还要注意要先统一,计量单位)(4)教师指导列式计算:第一种计算方法:2.1米=210厘米V=sh50X210=10500(立方厘米)答:它的体积是10500立方厘米。
第二种计算方法:50平方厘米=0.005平方米V=sh0.005x2.1=0.0105(立方米)答:它的体积是0.0105立方米。
小学六年级数学下册教学课件《圆柱的体积(2)》
2.一个圆柱形的水池,从里面量底面半径是5m,深 是3.2m。这个水池能蓄水多少吨? (1m3的水重1t。)
【教材P25 做一做 第2题】
V =πr2h 3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
探索新知
下图中的杯子能不能装下2袋这样的牛奶? (数据是从杯子里面测量得到的。)
容积的计算方 法与体积的计
算方法相同
要先计算出杯子的容积。
杯子的底面积:3.14×(8÷2)2
=3.14×42
=3.14×16
=50.24 (cm2) 杯子的容积: 50.24×10
=502.4 (cm3)
=502.4 (mL) 牛奶的体积:240×2=480(mL)
2÷2=1(m) 3.14×12×3=9.42(m3) 9.42 m3=9420 dm3=9420L 9420 ÷350≈26(辆)
三、一个水龙头的内直径是1.6cm,打开水龙 头后水的流速是30厘米/秒,一个容积是5L的 水桶,80秒能装满水吗?
5 L=5000 mL
3.14×
1.6 2
×2 30×80=4823.04(cm3)
所用钢材的体积就是用大圆柱的体积减 去中空的小圆柱的体积。
大圆柱的体积:3.14×(10÷2)2×80=6280(cm3) 小圆柱的体积:3.14×(8÷2)2×80=4019.2(cm3) 钢材的体积:6280-4019.2=2260.8(cm3)
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
想象一下1秒流出的水是什么形状的。 求50秒流出的水的体积就是求什么?
人教版六年级数学下册《圆柱的体积》课件
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
圆柱体积PPT课件
r= d
2
S=∏r2 v=sh = ∏ r2 h
3.已知圆柱体的底面周长和高,怎样求体积 ?
r=c÷2∏
S=∏r2 v=sh = ∏ r2 h
一个圆柱,底面半径是2cm,高是5cm。 求它的体积?
r=2cm h=5cm S底=πr2 =2×2×3.14
=4×3.14 =12.56(cm2) V=Sh=5×12.56=62.8(cm3)
人教版小学六年级数学下册《圆柱的体积》
真 棒!
高 宽
长
棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
rHale Waihona Puke πrS=πr ×r =π r 2
圆面积计算公式的推导过程
()
圆
长方形
运用了什么数学思想?
一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少?
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米 0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
看图列式,并写出相应的公式。
答:圆柱的表面积是62.8平方厘米。
计算右图圆柱是体积。(单位:dm)
d=10dm h=4dm S底=π(d÷2)2
=(10÷2)2×3.14 =25×3.14 =78.5(dm2) V=Sh=4×78.5=314(dm3)
1·0 4
一个圆柱,底面周长是94.2m,高是 100m。求它的体积?
人教版六年级下册数学课件: 第3单元 圆柱与圆锥 第5课时 圆柱的体积(2) 不规则容器容积的计算方法
知识点1
将不规则容器的容积转化成圆柱形容器的 容积的计算方法
1.一个内直径是10 cm的圆柱形瓶子(如图)里,水的
高度为6 cm,把瓶盖拧紧后倒置放平,无水部分
是圆柱形,高度是15 cm,这个瓶子的容积是多
少毫升?
想:瓶子的容积实际上是( )的体积与( )的
3_.1_4_×__(_1_0_÷__2_)_2×__6_=__4_7_1_(_c_m__3)_=__4_7_1_(_m_L__) ___ 空气的体积:
3.14×(10÷2)²×2=157(cm³)
3.一种电热水炉的水龙头的内直径是1.2cm,打开水 龙头后水的流速是20厘米/秒。一个容积为1L的保 温壶,50秒能装满水吗?
