高三理科数学高考模拟检测卷及答案
2024年高考数学模拟试题与答案解析
![2024年高考数学模拟试题与答案解析](https://img.taocdn.com/s3/m/d58bc1883086bceb19e8b8f67c1cfad6195fe9fc.png)
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)
![2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)](https://img.taocdn.com/s3/m/801ff2ac9f3143323968011ca300a6c30c22f198.png)
2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。
2023年高中数学理科高考模拟试题4(附答案)
![2023年高中数学理科高考模拟试题4(附答案)](https://img.taocdn.com/s3/m/d8467774bf23482fb4daa58da0116c175f0e1e9d.png)
2023年高中数学理科高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)1.如图,已知全集,集合,则图中阴影部分表示的集合的子集个数为()A、5;B、6;C、7;D、82.已知x,y为正数,且xy=1,则的最小值为()A.4;B.6;C.2;D.3.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是()A.48;B.72;C.-120;D.-1924.已知椭圆的离心率为,直线与椭圆交于两点且线段的中点为,则直线的斜率为()A.;B.; C.;D.5.函数的定义域为开区间,导函数在内的图象如下图所示,则函数在开区间内有极小值点()A.1个B.0个C.2个D.3个6.三名同学到五个社区参加社会实践活动,要求每个社区有且只有一名同学,每名同学至多去两个社区,则不同的派法共有()A.90种B.60种C.45种D.30种7.在正三棱柱中,,点E是的中点,点F是上靠近点B的三等分点,则异面直线与所成角的余弦值是()A.B.C.D.8.已知复数,在复平面内对应点分别为,,则()A.1B.C.2D.39.已知是椭圆的两个焦点,P为椭圆上一点,且,则点P到y轴的距离为()A.2B.C.D.110.已知为锐角,若,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(每题5分,共25题)11.已知向量满足,且对于任意x,不等式恒成立,设的夹角为,则___________12.已知圆C1:与C2:,若C1与圆C2有且仅有一个公共点,则实数a的值为___________.13.已知函数,其中,若在区间(,)上恰有2个零点,则的取值范围是____________.14.设,使不等式取等号的的取值范围__________.15.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.评卷人得分三、综合题(每题15分,共75分)16.中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值17.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.18.已知数列的前项和,是等差数列,且(1)求数列的通项公式;(2)令求数列的前项和.19.已知椭圆的离心率,短轴长为.(1)求椭圆方程;(2)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率k的直线与椭圆交于不同的两点、.是否存在常数,使得向量20.已知函数(1)讨论当a>0时,函数的单调性;(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.参考答案一、选择题第1题第2题第3题第4题第5题D A D AA二、填空题第11题:第12题:6,或-6;第13题:或,第14题:第15题:三、解答题第16题:(1)即:第6题第7题第8题第9题第10题ABBCA为锐角(2)代入上式,得到,(当且仅当a=c=2时成立)(当且仅当a=c=2时成立)第17题:(I)证明:取,连结和,因为,EE1‖BC,BC=AD,BC‖AD,所以EE1=AD,EE1‖AD,所以四边形为平行四边形;所以AE1‖DE,在矩形中,A1F=BE1,所以四边形为平行四边形,所以B1F‖AE1,B1F‖DE,因为DE⊂平面BDE,B1F⊄BDE所以B1F‖平面BDE(2)连接,在四棱柱中,平面,因为,,所以平面,所以,已知得,平面,所以,,在△与△中,,,所以△∽△,所以,即。
2023年高考数学模拟考试卷及答案解析(理科)
![2023年高考数学模拟考试卷及答案解析(理科)](https://img.taocdn.com/s3/m/b62b50de80c758f5f61fb7360b4c2e3f56272563.png)
2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。
高考数学(理科)模拟考试卷(附参考答案与解析)
![高考数学(理科)模拟考试卷(附参考答案与解析)](https://img.taocdn.com/s3/m/f48289b7d5d8d15abe23482fb4daa58da0111ce6.png)
高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。
陕西省高三下学期(理科)数学模拟考试卷附带答案解析
![陕西省高三下学期(理科)数学模拟考试卷附带答案解析](https://img.taocdn.com/s3/m/31a394bba1116c175f0e7cd184254b35eefd1afe.png)
陕西省高三下学期(理科)数学模拟考试卷附带答案解析班级:___________姓名:___________考号:___________一、单选题1.设复数z 满足()12i 34i z ⋅+=-+,则z 的虚部是( ) A .2B .2iC .2-D .2i -2.已知集合{}2A =≤和{}1B x x =<,则A B =( ) A .(]1,4-B .[)0,1C .(]0,1D .[)1,43.已知i 为虚数单位,()2i 12i z -⋅=- 则复数z =( ) A .3i 5-B .32i 55+C .4i 5-D .43i 554.已知函数1()sin (0)2f x x x ωωω=>在(0,)π上恰有三个零点,则正数ω的取值范围为( )A .710,33⎛⎤ ⎥⎝⎦B .1013,33⎛⎤ ⎥⎝⎦C .713,66⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦5.若43x =和823y=,则2x y +的值为( )A .2B .1C .8D .36.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为37.等差数列{}n a 的前n 项和为n S ,若36S =与621S =,则9S =( ). A .27B .45C .18D .368.数列{an }是递增数列,则{an }的通项公式可以是下面的( ) A .1n a n=-B .23n a n n =-C .2nn a -=D .()nn a n =-9.圆221x y +=上的点到直线34250x y +-=的距离的最小值是( ) A .6B .4C .5D .110.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10 次着地时经过的路程是( )A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)11.点M 、N 是正方体1111ABCD A B C D -的两棱1AA 与11A B 的中点,P 是正方形ABCD 的中心,则MN 与平面1PCB 的位置关系是( ) A .平行B .相交C .MN ⊆平面1PCBD .以上三种情况都有可能12.双曲线2222:1(00)x y C a b a b-=>>,的两个焦点为12,F F ,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的离心率为( )AB C .2D 13.设函数()f x 的定义域为R ,满足()3(1)f x f x =-,且当(0,1]x ∈时()(1)f x x x =-.若对任意(,]x m ∈-∞,都有54()25f x ≥-,则m 的最大值是( ) A .125 B .73C .94D .52二、填空题14.已知两个非零向量a ,b 满足2a b a b ==-=,则a 在b 方向上的投影为______. 15.()3231x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项为________.16.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递增,则ω的取值范围是__.17.斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线.它的画法是:以斐波那契数:1,1,2,3,5,…为边的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线.下图为该螺旋线的前一部分,如果用接下来的一个扇形做圆锥的侧面,则该圆锥的体积为______.三、解答题18.已知ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,且满足)2222sin sin sin 2a b c a B C A +-=. (1)求角C 的值; (2)若2a =,b=5,且13A A DB =,求CD 的长度. 19.有关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低,对保护群众生命安全具有重要作用.2020年4月,“一盔一带”安全守护行动在全国各地开展.行动期间,公安交管部门加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯.该行动开展一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1000名骑行人员中年龄低于40岁的占60%,记录其年龄和是否佩戴头盔情况,得到如下列联表:(1)完成上面的列联表;(2)通过计算判断是否有99%的把握认为遵守佩戴安全头盔与年龄有关?附:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20.如图,在直三棱柱111ABC A B C 中90ACB ∠=︒,1AC BC ==且12AA =,D ,E 分别是棱1AA ,BC 的中点.(1)证明://AE 平面1BC D ; (2)求二面角1A BD C --的余弦值.21.已知函数()2e xf x ax x =+-.(1)若0a =,求函数()f x 的单调区间;(2)若0x ≠时方程()1f x =有3个不同的实数解,求实数a 的取值范围.22.已知椭圆()2222:10x y C a b a b +=>>的左,右顶点分别为,A B ,上顶点M 与左,右顶点连线,MA MB 的斜率乘积为14-,焦距为(1)求椭圆C 的方程;(2)设过点()0,4D 的直线l 与椭圆C 交于,E F 两点,O 为坐标原点,若90EOF ∠=︒,求直线l 的方程. 23.在平面直角坐标系xOy 中以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线1l 与曲线C 的极坐标方程分别为cos 2ρθ=,4sin ρθ=点P 的极坐标为π4,4⎛⎫⎪⎝⎭.(1)求直线1l 以及曲线C 的直角坐标方程;(2)在极坐标系中已知射线2π:02l θαα⎛⎫=<< ⎪⎝⎭与1l ,C 的公共点分别为A ,B ,且16OA OB ⋅=+求POB的面积.24.已知函数()f x x =. (1)求不等式()21f x x <-的解集;(2)已知函数()()221g x f x x =+-的最小值为m ,且a 、b 、c 都是正数,2a b c m ++=,证明114a b b c+≥++. 参考答案与解析1.C【分析】先求出34i -+的值,然后两边同除12i +,最后用复数的除法运算求解. 【详解】()12i 34i z ⋅+=-+()12i 5z ∴⋅+=,即()()()()512i 512i 512i 12i 12i 12i 5z --====-++- 所以z 的虚部是2-. 故选:C 2.B【分析】先求出集合A 、B ,再结合交集的定义求解即可.【详解】因为{}{}204A x x ==≤≤ {}{}111B x x x x =<=-<<所以[)0,1A B ⋂=. 故选:B. 3.D【分析】根据复数的除法运算化简即可求解. 【详解】由()2i 12i z -⋅=-得()()()()12i 2i 12i 43i2i 2i 2i 5z -+--===--+ 故选:D 4.A【分析】由(0,)x π∈,可得(,)333x πππωπω-∈--,结合三角函数的性质可得233πππωπ<-≤,从而得解.【详解】由()sin (0)3f x x πωω⎛⎫=-> ⎪⎝⎭由(0,)x π∈,可得(,)333x πππωπω-∈--若函数()f x 恰有3个零点,只需要233πππωπ<-≤,得71033ω<≤. 