小学数学应用题分类解题--重叠应用题
小学数学典型应用题归类总结(30种)
小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学五年级上期数学应用题分类汇总
应用题总汇植树问题:两端都栽:棵数=全长÷间隔长+1 (相当于公交站问题和楼梯问题)线形一端栽:棵数=全长÷间隔长两端都不栽:棵数=全长÷间隔长-1 (相当于锯木料问题和绳打结问题) 封闭图形植树棵数=全长÷间隔长(四边形,三角形,五边形等都是封闭图形) N边形植树棵数=每边植树总棵数-N 面积植树棵数=面积÷(棵距×行距)实心方阵=边长棵数²1、长在一条全长24千米的街道两旁设公交车站,每隔800米设一站.一共要设多少个车站?2、广场上的大钟5时敲响5下,8秒钟敲完。
12时敲响12下,需要多长时间?3、马拉松比赛平均每3千米设置一处饮水服务点(起点不设,终点设),一共设了15个饮水点,马拉松比赛全程多少千米?4、笔直的跑道两旁插着51面小旗,它们的间隔是2米.现在要改为只插26面小旗,间隔应改为多少米?5、把长2米的绳子接成一根长绳,一共打了12个结,你知道这根长绳多少米吗?6、有4根根木料,打算把每根锯成5段,每锯开一处,需要用7分钟,全部锯完需要多长时间?7、迎接六一儿童节,学校举行团体操表演,四年级学生排成下面的方阵.最外层每边站了25个人,最外层一共有多少名学生,整个方阵一共有多少名学生?8、公园里举办菊花展览,园艺师现在一个周长为50米的圆形喷泉边上每隔5米摆放一盆粉紫色的菊花;又在一条长为100米的迎宾大道两旁从头到尾每隔10米摆放一盆白色的菊花;每两盆白色菊花之间,又每隔2米摆放一盆黄色的菊花。
算出粉紫色、白色,黄色的菊花各有多少盆?相遇问题:(题中:两运动的物体同时相向而行,在途中相遇)(甲速+乙速)×相遇时间=总路程1、两艘军舰同时从相距948千米的两个港口对开.一艘军舰每时行38千米,另一艘军舰每时行41千米.经过几时两艘军舰可以相遇?2、小林和小云家相距4.5km。
早上9点分别从家以每分250米和分分200米相向而行。
小学数学典型应用题解答技巧
小学数学典型应用题解答技巧具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为2 ÷ =75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。
又称“单归一。
”两次归一问题,用两步运算就能求出“单一量”的归一问题。
又称“双归一。
”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
小学数学典型应用题之重叠问题
小学数学典型应用题之重叠问题一、含义重叠问题是数学上非常常见的一类数学问题,它要用到数学中的一个非常重要的原理:容斥原理,即当两个(或多个)计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。
二、解题思路和方法解决重叠问题时,必须从条件入手进行认真的分析,有时还要画图,借助图形进行思考,找出哪些是重叠的和重叠的次数,明确求的是哪一部分,从而找出解答方法。
当两个计数部分重叠时,可从它们的单项和中减去重叠的部分,得出总数。
三、例题例题(一):二(1)班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班,每人至少参加一项。
其中4人两个班都参加。
二(1)班一共有多少人?解析:(1)已知20人参加英语班,26人参加电脑班,一共有20+26-46(人)。
(2)这46人中,有4人两班都参加。
(3)也就是说这4人在英语班算了名额,在电脑班也算了名额,多算了一次。
(4)所以,全班的人数应是46=4=42(人)。
例题(二):三(2)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。
那么只会下象棋的同学有多少名?解析:(1)方法一:至少会下一种棋的人数是42-10=32名,而两种棋都会下的有21+17-32=6名,所以只会下象棋的同学有21-6=15(名)。
(2)方法二:至少会下一种棋的人数是42-10=32(名),用至少会下一种棋的人数减去会下围棋的人数就是只会下象棋的同学,故共有32-17=15(名)。
例题(三):全班50 人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人。
两样都不会的有多少人?解析:(1)会骑自行车的有50-23=27人,会滑旱冰的有50-35=15人。
(2)那么至少会这两样其中一样的人有:27+15-4=38人。
(3)加上两样都不会的人,就是全班人数。
(4)所以两样都不会的人数有50-38=12人。
例题(四):芳草地小学四年级的64人都会钢琴或画画中的一种,其中有58人学钢琴,43人学画画,问只学钢琴和只学画画的分别各有多少人?解析:(1)学了钢琴或画画的有73-9=64(人)。
常考题:小学数学毕业会考解答题应用题
小学数学毕业会考解答题应用题精选1.(2023·硚口模拟)学校落实“五项管理”措施以后,扬扬每天的睡眠时间达到10小时,比以前增加了119。
扬扬以前每天的睡眠时间是多少小时?解:2.(2023·湘桥模拟)雪球准备手工制作一条工艺毛毯,第一天完成的比第二天完成的多25%,第二天完成的比第三天完成的多40%,第一天比第三天多完成4.5米。
那么第二天完成了几米?解:3.(2023·湘桥模拟)一个圆柱形粮囤,从里面量得它的底面半径是4m,高是3m。