3.14×(1.2÷2)²×20×50=1130.4(cm³) 1130.4 cm³=1.1304 L>1 L 50秒能装满水。
3 圆柱与圆锥
第8课时 圆柱的体积 ——不规则容器容积的计算方法
RJ 六年级下册
教材习题
1.两个底面积相等的圆柱,一个高为4.5dm,体积 为81dm³。另一个高为3dm,它的体积是多少?
81÷4.5×3=54(dm³)
2.一个圆柱形玻璃容器的底面直径是10cm,把一块 完全浸在这个容器的水中的铁块取出后,水面下 降2cm。这块铁块的体积是多少?
(7-3)÷(4-3)×3=12(cm) 12+7=19(cm) 这时两个容器中的水深是19 cm。
《圆柱的体积》PPT课件
面测量得到的。)
8cm
杯子的容积。
杯子的容积: 50.24 ×10 =502.4(cm3)
10cm
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4>480 答:杯子能装下2袋这样的牛奶。
课堂练习
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6(cm3) =0.7536(L)
1L>0.7536L
答:带这壶水不够喝。
课堂练习
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?
木料的体积:
3.14×(0.4÷2)2×5 =3.14×0.2 =0.628(m3)
“退一”法。
0.628÷0.02=31.4(张)
答:这根木料最多能做31张课桌。
已知底面直径和高求圆柱体积。 V=π(d2 )2h =3.14×(1÷2)2×10 =7.85(立方米) 答:挖出的土有7.85立方米。
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子 里面测量得到的。)
思考:
8cm
1.已知什么?
10cm
2.要求什么?
3.要注意什么?
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子里
)
于土的高度有关。
两个花坛的体积
人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1
判断:
1、圆柱的体积比表面积大。( ) ×
2、等底等高的正方体、长方体和圆柱,它们的体积
都相等。( √ )
3、一个圆柱的底面半径扩大到原来的3倍,体积也
4、体积相等的两个圆柱不一定是等底等高。(√ )
扩到原来的3倍。( × )
判断:
5、高不变,圆柱体的底面积越大,它的体积就
人教版六年级数学下册第三单元
圆柱的体积练习课
知识回顾:
圆柱的体积公式是怎样推导出来的?
转化
长方体的体积= 底面积 × 高 圆柱的体积= V
底面积 S
圆柱体积计算公式是:
V
×
高 h
已知圆柱的底面积和高,怎样求圆柱的体积?
V=s×h
已知圆柱的体积和高,怎样求圆柱的底面积?
s=V÷h
已知圆柱的体积和底面积,怎样求圆柱的高?
越大。( √ )
6、圆柱体的高越长,它的体积越大。( × ) 7、圆柱体的底面直径和高可以相等。(√ )
巩固练习:
将一个棱长为6分米的正方 体钢材熔铸成底面半径为1 分米的圆柱体,这个圆柱有 多长?(得数保留整数)
思考:正方体与熔铸成的圆柱体体积有什么关系? 正方体的体积:6×6×6=216(dm3) 圆柱的长:216÷(3.14×1×1) =216÷3.14 ≈69(分米)
=18×3 =54(dm3)
答:它的体积是54dm3。
练一练:
把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
d 2 思考:圆柱的直径和高 V ( ) h 2 是正方体的什么? =3.14×(6÷2)2×6 =3.14×32×6 3) =169.56 ( dm 答:这个圆柱的体积是
六年级数学下册《圆柱和圆锥的认识》课件
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)
教学课件
第 3 单元
圆柱与圆锥
1. 圆 柱
第 7 课时 解 决 问 题
一、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧 倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积 是多少?
7
能不能转化成圆柱呢?
