中考数学试题解析9分母有理化二次根式化简(含答案)

合集下载

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。

【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。

2020年中考数学必考专题04 二次根式的运算(解析版)

2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。

(或是说,表示非负数的算术平方根的式子,叫做二次根式)。

2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。

(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。

反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

7.分母有理化的方法:分子分母同乘以分母的有理化因式。

8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。

如:①的有理化因式为,②的有理化因式为。

(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。

即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

中考数学专题《二次根式》复习试卷含答案解析

中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。

16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。

2023年中考数学高频考点训练——二次根式的混合运算附解析

2023年中考数学高频考点训练——二次根式的混合运算附解析

2023年中考数学高频考点训练——二次根式的混合运算一、综合题1.计算(1-÷(2)先化简211(1)11x x x --÷+-,再从1-,0,1中选择合适的x 值代入求值.2.先观察下列各等式及其验证过程,然后解答问题:①验证:==;②验证:=;解答下列问题:(1)按上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式所反映的一般规律,写出用(n n 为自然数,且2)n ≥表示的等式,并给出证明.3.观察下列式子:第1个式子:1121===-;第2个式子:===3232--=﹣;第3个式子:===4343-=﹣;…(1)仿照写出:=的计算过程;(2)根据上述规律求2020++的值.4.计算:(12.(2-14.(3)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水36千克,两种药水各需多少千克?(4)甲,乙两位同学在解方程组3421ax y x by +=⎧⎨-=-⎩时,甲把字母a 看错了得到方程组的解为43x y =⎧⎨=⎩,乙把字母b 看错了得到方程组的解为22x y =-⎧⎨=⎩.求a ,b 的符合题意值及求原方程组的解.5.解答下列各题:(1)计算:(2)设实数的整数部分为a ,小数部分为b ,求(2a+b)(2a-b)的值.6.已知1+,1-,求下列代数式的值:(1)ab ;(2)a 2+ab+b 2;(3)b a a b+.7.观察下面等式:)()))222121212113121=====--;(1)仿照上面化简过程化去下列各式分母中的根号:,(2)猜想:=(n 为正整数);(3)利用上面的规律计算:+8.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;1==.以上这种化简过程叫做分母有理化.还可以用以下方法化简:221==.(1)请用其中一种方法化简;(2)化简:+.9.如图所示,两个等腰直角三角形拼成一个四边形,已知AB=,求:(1)△ABD 的面积.(2)四边形ABCD 的周长.10.已知22a b ==,.求下列式子的值:(1)22a b ab +(2)223a ab b -+11.已知312x =,312y -=,m xy =,22n x y =-.(1)求m ,n 的值;(2)若72m -=+,2n =,求+的值.12.利用平方根去括号可以用一个无理数构造一个整系数方程.例如:1a =时,移项-1a =,两边平方得()221a -=,所以a 2-2a+1=2,即a 2-2a-1=0。

中考数学二次根式(讲义及答案)及解析

中考数学二次根式(讲义及答案)及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

2024年中考数学复习-二次根式的化简求值考点培优练习(含解析)

2024年中考数学复习-二次根式的化简求值考点培优练习(含解析)

二次根式的化简求值考点培优练习考点直击1.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.2.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫作同类二次根式.3.二次根式的运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式.(2)二次根式的乘法:√a⋅√b=√ab(a≥0,b≥0).(3)二次根式的除法:√a√b =√ab(a≥0,b≥0).4.二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式.防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法、除法常用乘法公式或除法公式来简化计算,运算结果一定要写成最简二次根式或整式.例题精讲例1 (邵阳中考)阅读下列材料,然后回答问题.√3√23√3+1这样的式子,其实我们还可以将其进一步化简:√3√3√3×√35√33①√2 3=√2×33×3=√63②;以上这种化简的步骤叫作分母有理化. √3+1还可以用以下方法化简:√3+1√3+1=√3)22√3+1=√3+1)(√3−1)√3+1√3−1④.(1)√5+√3.参照③2√5+√3¯;参照④2√5+√3¯.(2) 化简:√3+1√5+√3√7+√5⋯√2n+1+√2n−1.【思路点拨】(1)通过观察,发现分母有理化的两种方法:①同乘分母的有理化因式;②利用因式分解达到约分的目的;(2)注意找规律:分母的两个被开方数相差2,分母有理化后,分母都是2,分子可以出现抵消的情况.举一反三1 阅读下面计算过程:1√2+1√2−1)(√2+1)(√2−1)=√2−1;1√3+√2=√3−√2)(√3+√2)(√3−√2)√3−√2;√5+2√5−2)(√5+2)(√5−2)=√5−2.请解决下列问题:(1)√n+1+√n =¯;(2)利用上面的解法,请化简:1+√2√2+√3√3+√4⋯√98+√99√99+√100(3)√n+1−√n吗?请写出化简过程. 举一反三2 阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)2√5+√32=√5+√3【应用】用上述类似的方法化简下列各式:(1√7+√6(2) 若a是√2√2的小数部分,求3a的值.例 2 观察下列一组等式,解答后面的问题:√2+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1, (√5+√4)(√5−√4)=1⋯(1)根据上面的规律,计算下列式子的值:(1√2+11√3+√21√4+√3⋯1√2016+√2015)(√2016+1).(2)利用上面的规律,比较√12−√11与√13−√12的大小.【思路点拨】(1)利用分母有理化得到原式=(√2−1+√3−√2+√4−√3+⋯+√2016−√2015)(√2016+1),合并后利用平方差公式计算;(2)通过比较它们的倒数进行判断.举一反三3 (南昌统考)观察下列一组等式的化简过程,然后解答后面的问题.√2+1√2−1)(√2+1)(√2−1)=√2−1√3+√2=√3−√2)(√3+√2)(√3−√2)√3−√21√4+√3=√4−√3)(√4+√3)(√4−√3)2−√3(1)在计算结果中找出规律√n+1+√n =¯(n 表示大于0的自然数);(2)通过上述化简过程,可知√11−√10¯√12−√11(填“>”“<”或“=”);(3)利用你发现的规律计算下列式子的值:举一反三4 已知x,y都是有理数,并且满足x2+2y+√2y=17−4√2,求√x−y的值. 举一反三5 已知x=2√3−√5,求代数式(17+4√15)x2−(2√3+√5)x−x的值.例3 (内江中考)已知:√x=√a√a <a<1),求代数式x2+x−6x÷x+3x2−2xx+2+√x2−4xx−2−√x2−4x的值.【思路点拨】由已知条件可得x=a+1a +2,x−2=a+1a,(x−2)2=(a+1a)2,即x2−4x=a2+1a2−2=(a−1a)2,化简原式,并代入求值,由a 的取值范围确定式子的值.举一反三6 已知:a+b=−5,ab=1,求√ab +√ba的值.举一反三7已知x=√3−2,y=√3+2,求: (1)x²y+xy²;(2)yx +xy的值.举一反三8 已知m12+√3.(1)下列各式为负值的是 ( )A.1mB.2−(√3+m)C. m--1D.1−√3m(2)求1−2m+m2m−1−√m2−2m+1m2−m.过关检测基础夯实1.(绥化中考)下列等式成立的是 ( )A.√16=±4B.√−83=2C.−a√1a=√−a D.−√64=−82.(济宁中考)下列各式是最简二次根式的是( )A.√13B.√12C.√a3D.√533.(聊城中考)计算√45÷3√3×√35的结果正确的是 ( )A. 1B. 53C.5D. 94.(上海中考)下列二次根式中,与√3是同类二次根式的是 ( )A. √6B.√9C.√12D.√185.(武汉中考)计算 √(−3)2的结果是6.(黄石中考)二次根式 √12,√12,√30, √x +2,√40x 2,√x 2+y 2中,最简二次根式是 .7.(烟台中考)若 √12与最简二次根式 5√a +1是 同 类 二 次 根 式,则 a =8.(哈尔滨中考)计算 √24+6√16的结果是9.(南京中考)√3√3+√12的结果是 能力拓展10.(昆明中考)下列运算中,正确的是 ( ) A.√5−2√5=−2 B.6a⁴b ÷2a³b =3ab C.(−2a²b )³=−8a⁶b³D.a a−1⋅a 2−2a+11−a=a11.(荆州中考)若x 为实数,在 66(√3+1)x”的“□”中添上一种运算符号(在“+,一,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是 ( )A.√3+1B.√3−1C.2√3D.1−√312.(益阳中考)若计算 √12×m 的结果为正整数,则无理数 m 的值可以是 (写出一个符合条件的即可). 13.(北京中考)计算: (16)−1−20090+ |−2√5|−√20.14.(盐城中考)计算: |−2|−√116+ (−2)−2−(√3−2)0.15.(张家界中考)计算: (√3−1)(√3+1)− (sin35∘−12)0+(−1)2008−(−2)−2.16.(十堰中考)计算: (√6+3)(3−√6).17.(湖州中考)计算: √8+|√2−1|.综合创新18.计算:√7−√15−√16−2√15=¯.19.(呼和浩特中考)(1) 计算: |1−√3|−√2×√62−√3(23)−2;(2)已知m是小于0的常数,解关于x 的不等式组:{4x−1>x−7,−14x<32m−1.20.计算:√5+2√7+3√35+3√5+3√7+7.21.(锦州中考)先化简,再求值:xx2−1÷(1+1x−1),其中x=12√32−3√12−(π-3)⁰.22.(山西中考)请阅读以下材料,并完成相应的任务.斐波那契(约 1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第 n√5[(1+√52)n−(1−√52)n]表示 (其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【例题精讲】1.(1√5−√3)(√5+√3)(√5−√3)=√5−√3)(√5)2−(√3)2=√5−√3√5)2√3)2√5+√3=√5+√3)(√5−√3)√5+√3=√5−√3( 2 ) 原式√3−1(√3+1)(√3−1)√5−√3(√5+√3)(√5−√3)√7−√5(√7+√5)(√7−√5)⋯√2n+1−√2n−1(√2n+1+√2n−1)(√2n+1−√2n−1)=√3−12+√5−√32+√7−√52+⋯+√2n+1−√2n−12=√2n+1−122.(1) 原式: =(√2−1+√3−√2+√4−√3+⋯+√2016−√2015)(√2016+1)=(√2016−1)(√2016+1)=2016−1=2 015 (2)∵√12−√11=√12+√11,√13−√12√13+√12,而√12+√11<√13+√12,∴√12−√11>√13−√123.a²+2解析:∵√x=√a√a ∴x=a+1a+2,x−2=a+1a,(x−2)2=(a+1a)2,即x2−4x=a2+1a2−2=(a−1 a )2,∴原式=(x+3)(x−2)x.x(x−2)x+3x−2+√x2−4xx−2−√x2−4x=(x−2)2a+1a+√(a−1a)2a+1a−√(a−1a)2=(a+1a)2a+1a+√(a−1a)2a+1a−√(a−1a)2∴0<a<1,∴a−1a<0,∴原式=a2+1a2+2−a+1a−a+1aa+1a+a−1a=a2+1a2+2−1a2=a²+2.【举一反三】1.(1)√n+1−√n(2))原式=√2−1+√3−√2+√4−√3+⋯+√99−√98+√100−√99=√100−1=10−1=910-1 - 9 (3√n+1−√n√n+1+√n(√n+1−√n)(√n+1+√n)=√n+1+√n2.(1) 原式=√7−√6(√7+√6)(√7−√6)=√7−√6 (2)由题意可得a=√2−1,3a=√2+1)(√2−1)(√2+1)=3√2+33.(1)√n+1-√n (2)> (3) 原式= (√2−1+√3−√2+√4−√3+⋯+√2018−√2017)(√2018+1)=(√2018−1)(√2018+ 1)=2018−1=2 0174.3 解析: :x2+2y+√2y=17−4√2,∴(x2+2y−17)+√2(y+4)=0.∵x,,都是有理数,∴x²+2y−17与y+4 也是有理数, ∴{x2+2y−17=0,y+4=0,解得有意义的条件是x≥y,∴取x=5,y=--4, ∴√x--y = √5−(−4)=3.5.40 解析:当x=2√3−√5时,原式= (17+4√15)(2√3−√5)2−(2√3+√5).(2√3−√5)−2=(17+4√15)(17−4√15)−(12−5)−2=172−(4√15)2−7--2=289-240-9=40.6.5 解析:∵a+b=-5, ab=1,∴a<0,b<0, ∴原式=√ab|b|+√ab|a|=−(1b+1a)=−a+bab=5.7.(1)−2√3(2)−14解析::x=√3−2,y=√3+2,∴x+y=2 √3, xy=3-4=-1.(1).原式=xy(x+ y)=2√3×(−1)=−2√3;(2) 原式= y2+x2xy=(x+y)2−2xyxy =12+2−1=-14.8.(1) C (2)3解析:(1)将已知条件 m =2+√3分母有理化, m =2−√3,,则m-1<0;(2) 由(1)得 m =2−√3,∴m <1,则 √m 2−2m +1=√(m −1)2=1−m.原式 =(1−m )2m−1− |m−1|m (m−1).∵m <1,∴|m −1|=1−m ∴原式 =(m−1)2m−1−1−m m (m−1)=m − 1+1m=2−√3−12−√3=1−√3+ 2+√3=3.【过关检测】1. D 解析: √16=4,A 错误; √−83=−2,13错误; −a√1a=−√a,C 错误.2. A 解析: √12=2√3,,不是最简二次根式,不符合题意; √a 3=a √a,不是最简二次根式,不符合题意; √53=√153,不是最简二次根式,不符合题意.3. A 解析:原式 =3√5÷3√3×√35= √53×√35=1.4. C 解析: √6与 √3的被开方数不相同,故不是同类二次根式; √9=3,与 √3不是同类二次根式; √12=2√3,,与 √3被开方数相同,故是同类二次根式; √18=3√2,与 √3被开方数不同,故不是同类二次根式.5.36.√30,√x +2,√x 2+y 27.2 解析: ∵√12与最简二次根式 5√a +1是同类二次根式,且 √12=2√3,∴a +1=3,解得a=2. 8.3√6解析:原式 =2√6+√6=3√6. 9. 13 解析:原式 =√3√3+2√3√33√3=13.10. C 解析: √5−2√5=−√5,A 错误; 6a⁴b ÷2a³b =3a,B 错 误; a a−1.a 2−2a+11−a=a a−1⋅(1−a )21−a=−a,I 错误.11. C 解析:( (√3+1)−(√3+1)=0,A 选项不合题意; (√3+1)(√3−1)=2,B 选项不合题意; (√3+1)与 2√3无论是相加,相减,相乘,相除,结果都是无理数,C 选项符合题意; (√3+1)(1−√3)=−2,D 选项不合题意.12. √3(答案不唯一)13. 5 解析:原式 =6−1+2√5−2√5=5. 14.1 解析:原式 =2−14+14−1=1.15. 74解析:原式 =3−1−1+1−14=74.16.3 解析:原式 =32−(√6)2=9−6=3.17.3√2−1 解析:原式 =2√2+√2−1= 3√2−1. 18.√5−√3 解析:原式= √7−√15−√(√15−1)2=√7−√15−√15+1=√8−2√15= √5−√3. 19. (1)⁵/₄ (2)x>4-6m解析:(1)原式=√3−1−2√3+2+√3−94=−54;(2){4x−1>x−7,−14x<32m−1解不等式①得x>-2,解不等式②得x>4-6m,∵m是小于0的常数,∴4--6m>0>-2,∴不等式组的解集为x>4-6m.20. 原式√5+√7)+(√7+3)√5(√7+3)+√7(3+√7)√5+√7)+(√7+3)(√5+√7)(3+√7)13+√71√5+√73−√72+√7−√52=3−√5221. 原式=x(x+1)(x−1)÷xx−1=x(x+1)(x−1)×x−1x=1x+1,x=12√32−3√12−(π−3)0=12×4√2−3√22−1=2√2−3√22−1=√22−1,把x=√22−1代入1x+1,得1x+1√22−1+1=√222. 第1个数:当n=1时,√5[(1+√52)n−(1−√52)n]=√5(1+√52−1−√52)=√5√5=1;第2个数:当n=2时,√5[(1+√52)n−(1−√52)n]=√5[(1+√52)2−(1−√52)2]=√5(1+√52+1−√52)(1+√52−1−√52)√51×√5=1.。