故选:A 5.D【分析】将43x =,823y=转化为对数的形式求出,x y ,然后代入2x y +化简求值即可【详解】因为43x =,所以421log 3log 32x ==;又823y=,所以28log 3y =所以2222188log 3log log 3log 22332x y +++⨯==32228log 3log 8log 233⎛⎫=⨯=== ⎪⎝⎭故选:D. 6.D【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合. 考点:众数、中位数、平均数、方差 7.B故选:B . 8.A【分析】根据数列通项公式的性质,由数列{an }是递增数列,根据各个函数的单调性,逐个选项进行判断即可.【详解】对于A ,因为1y x=-为单调递增函数,所以,1n a n =-为递增数列,A 正确;对于B ,因为122a a =-=,所以不是递增数列,B 错误对于C ,因为2xy -=为递减函数,所以,2n n a -=为递减数列,C 错误;对于D ,()nn a n =-为摆动数列,D 错误. 故选:A 9.B【分析】先求圆心到直线的距离,再减去半径即可.【详解】圆的圆心坐标()0,0,到直线34250x y +-=的距离是2555=所以圆221x y +=上的点到直线34250x y +-=的距离的最小值是514-= 故选:B . 10.A【分析】表示出第10 次着地时经过的路程,利用等比数列的求和公式化简,即得解 【详解】由题意,第10 次着地时经过的路程是 91291002(50251002)1002100(222)----+⨯+++⨯=+⨯⨯+++19912(12)100200100200(12)12----⨯-=+⨯=+-- 故选:A 11.A【分析】推导出MN ∥AB 1从而MN 与平面PCB 1的位置关系是平行. 【详解】∵点M ,N 是正方体ABCD ﹣A 1B 1C 1D 1中A 1A ,A 1B 1的中点,∴MN ∥AB 1 ∵P 是正方形ABCD 的中心,延展平面PCB 1即为平面AB 1C 又AB 1 ⊂平面PB 1C ,MN ⊄平面PB 1C 所以MN ∥平面PB 1C .∴MN 与平面PCB 1的位置关系是平行. 故选:A .【点睛】本题考查线面关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查线面平行的判定定理,是中档题.12.A【分析】设()()12,0,,0Fc cF-,进而根据向量垂直的坐标表示得2c=,再根据点)A在双曲线C上待定系数求解即可.【详解】解:由题,设()()12,0,,0Fc cF-,因为)A所以()()1213,1,AF A cc F=----=-因为12AF AF⋅=所以212310AF AF c=⋅-+=,解得2c=因为22222311a bb a c⎧-=⎪⎨⎪+=⎩,解得222a b==所以,双曲线C的离心率为cea===故选:A13.A【详解】解:因为()3(1)f x f x=-,所以()()13f x f x+=当(]0,1x∈时2()f x x x=-的最小值为14-;当(]1,0x∈-时(]10,1x+∈2(1)(1)(1)f x x x+=+-+由3()(1)f x f x =+知 1()(1)3f x f x =+所以此时21()[(1)(1)]3f x x x =+-+,其最小值为112-; 同理,当(1x ∈,2]时2()3[(1)(1)]f x x x =---,其最小值为34-;当(2x ∈,3]时2()9[(2)(2)]f x x x =---的最小值为94-;作出如简图因为95434254-<-<-要使54()25f x -则有2549[(2)(2)]25x x ----. 解得125x或135x 要使对任意(,]x m ∈-∞,都有54()25f x - 则实数m 的取值范围是12,5⎛⎤-∞ ⎥⎝⎦. 故选:A .14.1【分析】把已知式2a b -=平方,转化为数量积的运算,根据数量积定义可得投影. 【详解】解:由2a b -=,得2224a a b b -⋅+=又2a b ==,∴44222cos ,4a b +-⨯⨯<>=,即1cos ,2a b <>=∴a 在b 方向上的投影为1cos ,212a ab <>=⨯=.故答案为:1. 15.3-【解析】利用二项展开式通项公式直接求解. 【详解】()()()3332231311x x x x x⎛⎫-+=+-+ ⎪⎝⎭展开式中常数项为03121332311363C C x x⋅⋅-⋅⋅⋅=-=-故答案为:3-.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 16.104ω<≤【详解】试题分析:本题已知函数()sin()f x A x ωϕ=+的单调区间,求参数ω的取值范围,难度中等.由22242k x k ππππωπ-≤+≤+,Z k ∈得32244k x k πππωπ-≤≤+,又函数()f x 在(,)2ππ上单调递增,所以3242{24k k ππωπππωπ-≤≤+,即342{124k k ωω≥-≤+,注意到22T π≥,即02ω<≤,所以取0k =,得104ω<≤.考点:函数()sin()f x A x ωϕ=+的图象与性质.【方法点晴】已知函数()sin()4f x x πω=+为单调递增函数,可得变量x 的取值范围,其必包含区间(,)2ππ,从而可得参数ω的取值范围,本题还需挖掘参数ω的隐含范围,即函数()f x 在(,)2ππ上单调递增,可知T π≥,因此02ω<≤,综合题设所有条件,便可得到参数ω的精确范围.17【分析】先判断接下来扇形的半径,再求其围成圆锥的底面半径和高,最后代入求体积即可.【详解】接下来的一个扇形半径为358R =+=,故围成的圆锥母线长为8l =因为扇形的圆心角为90°,所以其弧长为π84π2L R α==⋅=,也即底面圆周长2π4πC r ==所以底面圆半径为2r =,则圆锥的高为h =所以圆锥的体积为21π3V r h ==空白公式+ 18.(1)π3C =【分析】(1)根据正弦定理与余弦定理即可得tan C =C 的值;(2)根据向量共线定理可得1233CD CB CA =+,利用向量的模长运算即可得CD 的长度.【详解】(1)解:由正弦定理sin sin a b A B =得:sin sin B b A a =,因为)2222sin sin sin 2a b c a B C A +-=所以)2222sin 2a b c a b C a +-=,即)222sin 2a b c ab C +-=又由余弦定理得222cos 2a b c C ab +-=,则)222sin 2a b c C C ab+-==化简得tan C =()0,πC ∈,所以π3C =. (2)解:由13A A D B =可得1233CD CB CA =+ 所以222212142||233999CD CB CA a b CB CA ⎛⎫=+=++⨯⋅ ⎪⎝⎭41002π124225cos 99939=++⨯⨯⨯⨯=∴231||3CD =CD . 19.(1)填表见解析(2)没有【分析】(1)根据题意求出年龄低于40岁的人数,再结合列联表中数据即可完成列联表;(2)求出2K,再对照临界值表,即可得出结论.【详解】(1)年龄低于40岁的有100060%600⨯=人完成的列联表如下:(2)221000(6054060340)1255.6826.63560040088012022K⨯-⨯==≈<⨯⨯⨯∴没有99%的把握认为遵守佩戴安全头盔与年龄有关.20.(1)证明见解析(2)设平面1DBC 的法向量为(),,n x y z =,则10,0,n BD n BC ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x y z y z -+=⎧⎨-+=⎩取1z =,则()1,2,1n =. 取AB 的中点G ,连接CG .由1AC BC ==得CG AB ⊥.在直三棱柱111ABC A B C 中1AA ⊥平面ABC ,CG ⊂平面ABC ,所以1AA ⊥CG又1AB AA A ⋂=,1,AB AA ⊂平面11ABB A ,所以CG ⊥平面11ABB A .所以11,,022CG ⎛⎫= ⎪⎝⎭为平面11ABB A 的一个法向量 ||cos ,|126|||CG n CG n CG n ⋅〈+⨯〉===易得二面角1A BD C --为钝角,故二面角1A BD C --的余弦值为. 21.(1)单调递增区间为(),0∞-,单调递减区间为()0,∞+(2)2e 1,4⎛⎫-+∞ ⎪⎝⎭【分析】(1)求出函数的导函数,利用导函数与原函数单调性的关系即可求解;(2)求出导函数,讨论单调性,求出极值即可求解.【详解】(1)若0a =,则()e x f x x =-,∴()1e x f x '=-.令0fx ,得0x <;令()0f x '<,得0x >.∴函数()f x 的单调递增区间为(),0∞-,单调递减区间为()0,∞+.(2)当0x ≠时方程()1f x =等价于2e 1x x a x-+= 令()2e 1x x g x x -+=,则()()()32e 1x x g x x-'+=. 当()0g x '>时则0x <或2x >,()g x 在(),0∞-,()2,+∞上单调递增;当()0g x '<,则02x <<,()g x 在()0,2上单调递减.当x →-∞时()0g x →;当0x →时()g x ∞→+;当2x =时()2e 1204g -=>;当x →+∞时()g x ∞→+. 综上,实数a 的取值范围为2e 1,4⎛⎫-+∞ ⎪⎝⎭. 22.(1)2214x y +=(2)4y =+【分析】(1)根据题意列出关于,a b 的方程,求得其值,即得答案.(2)设直线l 方程,与椭圆方程联立,可得根与系数的关系式,结合90EOF ∠=︒可得12120x x y y +=,化简求值,求得k 的值,即得答案.【详解】(1)由题意知()0,M b (,0),(,0)A a B a -2c =c 22001004MA MBb b b k k a a a --⋅=⋅=-=-+- ∴2214b a = ∵223a b =+ ∴24a =,21b = ∴椭圆C 的方程为2214x y +=. (2)由已知过点()0,4D 满足题意的直线l 的斜率存在,设:4l y kx =+ 联立22144x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 得()221432600k x kx +++=()()222322401464240k k k ∆=-+=-,令0∆>,解得2154k >. 设()11,E x y ,()22,F x y ,则1223214k x x k +=-+ 1226014x x k =+∵90EOF ∠=︒,∴0OE OF ⋅=,即12120x x y y +=∴()()2121214160k x x k x x ++++=,∴()222215132401414k k k k ⨯+-+=++解得k =2154k >∴直线l 的方程为4y =+.23.(1)2x = 2240x y y +-=【分析】(1)利用极坐标方程和直角坐标方程的转化关系即可;(2)利用极坐标方程的几何意义和三角形的面积公式即可.【详解】(1)因为cos 2ρθ=,所以2x =即直线1l 的直角坐标方程为2x =.由4sin ρθ=,得24sin ρρθ=代入公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得224x y y += 所以曲线C 的直角坐标方程为2240x y y +-=.(2)设点A ,B 的极坐标分别为()1,ρα和()2,ρα 由题意可得12cos ρα=与24sin ρα=.则128tan 16OA OB ρρα⋅===+tan 2α=因为π02α<<,所以sin α=cos α=πππ1sin sin cos cos sin 4442ααα⎛⎫-=-= ⎪⎝⎭则24sin ρα=因为点P 的极坐标为π4,4⎛⎫ ⎪⎝⎭故1π4sin 24POB S α⎛⎫=⨯⨯-= ⎪⎝⎭△ 24.(1)()1,+∞(2)证明见解析【分析】(1)分0x ≥、0x <两种情况解不等式()21f x x <-,综合可得出原不等式的解集;(2)由绝对值三角不等式可得出1m =,由此可得出()()1a b b c +++=,将代数式11+++a b b c 与()()a b b c +++相乘,展开后利用基本不等式可证得结论成立.【详解】(1)解:由()21f x x <-可得21x x <-当0x ≥时则有21x x <-,解得1x >,此时1x >;当0x <时则有21x x -<-,解得13x >,此时x ∈∅. 综上所述,不等式()21f x x <-的解集为()1,+∞.(2)解:由绝对值三角不等式可得()()2212211g x x x x x =+-≥--=当且仅当021x ≤≤时即当102x ≤≤时等号成立,故1m = 所以()()21a b b c a b c +++=++=又因为a 、b 、c 均为正数 所以,()()11112a b b c a b b c a b b c a b b c b c a b ++⎛⎫⎡⎤+=++++=++ ⎪⎣⎦++++++⎝⎭24≥+= 当且仅当12a b b c +=+=时等号成立,故114a b b c+≥++.。
高三模拟数学试卷理科答案
![高三模拟数学试卷理科答案](https://img.taocdn.com/s3/m/ab67f35b02d8ce2f0066f5335a8102d277a26116.png)
