金属的塑性变形和强化

合集下载

金属材料的强化方法

金属材料的强化方法

金属的五种强化机制及实例1固溶强化(1)纯金属加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低,这个现象称为固溶强化。

(2)固溶强化的机制是:金属材料的变形主要是依靠位错滑移完成的,故凡是可以增大位错滑移阻力的因素都将使变形抗力增大,从而使材料强化。

合金组元溶入基体金属的晶格形成固溶体后,不仅使晶格发生畸变,同时使位错密度增加。

畸变产生的应力场与位错周围的弹性应力场交互作用,使合金组元的原子聚集在位错线周围形成“气团”。

位错滑移时必须克服气团的钉扎作用,带着气团一起滑移或从气团里挣脱出来,使位错滑移所需的切应力增大。

(3)实例:表1列出了几种普通黄铜的强度值,它们的显微组织都是单相固溶体,但含锌量不同,强度有很大差异。

在以固溶强化作为主要强化方法时,应选择在基体金属中溶解度较大的组元作为合金元素,例如在铝合金中加入铜、镁;在镁合金中加入铝、锌;在铜合金中加入锌、铝、锡、镍;在钛合金中加入铝、钒等。

表1 几种普通黄铜的强度(退火状态)表1儿种普通黄铜的强度(退火状态)对同一种固溶体,强度随浓度增加呈曲线关系升高,见图1。

在浓度较低时,强度升高较快,以后渐趋平缓,大约在原子分数为50 %时达到极大值。

以普通黄铜为例:H96的含锌量为4 %, d b为240MPa,与纯铜相比其强度增加911 %;H90的含锌量为10 %, d b为260MPa,与H96相比强度仅提高813 %。

2细晶强化(1)晶界上原子排列紊乱,杂质富集,晶体缺陷的密度较大,且晶界两侧晶粒的位向也不同,所有这些因素都对位错滑移产生很大的阻碍作用,从而使强度升高。

晶粒越细小,晶界总面积就越大,强度越高,这一现象称为细晶强化。

⑵ 细晶强化机制:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。

实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。

这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。

金属材料的塑性变形行为及其动力学机理

金属材料的塑性变形行为及其动力学机理

金属材料的塑性变形行为及其动力学机理金属材料是人类历史上最重要的材料之一,其广泛应用于工业和日常生活中。

金属材料的主要特点是良好的导电性、导热性和机械性能,如强度、韧性、延展性等。

其中,金属材料的塑性变形行为及其动力学机理是研究金属材料力学性质的重要方面。

一、塑性变形行为的概念与表现形式金属材料在受到外部力的作用下,会出现形变现象,这种形变称为塑性变形。

塑性变形是金属材料力学性质的重要表现形式,它是由原子、离子或分子的有序结构在力的作用下发生的有序形变过程。

塑性变形的表现形式可分为弹塑性和纯塑性两类。

弹塑性是指金属材料在受到外部力的作用下,表现出一定的弹性变形和一定的塑性变形,弹性变形在外力消失时能够恢复原状。

纯塑性是指金属材料在受到外部力的作用下,表现出完全的塑性变形,一旦停止外力作用,塑性变形就不可逆转。

二、金属材料塑性变形的动力学机理金属材料塑性变形的动力学机理主要包括滑移和剪切。

滑移是指晶格内部原子、离子或分子在外部应力作用下,在一定的晶格面和方向上沿晶格平面错开,使得整个晶体沿应力方向发生了塑性形变。

可以把滑移想象成晶格平面的滑动,其中滑动较容易发生的是(111)面和(100)面。

滑移不仅适用于单晶材料,也适用于多晶和多晶固溶体材料。

剪切是指在晶体中沿着一个晶面剪切另一个晶面而引起塑性形变。

剪切主要涉及到晶界和变形区的相互作用,其中晶界可以作为剪切面。

剪切的能量消耗要比滑移大得多,但是它对温度敏感性比滑移小,容易引起大规模位错滞后和晶界移动。

在金属材料中,滑移和剪切是相互竞争的,它们的作用对金属的塑性变形和强度产生了重要影响。

三、金属材料塑性变形的调节和增强方法金属材料塑性变形的调节和增强主要包括合金化、微结构控制和纳米加工等方法。

合金化是一种有效的方法,可以通过合理选择合金元素来控制晶体结构和化学成分,从而调控金属材料的塑性变形。

例如,添加易形变的合金元素可以促进位错堆积,增加位错密度和位错强度,从而提高金属材料的塑性变形。

简述金属材料常见的强化机制

简述金属材料常见的强化机制

简述金属材料常见的强化机制
【金属材料常见的强化机制】
1、组织强化:组织强化是指在金属中加入合金元素,使组织中存在多
种偏析,如晶粒强化和回料强化等,同时利用金属再结晶及其它形态
改变实现金属本身的构造更新和复杂化以改善材料的力学性能。

2、界面强化:界面强化是指将界面细被纳米或微米粒子掺杂在金属中,这些粒子能够比金属原子更加有效地堆积在一起,形成紧紧接合的界面,使界面的强度高于实质内部的强度,从而能够有效提升材料的抗
压强度和抗拉强度,提高材料的耐磨性和耐腐蚀性。

3、塑性变形强化:金属塑性变形强化主要是指利用塑性变形能够形成
许多金属层,每层金属之间形成不规则的纹理,并形成复杂的异常微
结构,这种结构可以提供足够的抗压强度,从而大大提高材料的强度
和耐磨性。