2022-2023学年北师大版八年级上册数学二次根式的化简——分母有理化专题(含答案)

2022-2023学年北师大版八年级上册数学二次根式的化简——分母有理化专题(含答案)

二次根式的化简——分母有理化专题(含答案)【知识点1 :分母有理化】 【方法点拨】1、分母有理化:把分母中的根号化去,叫做分母有理化。

2、分母中含根号的三种形式:形式一:ab形式二:b a +1与b a -1形式三:b n a m +1与b n a m -13、互为有理化因式:两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,我们就说这两个二次根式互为有理化因式。

互为有理化因式有三种形式:(1)a a 与互为有理化因式,也就是a 的有理化因式是a .(2)))与((b a b a -+互为有理化因式,也就是 )(b a +的有理化因式是)(b a -, )(b a -的有理化因式是)(b a +.(3)))与((b n a m b n a m -+互为有理化因式,也就是 )(b n a m +的有理化因式是)(b n a m -, )(b n a m -的有理化因式是)(b n a m +.比如:3的有理化因式是3,)(23+的有理化因式是)(23-,)(3254+的有理化因式是)(3254-,一、 形式一:ab1、化简依据:a a a a ==2)(2、化简过程:a abaa ab ab ==3、例题讲解: 【例1】化简:(1)52(2)384、巩固练习:【练习1】将下列各式化简:(1)53(2)716(3)238(4)1)6(-二、形式二:b a +1与ba -11、化简依据:b a b a b a b a -=-=-+22)()())((2、化简过程:b a ba b a b a b a b a --=-+-⨯=+))((11)( b a ba b a b a b a b a -+=+-+⨯=-))((11)( 3、例题讲解: 【例2】 化简:(1)351+ (2)561-4、巩固练习:【练习2】将下列各式化简:(1)251- (2)235+(3)10099199981431321211++++++++++三、形式三:b n a m +1与bn a m -11、化简依据:b n a m b n a m b n a m b n a m 2222)()())((-=-=-+2、化简过程:b n a m b n a m b n a m b n a m b n a m b n a m 22))((11--=-+-⨯=+)( b n a m bn a m b n a m b n a m b n a m b n a m 22))((11-+=+-+⨯=-)( 3、例题讲解: 【例3】 化简: (1)62541+ (2)32231-4、巩固练习:【练习3】将下列各式化简: (1)323)62(2++(2)33522-(3)4947474917557153351331++++++++二次根式的化简——分母有理化专题答案【例1】 化简:(1)52(2)38解:原式5552⨯⨯=510=解:原式38=3338⨯⨯=362=【练习1】将下列各式化简:(1)53(2)716解:原式5553⨯⨯=553=解:原式77716⨯⨯=716=774= (3)238(4)1)6(-解:原式22328⨯⨯=64=32= 解:原式61=6661⨯⨯=66=【例2】 化简: (1)351+ (2)561-解:原式)()()(3535351-⨯+-⨯=解:原式)()()(5656561+⨯-+⨯=235-=56+=【练习2】将下列各式化简:(1)251- (2)235+解:原式)()()(2525251+⨯-+⨯=解:原式)()()(2323235-⨯+-⨯=25+=1552-=(3)10099199981431321211++++++++++解:原式99100198991341231121++++++++++=991009899342312-+-++-+-+-=100999998984433221+-+-++-+-+-+-=1001+-=101+-=9=【例3】 化简: (1)62541+ (2)32231-解:原式)()()(6254625462541-⨯+-⨯=解:原式)()()(3223322332231+⨯-+⨯=22)62(546254--=)( 2232233223)()(-+= 24806254--=12183223-+= 566254-=63223+= 28652-=3322+=【练习3】将下列各式化简: (1)3231+ (2)33522-解:原式)()()(3233233231-⨯+-⨯=解:原式)()()(3352335233522+⨯-+⨯=22)3(23323--=)( 2233523654)()(-+= 318323--=27203654-+= 15323-=73654+-=(3)4947474917557153351331++++++++4947474917557153351331++++++++=解:原式)49474749)(49474749(49474749)5335)(5335(5335)33)(33(33-+-++-+-+-+-=24749494747492577557235533521333⨯⨯-++⨯⨯-+⨯⨯-+⨯⨯-=)4749494747495775573553351333(21⨯-++⨯-+⨯-+⨯-⨯=)4949474777555533331(21-++-+-+-⨯=)49491(21-⨯=)4971(21-⨯=)711(21-⨯=7621⨯=73=。