如果每立方米稻谷的质量约为580kg,这个粮囤最多能存放多少吨稻谷?解:4.(2023·硚口模拟)如图是某校六年级同学中进行的“我最喜欢的食堂菜肴”的统计情况,喜欢吃鱼香肉丝的人数比喜欢吃红烧肉的人数多48人,六年级一共有多少人?解:5.(2023·硚口模拟)如图,一个长为30厘米、宽为10厘米的长方形从圆的左边平移到右边,长方形的速度是每秒2厘米,圆的直径是10厘米。
(π取3.14)(1)圆完全被长方形包含在内的时间一共有多少秒?(2)几秒后,圆和长方形重叠部分的面积是39.25平方厘米?(3)如果长方形不动,圆沿着长方形外边缘滚动一周。
如图,滚到C点时,绕C点旋转一定角度后继续滚动,每滚到长方形顶点时都相同。
那么圆片扫过的面积是多少平方米?6.(2023·湘桥模拟)5支装的一盒钢笔售价70元,王老师买了4盒这种钢笔,应付给售货员多少元?(用比例解答)解:7.(2023·湘桥模拟)一套校服共320元,其中裤子是上衣价格的60%。
上衣和裤子的价钱各是多少元?(用方程方法解)解:8.(2023·湘桥模拟)一个底面直径为10厘米的装有水的圆柱形玻璃杯中,放有一个底面直径为3厘米,高为10厘米的圆锥形铅锤(完全浸没),圆柱形璃杯中的水面会下降多少厘米?解:9.(2023·硚口模拟)你能根据明明和芳芳的对话求出三种果树的面积分别是多少平方米吗?解:10.(2023·硚口模拟)武汉有“一江三镇”,这里一座座跨江大桥凌空而起。
小学数学孩子一看就懂的三十类图解应用题13_15
十三、时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
例1:从时针指向4点开始,再经过多少分钟时针正好与分针重合?【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。
时钟问题可与追及问题相类比。
【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。
通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】变通为“追及问题”后可以直接利用公式。
解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。
每分钟分针比时针多走(1-1/12)=11/12格。
4点整,时针在前,分针在后,两针相距20格。
所以分针追上时针的时间为 20÷(1-1/12)≈ 22(分)答:再经过22分钟时针正好与分针重合。
例2: 四点和五点之间,时针和分针在什么时候成直角?一周分为60格(分针每分钟走一格,每小时走60格)时针每小时走5格,(分针每小时走60格)5/60=1/12格…………分针比时针多走(1-1/12)=11/12格(时针走一格分针走12格)两针相距20格分针追上时针的时间为 20÷(1-1/12)≈ 22(分)追及时间=追及路程÷(快速-慢速)分针时针解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。
四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。
小学数学各类应用题类型及解题方法
2016-06-05差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数。
例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。
一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。
还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
三年级上册数学重叠问题
三年级上册数学重叠问题一、引言在小学数学学习中,三年级上册数学是一个承上启下的阶段,对于学生后续数学学习具有重要意义。
其中,重叠问题是一个相对较难但非常重要的知识点。
本文将通过具体案例,深入探讨三年级上册数学重叠问题的概念、解题方法和应用场景,帮助学生们更好地理解和掌握这一知识点。
二、重叠问题的概念重叠问题是指两个或多个集合元素同时属于两个或多个集合的情况。
在三年级上册数学中,常见的重叠问题包括容斥原理、两堆物体等问题。
这类问题需要学生们能够准确识别元素的重叠情况,并运用适当的数学原理进行求解。
三、解题方法1. 列举法:对于简单的重叠问题,可以通过列举法直接求解。
例如,有两个盒子,其中一个盒子中有3个红球和2个白球,另一个盒子中有2个红球和3个黑球。
求至少有一个红球但颜色未知的球的总数。
通过列举,我们可以得到共有5个球。
2. 容斥原理:容斥原理是一种常用的解题方法,适用于两个集合之间存在重叠的情况。
通过将重叠元素的个数加到两个集合的并集元素个数上,再减去重复计算的部分,可以求出最终结果。
例如,有5个男生和3个女生参加了数学竞赛,问至少有一个男生参加竞赛的学生人数。
根据容斥原理,至少有一个男生参加竞赛的学生人数为5+3-1=7人。
3. 画图法:对于较复杂的问题,可以通过画图来帮助理解。
通过将重叠部分用阴影标出,可以直观地看到元素的分布情况,从而快速找到答案。
四、应用场景重叠问题在日常生活和工作中也经常出现,如运动会报名、志愿者招募等。
学生们可以通过解决重叠问题培养逻辑思维和判断能力,为未来的学习和工作打下基础。
例如,在志愿者招募中,如果有两个志愿者团队同时申请了一些职位,就需要用到重叠问题的知识来计算最终的招募结果。
又如,在超市购物时,需要计算会员卡同时属于两种会员类型的人数,从而决定是否给予优惠。
五、总结三年级上册数学重叠问题是一个相对较难但非常重要的知识点,需要学生们认真理解和掌握。
通过列举法、容斥原理等解题方法,我们可以解决各种类型的重叠问题。
小学数学12类经典应用题