1. 答案:D解析:根据三角函数的性质,sin(π - α) = sin α,cos(π - α) = -cos α,tan(π - α) = -tan α。
因此,选项D正确。
2. 答案:A解析:函数f(x) = |x - 2|在x = 2处取得最小值0,故A正确。
3. 答案:B解析:根据指数函数的性质,若a > 1,则a^x在x递增;若0 < a < 1,则a^x在x递减。
故B正确。
4. 答案:C解析:根据数列的性质,数列{an}是等差数列,且an > 0。
则an + 1 = an +d > 0,故C正确。
5. 答案:A解析:根据立体几何的性质,若AB垂直于平面PQ,则AB垂直于PQ上的任意一条直线。
故A正确。
二、填空题6. 答案:π/2解析:由题意知,△ABC为直角三角形,∠BAC = π/2,故∠ABC = π/2 -∠ACB = π/2。
7. 答案:-1/2解析:根据等比数列的性质,an = a1 r^(n-1),则a5 = a1 r^4,a6 = a1 r^5。
由题意知a5/a6 = -1/2,代入an的表达式得r = -1/2。
8. 答案:2解析:由题意知,直线l的方程为2x - 3y + 4 = 0。
设点P的坐标为(x, y),则P到直线l的距离d = |2x - 3y + 4| / √(2^2 + 3^2) = |2x - 3y + 4| / 5。
由题意知d = 2,代入得|2x - 3y + 4| = 10。
解得x = 3,y = 2。
9. 答案:(1)f(x) = 2x^3 - 3x^2 + 2(2)f'(x) = 6x^2 - 6x(3)当x = 0时,f(x)取得极小值f(0) = 2;当x = 1时,f(x)取得极大值f(1) = 1。
10. 答案:(1)设圆心为O,则圆O的方程为(x - a)^2 + (y - b)^2 = r^2。
高三数学(理科)模拟试卷及答案3套
![高三数学(理科)模拟试卷及答案3套](https://img.taocdn.com/s3/m/399d8f74763231126edb11ca.png)
高三数学(理科)模拟试卷及答案3套模拟试卷一一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2,}xA y y x ==∈R ,{|lg(2)}B x y x ==-,则A B =I ( ) A .(0,2)B .(,2]-∞C .(,2)-∞D .(0,2]2.若复数z 满足(i 1)2i z -=(i 为虚数单位),则z 为( ) A .1i +B .1i -C .1i -+D .1i --3.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”,如图是某市3月1日到12日AQI 的统计数据,则下列叙述正确的是( )A .这12天的AQI 的中位数是90B .12天中超过7天空气质量为“优良”C .从3月4日到9日,空气质量越来越好D .这12天的AQI 的平均值为1004.已知平面向量(2,3)=a ,(,4)x =b ,若()⊥-a a b ,则x =( ) A .1B .12C .2D .35.某围棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加围棋比赛,则选出的2人中有女队员的概率为( ) A .103 B .35C .45D .7106.已知m ,n 表示两条不同的直线,α表示平面,下列说法正确的是( ) A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥7.函数π()3sin(2)(||)2f x x ϕϕ=+<的图象向左平移π6个单位长度后,所得到的图象 关于原点对称,则ϕ等于( ) A .π6B .π6-C .π3D .π3-8.下图是某实心机械零件的三视图,则该机械零件的表面积为( )A .662π+B .664π+C .662π-D .664π-9.函数2()ln(1)f x x x =+-的图象大致是( )A .B .C .D .10.正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 3, 则四面体ABCD 外接球的表面积为( ) A .6πB .7πC .8πD .9π11.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =一个交点;③函数sin y x =与2y x =的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题的个数为( )A .1B .2C .3D .412.若函数2(1)()f x x x ax b =-++()的图象关于点(2,0)-对称,1x ,2x 分别是()f x 的 极大值点与极小值点,则21x x -=( ) A .3- B .23C .23-D .3二、填空题:本大题共4小题,每小题5分.13.在ABC △中,若13AB =,3BC =,120C ∠=︒,则AC =_____.14.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=u u u r u u u r_____.15.在4(1)x x ++的展开式中,2x 项的系数为________(结果用数值表示). 16.定义在正实数上的函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{0.2}1=,{1.6}2=,当(0,]x n ∈,n ∈*N 时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)如图,在平面四边形ABCD 中,23AB =,2AC =,90ADC CAB ∠=∠=︒,设DAC θ∠=. (1)若60θ=︒,求BD 的长度; (2)若30ADB ∠=︒,求tan θ.18.(12分)为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.(1)求这4000名考生的平均成绩x (同一组中数据用该组区间中点值作代表);(2)由直方图可认为考生考试成绩z 服从正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人? (3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =,204.7514.31≈;②2~(,)z N μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501≈.19.(12分)如图,三棱柱111ABC A B C -中,111160B A A C A A ∠=∠=︒,14AA AC ==,2AB =,P ,Q 分别为棱1AA ,AC 的中点.(1)在BC 上确定点M ,使AM ∥平面1PQB ,并说明理由; (2)若侧面11ACC A ⊥侧面11ABB A ,求直线11C A 与平面1PQB 所成角的正弦值.20.(12分)已知两直线方程1:l y x =与2:2l y x =-,点A 在1l 上运动,点B 在2l 上运动,且线段AB 的长为定值.(1)求线段AB 的中点C 的轨迹方程;(2)设直线:l y kx m =+与点C 的轨迹相交于M ,N 两点,O 为坐标原点, 若54OM ON k k ⋅=,求原点O 到直线l 的距离的取值范围.21.(12分)已知函数2(1)211()()22x f x e x e f x -'=-+⋅. (1)求()f x 的单调区间;(2)若存在1x ,212()x x x <,使得12()()1f x f x +=,求证:122x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα⎧=⎪⎨=+⎪⎩(α为参数),直线2C 的方程为y x =,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 的极坐标方程;(2)若直线2C 与曲线1C 交于P ,Q 两点,求||||OP OQ ⋅的值.23.(10分)【选修4-5:不等式选讲】 已知函数()|||22|(0)f x x m x m m =--+>. (1)当1m =时,求不等式()1f x ≥的解集;(2)若x ∀∈R ,t ∃∈R ,使得()|1||1|f x t t +-<+,求实数m 的取值范围.答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】D8.【答案】B9.【答案】B10.【答案】B11.【答案】C12.【答案】C二、填空题:本大题共4小题,每小题5分.13.【答案】114.【答案】215.【答案】1916.【答案】(1)2n n+三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)19;(2)233.【解析】(1)由题意可知,1AD=,在ABD△中,150DAB∠=︒,23AB=,1AD=,由余弦定理可知,2223(23)12231()19BD=+-⨯⨯⨯-=,19BD=.(2)由题意可知,2cosADθ=,60ABDθ∠=︒-,在ABD△中,由正弦定理可知,sin sinAD ABABD ADB=∠∠,∴2cos43sin(60)θθ=-,∴2tan33θ=.18.【答案】(1)70.5x=分;(2)约635人;(3)0.499.【解析】(1)由题意知:∴450.1550.15650.2750.3850.15950.170.5x=⨯+⨯+⨯+⨯+⨯+⨯=,∴4000名考生的竞赛平均成绩x为70.5分.(2)依题意z服从正态分布2(,)Nμσ,其中70.5xμ==,2204.75Dσξ==,14.31σ≈,∴z服从正态分布22(,)(70.5,14.31)N Nμσ=,而()(56.1984.81)0.6826P z P zμσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分(含84.81分)的人数估计为0.158********.8⨯=人635≈人. (3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ~,∴444(3)1(4)1C 0.841310.5010.499P P ξξ≤=-==-⋅≈-=.19.【答案】(1)详见解析;(2. 【解析】(1)取1BB 中点E ,连结AE ,BQ ,在1BB Q △中,取H 为BQ 中点,连接,EH AH ,则1EH B Q ∥, 延长AH 与BC 交于点M ,则M 即为所求点,11ABB A 为平行四边形,点E ,P 为中点,则1AE PB ∥,由线面平行的判定定理可得AE ∥平面1PQB , 同理可得,EH ∥平面1PQB , 又AE EH E =I ,111B P B Q B =I ,据此可得平面AME ∥平面1PQB ,故AM ∥平面1PQB . (2)作QO ⊥平面11ABB A ,与1A A 延长线交于O ,则1AO =,QO =1OB ==1QB =,∵12B P =,PQ =1cos QPB ∠==,∴1sin QPB ∠=,∴112242PQB S ⨯==⨯△.作11PN C A ∥,则直线11AC 与平面1PQB 所成角即直线PN 与平面1PQB 所成角,∵142PQN S =⨯=△1123B PQN V -=⨯=.设N 到平面1PQB 的距离为h ,则1232h ⨯=,∴h =,∴直线11A C 与平面1PQB 所成角的正弦值为39413h =.20.【答案】(1)2214x y +=;(2)214[0,7. 【解析】(1)∵点A 在12:2l y x =上运动,点B 在22:2l y x =-上运动, ∴设112()A x x ,222(,)B x x , 线段AB 的中点(,)C x y ,则有122x x x +=,1222222x x y =,∴122x x x +=,1222x x -=, ∵线段AB 的长为定值2222121222()()822x x x x -++=, 即22(22)2)8x +=,化简得2214x y +=, ∴线段AB 的中点C 的轨迹方程为2214x y +=. (2)设33(,)M x y ,44(,)N x y ,联立2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得222(41)8440k x kmx m +++-=,222(8)4(41)(44)0Δkm k m =-+->,化简得2241m k <+①,则342841kmx x k +=-+,23424441m x x k -=+, 2234343434()()()y y kx m kx m k x x km x x m =++=+++,若54OM ON k k ⋅=,则343454y y x x =,即343445y y x x =,所以2234343444()45k x x km x x m x x +++=,即22222448(45)4()404141m km k km m k k --+-+=++,化简得2254m k +=②, 由①②得2605m ≤<,215204k <≤, 因为O 到直线l的距离d =,所以2222225941114(1)km d k k k -===-++++, 又因为215204k <≤,所以2807d ≤<, 所以O 到直线l的距离的取值范围是[0,7. 21.