中考数学真题解析 分母有理化二次根式化简(含答案)

中考数学真题解析 分母有理化二次根式化简(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编分母有理化、二次根式化简一、选择题1. (2011•台湾17,4分)计算631254129⨯÷之值为何( ) A 、123 B 、63 C 、33D 、433 考点:二次根式的乘除法。

分析:把分式化为乘法的形式,相互约分从而解得. 解答:解:原式=635412129⨯⨯=63. 故选B .点评:本题考查了二次根式的乘除法,把分式化为乘法的形式,互相约分而得.2. (2011•贺州)下列计算正确的是( ) A 、=﹣3 B 、()2=3C 、=±3D 、+=考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的性质进行计算,找出计算正确的即可.解答:解:A、=3,此选项错误;B、()2=3,此选项正确;C、=3,此选项错误;D、+=+,此选项错误.故选B.点评:本题考查了二次根式的混合运算.解题的关键是注意开方的结果是≥0的数.3.(2011黑龙江大庆,3,3分)对任意实数a,则下列等式一定成立的是()A、a=aB、2a=-aC、2a=±aD、2a=a考点:二次根式的性质与化简。

专题:计算题。

分析:根据二次根式的化简、算术平方根等概念分别判断.解答:解:A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、=|a|,故本选项错误.D、故本选项正确.故选D.点评:本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.4.(2011,台湾省,17,5分)下列何者是方程式(﹣1)x=12的解?()A、3B、6C、2﹣1D、3+3考点:二次根式的混合运算;解一元一次方程。

专题:计算题。

分析:方程两边同除以(﹣1),再分母有理化即可.解答:解:方程(﹣1)x=12,两边同除以(﹣1),得x=,=,=,=3(+1),=3+3.故选D.点评:本题考查了解一元一次方程.关键是将方程的未知数项系数化为1,将分母有理化.5.(2011山东菏泽,4,4分)实数a在数轴上的位置如图所示,则24a-()化简后为()a-()+211A.7 B.﹣7 C.2a﹣15 D.无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a 的取值范围,然后求出(a ﹣4)和(a ﹣11)的取值范围,再开方化简.解答:解:从实数a 在数轴上的位置可得,5<a <10,所以a ﹣4>1,a ﹣11<﹣1,a ﹣4+11﹣a =7.故选A .点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.6. (2011•莱芜)下列计算正确的是( )A 、3)3(2-=-B 、91)31(2=- C 、(﹣a 2)3=a 6D 、a 6÷(21a 2)=2a 4考点:整式的除法;幂的乘方与积的乘方;负整数指数幂;二次根式的性质与化简。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.若在实数范围内有意义,则x的取值范围是【答案】x≤。

【解析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围。

根据题意得:1﹣3x≥0,解得:x≤。

【考点】二次根式有意义的条件。

2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.若a<<b,且a,b为连续正整数,则b2﹣a2=.【答案】7【解析】∵32<13<42,∴3<<4,即a=3,b=4,所以a+b=7.【考点】估算4.二次根式有意义,则实数x的取值范围是()A.x≥﹣2B.x>﹣2C.x<2D.x≤2【答案】B.【解析】根据被开方数大于等于0,得﹣2x+4≥0,解得x≤2.故选B.【考点】二次根式有意义的条件.5.使有意义的的取值范围是()A.B.C.D.【答案】C.【解析】∵有意义∴3x-1≥0解得:.故选C.【考点】二次根式有意义的条件.6.在函数中,自变量a的取值范围是.【答案】a≥2.【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.根据题意得:a-2≥0,解得a≥2,则自变量a的取值范围是a≥2.【考点】1.函数自变量的取值范围; 2.二次根式有意义的条件.7.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.【答案】;3【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,第7排是奇数排,最中间的也就是这排的第4个数是1,那么第3个就是:;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;3.8.已知实数a在数轴上的对应点,如图所示,则化简所得结果为【答案】2a+1.【解析】:由数轴表示数的方法得到a>0,然后利用二次根式的性质得到原式=|a|+|a+1|=a+a+1,再合并即可.试题解析:∵a>0,∴原式=|a|+|a+1|=a+a+1=2a+1.考点: 1.二次根式的性质与化简;2.实数与数轴.9.当1<x<3时,|1-x|+等于_________________【答案】2【解析】=|a|=当1<x<3时,1-x<0,x-3<0.∴原式=(x-1)+(3-x)=2.10.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.11.已知0<x<1,化简:-.【答案】2x.【解析】-=-=- ,因为0<x<1,所以原式=x+-(-x)=x+-+x=2x.12.计算:【答案】14.【解析】根据有理数的乘方、绝对值、零次幂、立方根、负整数指数幂的意义进行计算即可求出代数式的值.试题解析:.考点: 实数的混合运算.13.下列各式中计算正确的是()。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.已知,当y =2时,m的值为A.0B.1C.2D.4【答案】A.【解析】由题意得,4x-8=0,x-y-m=0,解得x=2,y=2-m,当y=2时,2-m=2,解得m=0.故选A.考点:1.算术平方根;2.绝对值.2.已知,则=【答案】.【解析】∵,∴。

∴.∴.【考点】1.二次根式的非负性质;2.求代数式的值.3.计算:0+2【答案】.【解析】先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.试题解析:原式=.考点: 实数的混合运算.4.如果+=0,则+=.【答案】.【解析】根据几个非负数的和等于0的性质得到a-1=0,2-b=0,求出a、b的值,然后代入化简即可得到答案.试题解析:∵≥0,≥0,且+=0∴a-1=0,2-b=0解得:a=1,b=2∴+考点: 1.非负数的性质:算术平方根;2.二次根式的化简.5.化简: .【答案】.【解析】先平方,再开方.故答案是.【考点】二次根式的化简.6.计算:________.【答案】.【解析】.故答案是.【考点】二次根式.7.下列各式计算正确的是()A.B.C.D.【答案】C.【解析】逐一计算作出判断:(A);(B);(C);(D).故选C.【考点】二次根式化简.8.下列根式中,不是最简二次根式的是()A.B.C.D.【答案】C.【解析】A.是最简二次根式,故本选项错误;B.是最简二次根式,故本选项错误;C.可化为,不是最简二次根式,故本选项正确;D.是最简二次根式,故本选项错误.故选C.【考点】最简二次根式.9.要使有意义,则的取值范围必须满足A.B.C.≥3D.≤3【答案】C.【解析】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.先根据二次根式有意义的条件列出x的不等式x-3≥0,解得x≥3,故选C.【考点】二次根式有意义的条件.10.如右图,数轴上点N表示的数可能是()A.B.C.D.【答案】D.【解析】∵N在3和4之间,∴,∵,其余都小于,故选D.【考点】实数与数轴.11.观察下列各式:……,请你将猜想:(1)(2) 计算(请写出计算过程)(3) 请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来:【答案】(1).(2).(3) .【解析】根据二次根式的化简,通分后化简可得.试题解析:(1) ; .(2)解:.(3).【考点】二次根式的化简.12.的值为A.±2B.2C.-2D.不存在【答案】B.【解析】首先应弄清所表示的意义:求的算术平方根.根据一个正数的平方等于,那么这个正数就叫做的算术平方根.因为,所以的算术平方根为,故应选B.【考点】算术平方根的定义.13.当x 时,有意义.【答案】.【解析】根据二次根式有意义的条件是被开方数是非负数可求出的取值范围.试题解析:∵,∴.考点: 二次根式有意义的条件.14.观察下列数据:0,,,,,……,寻找规律,第9个数据应是 .【答案】.【解析】根据二次根式的性质,把根号外面的数都平方转化到根号内,便不难发现,被开方数都是比平方数小1的数,然后写出第n个即可:∵∴第n个数据应是.【考点】1.探索规律题(数字的变化);2.二次根式的定义.15.计算:= .【答案】9【解析】二次根式的乘法法则:,.【考点】二次根式的乘法16. 4的算术平方根为A.2B.-2C.±2D.16【答案】A【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x 就是a的算术平方根,特别地,规定0的算术平方根是0。

二次根式中考真题及详解

二次根式中考真题及详解

二次根式中考真题及详解(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子3x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠4211x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3 答案:1. D 2. C知识点 2.最简二次根式重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 例1.在根式222;2);3);4)275xa b x xy abc +-,最简二次根式是( )3A .1) 2)B .3) 4)C .1) 3)D .1) 4) 解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C 22.11a b ab a a +-和和182318A 错.133 313B 正确.22||,ab b a a b =│a b ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质a 2=a (a ≥00(0)a a ≥≥ 2a │a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+--=,则=+-c b a .解题思路:2|2|30,(4)0a b c -≥--≥,非负数之和为0,则它们分别都为0,则4oba2,3,4a b c ===,=+-c b a 3例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( ) A .-a B .a C .-3a D .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.-1b a O3.若y x -+-324=0,则2xy= 。