小学数学12类应用题一、归一问题:(在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量)例1:买5支铅笔要10元钱,买同样的铅笔8支,需要多少钱?例2:3台拖拉机4天耕地24公顷,照这样计算,2台拖拉机3天可以耕地多少公顷。
例3:5辆汽车4次可以运送40吨钢材,如果用同样的3辆汽车运送54吨钢材,需要几次?二、倍比问题:(有两个已知的同类量,其中一个量是另外一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数)例1: 10千克的花生可以榨油5千克,现在有花生50千克,可以榨油多少?例2:某小学3名师生植树4棵种,照这样记算,24名师生可以植多少树?例3:4个小朋友可以吃掉6块蛋糕,照这样计算,36个小朋友可以吃掉多少块蛋糕三、归总问题:(先求出“总数量”,然后根据其他条件算出所求的数量)例1:服装厂原来做一套衣服用布3米,改进裁剪方法后,每套只需用布2米。
原来可以做10套的布,现在可以做几套?例2:小华每天读5页书,8天读完了一本《西游记》,如果小明每天读4天,要多少天才能看完?四、和差问题:(已知两个数量的和与差,求这两个数量各是多少。
)例1:甲、乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2:长方形的周长是36厘米,已知长比宽多2厘米,求长方形的面积。
例3:甲、乙、丙三袋化肥,甲、乙两袋共重32千克,乙、丙两袋共重30千克,甲、丙两袋共重22千克,求三袋化肥各重多少千克。
例4:甲、乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?五、和倍问题:(已知两个数的和及大数是小数的几倍或小数是大数的几分之几,求这两个数各是多少?)例1:杏树和桃树共24棵,杏树是桃树的3倍,求杏树、桃树各几棵?例2:东西两个仓库共存粮480吨,东库存粮是西库的1.4倍,求两库各多少?六、差倍问题:(已知两个数的差及大数是小数的几倍或小数是大数的几分之几,求这两个数各是多少)例1:桃树的棵数是杏树的3倍,桃树比杏树多8棵,求杏树、桃树各多少?例2:爸比儿子大27岁,今年爸的年龄是儿子的4倍,求爸爸、儿子各几岁?七、年龄问题:(这类题的特点就是两个人的年龄差是不变的,但两个年龄之间的倍数关系随年龄的增长发生变化)例1:爸爸今年35岁,小红今年5岁,今年爸爸的年龄是小红的几倍?明年呢?例2:母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?八、植树问题:(按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中两个量,求第三个量)例1:一条河堤136米,每隔2米栽一棵树,头尾都栽,一共要栽多少棵?例2:一个圆形池塘周长为400米,在岸边每隔4米栽一棵树,一共能栽几棵?例3:一个正方形的操场,每边220米,每隔8米装一盏灯,一共需多少盏?九、鸡兔同笼问题:(已知鸡、兔共多少只和多少脚。
小学数学30种典型应用题分类讲解附带例题和解题过程
小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
小学数学八种应用题分类
小学数学八种应用题一、平均问题.(1)五年级两个班拾废铁,一班64人,共拾600千克;二班50人,共拾490千克.平均每人拾废铁多少千克?(2)那霍中学有三个年级,初一有320人,初二有400人,初三人数比初二多25%,平均每个年级有多少人?二、归一问题.(1)某车间3名工人生产5天完成7500个零件,7个工人要完成3500个同样零件需几天完成?(2)8台织布机9小时织布1224米,照这样计算,15台织布机2小时织布多少米?(1) 载重汽车每小时行40千米,小汽车的速度是载重汽车的2倍.它们从相距180千米的两地同时出发,相向而行。
如果出发时间是10小时10分,相遇时为几时几分?(2)在比例尺1:4000000的地图上,量得甲乙两地距离为20厘米.两列火车同时从甲乙两地相对开出,甲车每小时行45千米,乙车每小时行35千米,几小时两车相遇?(3)甲,乙两列火车从相距1050千米的两地同时相对开出,甲车每小时行80千米,2.8小时后两车相距全程的60%.乙车每小时行多少千米?(4)一条公路,一辆汽车行完全程要10小时,另一辆汽车要14小时.现在两辆汽车分别从公路两端相对开出,当快车行完全程时,慢车正好超过中点255千米,这条公路全长多少千米?(1)六(1)班同学至少参加了电脑和数学兴趣小组活动中的一项.参加电脑兴趣小组的有30人,参加数学兴趣小组的有35人,两项都参加的有20人.这个班有多少人?(2)在26名同学中会打乒乓球的有13人,会打网球的有12人,会打羽毛球的有9人,既会打乒乓球又会打羽毛球的有2人,既会打羽毛球又会打网球的有3人。
但没有人这三种球都会打,也没有人这三种球都不会打。
有多少人既会打乒乓球又会打网球?五、植树问题.(1)在一条全长2km的街道两旁安装路灯(两边也要安装),每隔50m安装一座,一共要安装多少座路灯?(2)同学们植树,8棵树之间的距离是14米,照这样计算,16棵树间的距离是多少米?(1)笼子里有鸡兔若干只,已知头28个,腿86只,问鸡兔各有多少只?(2) 笼子里有鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只七、工程问题.(1)修一段公路,甲队12天可以完成全长的1/3,乙队9天可以完成全长的1/3.两队合修几天可以完成全长的1/12?(2)一件工作,甲单独做要用6小时,乙单独做要用4小时.甲做完1/3后,两人合做,还要几小时才能完成?八、抽屉原理.(1)8只鸽子飞回3个鸽舍,至少有3 只鸽子要飞进同一个鸽舍里.为什么?(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环.张叔叔至少有一镖不低于9环.为什么?。