【答案】(1)函数()f x 在R 上单调递增;(2)证明见解析. 【解析】(1)2(1)1()2()2x f x e x e f -''=-+⋅, 令12x =,则111()1()22f e f e ''=-+⋅,解得11()2f e'=,∴2(1)()21x f x ex -'=-+, 令2(1)()21x h x ex -=-+,2(1)11()222(1)(1)x x x h x e e e ---'=-=+-,∴1x =时,函数()f x '取得极小值即最小值,∴()(1)0f x f ''≥=, ∴函数()f x 在R 上单调递增. (2)由(1)可得:函数2(1)21()2x f x e x x -=-+在R 上单调递增. 要证明:12121222()(2)x x x x f x f x +<⇔<-⇔<-,又12()()1f x f x +=,因此1222()(2)1()(2)f x f x f x f x <-⇔-<-,即22()(2)10f x f x +-->,11(1)1122f =-+=,则121x x <<, 令2(1)22(1)211()(2)()1(2)2122x x g x f x f x e x x e x x --=-+-=--+-+-+-2(1)2(1)21124322x x e e x x --=+-+-, 1x >,(1)0g =,2(1)2(1)()44x x g x e e x --'=-+-+,令2(1)2(1)()44x x x ee x ϕ--'=-+-+,2(1)2(1)()2240x x x e e ϕ--'=+-≥,∴()g x '在(1,)+∞上单调递增.∴()(1)0g x g ''>=,∴函数()g x 在(1,)+∞上单调递增. ∴()(1)0g x g >=,因此结论122x x +<成立.22.【答案】(1)2cos 4sin 30ρθρθ--+=;(2)3. 【解析】(1)曲线1C的普通方程为22((2)4x y +-=, 则1C的极坐标方程为2cos 4sin 30ρθρθ--+=.(2)设1(,)P ρθ,2(,)Q ρθ, 将π6θ=代入2cos 4sin 30ρθρθ--+=,得2530ρρ-+=, 所以123ρρ=,所以||||3OP OQ ⋅=. 23.【答案】(1)2[2,]3--;(2)01m <<.【解析】(1)当1m =时,1|1||22|131x x x x ≤-⎧--+≥⇔⎨+≥⎩或11311x x -<<⎧⎨--≥⎩或131x x ≥⎧⎨--≥⎩,解得223x -≤≤-,所以原不等式的解集为2[2,]3--. (2)()|1||1|()|1||1|f x t t f x t t +-<+⇔<+--对任意x ∈R 恒成立,对实数t 有解.∵3,()3,3,x m x m f x x m m x m x m x m +≤-⎧⎪=---<<⎨⎪--≥⎩,根据分段函数的单调性可知:x m =-时,()f x 取得最大值()2f m m -=, ∵||1||1|||(1)(1)|2t t t t +--≤+--=,∴2|1||1|2t t -≤+--≤,即|1||1|t t +--的最大值为2, 所以问题转化为22m <,解得01m <<.模拟试卷二考试时量:120分钟 试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合{}{}22|log (2),|320A x y x B x x x ==-=-+<,则A C B =A .(,1)-∞B .(,1]-∞C .(2,)+∞D .[2,)+∞2. 设i 为虚数单位,若()2a iz a R i-=∈+是纯虚数,则a = A .12 B . 12- C .1 D .1- 3. 已知某超市2019年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是A .该超市2019年的12个月中的7月份的收益最高B .该超市2019年的12个月中的4月份的收益最低C .该超市2019年1~6月份的总收益低于2019年7~12月份的总收益D .该超市2019年7~12月份的总收益比2019年1~6月份的总收益增长了90万元 4.已知3sin()32πα-=2020cos()3πα+= A 23.23.12D .12-5. 已知12121ln ,2x x e -==,3x 满足33ln x e x -=,则A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x <<6. 函数2()1sin 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是A B C D7.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米,……所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为A .410190-米B .5101900-米C .510990-米D .4109900-米8.已知函数()2sin()(0,0),()2,()082f x x f f ππωϕωϕπ=+><<==,且()f x 在(0,)π上单调.则下列说法正确的是 A .12ω=B .62()82f π-= C .函数()f x 在[,]2ππ--上单调递增 D .函数()f x 的图象关于点3(,0)4π对称 9.在AOB ∆中,OA a OB b ==u u u r r u u u r r ,,满足||2a b a b ⋅=-=r r r r,则AOB ∆的面积的最大值为3 B. 2C. 232210.已知双曲线C :22221(0,0)x y a b a b-=>>,12,F F 分别为其左、右焦点,O 为坐标原点,若点2F 关于渐近线的对称点恰好落在以1F 为圆心,1OF 为半径的圆上,则C 的离心率是 A 2 B 3.2 D .311. 在正方体1111ABCD A B C D -中,P ,Q 分别为1AD ,1B C 上的动点,且满足1AP B Q =,则下列4个命题中: ①存在P ,Q某一位置,使AB PQ ∥; ②BPQ V 的面积为定值;③当0PA >时,直线1PB 与直线AQ 一定异面;④无论P ,Q 运动到何位置,均有BC PQ ⊥. 其中所有正确命题的序号是A. ①②④B. ①③④C. ①③D. ②④12.若函数12()2log (0)x x f x ex a a -=+->在区间(0,2)内有两个不同的零点,则实数a的取值范围是A. 22)e B. (0,2]C. 222)e + D. 3424(2,2)e +二、填空题(本大题共4小题,每小题5分,共20分. 把答案填在答题卡中的横线上) 13.若25(ax 的展开式中5x 的系数为80-,则实数a =__ __. 14.在菱形ABCD 中,060DAB ∠=,将这个菱形沿对角线BD 折起,使得平面DAB ⊥平 面BDC ,若此时三棱锥A BCD -的外接球的表面积为5π,则AB 的长为 . 15.已知数列{}n a 满足11a =,135n n a a n ++=+,*n N ∈,则(1)21n a -= , (2)2111(1)i i ni i a a +=+-=∑ .16.如图,衡阳市有相交于点O 的一条东西走向的公路l 与一条南北走向的公路m ,有一商城A 的部分边界是椭圆的四分之一,这两条公路为椭圆的对称轴,椭圆的长半轴长为2,短半轴长为1(单位:千米). 根据市民建议,欲新建一条公路PQ ,点,P Q 分别在公路,l m 上,且要求PQ 与椭圆形商城A 相切,当公路PQ 长最短时,OQ 的长为________千米.Q三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤) (一)必考题:60分.17.(本小题满分12分) 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan(sin 2cos )cos 2222A C A C a b a+=. (1)求角B 的值;(2)若△ABC 的面积为D 为边AC 的中点,求线段BD 长的最小值.18.(本小题满分12分) 已知正方形ABCD ,E ,F 分别为AB ,CD 的中点,将△ADE 沿DE 折起,使△ACD 为等边三角形,如图所示,记二面角A-DE-C 的大小为(0)θθπ<<.(1)证明:点A 在平面BCDE 内的射影G 在直线EF 上; (2)求角θ的正弦值.EE19.(本小题满分12分) 如图,已知椭圆2222:1(0)x y C a b a b+=>>的长轴12A A 长为4,过椭圆的右焦点为F 作斜率为(0)k k ¹的直线交椭圆于B ,C 两点,直线12,BA BA 的斜率之积为34-.1)求椭圆C 的方程;2)已知直线:4l x =,直线11,A B A C 分别与l 相交于,N 两点,设E 为线段MN 的中点,求证:BC EF ^20.(本小题满分12分)已知函数()e sin )(2()2xf x x a R ax π=--∈+.(1)当1a =时,求函数()f x 在区间[,]ππ-上的值域; (2)对于任意120x x π<<<,都有2121()()22x x f x f x a e e π->---,求实数a 的取值范围.21. (本小题满分12分) 随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)300万人; (2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。
高三下学期数学(理科)模拟考试卷-附参考答案
![高三下学期数学(理科)模拟考试卷-附参考答案](https://img.taocdn.com/s3/m/1aa1e4b1690203d8ce2f0066f5335a8102d2662f.png)
高三下学期数学(理科)模拟考试卷-附参考答案注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上.2.回答选择题时,则选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,则将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{220,M xx x N x y =--<==∣∣,则M N ⋃=( ) A.(],e ∞- B.()0,2 C.(]1,e - D.()1,2- 2.已知复数z 满足()12i 34i z -=-,则z 的共轭复数z =( )A.12i --B.12i -+C.12i -D.12i +3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.若随机抽取一人进行验血,则其诊断结果为阳性的概率为( )A.0.46B.0.046C.0.68D.0.0684.过抛物线2:4C y x =焦点F 的直线交抛物线C 于()()1122,,,A x y B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r ,点1O 到C 的准线l 的距离与r 的积为25,则()12r x x +=( )A.40B.30C.25D.205.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,则竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间t (*t ∈N )(单位:周)近似满足函数关系式()eat bt ρ+=,则该文化娱乐场所的甲醛浓度若要达到安全开放标准,竣工后至少需要放置的时间为( ) A.5周 B.6周 C.7周 D.8周6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A.14 B.4 C.12 D.27.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P .若12MF PF =,则双曲线C 的离心率为( )8.在ABC 中90,4,,A AB AC P Q ===是平面ABC 上的动点,且2AP AQ PQ ===,M 是边BC 上一点,则MP MQ ⋅的最小值为( )A.1B.2C.3D.4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的有( )A.若随机变量,ξη满足21ηξ=+,则()()21D D ηξ=+B.若随机变量()23,N ξσ~,且(6)0.84P ξ<=,则(36)0.34P ξ<<=C.若样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强D.按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n .若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=10.2022年12月,神舟十四号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含,M N 点)组成的“曲圆”,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A.椭圆的离心率为12B.AFG 的周长为6+C.ABF 面积的最大值是92D.线段AB长度的取值范围是6,3⎡+⎣11.