中考数学备考专题复习: 二次根式(含解析)

中考数学备考专题复习: 二次根式(含解析)

中考备考专题复习:二次根式一、单选题1、(2016•曲靖)下列运算正确的是()A、3 ﹣=3B、a6÷a3=a2C、a2+a3=a5D、(3a3)2=9a62、把分母有理化后得()A、4bB、2C、D、3、若,则xy的值为()A、3B、8C、12D、44、下列各式中,不是二次根式的是()A、B、C、D、5、已知:m,n是两个连续自然数(m<n),且q=mn.设p=+,则p( ).A、总是奇数B、总是偶数C、有时是奇数,有时是偶数D、有时是有理数,有时是无理数6、(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A、2﹣4B、2C、2D、207、若等腰三角形的两边长分别为和,则这个三角形的周长为()A、B、或C、D、8、(2016•自贡)下列根式中,不是最简二次根式的是()A、B、C、D、9、(2016•眉山)下列等式一定成立的是()A、a2×a5=a10B、C、(﹣a3)4=a12D、10、(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A、﹣2a+bB、2a﹣bC、﹣bD、b11、(2016•龙岩)与- 是同类二次根式的是()A、B、C、D、12、(2016•梅州)二次根式有意义,则x的取值范围是()A、x>2B、x<2C、x≥2D、x≤213、(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A、x<1B、x≤1C、x>1D、x≥114、(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A、B、C、D、15、(2016•呼伦贝尔)若1<x<2,则的值为()A、2x﹣4B、﹣2C、4﹣2xD、2二、填空题16、若,则a-b+c=________ .17、若两个最简二次根式与可以合并,则a=________ .18、(2016•自贡)若代数式有意义,则x的取值范围是________.19、(2016•天津)计算(+ )(﹣)的结果等于________.20、(2016•曲靖)如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)三、计算题21、(2016•攀枝花)计算;+20160﹣| ﹣2|+1.22、(2016•荆州)计算:.四、解答题23、已知 + =0,求的值.24、实数a、b在数轴上的位置如图所示,化简:25、我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的当两个实数与的积是1时,我们仍然称这两个实数互为倒数.①判断与是否互为倒数,并说明理由;②若实数是的倒数,求x和y之间的关系.五、综合题26、(2016•黄石)观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.27、(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p= =6∴S= = =6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.答案解析部分一、单选题1、【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,二次根式的加减法【解析】【解答】解:A、由于3 ﹣=(3﹣1)=2 ≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.本题考查了二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则,熟记法则是解题的关键.2、【答案】D【考点】分母有理化【解析】【解答】==.故选D.【分析】根据二次根式的除法法则计算,再分母有理化.3、【答案】C【考点】二次根式的化简求值【解析】【解答】根据题意得:,解得:,则xy=12.故选C.【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.4、【答案】B【考点】二次根式的定义【解析】【解答】形如叫二次根式。

初中数学二次根式(讲义及答案)及解析

初中数学二次根式(讲义及答案)及解析

一、选择题1.下列等式正确的是( )A 7=-B 3=C .5D .=2.下列二次根式中,是最简二次根式的是( )A B C D3.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .04.x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 2020 5.下列各式中,正确的是( )A .B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 26.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠2 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5-8.给出下列化简①()2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④ 9.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥10.如果实数x ,y =-(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上 二、填空题11.化简322+=___________. 12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.13.已知120654010144152118+++可写成235a b c ++的形式(,,a b c 为正整数),则abc =______.14.计算()623÷+=________________ .15.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b +的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b +其他所有的“理想数对”: __________.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+⋅--=+--+--,则p =__________.17.计算:11882--=_____________. 18.已知x ,y 为实数,y =22991x x -+-+求5x +6y 的值________. 19.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 20.观察分析下列数据:0,3-,6,-3,23,15-,32,…,根据数据排列的规律得到第10个数据应是__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如3,31+这样的式子,其实我们还可以将其进一步化简:(一3533333==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.2722322312-310【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.26.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB3=,故本选项符合题意;C、5=-,故本选项不符合题意;D、=-,故本选项不符合题意;故选:B.【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.2.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.3.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∴x-2020≥0,解得:x ≥2020;故选:A .【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.6.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.9.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题11.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.14.【解析】=,故答案为.解析:【解析】÷====-, 故答案为15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”, 当a =412,要使+或12时,分别为3和2, 得出(4,1)和(4,4)是的“理想数对”, 当a =913,要使16时,=1, 得出(9,36)是的“理想数对”, 当a =1614,要使14时,=1, 得出(16,16)是的“理想数对”, 当a =3616,要使13时,=1, 得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=, ∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。

二次根式的运算(含答案)

二次根式的运算(含答案)

二次根式的运算知识考点:二次根式的化简与运算是二次根式这一节的重点和难点。

也是学习其它数学知识的基础,应熟练掌握利用积和商的算术平方根的性质及分母有理化的方法化简二次根式,并能熟练进行二次根式的混合运算。

精典例题: 【例1】计算:(1)⎪⎪⎭⎫⎝⎛-322212143222; (2)⎪⎪⎭⎫⎝⎛-+--31221821812;(3)()()()200215415215200020012002++-+-+;(4)()()235235-++-;(5)()1211321231260sin -⎪⎭⎫⎝⎛-+---++。

答案:(1)3324-;(2)24332-;(3)2002;(4)62;(5)-1 【例2】化简:b a bab ab b a b a ++÷⎪⎪⎭⎫⎝⎛-+分析:将ba b a +和ba b +分别分母有理化后再进行计算,也可将除以ab 变为乘以ab1,与括号里各式进行计算,从而原式可化为:原式=ba b ba a ++-+1=1-++ba b a =0【例3】已知131-=a ,131+=b ,求⎪⎪⎭⎫⎝⎛+a b b a ab 的值。

分析:直接代入求值比较麻烦,可考虑把代数式化简再求值,并且a 、b 的值的分母是两个根式,且互为有理化因式,故ab 必然简洁且不含根式,b a +的值也可以求出来。

解:由已知得:b a +=213213-++=3,21=ab ∴原式=⎪⎪⎭⎫⎝⎛+a ab b ab ab =b a +=3 探索与创新:【问题一】比较23-与12-的大小;34-与23-的大小;45-与34-的大小;猜想n n -+1与1--n n 的大小关系,并证明你的结论。

分析:先将各式的近似值求出来,再比较大小。

∵23-≈1.732-1.414=0.318,12-≈1.414-1=0. 414 ∴23-<12-同理:34-<23-,45-<34-根据以上各式二次根式的大小有理由猜测:n n -+1<1--n n证明:n n -+1=()()n n nn nn ++++-+111=()()nn n n ++-+1122=nn ++111--n n =()()111-+-+--n n n n n n=()()1122-+--n n n n=11-+n n又∵nn ++11<11-+n n∴n n -+1<1--n n【问题二】阅读此题的解答过程,化简:a b ab b a b a a 322442+--(b a 20<<)解:原式=a b ab a b b a a )44(222+-- ①=22)2(2a b a ab b a a -- ②=ab ab a b a a⋅-⋅-22 ③=ab aba b a a ⋅-⋅-22 ④=ab问:(1)上述解题过程中,从哪一步开始出现错误,请填写出该步的代号 ;(2)错误的原因是 ; (3)本题的正确结论是 。

【中考冲刺】初三数学培优专题 01 二次根式的化简与求值(含答案)(难)

【中考冲刺】初三数学培优专题 01 二次根式的化简与求值(含答案)(难)