【奥数】二年级下册数学奥数课件-第12讲《重叠问题》 全国通用
A
B
A∩B
巩固提升
作业1:有两根铁丝,一根长为 30 厘米,另一根长为 50 厘米,将这两根铁丝 焊接成一根长为 75厘米的长铁丝.那么,中间的焊接重叠部分长为多少厘米? 答案:5厘米
巩固提升
作业2:明明用胶水将两张同样长的纸粘成了一张长为 195 厘米的长纸条,其 中粘在一起的部分长 5 厘米,这两张纸条各长多少厘米? 答案:都是100厘米
例题讲解
练习3:有蓝色和红色两种珠花,每人至少选一种,共有 48 人,有 30 人选了 蓝色珠花,有 13 人两种都选了,那么选红色珠花的有多少人? 答案:31人
例题讲解
例题4:二年级同学有 56 人参加科技和美术两个课外兴趣小组,其中参加科 技小组的有 36 人,两个小组都参加的有 8 人,参加美术小组的有多少人? 答案:28人
例题讲解
例题1:把两根长为 20 寸的短尺用绳子捆成一根长尺,中间捆在一起的重叠 部分是 3 寸.捆成的长尺多少寸?
答案:37寸
例题讲解
练习1:将两张同样长的纸粘成了一张长为 80 寸的长纸条,其中粘在一起的 部分长 10 寸,这两张纸条各长多少寸? 答案:45寸
例题讲解
例题2:学校的学生人人参加比赛,有 20 人参加足球比赛,有 26 人参加毽子 比赛.其中有 4 人两种比赛都参加.一共有学生多少人? 答案:42人
例题讲解
练习4:有 60 人学习制作镜子,经过一段时间的训练后,有 33 人学会了制作 星云镜,有 25 人学会了制作幻镜,其中既会制作星云镜又会制作幻镜的有 10 人.那么既不会制作星云镜又不会制作幻长都是 8 厘米的绳子,把它们打结连在一起,成为一根长绳,打结 处每根绳用去 1 厘米,绳结长度不计.现在这根长绳长多少厘米? 答案:26厘米
三年级数学应用题重叠
三年级数学应用题重叠在小学三年级的数学学习中,应用题是培养学生逻辑思维和解决问题能力的重要部分。
重叠问题是一种常见的数学问题类型,它涉及到两个或多个集合的交集部分。
以下是几个关于重叠问题的应用题例子,以帮助学生理解和练习解决这类问题。
# 应用题一:班级兴趣小组小明所在的班级有40名学生。
其中,有15名学生参加了数学兴趣小组,有12名学生参加了科学兴趣小组。
如果有两个学生同时参加了数学和科学兴趣小组,那么没有参加任何兴趣小组的学生有多少人?解题步骤:1. 首先确定参加数学兴趣小组和科学兴趣小组的学生总数:15 + 12= 27人。
2. 由于有2名学生同时参加了两个小组,所以这2名学生在总数中被重复计算了一次,需要减去这2人:27 - 2 = 25人。
3. 最后,用班级总人数减去参加了兴趣小组的学生人数,得到没有参加任何兴趣小组的学生人数:40 - 25 = 15人。
# 应用题二:图书馆借书图书馆有100本书。
其中,有30本是科幻小说,有20本是历史书籍。
如果有一部分书籍既是科幻小说又是历史书籍,那么这部分书籍有多少本?解题步骤:1. 首先确定科幻小说和历史书籍的总数:30 + 20 = 50本。
2. 由于图书馆总共只有100本书,如果科幻小说和历史书籍的总数超过了100本,说明有一部分书籍被重复计算了。
3. 计算重叠部分的书籍数量:50 - 100 = -50,这是不可能的,所以实际上重叠部分的书籍数量是科幻小说和历史书籍总数减去图书馆总书籍数的绝对值:|50 - 100| = 50本。
# 应用题三:学校运动会学校运动会上,有200名学生参加了比赛。
其中,有50名学生参加了跳远比赛,有60名学生参加了跑步比赛。
如果同时参加了跳远和跑步比赛的学生有10人,那么只参加一项比赛的学生有多少人?解题步骤:1. 首先确定参加跳远和跑步比赛的学生总数:50 + 60 = 110人。
2. 由于有10名学生同时参加了两项比赛,所以这10名学生在总数中被重复计算了一次,需要减去这10人:110 - 10 = 100人。
小学数学典型应用题22:容斥问题(含解析)
小学数学典型应用题22:容斥问题(含解析)容斥问题【含义】容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法。
这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
【数量关系】★A∪B = A+B - A∩B★A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长_____ 厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考.没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀.下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
小升初小学数学应用题基础练习《重叠问题》答案详解