如图,四棱柱1111ABCD A B C D -的底面是边长为1AA ⊥底面ABCD ,三棱锥1A BCD -的体积是3,底面ABCD 和1111A B C D 的中心分别是O 和1,O E 是11O C 的中点,过点E 的平面α分别交11111,,BB B C C D 于点,,F N M ,且BD ∥平面,G α是线段MN 上任意一点(含端点),P 是线段1A C 上任意一点(含端点),则( )A.侧棱1AAB.四棱柱1111ABCD A B C D -的外接球的表面积是40πC.当1125B F BB =时,则平面α截四棱柱所得的截面是六边形 D.PO PG +的最小值是512.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A.0a b +>B.0c d +>C.0a d +>D.0b c +>三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点5t ⎛⎫ ⎪ ⎪⎝⎭,则sin 22πα⎛⎫+= ⎪⎝⎭__________. 14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++,则1a =__________.15.已知函数()()2e 2ln x f x k x x x =+-和()2e xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则实数k 的最大值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1,1,2,3,k k A f A k +==,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平面四边形ABCD中3,,sin AC AB DAC BAC BAC ∠∠∠====.(1)求边BC ; (2)若23CDA π∠=,求四边形ABCD 的面积. 18.(本小题满分12分)在各项均为正数的数列{}n a 中()21112,2n n n n a a a a a ++==+. (1)求数列{}n a 的通项公式; (2)若n b =,数列{}n b 的前n 项和为n S ,证1n S <19.(本小题满分12分)2023年3月某学校举行了普通高中体育与健康学业水平合格性考试,考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,,F F P 是椭圆上一动点(与左、右顶点不重合),12PF F的内切圆半径的最大值是312.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.21.(本小题满分12分)在三棱台111A B C ABC -中1AA ⊥平面111111,2,1,ABC AB AC AA A B AB AC ====⊥,E F 分别是1,BC BB 的中点,D 是棱11A C 上的动点.(1)求证:1AB DE ⊥(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.22.(本小题满分12分)已知函数()ln 1f x x ax =-+有两个零点12,x x ,且122x x >. (1)求实数a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+>⎪⎝⎭参考答案1.【答案】C 解析:2201,2M xx x =--<=-∣,由1ln 0x -,得0e x <,则{0,e]N x y ===∣,所以(]1,e M N ⋃=-.故选C.2.【答案】C 解析:因为()12i 34i 5z -=-==,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z =-.故选C. 3.【答案】D 解析:设随机抽取一人进行验血,其诊断结果为阳性为事件A ,设随机抽取一人为患者为事件B ,随机抽取一人为非患者为事件B ,则()()()()()0.980.050.020.95P A P A B P B P A B P B =+=⨯+⨯=∣∣0.068.故选D.4.【答案】A 解析:由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为()121252x x r ++==,则有128x x +=,故()1240r x x +=.故选A.5.【答案】B 解析:由题意可知()()()()32341e6.25,3e 1,e 125a ba b a ρρρρ++======解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安全开放标准,则()()0001102e e e6.255t a t at b a b t ρ--++⎛⎫==⋅=⨯ ⎪⎝⎭0.1,整理得01562.52t -⎛⎫ ⎪⎝⎭.设1562.52m -⎛⎫= ⎪⎝⎭ 因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m --,即0t m 故竣工后至少需要放置的时间为6周.故选B.6.【答案】D 解析:设圆柱和圆锥底面半径分别为,r R ,因为圆锥轴截面的顶角为直,设圆柱高为h ,则,h R r h R r R R-==-,由题意得()222R r r R r πππ⨯=+⨯-,解得2r R=.故选D .7.【答案】D 解析:设1(2)MF t t a =>,由双曲线的定义可得22MF t a =-,又21PF MF t == 则12PF t a =+,由12MF MF ⊥,可得22211||MF MP PF +=,即222(22)(2)t t a t a +-=+,解得3t a =.又2221221MF MF F F +=,即222(3)4a a c +=即c =,所以c e a ==.故选D.8.【答案】B 解析:取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-,可得()()2221,MP MQ MN NP MN NP MN NP MN MN MA AN MA AN ⋅=+⋅-=-=-=+-当且仅当点N 在线段AM 上时,则等号成立,故|||||||||||3|MN MA AN MA -=-显然当AM BC ⊥时,则MA 取到最小值|||||3||233|MN MA ∴--=故21312MP MQ MN ⋅=--=.故选B.9.【答案】BC 解析:对于A ,由方差的性质可得()()()224D D D ηξξ==,故A 错误;对于B ,由正态密度曲线的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由样本相关系数知识可得,样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372m +,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30,3777,22n m =⎧⎪⎨+=⎪⎩解得30,40,n m =⎧⎨=⎩故70m n +=,故D 错误.故选BC. 10.【答案】BD 解析:由题知,椭圆中的几何量3b c ==,所以a =则离心率2c e a ===故A 不正确;因为3AB OB OA OA =+=+由椭圆性质可知332OA ,所以6332AB +故D 正确;设,A B 到y 轴的距离分别为12,d d则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+当点A在短轴的端点处时,则12,d d 同时取得最大值3,故ABF 面积的最大值是9,故C 不正确;由椭圆定义知2AF AG a +==AFG 的周长6AFGCFG =+=+B 正确.故选BD.11.【答案】BCD 解析:对于选项A ,因为三棱锥1A BCD -的体积111323V AA=⨯⨯=解得1AA=A错误;对于选项B,外接球的半径满足22221440R AB AD AA=++=故外接球的表面积2440S Rππ==,故选项B正确;对于选项D,因为BD∥平面1111,,BD B D B Dα⊄∥平面α,所以11B D∥平面α,又平面1111A B C D⋂平面11,MN B Dα=⊂平面1111A B C D,所以11B D MN∥,又因为四边形1111A B C D是正方形1111A CB D⊥,所以11AC MN⊥,因为侧棱1AA⊥底面1111,A B C D MN⊂底面1111A B C D 所以1AA MN⊥,又1111AC AA A⋂=,所以MN⊥平面11AAC C,垂足是E,故对任意的G,都有PG PE,又因为1111114OO O E AC===,故215PO PG PO PE OE OO++==,故选项D正确;对于选项C,如图,延长MN交11A B的延长线于点Q,连接AQ交1BB于点F,在平面11CC D D内作MH AF∥交1DD于点H,连接AH,则平面α截四棱柱所得的截面是五边形AFNMH,因为1112B Q B N AB==,所以此时1113B FBB=,故11113B FBB<<时截面是六边形,1113B FB<时截面是五边形,故选项C正确.故选BCD.12.【答案】AD 解析:对于A,e e1.010,1,111a ba ba b==>∴>->-++令()e(1)1xf x xx=>-+则()2e1)xxf xx=+'所以()f x在()1,0-上单调递减,在()0,∞+上单调递增,且()01f=,又()1 1.01f>故01,10a b<<-<<令()()()()()()ln ln2ln1ln1,1,1h x f x f x x x x x=--=-++-+∈-,则()2112220111h xx x x-=-+=-<+-+-',所以()h x在()1,1-上单调递减,且()()00,1,0h b=∈-()()()()()()ln ln0,,,f b f b f b f b f af b a b∴-->∴>-∴>-∴>-即0a b+>,故选项A 正确;对于B ,()()1e 1e 0.990,1,1c d c d c d -=-=>∴<< 令()()1e (1)x g x x x =-<,则()e x g x x '=-,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,且()01g =,又()10.99g -<,故01,10c d <<-<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-,所以()m x 在()1,1-上单调递减,且()()()()()()00,0,1,ln ln 0,m c g c g c g c g c =∈∴--<∴<- ()(),g d g c d c ∴<-∴<-,即0c d +<,故选项B 错误;对于C ,()()()()()()()11100,0.99,1,0,101f xg a a g a g d g x f a =∴-==>-∈-∴->- 又()g x 在(),0∞-上单调递增 ,0a d a d ∴->∴+< 故选项C 错误;对于D ,由C 可知 ()()(),0,1g b g c b ->-∈ 又()g x 在()0,1上单调递减,b c ∴-< 即0b c +>,故选项D 正确.故选AD.13.【答案】35- 解析:因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,所以cos 3α=÷=223sin 2cos22cos 12125πααα⎛⎫+==-=⨯-=- ⎪⎝⎭⎝⎭. 14.【答案】74 解析:对于5(2)x -,其二项展开式的通项为515C (2)r r r r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)k k k k T x -+=- 令61k -=,得5k =,故5566C (1)6T x x =-=-,所以180674a =-=.15.【答案】2e 4 解析:由()2e x g x x =可得()()22442e e e 2x x x x x x x g x x x'-⋅-⋅==,当0x <或2x >时,则()0g x '>,当02x <<时,则()0g x '<,所以()g x 的极小值点是2.由()()2e 2ln xf x k x x x=+-可得()()()()432e 2e 12,0,xx x x k f x k x x x x x x ∞-⎛⎫⎛⎫=+-='--∈+ ⎪ ⎪⎝⎭⎝⎭,因为()f x 的唯一极值点为2,所以3e 0x k x x -或3e 0x k x x -恒成立,所以2e x k x 或2e xk x在()0,∞+上恒成立,因为()2e xg x x=在()0,2上单调递减,在()2,∞+上单调递增,当x ∞→+时,则()g x ∞→+,所以2e x k x 在()0,∞+上恒成立,则()2min e ()24k g x g ==.16.【答案】1103k -⨯ 解析:设数列k A 中0的个数为,1k a 的个数为k b ,则112,2k k k k k k a a b b a b ++=+=+,两式相加,得()113k k k k a b a b +++=+,又115,a b +=∴数列{}k k a b +是以5为首项,3为公比的等比数列153k k k a b -∴+=⨯两式相减,得17.【答案】解:(1)因为sin 14BAC BAC ∠∠=为锐角,所以cos 14BAC ∠==.