二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4. 若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A. x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A. 0个B. 1个C. 2个D. 3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1. 已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2. 已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3. 已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4. a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A . 2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A . 1B . 2C . 3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D . (武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.二次根式的化简与求值例1 A 提示:由条件得4x 2-4x -2 001=0. 例2 (1)原式=()aba b a b++()1ba b b a b⎡⎤⎢⎥-⎢⎥+-⎣⎦·a b b -=2ab (2)原式=()()()()257357257357+-++++=26-5.(3)原式=()()()()633326332+-+++=316332+++=62-;(4)原式=()()()5332233323325231-+-+-++=332-.例3 x +y =26,xy =1,于是x 2+y 2=(x +y )2-2xy =22,x 3+y 3=(x +y )(x 2-xy +y 2)=426,x 6+y 6=(x 3+y 3)2-2x 3y 3=10582.∵0<65-<1,从而0<()665-<1,故10 581<()665+<10582. 例4 x +21x +=211y y ++=21y +-y …①;同理,y +21y +=211x x ++=21x +-x …②.由①+②得2x =-2y ,x +y =0. 例5 (1)构造如图所示图形,PA =24x +,PB =()2129x -+.作A 关于l 的对称点A ',连A 'B 交l 于P ,则A 'B =22125+=13为所求代数式的最小值. (2)设y =()2245x -++()2223x -+,设A (x ,0),B (4,5),C (2,3).作C 关于x 轴对称点C 1,连结BC 1交x 轴于A 点.A 即为所求,过B 作BD ⊥CC 1于D 点,∴AC +AB =C 1B =2228+=217. 例 6 m =()2212111a a -+-•++()2212111a a ---•+=()211a -++()211a --.∵1≤a ≤2,∴0≤1a -≤1,∴-1≤1a --1≤0,∴m =2.设S =m 10+m 9+m 8+…+m -47=210+29+28+…+2-47 ①,2S =211+210+29+…+22-94 ②,由②-①,得S =211-2-94+47=1 999.A 级 1.1 2.52- 3.0 提示:令1997=a ,1999=b ,2001=c . 4. (17,833),(68,612),( 153,420) 5.B 6.C 7.B 8.A 9.(1)()2x y + (2)原式=32625++-=()()22325+-=325++.(3)116- (4)532--(5)32+ 10.48提示:由已知得x 2 +5x =2,原式=(x 2+ 5x +4)(x 2+5x +6). 11.由题设知x >0,(27913x x +++27513x x -+)(27913x x ++-27513x x -+)=14x .∴27913x x ++-27513x x -+=2,∴227913x x ++=7x +2,∴21x 2-8x-48=0.其正根为x =127. 12.n =2 提示:xy =1,x +y =4n +2. B 级 1. 64 2.1 提示:仿例4,由条件得x =y ,∴(x -22008x -)2=2 008,∴x 2-2008-x 22008x -=0,∴22008x -(22008x --x )=0,解得x 2=2 008.∴原式=x 2-2 007=1. 3.9554.1 提示:∵(32-1)a =2-1,即1a=32-1. 5.B 提示:由条件得a +b 3=3+3,∴a =3,b =1,∴a +b =4. 6.B 提示:a -b =6-1-2>322+-1-2=0.同理c -a >0 7.B 8.B 9.D 提示:注意隐含条件a -1<0. 10.(1)1 998 999. 5 提示:设k =2 000,原式=212k k --. (2)910 提示:考虑一般情形()111n n n n +++=1n -11n + (3)原式=()()8215253532+-++-=()()253253532+-++-=53+.(4)2-53- 11.构造如图所示边长为1的正方形ANMD ,BCMN .设MP =x ,则CP =21x +,AP =()211x +-,AC =5,AM =2,∴AC ≤PC +PA <AM +MC ,,则5≤21x ++()211x +-<1+2 12.设y =2841x x -+-2413x x -+=()2245x -+-()2223x -+,设A (4,5),B (2,3),C (x ,0),易求AB 的解析式为y =x +1,易证当C 在直线AB 上时,y 有最大值,即当y =0,x =-1,∴C (-1,0),∴y =22. 13.33a bb c ++=()()()()3333a bb cb c b c +-+-=()222333ab bc bac b c -+--为有理数,则b 2 -ac =0.又a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ac )=(a +b +c )2-2(ab +bc +b 2)=()2c b a ++-2b (a +b +c )=(a +b+c )(a -b +c ),∴原式=a -b +c 为整数.。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.下列各数中是无理数的是()A.B.﹣2C.0D.【答案】A【解析】A、正确;B、是整数,是有理数,故B错误;C、是整数,是有理数,故C错误;D、是分数,是有理数,故D错误.故选A.【考点】无理数2. a满足以下说法:①a是无理数;②2<a<3;③a2是整数.那么a可能是()A.B.C.2.5D.【答案】A.【解析】由a是无理数可知C、D是有理数,不合题意;由a2是整数可知A、B符合题意;再由2<a<3,只有A.故选A.【考点】1.估算无理数的大小;2.无理数;3.实数的运算.3. 16的平方根是()A.B.4C.-4D.【答案】A.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±4)2=16,∴16的平方根是±4.故选A.【考点】平方根.4.计算:= .【答案】2.【解析】.【考点】二次根式计算.5.=.【答案】﹣【解析】分别进行分母有理化、二次根式的化简及零指数幂的运算,然后合并即可得出答案.解:原式=﹣1﹣2+1=﹣.故答案为:﹣.6.计算:-=________.【答案】3【解析】原式=4-=3.7.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.8.下面计算正确的是()A.4+=4B.÷=3C.·=D.=±2【答案】B.【解析】A.4+=4,本选项错误;B.,本选项正确;C.,故本选项错误;D.,故本选项错误.故选B.考点: 二次根式的混合运算.9.的值为()A.B.4C.D.2【答案】B.【解析】∵故选B.考点: 算术平方根.10.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.11.式子成立的条件是()A.≥3B.≤1C.1≤≤3D.1<≤3【答案】D【解析】根据二次根式的定义,式子成立的条件为,-1,即1<.12.若一个式子与之积不含二次根式,则这个式子可以是.(填写出一个即可)【答案】.【解析】本题实际是求的有理化因式,一般二次根式的有理化因式是符合平方差公式的特点的式子.与的积不含二次根式的式子是.故答案是.【考点】分母有理化.13.二次根式的值是()A.﹣3B.3或﹣3C.9D.3【答案】D.【解析】. 故选D.【考点】二次根式化简.14.下列计算正确的是()A.B.C.D.【答案】C.【解析】 A.,故本选项错误;B.和不是同类二次根式,不能合并,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选C.【考点】二次根式的乘除法.15.若,,且ab<0,则a﹣b=.【答案】-7.【解析】先根据算术平方根的定义,求出、的值,然后根据确定、的值,最后代入中求值即可.试题解析:∵,,∴a=±3,b=4;∵,∴,;∴.考点: (1)算术平方根;(2)代数式求值.16.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.17.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B【解析】最简二次根式满足:1.被开方数中不能含有分母;2. 被开方数中不能有开得尽方的因数或因式.只有B符合条件; 选项A,C,D都不符合条件, 故选B.【考点】最简二次根式.【考点】最简二次根式18.化简:=_______________.【答案】【解析】根据二次根号下的数为非负数,可得,解得所以.【考点】二次根式的性质19.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.20.计算:(1)(2)(3)【答案】(1);(2);(3).【解析】(1)将各根式化为最简单二次根式后合并同类根式即可;(2)括号内化最简单二次根式后合并同类根式,除式变为乘式计算即可;(3)应用完全平方公式和平方差公式展开后合并同类根式即可.试题解析:(1).(2).(3).【考点】二次根式化简.21.计算:。

专题03 二次根式之分母有理化(解析版)

专题03 二次根式之分母有理化(解析版)