《重叠问题》1.(2013秋•西安期中)下面图形的面积是(2)cmA.12B.11C.10【解答】解:223112⨯⨯-⨯⨯122=-10=(平方厘米)答:图形的面积是10平方厘米.故选:C.2.爸爸把两根绳子接在一起,用来捆扎报纸,第一根绳子长1.9米,第二根绳子长1.1米,接头处共用0.3米,接好后的绳子长()米.A.3B.2.7C.3.3【解答】解:1.9 1.10.3+-30.3=-2.7=(米)答:接好后的绳子长2.7米.故选:B.3.如图,A、B两圆的重叠部分占圆A的25,占圆B的14,那么圆B面积与圆A面积之比为()A.5:8B.8:5C.2:1D.4:5【解答】解:设重叠部分的面积是1,那么:A圆的面积:25 152÷=B圆的面积:1144÷=B圆的面积:A圆的面积54:8:52==答:B圆的面积与A圆的面积之比是8:5.故选:B.4.如图,两张长度相等的长方形重叠在一起,阴影部分的面积是()A.ab B.bc C.ac D.2c【解答】解:中间阴影部分平行四边形的面积是a c ac⨯=.故选:C.5.(2019春•庆云县期末)两根分别长1.4米的木条粘接成一根板条,重叠部分长0.05米.粘成的木条长 2.75米.【解答】解:1.4 1.40.05+-2.80.05=-2.75=(米)答:粘成的木条长2.75米.故答案为:2.75.6.(2014秋•新泰市期末)下图中两个圆重叠部分的面积,相当于大圆面积的19,相当于小圆面积的13,小圆和大圆的面积比是1:3.【解答】解:设重叠部分的面积是1; 大圆的面积是:1199÷=; 小圆的面积是:1133÷=;小圆面积:大圆面积3:91:3==;答:小圆和大圆面积比是1:3.故答案为:1:3.7.(2012春•吴中区校级期末)某班有48人,会打篮球的有25人,会打排球的有18人,都不会的有12人.既会打篮球又会打排球的有 7 人.【解答】解:481236-=(人),251843+=(人),43367-=(人),答:既会打篮球又会打排球的有7人,故答案为:7.8.(2011•长春模拟)一根绳长比10米短,从一头量到5米处作一个记号A ,再从另一头量到5米处作一个记号B ,这是量得AB 间的距离是绳全长的19,AB 间的距离是 1 米? 【解答】解:11(55)(1)99+÷+⨯, 1011099=÷⨯, 9110109=⨯⨯,1=(米);答:AB 间的距离是1米.故答案为:1.9.如图,长方形ABCD ,BC CD ⊥,BC // AD ;与三角形交叉叠一起后,如果170∠=度,那么2∠=度,3∠= 度.【解答】解:因为四边形ABCD 是长方形,两组对边平行且相等的四边形是长方形,所以//BC AD ; 因为//DC FG ,所以2170∠=∠=︒;因为BC CD ⊥,所以2490∠+∠=︒,所以4902907020∠=︒-∠=︒-=;又三角形的一个外角的度数等于不相邻的两个内角度数的和,所以34B ∠=∠+∠,所以39020110∠=︒+︒=︒.故答案为://,70,110.10.一根竹竿长10米,分别把两头垂直插人同一水池中,并依次在竹竿上水面的位置上做上记号,若这两个记号之间相距2米,则水深可能是 4米或6米 .【解答】解:第一种情况:(102)2-÷82=÷4=(米)第二种情况:(102)2+÷122=÷6=(米)答:水深是4米或6米.故答案为:4米或6米.11.(2012•长沙)如图,有两个边长均为2厘米的正方形,其中以一个正方形的某一个顶点绕另一个正方形的中心旋转.某一时刻这两个正方形不重合部分的面积是 6平方厘米 .【解答】解:过O 点做AB 的垂线OD ,那么1OD =厘米;2121AOB S ∆=⨯÷=(平方厘米);AOB ∆的面积就是两个正方形重合部分四边形AEOC 的面积,所以不重合部分的面积是:22212⨯⨯-⨯82=-6=(平方厘米)答:两个正方形不重合的部分面积的和是6平方厘米.故答案为:6平方厘米.12.(2012•中山校级模拟)如图的图形是由六个相等的圆连环组成,每相邻两个圆重叠部分的面积是526平方厘米,占每个圆面积的16,这个图形的总面积是 5876平方厘米.【解答】解:5152625666÷⨯-⨯17856666=⨯⨯-851026=-5876=(平方厘米),故答案为:5876.13.(2012•广汉市校级模拟)如图中,长方形和圆有一部分重叠,重叠部分面积是长方形的17,是圆的110,那么长方形面积是圆面积的710.【解答】解:由题意可知:长方形的面积17⨯=圆的面积110⨯,则长方形的面积:圆的面积117:10710==,所以长方形面积是圆面积的7 10,故答案为:7 10.14.请你算一算4个铁环套在一起的长度是多少?【解答】解:604(42)3⨯-÷⨯60423=⨯-⨯2406=-234()mm=答:4个铁环套在一起的长度是234mm.15.甲乙两人共有30本文艺书,乙丙两人共有50本文艺书,甲、丙两人共有40本文艺书,甲乙丙三人各有文艺书多少本?【解答】解:(305040)2++÷1202=÷60=(本)丙的本数:603030-=(本)甲的本数:605010-=(本)-=(本)乙的本数:604020答:甲有文艺书10本,乙有文艺书20本,丙有文艺书30本.16.某学校四年级有甲、乙、丙3个班,甲班和乙班共有100人,乙班和丙班共有101人,甲班和丙班共有97人.甲、乙、丙3个班各有多少人?+-÷【解答】解:乙班:(10010197)2=÷1042=(人)52-=(人)甲班:1005248-=(人)丙班:974849答:甲班有48人,乙班有52人,丙班有49人.17.3个大小相同的铁环连在一起,拉紧后如图所示,铁环的总长度是多少毫米?=毫米【解答】解:2厘米20⨯-⨯20324=-608=(毫米)52答:铁环的总长底是52毫米.18.甲、乙、丙三个数,甲、乙两个数的和是10,乙、丙两个数的和是8.4,甲、丙两个数的和是7.6.求甲、乙、丙三个数各是多少?++÷【解答】解:(108.47.6)2=÷262=13-=甲数:138.4 4.6-=乙数:137.6 5.4-=丙数:13103答:甲数是4.6,乙数是5.4,丙数是3.19.如图中,长方形的长为9厘米,宽为7厘米,正方形的边长为4厘米,它们重叠部分的面积为8平方厘米.问阴影部分面积是多少?⨯+⨯-⨯【解答】解:974482=+-631616=(平方厘米)63答:阴影部分的面积是63平方厘米.20.如图,大正方形的一个顶点A落在小正方形的中心,已知大、小正方形的边长分别是19厘米和10厘米,求重叠部分的面积.【解答】答案为:25平方厘米21.