因为3AC AB ==,在ABC 中由余弦定理得2222cos BC AC AB AC AB BAC ∠=+-⋅⋅即279231BC =+-=,得1BC =. (2)在ADC 中由正弦定理得sin sin CD AC DAC ADC∠∠==,所以1CD =.在ADC 中由余弦定理得222cos 2AD CD AC ADC AD CD ∠+-=⋅,即211722AD AD+--=,解得2AD =.因为121331273,12sin 214423ABCACDSS π=⨯⨯⨯==⨯⨯⨯=所以34ABCACDABCD S SS=+==四边形. 18.【答案】解:(1)()()()211112,20n n n n n n n n a a a a a a a a ++++=+∴-+=,则120n n a a +-=或10n n a a ++= 10,2n n n a a a +>∴=∴数列{}n a 为等比数列,公比为12,2,a =∴数列{}n a 的通项公式为2n n a =.(2)证明:由(1)得112,2n n n n a a ++==则n b ======∴数列{}n b 的前n项和为11n S n =+-=-1n S ∴<当2n时,则10,n n n S S b --===>∴当*n ∈N 时,则{}n S 为递增数列1n S S ∴n S1n S <19.【答案】解:(1)当第一天训练的是“篮球运球上篮”且第三天训练的也是“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天训练的是“篮球运球上篮”为事件B . 由题知,3天的训练过程中总共的可能情况为32212⨯⨯=种 所以,()()12112111,126126P A P B ⨯⨯⨯⨯==== 所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)由题知,X 的可能取值为0,1,2,3考前最后6天训练中所有可能的结果有53296⨯=种当0X =时,则第一天有两种选择,之后每天都有1种选择,所以,()5521210329648P X ⨯====⨯; 当1X=时,则共有24444220+++++=种选择,所以()20519624P X ===; 当3X =时,则共有844824+++=种选择,所以()2413964P X ===; 所以()()()()5025210139648P X P X P X P X ==-=-=-=== 所以,X 的分布列为所以()1012324824484E X =⨯+⨯+⨯+⨯=. 20.【答案】解:(1)由题意知1,22c a c a =∴=,又222b a c =-,则,b =设12PF F 的内切圆半径为r ,则()()()121212112222PFF SPF PF F F r a c r a cr =++⋅=+⋅=+⋅. 故当12PF F 面积最大时,则r 最大,即点P 位于椭圆短轴顶点时r = )a c bc +=,把2,a c b ==代入,解得2,1a b c === 所以椭圆C 的方程为22143x y +=.(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 的方程为4x ty =+代入椭圆方程得()()()222223424360,Δ(24)1443414440t y ty t t t +++==-+=-> 设()()1122,,,A x y B x y ,则1212222436,3434t y y y y t t -+==++ 因此可得1223234x x t +=+ 所以AB 中点的坐标为221612,3434t t t -⎛⎫ ⎪++⎝⎭因为G 是ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知,B Q 关于x 轴对称,故()22,Q x y -AB 的垂直平分线方程为2216123434tt x y t t ⎛⎫--=+ ⎪++⎝⎭ 令0y =,得2434x t =+,即24,034G t ⎛⎫⎪+⎝⎭,所以2222431,3434t GF t t =-=++ 又AQ ==221234t t ==+ 故24AQ GF =,所以2AQGF 为定值,定值为4. 21.【答案】解:(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示 因为,E G 分别为,BC AB 的中点,所以EG AC ∥在三棱台111A B C ABC -中11AC AC ∥ 所以,11EG AC ∥,且11D A C ∈ 故1,,,E G A D 四点共面.因为1AA ⊥平面,ABC AG ⊂平面ABC ,所以1AA AG ⊥ 因为1111111,,AA A B AG AG A B AA AG ===⊥∥ 所以四边形11AA B G 是正方形,所以11AB AG ⊥. 又1111111111,,,AB AC AC AG A AC AG ⊥⋂=⊂平面1A DEG 所以1AB ⊥平面1A DEG .因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M ⋂=. 因为,F E 分别为1BB 和BC 的中点1B Q BE ∥,所以111B Q B FBE BF== 则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点. 又因为D 为11A C 的中点,且11A B DQ M ⋂=,则M 为11A C Q 的重心 所以1112233A M AB == 因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,AB AC AC AC ⊥∥,所以1AB AC ⊥. 又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B 所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直以A 为原点,1,,AC AB AA 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫ ⎪⎝⎭所以()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭. 设平面AMC 的法向量为()1,,n a b c =则1120,20,3n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩取3b =-,则()10,3,2n =-. 设平面AME 的法向量为()2,,n x y z =则220,20,3n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩取3y =-,可得()23,3,2n =-. 所以,12121213cos ,2213n n n n n n ⋅===⨯ 故平面AMC 与平面AME 夹角的余弦值为22. 22.【答案】解:(1)()ln 1f x x ax =-+的定义域为()()110,,ax f x a x x∞-+=='- 当0a 时,则()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,()f x 不可能有两个零点,故舍去;当0a >时,则令()0f x '>,解得10x a <<,令()0f x '<,解得1x a> 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减 所以max 11()ln f x f a a ⎛⎫==⎪⎝⎭. 要使()f x 有两个零点,则max 1()ln 0f x a=>,解得01a <<. 又22111444242ln 10,ln 1110e e e e a f a f a a a a a a ⎛⎫⎛⎫=-⋅+=-<=-+<-+=-< ⎪ ⎪⎝⎭⎝⎭所以当01a <<时,则()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫⎪⎝⎭上各有一个零点21,,x x 且122x x >,所以1122ln 10,ln 10,x ax x ax -+=⎧⎨-+=⎩由fx 的单调性知,当()21,x x x ∈时,则()0f x > 当()1,x x ∞∈+时,则()0f x <.因为2212x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+ 所以2ln2ax <,而22ln 1x ax +=,即2ln 1ln2x +<,所以220ex <<,而22ln 1x a x +=.令()ln 12,0,e x h x x x +⎛⎫=∈ ⎪⎝⎭,则()221ln 1ln x x h x x x -'--== 因为20,e x ⎛⎫∈ ⎪⎝⎭,所以2ln ln 0ex ->->,所以()0h x '> 所以()h x 在20,e ⎛⎫⎪⎝⎭上单调递增所以()2ln2eln22e 2eh x h ⎫<==⎪⎭,所以eln20,2a ⎛⎫∈ ⎪⎝⎭.(2)因为1220x x >>,所以22211212e e 2x x x x x x ⎛⎫⋅+⋅ ⎪⎝⎭,当且仅当12x x =时取等号 而1220x x >>,故222112e e x xx x ⎛⎫⋅+>⋅⎪⎝⎭要证222112e x x x x ⎛⎫⋅+>⎪⎝⎭2e 42⋅,即证1228e x x ,即证1228ln ln e x x 即证12ln ln 3ln22x x +-.设12x t x =,因为1220x x >>,所以2t > 由(1)得1122ln 1,ln 1,x ax x ax +=⎧⎨+=⎩,两式作差,化简得21ln ln ln 1,ln 1ln 11t tx x t t t =-=-+-- 所以122ln ln ln ln 21tx x t t +=+--. 令()2ln ln 2,21tg t t t t =+->-,则()2212ln (1)t t t g t t t '--=-. 令()212ln t t t t ϕ=--,则()()2222ln ,20t t t t tϕϕ'=---''=>,易知()t ϕ'在()2,∞+上单调递增故()()222ln20t ϕϕ'>'=->,所以()t ϕ在()2,∞+上单调递增,所以()()234ln20t ϕϕ>=->所以()g t 在()2,∞+上单调递增,所以()()23ln22g t g >=-,即12ln ln 3ln22x x +>-得证.所以不等式222112e x x x x ⎛⎫⋅+> ⎪⎝⎭.。
高考理科数学模拟试卷(含答案)
![高考理科数学模拟试卷(含答案)](https://img.taocdn.com/s3/m/b76016b9a1116c175f0e7cd184254b35eefd1abf.png)
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
高三理科数学模拟试卷答案
![高三理科数学模拟试卷答案](https://img.taocdn.com/s3/m/3d1acc7babea998fcc22bcd126fff705cd175c4e.png)
一、选择题(每小题5分,共50分)1. 若函数f(x) = 2x - 3在区间[1, 4]上单调递增,则f(x)的值域为()A. [-1, 5]B. [2, 7]C. [5, 9]D. [1, 7]答案:D解析:由于f(x) = 2x - 3是一次函数,其斜率为正,因此在整个定义域上单调递增。
在区间[1, 4]上,f(1) = -1,f(4) = 5,所以值域为[1, 5]。
2. 已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S10为()A. 110B. 120C. 130D. 140答案:B解析:等差数列的前n项和公式为Sn = n/2 (2a1 + (n - 1)d)。
代入a1 = 3,d = 2,n = 10,得S10 = 10/2 (23 + (10 - 1)2) = 120。
3. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是()A. 直线B. 圆C. 双曲线D. 双曲线的一支答案:A解析:|z - 1| = |z + 1|表示复数z到点(1, 0)和点(-1, 0)的距离相等,因此z在复平面上位于这两点连线的垂直平分线上,即直线x = 0。
4. 若函数f(x) = x^3 - 3x在区间[0, 2]上单调递减,则f(x)的极值点为()A. x = 0B. x = 1C. x = 2D. 无极值点答案:B解析:f'(x) = 3x^2 - 3。
令f'(x) = 0,得x = 1。
由于f''(x) = 6x,f''(1) = 6 > 0,所以x = 1是f(x)的极小值点。
5. 已知向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角余弦值为()A. 1/2B. 1/4C. 1/3D. 3/4答案:A解析:向量a与向量b的夹角余弦值为cosθ = (a·b) / (|a|·|b|)。
高三模考理科数学试卷答案
![高三模考理科数学试卷答案](https://img.taocdn.com/s3/m/fc119c3ff4335a8102d276a20029bd64783e62c6.png)