专题03 二次根式之分母有理化一、例题讲解1.(2020-2021·安徽·月考试卷) 计算(1−23−4)×(2345)−(1−√2√3√4√5)×(√2√3+√4的结果等于( )A.12 B.√55 C.√33 D.√22【答案】B【解答】解:设a =√2√3√4,原式=(1−a )(a √5)−(1−a −√5)×a =a √5−a 2√5a +a 2+√5=√55.故选B .2.(2020-2021·广东·月考试卷) 已知:a =2−√3,b =√3+2,则√a 2+ab +b 2的值为( )A.5B.17C.√15D.√17【答案】C【解答】解:∵ a =2−√3=√3+2(2−√3)(√3+2)=√3+2,b =√3+2=√3(2−√3)(√3+2)=2−√3,∵ a +b =4,ab =(2−√3)(2+√3)=22−3=1,∵ √a 2+ab +b 2=√(a +b )2−ab =√42−1=√15.故选C .3.(2020-2021·江苏·月考试卷) 若x =√5+1,y =√5−1,则x−yx 2−y 2的值为________. 【答案】√510【解答】解:∵x =√5+1,y =√5−1, ∴x +y =√5+1+√5−1=2√5,∴x−y x 2−y 2=x−y (x+y )(x−y )=1x+y=2√5=√510.故答案为:√510.4.(2020-2021·湖南·期末试卷) 化简题中,有四个同学的解法如下: ①√5+√2=√5−√2)(√5+√2)(√5−√2)=√5−√2,②√5+√2=√5+√2)(√5−√2)√5+√2=√5−√2, ③√a+√b=√a−√b)(√a+√b)(√a−√b)=√a −√b ,④√a+√b=√a+√b)(√a−√b)√a+√b=√a −√b .他们的解法,正确的是________.(填序号) 【答案】①②④【解答】解:①√5+√2=√5−√2)(√5+√2)(√5−√2)=√5−√2,故①正确;②√5+√2=√5+√2)(√5−√2)√5+√2=√5−√2,故②正确;③√a+√b (√a −√b ≠0)=√a−√b)(√a+√b)(√a−√b)=(a−b )(√a−√b)a−b=√a −√b ,故③错误;④a+√b=√a+√b)(√a−√b)a+√b=√a −√b ,故④正确.综上所述,计算正确的有①②④.故答案为:①②④.5.(2020-2021·安徽·月考试卷) 阅读材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如3,3+1这样的式子,其实我们还可以将其进一步化简:√3=√3√3×√3=53√3; √3+1=√3−1)(√3+1)(√3−1)=2(√3−1)2=√3−1;√3+1=√3+1=√3+1)(√3−1)√3+1=√3−1.以上这种化简的方法叫分母有理化. 解决问题: (1)用上述方法化简5+3;(2)比较大小:√19−3√2与3√2−√17;(3)化简:√3+1√5+√3√7+√5⋯+√2021+√2019.【答案】解:√5+√3=√5−√3)(√5+√3)(√5−√3)=2(√5−√3)5−3=√5−√3.√19−3√2=√19+√18)(√19−√18)(√19+√18)=√19+√18,3√2−√17=√18+√17)(√18−√17)(√18+√17)=√18+√17,∵√19>√17,∴√19+√18>√18+√17,∴√19−3√2>3√2−√17.(3)原式=√3−12+√5−√32+√7−√52+⋯+√2019−√20172+√2021−√20192=√2021−12.6.(2020-2021·安徽·月考试卷) 阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.如:(√3+√2)⋅(√3−√2)=(√3)2−(√2)2=1;(√5+√2)(√5−√2)=(√5)2−(√2)2=3,它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如√32−√3=√3)(2+√3)(2−√3)(2+√3)=7+4√3;√3=√3√3×√3=√33,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫作分母有理化.解决问题: (1)3+√7的有理化因式是________,√2+1分母有理化得________;(2)比较大小:√6−2________ 3−√7(用“>”“<”或“=”填空);(3)计算:√5+13+√5√13+3+⋯+√2017+√2013√2021+√2017.【解答】解:(1)∵(3+√7)(3−√7)=32−(√7)2=2,∴3+√7的有理化因式是3−√7.√2+1=√2−1(√2+1)(√2−1)=√2−1.故答案为:3−√7;√2−1.√6−2=√6+2(√6−2)(√6+2)=√6+22,3−√7=√7(3−√7)(3+√7)=3+√72,∵√6+22<3+√72,∴√6−2<3−√7.<. (3)原式=√5−1)(√5+1)(√5−1)√5)(3+√5)(3−√5)√13−3)(√13+3)(√13−3)⋯+√2017−√2013)(2017+2013)(2017−√2013)√2021−√2017)(√2021+√2017)(√2021−√2017)=√5−1+3−√5+√13−3+⋯+√2017−√2013+√2021−√2017=√2021−1.7.(2020-2021·安徽·月考试卷) 像√2×√2=2, (√3+1)×(√3−1)=2, (√5+√2)×(√5−√2)=3…两个含有二次根式的式子相乘,积不含有二次根式,则称这两个式子互为有理化因式. 爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号. 例1:23=√323×3=√36; 例2:√2+1√2−1=√2+1)2(√2−1)×(√2+1)=2+2√2+12−1=3+2√2.请你解决下列问题:(1)2√3−3√5的有理化因式可以是( ) A.2√3−3√5 B.2√3+3√5 C.√3−√5 D.√3+√5(2)化简:√32+√3.【解答】解:(1)(2√3−3√5)(2√3+3√5)=(2√3)2−(3√5)2=12−45=−33, ∵ 2√3−3√5的有理化因式为2√3+3√5.故选B. (2√32+√3=√3√3⋅√3√3(2+√3)(2−√3)=√3+2−√34−3=2.8.(2020-2021·安徽·月考试卷) 在数学课外学习活动中,小明和他的同学遇到一道题: 已知a =2+√3,求2a 2−8a +1的值.他是这样解答的:∵ a =2+3=√3(2+3)(2−3)=2−√3,∵ a −2=−√3,∵ (a −2)2=3,即a 2−4a +4=3,∵ a 2−4a =−1,∵ 2a 2−8a +1=2(a 2−4a )+1=2×(−1)+1=−1. 请你根据小明的解题过程,解决如下问题: 3+2=________; (2)化简:√2+1√3+√2√4+√3⋯+√169+√168;(3)若a =√5−2,求a 4−4a 3−4a +3的值.【解答】解:3+2=√3−√2(3+2)(3−2)=√3−√2.故答案为:√3−√2.(2)原式=√2−1+√3−√2+√4−√3+⋯+√169−√168=√169−1=13−1=12. (3)∵ a =√5−2=√5+2,∵ a −2=√5,∵ (a −2)2=5,即a 2−4a +4=5,∵ a 2−4a =1,∵ a 4−4a 3−4a +3=a 2(a 2−4a )−4a +3=a 2×1−4a +3=a 2−4a +3=1+3=4.9.(2020-2021·江西·期中试卷) 观察下列运算过程:1+2=2+1=√2−1(2+1)(2−1)=√2−1(√2)2−12=√2−1,√2+√3=√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2. (1)请运用上面的运算方法计算:1+√3√3+√5√5+√7;(2)利用上面的规律,比较√11−√10与√12−√11的大小. 【答案】解:1+√3+√3+√5√5+√7=√3−12+√5−√32+√7−√52=√7−12. (2)∵ √11−√10=√11+√10,√12−√11=√12+√11, ∵ √11+√10<√12+√11,∵ √11+√10>√12+√11,即√11−√10>√12−√11.二、实战演练1.(2020-2021·安徽·月考试卷) 已知a =√3+√2 ,b =√3−√2,那么a 与b 的关系为( )A.互为相反数B.互为倒数C.相等D.a 是b 的平方根【答案】C 【解答】解:∵ b =√3−√2=√3+√2(√3−√2)(√3+√2)=√3+√2,∴ a =b .故选C .2.(2020-2021·湖南·月考试卷) 若x =2−1,则x 2−2x =( )A.√2B.1C.2+√2D.√2−1【答案】B 【解答】解:∵ x =√2−1=√2+1(√2−1)(√2+1)=√2+1,∵ x 2−2x =x(x −2)=(√2+1)(√2+1−2)=2−1=1.故选B .3.(2020-2021·湖南·期末试卷) 已知x =√7−2,a 是x 整数部分,b 是x 的小数部分,则ba =________. 【答案】√7−24【解答】解:∵x =√7−2=√7+2,又2<√7<3,∴4<√7+2<5,即4<x <5,∴a =4,b =√7+2−4=√7−2,∴ba =√7−24.故答案为:√7−24.4.(2020-2021·山西·月考试卷) 在数学课外学习活动中,小华和他的同学遇到一道题: 已知a =2+√3,求a +1的值.小华是这样解答的:∵ a =2+√3=√3(2+√3)(2−√3)=2−√3,∵ a +1=3−√3.请你根据小华的解题过程,解决下列问题. (1)填空√3−√2=________;√3−1=________.(2)化简√2+1√3+√2√4+√3⋯√289+√288.(3)若a =5−3,求(2a −√3)2−1的值.【解答】解:√3−√2=√3−√2(√3−√2)(√3+√2)=√3+√2;√3−1=√3−1(√3−1)(√3+1)=√3+12.故答案为:√3+√2;√3+12. (2)原式=√2−1+√3−√2+√4−√3+⋯+√289−√288=√289−1=17−1=16. (3)∵a =√5−√3=√5+√3(√5−√3)(√5+√3)=√5+√32,∴2a =√5+√3,∴(2a −√3)2=5,∴(2a −√3)2−1=4.5.(2020-2021·安徽·期中试卷) 阅读下面的材料,并解决问题.√2+1=√2−1(√2+1)(√2−1)=√2−1; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2;⋯⋯(1)观察上式并填空:√4+√3=________;(2)观察上述规律并猜想:当n 是正整数时,√n+1+√n=________;(用含n 的式子表示,不用说明理由)(3)请利用(2)的结论计算: ①(√2+1√3+√2√4+√3+√5+√4)×(√5+1)=________; ②(√2+1√3+√2+⋯√2020+√2019√2021+√2020)×(√2021+1).【解答】解:√4+√3=√4−√3(√4+√3)(√4−√3)=√4−√3=2−√3.故答案为:2−√3.(2)1√n+1+√n=√n+1−√n(√n+1+√n)(√n+1−√n)=√n +1−√n .故答案为:√n +1−√n.(3)①原式=(√5−1)×(√5+1)=5−1=4. 故答案为:4.②原式=(√2−1+√3−√2+⋯+√2020−√2019+√2021−√2020)×(√2021+1) =(√2021−1)(√2021+1)=2021−1=2020.6.(2020-2021·福建·月考试卷) 阅读下列材料,然后回答问题:在进行二次根式的化简与运算时, 我们有时会碰上如√3,√23,√3+1一样的式子,其实我们还可以将其进一步化简:√3=√3√3×√3=5√33;√23=√2×33×3=√63; √3+1=√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1以上这种化简的步骤叫做分母有理化.(1)化简:√3=________;√25=________;√5+√3=________; (2)化简:√3+1+√5+√3√7+√5⋯+√2019+√2017;(3)已知x =√5−√3√5+√3,y =√5+√3√5−√3,求y x +xy的值.【解答】解:√3=√3√3×√3=2√33;√25=√2√5=√2×√5√5×√5=√105;√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32. 故答案为:2√33;√105;√5−√32. √3+1√5+√3√7+√5⋯√2019+√2017=√3−1(√3+1)(√3−1)√5−√3(√5+√3)(√5−√3)√7−√5(√7+√5)(√7−√5)⋯+√2019−√2017(√2019+√2017)(√2019−√2017) =√3−12+√5−√32+√7−√52+⋯+√2019−√20172=√2019−12. (3)∵x =√5−√3√5+√3,y =√5+√3√5−√3,∴x 2=(√5−√3)2(√5+√3)2=√158+2√15,y 2=(√5+√3)2(√5−√3)2=√158−2√15,xy =√5−√3√5+√3√5+√3√5−√3=1,∴yx +xy =y 2+x 2xy=8+2√158−2√15+8−2√158+2√151=√158−2√15√158+2√15=√15)2√15)2(8−2√15)(8+2√15)=64+32√15+60+64−32√15+6064−60=62.7.(2020-2021·河北·月考试卷) 阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为√a×√a=a,(√2+1)(√2−1)=1,所以√a与√a,√2+1与√2−1互为有理化因式.(1)2√3−1的有理化因式是________;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:√3=√3√3×√3=2√33,√5+√3√5−√3=√5+√3)2(√5−√3)(√5+√3)=5+2√15+35−3=8+2√152=4+√15.用上述方法对√32+3进行分母有理化.(3)利用所需知识判断.若a=2+√5,b=2−√5则a,b的关系是________;(4)直接写结果:(√2+1√3+√2√2020+√2019)(√2020+1)=________.【解答】解:(1)(2√3−1)(2√3+1)=12−1=11,故2√3−1的有理化因式为2√3+1.故答案为:2√3+1.√3 2+√3=√3)2(2+√3)(2−√3)=4−4√3+34−3=7−4√3.(3)a=√5(2+√5)(2−√5)=√5−2=−b.故答案为:a和b互为相反数.(4)原式=(√2−1+√3−√2+⋯+√2020−√2019)×(√2020+1)=(√2020−1)×(√2020+1)=2020−1=2019.故答案为:2019.8.(2020-2021·河北·期中试卷)写作业时,小明被一道题难住了:“若a=3+√10,求a2+6a−27的值.”老师给予了必要的方法提示;不宜直接代入计算,需要先化简已知式,如a=2+√3.∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∵ a−2=−√3.……请你根据老师的提示,解决如下问题:(1)计算:3+√6=__________;(2)若a=3+√10,求a2+6a−27的值.【解答】解:3+√6=√6(3+√6)(3−√6)=3−√63.故答案为:3−√63.(2)∵ a=3+√10=√10(3+√10)(3−√10)=√10−3,∵ a+3=√10,∵ a2+6a−27=(a+3)2−36=(√10)2−36=−26.9.(2020-2021·河南·月考试卷)观察下列一组等式,然后解答后面的问题:(√2+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1,(√5+√4)(√5−√4)=1......(1)观察上面的规律,计算下面的式子:√2+1+√3+√2√4+√3⋯+√2020+√2019;(2)利用上面的规律,试比较√11−√10与√12−√11的大小.【答案】解:(1)原式=(√2−1+√3−√2+√4−√3+⋯+√2020−√2019)=√2020−1. (2)√11−√10=11+10,√12−√11=12+11.∵ √11+√10<√12+√11.∵√11+√10>√12+√11,即√11−√10>√12−√11.三、课后练习1.(2020-2021·湖南·月考试卷) 若x =2+√3,y =2−√3,则x 与y 关系是( )A.x >yB.x =yC.x <yD.xy =1【答案】B【解答】解:∵ y =2−√3=√3(2−√3)(2+√3)=2+√3,而x =2+√3,∵ x =y .故选B .2.(2020-2021·山西·月考试卷) 已知:a =2−√3,b =2+√3,则a 与b 的关系是( )A.a −b =0B.a +b =0C.ab =1D.a 2=b 2【答案】C【解答】解:∵ a =2−√3=√3(2−√3)(2+√3)=2+√3,b =2+√3=√3(2−√3)(2+√3)=2−√3,∵ a +b =4,a −b =2√3,ab =(2+√3)(2−√3)=22−(√3)2=1, a 2=7+4√3,b 2=7−4√3,a 2≠b 2.故选C .3.(2020-2021·上海·月考试卷) 已知a =√3+√2,b =√3−√2,则a 2−b 2的值是________. 【答案】−4√6 【解答】解:∵ a =√3+√2=√3−√2,b =√3−√2=√3+√2,∵ a 2−b 2=(a +b )(a −b )=2√3×(−2√2)=−4√6.故答案为:−4√6.4.(2020-2021·安徽·月考试卷) 阅读下列解题过程:√2+1=√2−1(√2+1)(√2−1)=√2−1; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2; √4+√3=√4−√3(√4+√3)(√4−√3)=2−√3;…解答下列各题:√10+√9=________;(2)观察上面的解题过程,请直接写出式子√n+√n−1=________;(3)利用这一规律计算:(√2+1√3+√2√4+√3⋯√2022+√2021)×(√2022+1).【解答】解:√10+√9=√10−√9(√10+√9)(√10−√9)=√10−3.故答案为:√10−3.√n+√n−1=√n−√n−1(√n+√n−1)(√n−√n−1)=√n−√n−1.故答案为:√n−√n−1.(3)原式=(√2−1+√3−√2+⋯+√2022−√2021)(√2022+1)=(√2022−1)(√2022+1)=2022−1= 2021.5.(2020-2021·安徽·月考试卷)把分母中的根号化掉叫做分母有理化,例如:①√5=√5√5×√5=2√55;②√2−1=√2+1)(√2−1)(√2+1)=√2+1(√2)2−12=√2+1.根据上述材料,回答下列问题.(1)化简√3−1,(2)计算2+13+24+3⋯20+19.【答案】解:(1)原式=√3+1)(√3−1)(√3+1)=(√3+1).(2)原式=√2−1+√3−√2+√4−√3+⋅⋅⋅+√20−√19=√20−1=2√5−1.6.(2020-2021·广东·月考试卷)观察下列一组等式,解答后面的问题:(√2+1)(√2−1)=1,(√3+√2)(√3−√2)=1,(√4+√3)(√4−√3)=1,(√5+√4)(√5−√4)=1,⋯(1)根据上面的规律,计算下列式子的值:(√2+1√3+√2√4+√3√2016+√2015)(√2016+1);(2)利用上面的规律,比较√12−√11与√13−√12的大小.【答案】解:(1)原式=(√2−1+√3−√2+√4−√3+⋯+√2016−√2015)(√2016+1)=(√2016+ 1)(√2016−1)=2016−1=2015.(2)√12−√11=√12−√11)(√12+√11)√12+√11=√12+√11=√12+√11,√13−√12=√13−√12)(√13+√12)√13+√12=√13+√12=√13+√12,又√12+√11<√13+√12.∵ √12−√11>√13−√12.7.(2020-2021·广东·月考试卷) 小明在解决问题:已知a =2+√3,求2a 2−8a +1的值,他是这样分析与解答的:因为 a =2+√3=√3(2+√3)(2−√3)=2−√3,所以a −2=−√3,所以(a −2)2=3,即a 2−4a +4=3,所以a 2−4a =−1, 所以2a 2−8a +1=2(a 2−4a )+1=2×(−1)+1=−1. 请你根据小明的分析过程,解决如下问题: (1)计算: √7+√6=________;(2) √2+1√3+√2√4+√3+⋯√100+√99;(3)若a =√2−1,求4a 2−8a +1的值.【解答】解:√7+√6=√7+√6(√7+√6)(√7−√6)=√7+√6.故答案为:√7+√6.(2)原式=√2−1+√3−√2+√4−√3+⋯+√100−√99=√100−1=9. (3)因为a =√2−1=√2+1(√2−1)(√2+1)=√2+1,所以a −1=√2,所以(a −1)2=2,即a 2−2a +1=2,所以a 2−2a =1, 所以4a 2−8a +1=4(a 2−2a)+1=4×1+1=5. 8.(2020-2021·上海·月考试卷) 已知:x =3−2√2,求x 2−6x+2x−3的值.【答案】解:∵ x =3−2√2=√2(3−2√2)(3+2√2)=3+2√2,∵ 原式=(x−3)2+2−9x−3=√2−3)23+2√2−3=2√2=√22√2×√2=√24.9.(2020-2021·广东·月考试卷) 阅读下列材料,然后回答问题. 在进行二次根式的化简与运算时,我们有时会碰上如√3,√23,√3+1一样的式子,其实我们还可以将其进一步化简:√3=√3√3×√3=5√33(一), √23=√2×33×3=√63(二), √3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−12=√3−1(三),以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:√3+1=√3+1=√3)22√3+1=√3+1)(√3−1)√3+1=√3−1(四).(1)直接写出化简结果①√2+1=________,②√5=________;(2)请选择适当的方法化简√5+√3;(3)化简:√3+1√5+√3√7+√5⋯+√2n+1+√2n−1.【解答】解:(1)①√2+1=√2−1)(√2+1)(√2−1)=√2−1(√2)2−12=√2−1;②√5=√5√5×√5=√55.故答案为:√2−1;√55.(2)原式=√5−√3)(√5+√3)(√5−√3)=2(√5−√3)5−3=√5−√3.(3)原式=√3−12+√5−√32+√7−√52+⋯+√2n+1−√2n−12=√2n+1−12.。