两块一样长的木板重叠在一起,成了一块木板,总长200厘米,重叠部分是20厘米,原来每块木板长多少厘米?+÷【解答】解:(20020)2=÷2202110=(厘米)答:原来每块木板长110厘米.22.小明把一根竹竿插入水中,入水部分是30厘米,然后他把竹竿倒过来,再插入水中,这时没沾水的部分是40厘米这根竹竿长多少分米?【解答】解:303040++6040=+100=(厘米),100厘米10=分米,答:这根竹竿长10分米.23.图中阴影部分占大长方形的16,占小正方形的14,小正方形的面积是大长方形面积的()().【解答】解:11(1)(1)46÷÷÷ 46=÷23=;答:小正方形的面积是大长方形面积的23.故答案为:23.24.在如图中,点C 是AB 的中点,点E 是BD 的中点,阴影部分面积占整个图形面积的几分之几?【解答】解:由题意和图可知:把整个图形平均分成7份,阴影部分占了1份,所以占17. 25.如图中阴影部分的面积是小圆面积的512,是大圆面积的115,小圆面积与大圆面积的比是多少?【解答】解:因为大圆面积115⨯=小圆面积512⨯,所以小圆面积:大圆面积15:4:251512== 答:小圆面积与大圆面积的比是4:25.26.如图,图形是由两个有部分重叠的圆组成的,重叠部分的面积是212cm ,占大圆面积的112,占小圆面积的38,这个图形的面积是多少?【解答】解:11214412÷=(平方厘米)312328÷=(平方厘米) 1443212164+-=(平方厘米)答:这个图形的面积是164平方厘米.27.把3个大小相同的铁环连在一起(如图),拉紧后的长是多少分米?【解答】解:36324⨯-⨯1088=-100=(毫米)100毫米1=分米答:拉紧后的长是1分米.28.如图,两个长为30厘米的长方形,放在桌面上,求盖住桌面的面积.【解答】解:30123081012⨯+⨯-⨯360240120=+-480=(平方厘米);答:盖住桌面的面积是480平方厘米.29.如图是两个重叠的正方形,中间重叠部分恰好是1平方分米.这个图形的面积是多少平方分米?【解答】解:177⨯=(平方分米)答:这个图形的面积是7平方分米.30.将图A和图B重叠后得到的新图形是哪一个?【解答】解:根据题干综合分析,图A和图B重叠后的新图形是③.31.如图,涂色部分是三角形ABC面积的14,是梯形EFGD面积的15,三角形ABC的面积是梯形EFGD面积的() ().【解答】解:设涂色部分的面积是1,三角形ABC面积是:1144÷=梯形EFGD面积是:1155÷=4455÷=答:三角形ABC的面积是梯形EFGD面积的4 5.故答案为:4 5.。
小学数学应用题归类 30种应用题
小学数学应用题归类一、归一问题1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?二、归总问题4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?5、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?三、和差问题7、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?8、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
9、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
10、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?四、和倍问题11、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?12、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?13、甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?14、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?五、差倍问题15、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?16、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?17、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?18、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?六、倍比问题19、100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?20、今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?21、凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?七、相遇问题22、南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?23、小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?24、甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
小学数学30种典型应用题分类讲解附带例题和解题过程
常见题型:例如,一项工程甲单独做需要10天完成,乙单独做需要15天完成,如果甲先做了3天后, 乙加入一起做,还需几天完成?