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. $\sqrt{4}$B. $\sqrt{3}$C. $\pi$D. $\frac{1}{2}$答案:B2. 函数$f(x)=2x+1$的图像与直线$y=3$的交点坐标是()A. $(1,3)$B. $(2,3)$C. $(1,2)$D. $(2,2)$答案:B3. 已知等差数列$\{a_n\}$中,$a_1=3$,$a_5=13$,则公差$d$为()A. 2B. 3C. 4D. 5答案:A4. 若$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,则$A^{-1}$为()A. $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$B. $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$C. $\begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$D. $\begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix}$答案:A5. 在平面直角坐标系中,点$P(2,3)$关于直线$y=x$的对称点坐标是()A. $(2,3)$B. $(3,2)$C. $(3,-2)$D. $(-2,3)$答案:B6. 若$|a|=3$,$|b|=5$,则$|a+b|$的最大值为()A. 8B. 10C. 12D. 15答案:B7. 函数$f(x)=x^3-3x^2+4x-1$在$x=1$处的导数为()A. 1B. 2C. 3D. 4答案:C8. 已知$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,则$|A|$的值为()A. 1B. 2C. 3D. 4答案:D9. 在$\triangle ABC$中,若$A=60^\circ$,$a=8$,$b=10$,则$c$的值为()A. $6\sqrt{3}$B. $4\sqrt{3}$C. $3\sqrt{3}$D. $2\sqrt{3}$答案:A10. 若$y=2^x$,则$\frac{dy}{dx}$为()A. $2^x\ln 2$B. $2^x$C. $2^x\ln 10$D. $2^x\ln e$答案:A二、填空题(每题5分,共50分)11. 若$f(x)=ax^2+bx+c$,且$f(1)=2$,$f(-1)=0$,$f(2)=6$,则$a+b+c=$______。
天津市高三模拟考试(理科)数学试卷-带答案解析
![天津市高三模拟考试(理科)数学试卷-带答案解析](https://img.taocdn.com/s3/m/f480af4f178884868762caaedd3383c4bb4cb481.png)
天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。
高考数学理科模拟试题(附答案)
![高考数学理科模拟试题(附答案)](https://img.taocdn.com/s3/m/bb99ba5976eeaeaad1f330eb.png)
高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。
1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。
高三模拟试卷理科数学答案
![高三模拟试卷理科数学答案](https://img.taocdn.com/s3/m/8b463fe4970590c69ec3d5bbfd0a79563c1ed494.png)
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数$f(x) = \sqrt{1-x^2}$的定义域为$\{x | -1 \leq x \leq 1\}$,则函数的值域为()A. $[0,1]$B. $[0,+\infty)$C. $[-1,1]$D. $[-1,+\infty)$答案:B解析:由函数的定义域可知,$x^2 \leq 1$,即$-1 \leq x \leq 1$,则$1-x^2 \geq 0$,所以函数的值域为$[0,+\infty)$。
2. 若$a, b$是方程$x^2 - (a+b)x + ab = 0$的两根,则$a^2 + b^2$的值为()A. 2B. 4C. 6D. 8答案:B解析:由韦达定理可知,$a+b=a+b$,$ab=ab$,则$a^2 + b^2 = (a+b)^2 - 2ab = (a+b)^2 - 2ab = 4ab$,所以$a^2 + b^2 = 4$。
3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 3n^2 - n$,则第10项$a_{10}$的值为()A. 28B. 29C. 30D. 31答案:C解析:由等差数列的前$n$项和公式$S_n = \frac{n(a_1 + a_n)}{2}$,代入$S_n = 3n^2 - n$得$3n^2 - n = \frac{n(a_1 + a_n)}{2}$,解得$a_1 + a_n = 6n - 1$。
又因为$a_{10} = a_1 + 9d$,其中$d$为公差,由等差数列的性质得$a_{10} = a_1 + 9d = 6 \times 10 - 1 = 59$,所以$a_{10} = 30$。
4. 若复数$z = a + bi$($a, b$为实数)满足$|z-1| = |z+1|$,则$z$在复平面上的轨迹方程为()A. $x^2 + y^2 = 2$B. $x^2 + y^2 = 1$C. $x^2 - y^2 =2$ D. $x^2 - y^2 = 1$答案:D解析:由复数的模长公式$|z| = \sqrt{a^2 + b^2}$,代入$|z-1| = |z+1|$得$\sqrt{(a-1)^2 + b^2} = \sqrt{(a+1)^2 + b^2}$,化简得$a^2 - 2a + 1 + b^2 = a^2 + 2a + 1 + b^2$,解得$a = 0$。
高考理科数学模拟试题含答案及解析5套).pdf
![高考理科数学模拟试题含答案及解析5套).pdf](https://img.taocdn.com/s3/m/66c30b68ccbff121dd3683b7.png)
11、【答案】A
【解析】由题意可得 f ( x) = 3an+1x2 − 2anx − an+2 ,∵ x =1 是函数 f ( x) 的极值点, ( ) ( ) ∴ f 1 = 3an+1 − 2an − an+2 = 0 ,即 an+2 − 3an+1 + 2an = 0 .∴ an+2 − an+1 = 2 an+1 − an ,
17、已知数列 an 的前 n 项和 Sn 满足 Sn = 2an − 2n+1 .
(1)求数列an 的通项公式;
(2)若不等式 2n2 − n − 3 (5 − )an 对 n N 恒成立,求实数 的取值范围.
18、在四棱锥 P - ABCD 中, PA ⊥ 平面 ABCD ,
ABC 是正三角形, AC 与 BD 的交点为 M ,
2018 b1b2
+
2018 b2b3
+
A.2017
+
2018 b b 2018 2019
=(
B.2018
) C.2019
D.2020
12.已知函数
f
(x) =
ex
+
a ex
(a R) 在区间0,1 上单调递增,则实数 a 的取值范围(
)
A. (−1,1)
B. (−1, +)
C. −1,1
体 ABCD 的外接球的表面积为( )
A. 2
B. 4
C. 6
D. 8
11.设 x = 1 是函数 f ( x) = an+1x3 − anx2 − an+2x +1(n N+ )的极值点,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
届山东省德州市高三第一次练兵(理数)1.i 是虚数单位,)1(13+-i i i =( )(A)-1 (B)1 (C)-i (D) i2. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于()A .64B .100C .110D .1203. 已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩若1()2f a =,则a =( )A .1- B. C .1-或 D .1或4. 统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不低于80分为优秀,则及格人数与优秀率分别为 . A 800 20% B 980 20%C 980 10%D 800 10%5.命题p :若1||1||||,>+>+∈b a b a R b a 是,则的充分不必要条件; 命题q :函数),3[)1,(2|1|+∞⋃--∞--=定义域是x y ,则 ( )A .“p 且q ”为假B .“p q 或”为真C .p 真q 假D .p 假q 真6.已知正四棱锥S-ABCD 的三视图如下,若E 是SB 的中点,则AE 、SD 所成角的余弦值为( )2 22(A)31(B) 32 (C) 33 (D) 33117.若实数,x y 满足1|1|ln 0yx --=,则y 关于x 的函数的图象大致是( ).8、、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若γαβα//,//,则γβ//; ②若αβα//,m ⊥,则β⊥m;③ 若βα//,m m ⊥,则βα⊥; ④若α⊂n n m ,//,则α//m .其中真命题的序号是 ( ) A .①③ B .①④ C .②③ D .②④ 9. 如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )(A )12 (B )13 (C )14 (D )1610. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为}{),2,1,0(1,0,210=∈i a a a a i 传输信息为,12100h a a a h 其中201100,a h h a a h ⊕=⊕=,⊕运算规则为.011,101,110,000=⊕=⊕=⊕=⊕例如原信息为111,则传输信息为01111,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是( ) (A)11010 (B)01100 (C)10111 (D)0001111.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)12.令3tan ,sin ,cos ,|04442a b c ππππθθθθθθθθθ⎧====-<<≠≠≠⎨⎩且且则如图所示的算法中,给θ一个值,输出的为θsin ,则θ的范围是( )O1xyO1 xyO1xy1O1xy1A.B. C.D.2(A) )0,4(π-(B) )4,0(π(C) )2,4(ππ (D) )43,2(ππ 二、填空题13. 实数y x ,满足不等式组⎪⎩⎪⎨⎧≥--≥-≥,022,0,0y x y x y 则11+-=x y ω的范围14.若3162727n n nC C ++=,则展开式中的常数项是____________________ 15.设M 是),,,()(,30,32,p n m M f BAC AC AB ABC =︒=∠=⋅定义且内一点∆其中p n m 、、分别是yx y x M f MAB MCA MBC 41),,21()(,,,+=则若的面积∆∆∆的最小值是_______________.16. 已知ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高,给出以下结论: ①B c AC sin =;②22()2cos BC AC AB b c b A ⋅-=+-;③AB AH BC AB AH ⋅=⋅+⋅)(④2AH AC AH =⋅. 其中正确的是___________(写出所有你认为正确结论的序号) 三、解答题17. (本小题满分12分)在ABC ∆中,b ,c 分别为内角B ,C 的对边长,设向量),2sin ,2(cos A A m -=22),2sin ,2(cos =⋅=n m A A n且有. (1)求角A 的大小; (2)若5=a ,求三角形面积的最大值.18.(本小题满分12分)某休闲会馆拟举行“五一”庆祝活动,每位来宾交30元的入场费,可参加一次抽奖活动. 抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6的六个相同小球的抽奖箱中,有放回的抽取两次,每次抽取一个球,规定:若抽得两球的分值和为12分,则获得价值为m 元的礼品;若抽得两球的分值和为11分或10分,则获得价值为100元的礼品;若抽得两球的分值和低于10分,则不获奖. (1)求每位会员获奖的概率;(2)假设会馆这次活动打算即不赔钱也不赚钱,则m 应为多少元?19(本题满分12分)如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且12AF AD a ==,G 是EF 的中点.(1)求证平面AGC ⊥平面BGC ; (2)求GB 与平面AGC 所成角正弦值; (3)求二面角B —AC —G 的平面角的正弦值20. (本小题满分12分)设S n 是数列{}n a 的前n 项和,且*2()2n n S a n =∈-N .(1)求数列{}n a 的通项公式; (2)设数列{}n b 使11122(21)22n n n a b a b a b n ++++=-+*()n ∈N ,求{}n b 的通项公式;(3)设*21()(1)n n c n b =∈+N ,且数列{}n c 的前n 项和为T n ,试比较T n 与14的大小.21.