【2020版】八年级数学下册专题讲练:二次根式分母有理化及应用试题(含答案)

【2020版】八年级数学下册专题讲练:二次根式分母有理化及应用试题(含答案)

二次根式分母有理化及应用一、分母有理化1. 定义:把分母中的根号化去,叫做分母有理化。

2. 有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a ⋅=来确定,如:a a 与,a b a b ++与,b a -与b a -等分别互为有理化因式;②两项二次根式:利用平方差公式来确定,如:a b +与a b -,a b a b +-与,a x b y a x b y +-与等分别互为有理化因式。

3. 分母有理化的方法与步骤二、两种特殊有理化方法1. 分解约简法:可以利用因式分解进行有理化。

分母有理化:()232323166233212186623---====---;2. 配方约简法:利用完全平方公式配方,再和分母约分。

分母有理化: ()()222232232374323232323++⨯⨯++===++++。

总结:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。

根号内含有分数或分式根号内分子、分母同乘以能使分母开方的数21中根号内分子分母同乘以2;271中根号内分子分母同乘以3,而不是27分母中含有根式 分子分母同乘以能使分母化为整式的根式21中分子分母同乘以2,321中分子分母同乘以3而不是23分母中含有根式的和(差)分子分母同乘以有理化因式 能构成平方差的形式例题1 )12013)(201220131341231121(+++++++++ =( )A. 2010B. 2011C. 2012D. 2013解析:此题的实质是分母有理化,合并同类二次根式后,再按平方差公式计算。

答案:解:)12013)(201220131341231121(+++++++++=)12013)(20122013342312(+-++-+-+-=2013-1 =2012。

二次根式的运算之分母有理化(人教版)(含答案)

二次根式的运算之分母有理化(人教版)(含答案)
答案:C

9.已知 , , ,…,则 ( )
A.2011 B.2012
C.2013 D.2014
答案:B
解题思路:
故选B
试题难度:三颗星知识点:分母有理化
10.计算: ( )
A. B.16
C. D.1
答案:D
解题思路:
故选D
试题难度:三颗星知识点:二次根式的非负性
6.已知 的整数部分是a,小数部分是b,则 的值为( )
A. B.
C. D.
答案:B
解题思路:
故选B
试题难度:三颗星知识点:无理数的整数部分、小数部分
7.计算 的结果为( )
A. B.
C. D.
答案:D
解题思路:
故选D
试题难度:三颗星知识点:实数的运算
8.若 ,则a+b+ab的值为( )
A. B.
C.-5 D.5
二次根式的运算之分母有理化(人教版)
一、单选题(共10道,每道10分)
1.已知 ,则a和b的关系是( )
A.a=b B.ab=1
C.a=-b D.ab=-1
答案:A
解题思路:
故选A
试题难度:三颗星知识点:分母有理化
2.计算 的结果是( )
A. B.
C. D.
答案:C
解题思路:
故选C
试题难度:三颗星知识点:二次根式除法运算
3. 的倒数是( )
A. B.
C. D.
答案:B
解题思路:
故选B
试题难度:三颗星知识点:无理数的倒数
4.计算: ( )
A. B.
C. D.
答案:C
解题思路:
故选C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(分母有理化、二次根式化简一、选择题1. (2011•台湾17,4分)计算631254129⨯÷之值为何( ) A 、123 B 、63 C 、33 D 、433 考点:二次根式的乘除法。