解题方法:先计算甲、乙两人单独完成工程所需的时间和效率,然后根据题目条件列出方程,最后 求解未知数。
题目:钟表上分针 转动的速度是时针 的几倍。
题目:钟表上时针 转动的速度是分针 的几分之几。
题目:钟表上分针 转动一圈,时针转 动多少度。
添加 标题
定义:日历问题是指与日期有关的数学问题,通常涉及到平年、闰年的计算以及日历的转换等。
添加 标题
解题思路:首先确定问题的类型,然后根据不同的类型采用不同的计算方法。对于平年或闰年的计算,需要 了解平年或闰年的天数和月份的天数;对于日历的转换,需要了解不同年份或月份的转换规则。
添加标题
添加标题
添加标题
添加标题
应用题的作用是帮助学生理解数学 概念,提高数学思维能力。
应用题在小学数学教学中占有重要 地位,是提高学生数学素养的重要 途径。
01
代数应用题:涉及代数方程、不等式、函数等数学 概念的问题,如鸡兔同笼问题。
03
概率与统计应用题:涉及概率、统计、数据分析等 概念的问题,如扔骰子求概率。
解题方法:解决 比例应用题的方 法通常包括找出 比例关系,建立 数学模型,然后 求解。
常见题型:例如 “一杯水中有 200克糖,糖和 水的比例是1:5, 求水的重量是多 少克?”
解题思路:首先 找出比例关系, 然后根据比例关 系建立数学模型, 最后求解。
定义:工程问题是指与工程项目相关的数学问题,涉及到工作量、工作效率和工作时间等概念。
(完整版)小学数学应用题分类题型
小学数学典型应用题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?_________________(2)买16支铅笔需要多少钱? ____________________列成综合算式________________________________(元)答:需要______元。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做91套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? _______________________(米)(2)现在可以做多少套?_______________________(套)列成综合算式_______________________________(套)答:现在可以做______套。
3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
小学数学应用题分类解题--重叠应用题
小学数学应用题分类解题-重叠应用题我们知道,求两个数的和,只要直接相加就可得到结果。
但是在有的情况下,却不能直接相加,它关系到重叠部分的数量关系的问题,它关系到重叠部分的数量关系的问题,我们把这类问题称为“重我们把这类问题称为“重叠问题”。
叠问题”。
解答重叠问题的关键是要结合图形。
解答重叠问题的关键是要结合图形。
在计算一个问题时,在计算一个问题时,可以把总量分成几个分量来计算,先把每个分量加起来,然后再减去重叠计算的部分。
例1、 同学们去采集标本。
采集昆虫标本的有32人,采集花草标本的有25人,两种标本都采集的有16人。
去采集标本的共有多少人?人。
去采集标本的共有多少人?要求去采集标本的总人数,不能用32人和25人相加得到。
在32人中包含有16人,在25人中也包含有16人。
重复包含的16人加了两次。
所以,还要减去重复计算的16人。
人。
32+25-1632+25-16==41人例2、 某班36个同学在一次数学测验中,答对第一题的有25人,答对第二题的有23人,两题都对的有15人。
问有几个同学两题都不对?人。
问有几个同学两题都不对?要求有几个同学两题都不对,先要求做对其中一题的有几人。
1、 做对其中一题的有几人做对其中一题的有几人25+23-1525+23-15==33人2、 有几人两题都不对有几人两题都不对36-3336-33==3人例3、 一个班有学生45人,参加体育队的有32人,参加文艺队的有27人,每人至少参加一个队。
人至少参加一个队。
问这个班两队都参加的有多少人?问这个班两队都参加的有多少人?32+2732+27==59人,总数超过了全班人数。
因为有一部分同学参加了两队。
所以只要在总数中减去全班的人数,就是两队都参加的人数3232++2727--4545==14人例4、 某班数学、英语期中考试的成绩如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。
小学二年级数学排队和重叠问题应用题
排队问题1、同学们排队做操,冬冬的前方有9个人,后边有8个人,这排同学共有多少人?2、小朋友排队去看电影,以前方数玲玲是第5个,从后边数,玲玲是第 6 个,这一排一共有多少人?3、18 个小朋友排成一排做游戏,以前方数明显排第七,从后边数她排第几?4、小朋友排队做操,小红的左侧有8个人,右侧有8个人。