7cm
这个瓶子不是一个完整的 圆柱,无法直接计算容积。
2. 一个圆柱的高是5cm,若高增加2cm(如图 所示),圆柱的表面积就增加25.12cm2。原来圆柱 的体积是多少立方厘米? 25.12÷2÷3.14÷2=2(cm) 3.14×22×5=62.8(cm3) 答:原来圆柱的体积是62.8cm3。
三、课堂小结
正放时水的体积+倒放瓶子时空余部分的容积=瓶 子的容积;利用体积不变的特性,把不规则圆柱转化 成规则圆柱来计算。
81 ÷4.5 ×3 =18 ×3 =54(dm³)
答:它的体积是54dm³ 。
10. 一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸 泡在这个容器的水中的铁块取出后,水面下降2cm。这块铁 块的体积是多少?
请你想一想,如何求这 块铁块的体积?
2 3.14×(10÷2) ×2 =3.14×5² ×2 =3.14×25×2 =78.5×2 =157(cm³ )
7. 学校要在教学区和操场之间修一道围墙,原计划用土35m³。 后来多开了一个厚度为25cm的月亮门,减少了土石的用量。 现在用了多少立方米的土石?
请你仔细想一想,要想知道 现在用多少立方米的土石? 就要先求什么? 35-3.14×(2÷2)×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³ )
4.一个圆柱的体积是80cm3,底面积是16cm。 它的高是多少厘米 分析:此题为已知圆柱体积和底面积求高,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/9
28
* 把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
2020/4/9
29
总结:
圆柱的体积公式是怎样推导出来的?
转化
V=Sh
长方体的底面积等于圆柱的( 底面)积
长方体的高等于圆柱的 ( 高)
2020/4/9
30
圆柱体积公式
(1)已知圆的半径和高,怎样求圆柱的体积?
2020/4/9
18
把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
2020/4/9
19
长方体的底面积等于圆柱的 底面积 , 高等于圆柱的 高 。
长方体体积=底面积×高
=
圆柱体积
2020/4/9
V=Sh
20
V=Sh
2020/4/9
21
如果知道圆柱底面的半径r和高h,圆柱的体积公 式还可以写成:
V=πr2×h
(2)已知圆的直径和高,怎样求圆柱的体积?
V (d)2 h
2
(3)已知圆的周长和高,怎样求圆柱的体积?
V=(C÷π÷2)2×h
2020/4/9
31
判断题:
× 1、圆柱的体积比表面积大。( )
2、侧面积相等的两个圆柱,它们的体积一定相等。
( ×)
3、等底等高的正方体、长方体和圆柱,它们的体积
北师版六年级数学下册第一单元
圆柱的体积
2020/4/9
1
1 什么叫物体的体积?你会计算下面哪些图形的体积?
√√
2020/4/9
2
2.5cm 4cm
5cm
V长=abh
4cm
V正=a3
V=Sh
2020/4/9
3
能将圆柱转化成一种学过的图形, 计算出它的体积吗?
2020/4/9
4
2020/4/9
5
V=πr2×h .
如果知道圆柱底面的直径d和高h,圆柱的体积公
式还可以写成:
2020/4/9S和h: V=Sh
知道r和h: V=πr2×h
知道d和h: V (d )2 h
2
知道C和h: V=(C÷π÷2)2×h
2020/4/9
23
2020/4/9
24
80÷16=5(cm) 答:它的高是5cm。
2020/4/9
6
2020/4/9
7
2020/4/9
8
2020/4/9
9
2020/4/9
10
2020/4/9
11
2020/4/9
12
2020/4/9
13
2020/4/9
14
2020/4/9
15
2020/4/9
16
2020/4/9
17
把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
都相等。( √)
4、一个圆柱的底面半径扩大到原来的3倍,体积也
扩到原来的3倍。( )× √ 5、体积相等的两个圆柱不一定是等底等高。( )
2020/4/9
32
2020/4/9
25
81÷4.5×3 =18×3 =54(dm2)
答:它的体积是54dm2。
2020/4/9
26
3.14
10 2
2
80
3.1
4
8 2
2
80
3.14
10 2
2
8 2
2
80
2020/4/9
27
* 将一个棱长为6分米的正方体钢材熔铸成底面半 径为3分米的圆柱体,这个圆柱有多长?