分析:把分式化为乘法的形式,相互约分从而解得.解答:解:原式=635412129⨯⨯=63. 故选B .点评:本题考查了二次根式的乘除法,把分式化为乘法的形式,互相约分而得.2. (2011•贺州)下列计算正确的是( ) A 、=﹣3 B 、()2=3C 、=±3D 、+=考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的性质进行计算,找出计算正确的即可.解答:解:A 、=3,此选项错误;B 、()2=3,此选项正确;C 、=3,此选项错误;D、+=+,此选项错误.故选B.点评:本题考查了二次根式的混合运算.解题的关键是注意开方的结果是≥0的数.3.(2011黑龙江大庆,3,3分)对任意实数a,则下列等式一定成立的是()A、a=aB、2a=-aC、2a=±aD、2a=a考点:二次根式的性质与化简。

专题:计算题。

分析:根据二次根式的化简、算术平方根等概念分别判断.解答:解:A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、=|a|,故本选项错误.D、故本选项正确.故选D.点评:本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.4.(2011,台湾省,17,5分)下列何者是方程式(﹣1)x=12的解?()A、3B、6C、2﹣1D、3+3考点:二次根式的混合运算;解一元一次方程。

专题:计算题。

分析:方程两边同除以(﹣1),再分母有理化即可.解答:解:方程(﹣1)x=12,两边同除以(﹣1),得x=,=,=,=3(+1),=3+3.故选D . 点评:本题考查了解一元一次方程.关键是将方程的未知数项系数化为1,将分母有理化.5. (2011山东菏泽,4,4分)实数a 在数轴上的位置如图所示,则24a-()+211a-()化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a 的取值范围,然后求出(a ﹣4)和(a ﹣11)的取值范围,再开方化简.解答:解:从实数a 在数轴上的位置可得,5<a <10,所以a ﹣4>1,a ﹣11<﹣1,24a-()211a-()a ﹣4+11﹣a =7.故选A . 点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.6. (2011•莱芜)下列计算正确的是( )A 、3)3(2-=-B 、91)31(2=- C 、(﹣a 2)3=a 6 D 、a 6÷(21a 2)=2a 4 考点:整式的除法;幂的乘方与积的乘方;负整数指数幂;二次根式的性质与化简。

分析:A 、首先计算出(﹣3)2的结果,再开方判断;B 、根据负整数指数幂:a ﹣p =p a1(a≠0,p 为正整数)计算可判断; C 、首先看准底数,判断符号,再利用幂的乘方法则:底数不变,指数相乘计算即可判断;D 、根据单项式除以单项式法则:把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式计算即可判断.解答:解:A 、3)3(2=-,故此选项错误;B 、2)31(-==9,故此选项错误;C 、(﹣a 2)3=﹣a 6,故此选项错误;D 、a 6÷(21a 2)=(1÷21)(a 6÷a 2)=2a 4,故此选项正确. 故选:D .点评:此题主要考查了二次根式的开方,负整数指数幂,幂的乘方,单项式除以单项式,关键是准确把握各种计算法则.7. (2011•临沂,4,3分)计算﹣ )A 、B 、5C 、5D 、 考点:二次根式的加减法。

分析:根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解答:解:﹣=2×2﹣,﹣,﹣故选A .点评:此题主要考查了二次根式的运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.8. (2011泰安,7,3分)下列运算正确的是( )A .525±=B .12734=-C .9218=÷D .62324=⋅ 考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A .∵25=5,∴故此选项错误; B .∵43-27=43-33=3,∴故此选项错误;C .18÷2=9=3,∴故此选项错误;D .∵24×=2324⋅=6,∴故此选项正确. 故选:D .点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9. (2011山东省潍坊, 1,3分)下面计算正确的是( ).A .3333+=B 、2733+=C .235⋅= D .2(2)2-=-【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的混合运算方法,分别进行运算即可.【解答】解:A.3+不是同类项无法进行运算,故此选项错误; B.= = =3,故此选项正确; C.= , ×= = ,故此选项错误; D.=-2, ∵= =2,故此选项错误; 故选:B .【点评】此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.10.(2011山东淄博3,3分)下列等式不成立的是( )A.= 4== =考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的混合运算依次计算,再进行选择即可.解答:解:A 、=B 2=,故本选项错误;C=,故本选项正确;D ==故选C .点评:本题考查了二次根式的混合运算,是基础知识比较简单.11. (2011成都,23,4分)设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++设...S S =_________ (用含n 的代数式表示,其中n 为正整数).考点:二次根式的化简求值。

专题:计算题;规律型。

分析:由222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n n n n n n S n ,求n S ,得出一般规律.解答:解:∵222222222222)]1([]1)1([)]1([122)]1([)1()1()1(11+++=+++++=+++++=+=n n n n n n n n n n n n n n n n n S n , ∴1111)1(1)1(+-+=+++=n n n n n n S n , ∴1111312112111+-+++-++-+=n n S 111+-+=n n 1211)1(22++=+-+=n n n n n 故答案为: 122++n n n 点评:本题考查了二次根式的化简求值.关键是由S n 变形,得出一般规律,寻找抵消规律.12. (2011湖北孝感,4,3分)下列计算正确的是( )A . =B =C .=D =考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.解答:解:A 故本选项正确.BC ,故本选项错误;D =2,故本选项错误.故选A .点评:本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.二、填空题1.(2011江苏南京,9,2分)计算(2+1)(2﹣2)=2.考点:二次根式的混合运算。

分析:根据二次根式的混合运算直接去括号得出,再进行合并同类项即可.解答:解:(2+1)(2﹣2),=22﹣2×2+1×2﹣1×2,=22﹣2+2﹣2,=2.故答案为:2.点评:此题主要考查了二次根式的混合运算,在加减的过程中,有同类二次根式的要合并注意认真计算防止出错.2.(2011•青海)分解因式:﹣x3+2x2﹣x=﹣x(x﹣1)2;计算:= 0.考点:二次根式的加减法;提公因式法与公式法的综合运用。

专题:计算题。

分析:①先提取公因式﹣x,再根据完全平方公式进行二次分解即可.完全平方公式:a2±2ab+b2=(a±b)2.②将二次根式化为最简,然后合并同类二次根式即可.解答:解:①﹣x3+2x2﹣x=﹣x(x2﹣2x+1)=﹣x(x﹣1)2;②原式=3+﹣4=0. 故答案为:﹣x (x ﹣1)2,0.点评:本题考查二次根式的加减及提公因式法、公式法分解因式,属于基础题木,在分解因式时注意提取公因式后利用完全平方公式进行二次分解,分解要彻底. 3. (2011年山东省威海市,13,3分)计算(508)2-÷的结果是 3.考点:二次根式的混合运算.专题:计算题.分析:本题只需将二次根式化为最简,然后合并同类二次根式,最后进行二次根式的除法运算即可.解答:解:原式=(5–2 2)÷2=3. 故答案为:3.点评:本题考查二次根式的混合运算,难度不大,解答此类题目时往往要先将二次根式化为最简.4. (2011贵州遵义,11,4分)计算:218⨯= ▲ 。

【考点】二次根式的乘除法.【分析】本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.【解答】解:218⨯, =22×122, =2.故答案为:2.【点评】本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.5. (2011天水,11,4= 考点:二次根式的加减法。

分析:首先将各二次根式化为最简二次根式,再合并同类二次根式即可.解答:解:原式=22= 点评:在二次根式的加减运算中,首先要将各式化为最简二次根式,然后再合并同类二次根式,不是同类二次根式的不能合并.6.(2011•包头,15,3分)化简二次根式:1232127---= ﹣2 . 考点:二次根式的混合运算。

分析:首先进行各项的化简,然后合并同类项即可.解答:解:1232127---=33﹣(32+)﹣23=﹣2, 故答案为﹣2.点评:本题主要考察二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.三、解答题考点:二次根式的混合运算;分式的混合运算;负整数指数幂.分析:(1)各项化为最简根式、去绝对值号、去括号,然后进行四则混合运算即可;解答:(11112-⎛⎫ ⎪⎝⎭ 解:原式=212223+-+-=123+点评:本题主要考察二次根式的混合运算,分式的混合运算,负整数指数幂,解题的关键在于首先对各项进行化简,然后在进行运算 2. 计算:(-3)0—27+21-+321+.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:观察,可以首先去绝对值以及二次根式化简,再合并同类项.解答:解:(-3)0—27+21-+321+ =1-33+ 2-1+ )23)(32(23-+-, =-3+ + - , =-2 . 点评:此题主要考查了二次根式的混合运算以及绝对值的性质,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.3. (2011四川凉山,25,5分)已知a b 、为有理数,m n 、分别表示57-小数部分,且21amn bn +=,则2a b += .考点:二次根式的混合运算;估算无理数的大小.专题:计算题.分析:只需首先对57从而求出其整数部分a ,其小数部分用 57-a 表示.再分别代入amn +bn 2=1进行计算.解答:解:因为2<7<3,所以2<5-7<3,故m =2,n =5- 7-2=3- 7. 把m =2,n =3- 7代入amn +bn 2=1,化简得(6a +16b )-(2a +6b )7=1,所以6a +16b =1且2a +6b =0,解得a =1.5,b =-0.5.所以2a +b =3-0.5=2.5.故答案为:2.5.点评:本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.4. (2011黑龙江大庆,19,4分)计算26)1(30--+-π.考点:二次根式的混合运算;零指数幂。

相关文档
最新文档