这一排一共有多少人?5、二(1)班同学做操,全班排4行,每行人数相等,小红所站在的一行中以前方数过去是第 6 个,从后边数过去是第 5 个,二(1)班一共有多少人?6、7、18 个同学排成相同多的两队去观光,王丽排在第一队的第 3 个,王丽后边有几个同学?少先队去春游,从排头数起,小芳是第九个,从排尾数起,小军是第九个,他们中间还有九个人。
这队少先队员共有多少人?8、国庆节校门口挂了一行不一样颜色的彩灯,不论从左从右数,第九盏都是红灯,这一行共有彩灯多少盏?9、同学们做操排成方形队伍,不论以前从后数,仍是从左从右数,小刚都是第 4 个,这队伍共有多少人?重叠问题1、洗好的8块毛巾用夹子夹在铅丝上晾干,每一块毛巾的两边一定用夹子夹住,同一个夹子可夹住相邻的两块毛巾的两边,这样一共要多少个夹子?2、54 个同学带着水壶和水果去春游,带水壶的有18 人,带水果的有 41 人,既带水壶又带水果的起码有多少人?3、二年级(3)班有42 人,全班都订了杂志。
订《文艺》的有38 人,订《少年科学通告》的有24 人,两种杂志都订的起码有多少人?4、20 个小朋友排队,从左侧数起小华是第 11 名,从右侧数起小刚是第 16 名,小华和小刚之间隔着几个小朋友?5、老师出了两道数学题,在20个人中,做对第一题的有13 个人,做对第二题的有12 个人,两道题都做对的起码有几个人?6、某班有30人参加长跑和乒乓竞赛。
此中参加乒乓竞赛的有16人,参加长跑的有 23 人,两种竞赛都参加的有几人?7、某班有学生 40 人,对数学有兴趣的有 17 人,对音乐有兴趣的有 13 人,两样都有兴趣的有 8 人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题分类解题-重叠应用题
我们知道,求两个数的和,只要直接相加就可得到结果。
但是在有的情况下,却不能直接相加,它关系到重叠部分的数量关系的问题,我们把这类问题称为“重叠问题”。
解答重叠问题的关键是要结合图形。
在计算一个问题时,可以把总量分成几个分量来计算,先把每个分量加起来,然后再减去重叠计算的部分。
例1、同学们去采集标本。
采集昆虫标本的有32人,采集花草标本的有25人,两种标本都采集的有16人。
去采集标本的共有多少人?
要求去采集标本的总人数,不能用32人和25人相加得到。
在32人中包含有16人,在25人中也包含有16人。
重复包含的16人加了两次。
所以,还要减去重复计算的16人。
32+25-16=41人
例2、某班36个同学在一次数学测验中,答对第一题的有25人,答对第二题的有23人,两题都对的有15人。
问有几个同学两题都不对?
要求有几个同学两题都不对,先要求做对其中一题的有几人。
1、做对其中一题的有几人
25+23-15=33人
2、有几人两题都不对
36-33=3人
例3、一个班有学生45人,参加体育队的有32人,参加文艺队的有27人,每人至少参加一个队。
问这个班两队都参加的有多少人?
32+27=59人,总数超过了全班人数。
因为有一部分同学参加了两队。
所以只要在总数中减去全班的人数,就是两队都参加的人数
32+27-45=14人
例4、某班数学、英语期中考试的成绩如下:英语得100分的有12人,数学得100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人。
这个班有学生多少人?
从图中可以明显地看出,两门功课都得100分的有3人,在10人中计算了一次,在12人中又计算了一次。
26+(10+12-3)=45人
例5、某班共有学生50人,其中35人会游泳,38人会骑自行车,40人会溜冰,46人会打乒乓球。
问四项活动都会的人数至少有多少人?
要求四项活动都会的人数至少有多少人,首先要求出有一个项目不会的至多有多少人,然后从总人数中减去它。
1、不会游泳的有多少人?
50-35=15人
2、不会骑自行车的有多少人?
50-38=12人
3、不会溜冰的有多少人?
50-40=10人
4、不会打乒乓球的有多少人?
50-46=4人
5、有一个项目不会的至多有多少人?
15+12+10+4=41人
6、四个项目都会的至少有多少人?
50-41=9人
例6、有三个面积都是60平方厘米的圆,两两相交的面积分别为9、13、15平方厘米。
三个圆相交部分的面积为5平方厘米。
总体图形盖住的面积是多少平方厘米?
先求得三个圆面积的和,再减去两两相交的重叠部分。
这样三个圆相交部分的面积多减了一次,要加上它。
6×3-9-13-15+5=148平方厘米
例7、在26名同学中会打乒乓球的有13人,会打网球的有12人,会打羽毛球的有9人,既会打乒乓球又会打羽毛球的有2人,既会打羽毛球又会打网球的有3人。
但没有人这三种球都会打,也没有人这三种球都不会打。
有多少人既会打乒乓球又会打网球?
设既会打乒乓球又会打网球的有X人。
由图可知,只会打乒乓球的有(11-X)人;只会打网球的有(9-X)人;只会打羽毛球的有4人。
一共有26人。
由此可以列出方程。
11-X+9-X+4+X+2+3=26
X=3。