(本小题满分12分)已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (1)求)(x f 、)(x g 的表达式;(2)求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (3)当1->b 时,若212)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围. 22.(本小题满分14分)过点T (2,0)的直线2:+=my x l 交抛物线y 2=4x 于A 、B 两点.(1)若直线l 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(2)设A 、B 在直线n x g =:上的射影为D 、E ,连结AE 、BD 相交于一点N ,则当m 变化时,点N 为定点的充要条件是n =-2.参考答案⎪⎭⎫⎢⎣⎡-1,21. -80 18 ①②③④ 17. (本小题满分12分)在ABC ∆中,b ,c 分别为内角B ,C 的对边长,设向量),2sin ,2(cos A A m -=22),2sin ,2(cos =⋅=n m A A n且有. (1)求角A 的大小; (2)若5=a ,求三角形面积的最大值.17、解:(1)由22=⋅n m得:22cos sin 222A A -=即cos 2A =因为 ),0(π∈A ,所以4π=A ·······························5分(2)由2222cos a b c bc A =+-得:5222=-+bc c b ··················7分又bc c b 222≥+ ∴bc )22(5-≤∴2)22(5+≥bc ·············10分 ∴21)(=∆man ABC S 222)22(5⋅+ 4)12(5+=·······························12分 18.(本小题满分12分) 某休闲会馆拟举行“五一”庆祝活动,每位来宾交30元的入场费,可参加一次抽奖活动. 抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6的六个相同小球的抽奖箱中,有放回的抽取两次,每次抽取一个球,规定:若抽得两球的分值和为12分,则获得价值为m 元的礼品;若抽得两球的分值和为11分或10分,则获得价值为100元的礼品;若抽得两球的分值和低于10分,则不获奖. (1)求每位会员获奖的概率;(2)假设会馆这次活动打算即不赔钱也不赚钱,则m 应为多少元? 18.解:(1)两次抽取的球的分值构成的有序数对共有36对,其中分值和为12的有1对,分值和为11的有两对,分值和为10的有3对,所以每位会员获奖的概率为6136321=++=p ;…………………………………………………………4分 (2)设每位来宾抽奖后,休闲宾馆的获利的元数为随机变量ξ,则 ,3653632)70(,361)30(=+=-==-=ξξp m p ,65)30()70(1)30(=-=--=-==m p p p ξξξ…………………………8分则宾馆获利的期望为365803065)70(365)30(361mm E -=⨯+-⨯+-⋅=ξ若会馆这次活动打算既不赔钱也不赚钱,则E ξ=0,所以,m =580.……………………………………………………………………12分19(本题满分12分)如图,平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且12AF AD a ==,G 是EF 的中点.(1)求证平面AGC ⊥平面BGC ; (2)求GB 与平面AGC 所成角正弦值; (3)求二面角B —AC —G 的平面角的正弦值19. 解法一(几何法)(1)证明:正方形ABCD AB CB ⊥⇒ ∵面ABCD ⊥面ABEF 且交于AB ,∴CB ⊥面ABEF ∵AG ,GB ⊂面ABEF , ∴CB ⊥AG ,CB ⊥BG 又AD=2a ,AF=a ,ABEF 是矩形,G 是EF 的中点,∴AG=BG=a 2,AB=2a ,AB 2=AG 2+BG 2,∴AG ⊥BG ∵CG ∩BG=G , ∴AG ⊥平面CBG 面AG ⊂面AGC , 故平面AGC ⊥平面BG C.…4分 (2)解:如图,由(Ⅰ)知面AGC ⊥面BGC , 且交于GC ,在平面BGC 内作BH ⊥GC , 垂足为H ,则BH ⊥平面AGC , ∴∠BGH 是GB 与平面AGC 所成的角 ∴Rt △CBG 中a BG BC BG BC CGBGBC BH 33222=+⋅=⋅=又BG=a 2,∴36sin ==∠BG BH BGH ……8分 (3)由(Ⅱ)知,BH ⊥面AGC , 作BO ⊥AC ,垂足为O ,连结HO , 则HO ⊥AC ,∴∠BOH 为二面角B —AC —G 的平面角在Rt △ABC 中,a BO 2=在Rt △BOH 中,36sin ==∠BO BH BOH 即二面角B —AC —G 的平面角的正弦值为63……12分 [方法二](向量法)解法:以A 为原点,AF 所在直线为x 轴,AB 所在直线为y 轴,AD 所在直线为z 轴建立直角坐标系, 则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),F (a ,0,0) (1)证明:略(2)由题意可得(,,0),(0,2,2)AG a a AC a a ==,(,,0),(0,0,2)BG a a BC a =-=, 设平面AGC 的法向量为111(,,1)n x y =,由11111111001(1,1,1)22010AG n ax ay x n ay a y AC n ⎧⋅=+==⎧⎧⎪⇒⇒⇒=-⎨⎨⎨+==-⋅=⎩⎩⎪⎩11||6sin ||||23BG n BG n a θ⋅===⋅⋅(3)因111(,,1)n x y =是平面AGC 的法向量,又AF ⊥平面ABCD , 平面ABCD 的法向量(,0,0)AF a =, 得11||3|cos |||||3n AF n AF a θ⋅===⋅∴二面角B —AC —G 6设S n 是数列{}n a 的前n 项和,且*2()2n n S a n =∈-N .(1)求数列{}n a 的通项公式; (2)设数列{}n b 使11122(21)22n n n a b a b a b n ++++=-+*()n ∈N ,求{}n b 的通项公式;(3)设*21()(1)n n c n b =∈+N ,且数列{}n c 的前n 项和为T n ,试比较T n 与14的大小.解:(1)∵*2()2n n S a n =∈-N ,∴1122n n S a ++=-,于是a n +1=S n +1-S n =(2 a n +1-2)-(2 a n -2),即a n +1=2a n . …………2分 又a 1=S 1=2 a 1-2, 得a 1=2. …………1分 ∴{}n a 是首项和公比都是2的等比数列,故a n =2n . …………1分 (2) 由a 1b 1=(2×1-1)×21+1+2=6及a 1=2得b 1=3. …………1分 当2n ≥时,11122(21)22n n n n a b a b a b +-+=+++[](1)1(23)22(1)1222n n n n n n n n a b a b -+-=--++=++,∴1(21)2(23)2(21)2n n nn n a b n n n +=---=+. …………2分∵a n =2n ,∴b n =2n +1(2n ≥). …………1分 ∴*3,(1),21().21,(2)n n b n n n n ===+∈+≥⎧⎨⎩N …………1分(3)2221(1)111111(22)4(1)4(1)41n n b c n n n n nn +===<=-++++⎛⎫⎪⎝⎭. …………3分 121111111111142231414n n T c c c n n n =+++<-+-++-=-<++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. …………2分 21.(本小题满分12分)已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (1)求)(x f 、)(x g 的表达式;(2)求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (3)当1->b 时,若212)(xbx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围. 21.解: (1),2)(xax x f -='依题意]2,1(,0)(∈>'x x f ,即22x a <,]2,1(∈x . ∵上式恒成立,∴2≤a ①…………………………1分又xa x g 21)(-=',依题意)1,0(,0)(∈<'x x g ,即x a 2>,)1,0(∈x .∵上式恒成立,∴.2≥a ② …………………………2分 由①②得2=a .…………………………3分∴.2)(,ln 2)(2x x x g x x x f -=-=…………………………4分(2)由(1)可知,方程2)()(+=x g x f ,.022ln 22=-+--x x x x 即 设22ln 2)(2-+--=x x x x x h ,,1122)(xx x x h +--='则 令0)(>'x h ,并由,0>x 得,0)222)(1(>+++-x x x x x 解知.1>x ……………………5分 令,0)(<'x h 由.10,0<<>x x 解得 …………………………6分 列表分析:可知)(x h 在1=x 处有一个最小值0, …………………………7分当10≠>x x 且时,)(x h >0,∴0)(=x h 在(0,+∞)上只有一个解.即当x >0时,方程2)()(+=x g x f 有唯一解. …………………………8分(3) 设2'23122()2ln 2()220x x x bx x x b x x x ϕϕ=--+=---<则, ………………9分 ()x ϕ∴在(0,1]为减函数min ()(1)1210x b ϕϕ∴==-+≥ 又1b >- ……………11分所以:11≤<-b 为所求范围. …………………………12分22.(本小题满分14分)过点T (2,0)的直线2:+=my x l 交抛物线y 2=4x 于A 、B 两点.(1)若直线l 交y 轴于点M ,且,,21λλ==当m 变化时,求21λλ+的值;(2)设A 、B 在直线n x g =:上的射影为D 、E ,连结AE 、BD 相交于一点N ,则当m 变化时,点N 为定点的充要条件是n =-2.22.解:(1)设),(),,(2211y x B y x A由.0844222=--⎩⎨⎧=+=my y xy my x 得.8,42121-==+∴y y m y y ………………………………………………2分又),,2()2,(,),2,0(111111y x my x AT MA n M --=+=-λλ即.21,211111my y m y --=-=+∴λλ得同理,由.21,222my --==λλ得………………………………4分.1882)(22)11(2221212121-=+-=+--=+--=+∴mmy my y y y y m λλ…………6分 (2)方法一:首先n =-2时,则D (-2,y 1),A (),,2(),,2(),,222211y my B y E y my +-+)2(4:2121++-=-x my y y y y l DB ①)2(4:1212++-=-x my y y y y l EA ②…………………………………………8分①-②得,).4141)()(2(12121212y y my my y y x y y ≠+++-+=-.04884241411222121212=+-=++=-+++=∴my m m my y my y y m my my x.)0,0(为定点N ∴…………………………………………………………10分反之,若N 为定点,设此时),,(),,(21y n E y n D 则).,2(),,(221y my NB y n ND +==由D 、N 、B 三点共线,.022121=-+∴ny y y my ③同理E 、N 、A 三点共线,.021221=-+∴ny y y my ④………………12分 ③+④得,0)()(22212121=+-++y y n y y y my即-16m +8m -4m =0,m (n +2)=0.故对任意的m 都有n =-2.……………………………………………………14分方法二:当m =0时,A (2,22),B (2,-2),D (n ,22),E (n ,-22).∵ABED 为矩形,∴直线AE 、BD 的交点N 的坐标为().0,22+n ………………8分当),,22(),,22(),,(),,(,021121y n y x n y n E y n D m -=--+=≠ 时(*))2(28)2(2)(2222)222(22)22(2112121121n m m n m y my y y n y n y my n y n y x n +=+-=-+-=-+--+=-+-+则同理,对、进行类似计算也得(*)式.………………………………12分 即n =-2时,N 为定点(0,0).反之,当N 为定点,则由(*)式等于0,得n =-2.…………………………14分。