4、多尺度复合强化:多尺度复合强化是一种比较先进的强化机制,主
要是指将纳米颗粒和宏观结构结合在一起,充分利用各级尺度之间的
相互作用产生强度、韧性和硬度等材料性能的加强。

5、原位合金化强化:原位合金化强化指的是在金属晶体中内掺入比基
体原子更贵重的合金,因为这种原位合金能够有效改变铁素体组织的形貌,使晶体变得硬而脆,从而提高材料的强度和耐蚀性。

6、热处理强化:热处理强化是指将原材料经历不同的热处理过程,从而实现对材料金属晶体的形貌的改变,从而调整材料的力学性能,改变组织构造,提高材料的硬度和耐腐蚀性。

金属的强化方法及机理

金属的强化方法及机理

把某一成分的合金加热到固溶度曲线以B元 素析出,得到过饱和α固溶体,这就是固溶处理。
经固溶处理后的合金在室温下放置或加热到低于溶解度曲线的某 一温度保温,合金将产生脱溶析出,即B将以新相的形式从过饱和 α相中弥散析出,这个过程即是时效。通常将在室温下放置产生 的时效称为自然时效;将加热到室温以上某一温度进行的时效称 为人工时效。
金属材料经冷塑性变形后,其强度与硬度随变形 程度的增加而提高,而塑性、韧性则很快降低的 现象为加工硬化或形变强化。
例如:自行车链条板(16Mn钢板)
原始厚度3.5mm
150HB
五次冷轧后1.2mm 275HB
b=520MPa b>1000MPa
又如:冷拔高强度钢丝和冷卷弹簧是利用加工变 形来提高他们的强度和弹性极限;坦克和拖拉机 的履带、破碎机的颚板以及铁路的道叉等也都是 利用加工硬化来提高他们的硬度和耐磨性的。
实验证明,金属的屈服强度与其晶粒尺寸之 间有下列关系:
σs=σ0+ K/d1/2 此式称为霍耳-配奇公式。
式中:σ0 ——为常数,相当于单晶体的屈服强度; d——为多晶体中各晶粒的平均直径; K——为晶界对强度影响程度的常数, 与晶界结构有关。
σs ——开始发生塑性变形的最小应力
细晶强化机制:晶界是位错运动过程中的障碍。 晶界增多,对位错运动的阻碍作用增强,致使位 错在晶界处塞积(即位错密度增加),金属的强 度增加;在单个晶粒内部,塞积的位错群的长度 减小,应力集中较小,不足于使位错源开动,必 须增加外力。
2、加工硬化机制
金属的塑性变形是通过滑移进行的。在塑性变形 过程中,由于位错塞积(位错运动过程中遇到障 碍受阻)、位错之间的弹性作用、位错割阶等造 成位错运动受阻,从而使材料的强度提高。

简述金属材料的四种强化机制

简述金属材料的四种强化机制

简述金属材料的四种强化机制
以《简述金属材料的四种强化机制》为标题,现在金属材料已成为工业生产过程中不可或缺的材料,因而如何有效提高金属材料的力学性能,使其具有高的强度,经久的耐久性以及足够的可塑性,一直是金属材料科学家们努力加以研究的课题。

目前,金属材料的强化机制具有四种:晶内扩散、晶间复合、晶粒细化和塑性变形强化。

第一种金属材料的强化机制是晶内扩散。

在金属材料的制备过程中,要添加一定数量的元素原子,随着材料的温度升高,原子会到达晶粒的表面,然后通过晶界驱动力渗入晶粒内部,产生一种强化效果。

此外,在晶内扩散过程中,可以增加材料的塑性变形,并减少材料的硬度和抗拉强度,因此可以提高材料的延展性,以及增加材料的韧性。

第二种金属材料的强化机制是晶间复合。

此强化机制主要是利用微小量碎陶粒组合成新的晶粒,以改变材料的形状和组成,进而改善材料的力学性能。

碎陶粒的共混物和部分原子可以进一步改变材料的力学性能,使其具有更好的耐磨性和抗拉强度。

第三种金属材料的强化机制是晶粒细化。

主要是通过改变材料的晶粒结构,使晶粒尺寸变得更小,以增加晶粒密度,进而改变晶粒之间的相互作用,改善材料的力学性能。

最后一种金属材料的强化机制是塑性变形强化,是在晶内扩散的基础上,通过塑性变形来改变晶粒的形状,达到改善材料力学性能的目的。

塑性变形强化的主要作用是增加材料的抗拉强度、抗压强度和抗弯曲强度。

总之,金属材料的四种强化机制分别是晶内扩散、晶间复合、晶粒细化和塑性变形强化,各自在工业生产中发挥了重要作用,研究者们还将持续努力,以进一步提升金属材料的力学性能。

金属材料的变形机制与塑性行为

金属材料的变形机制与塑性行为

金属材料的变形机制与塑性行为金属材料在工程领域中起着重要的作用,而金属的塑性行为和变形机制则是决定其力学性能的重要因素之一。

本文将探讨金属材料的变形机制与塑性行为。

1. 弹性与塑性首先,我们需要了解金属材料的弹性与塑性。

弹性是指金属在受力后能够恢复原状的性质,即应力与应变呈线性关系。

而塑性则是指金属在受力后会发生永久性形变的性质,即应力与应变不再呈线性关系,金属会发生塑性变形。

2. 变形机制金属材料发生塑性变形时,涉及到多种变形机制,其中最重要的包括滑移、扩散和晶体重新排列。

滑移是一种比较常见的金属变形机制。

金属内部的晶体通过滑动来实现变形。

在外力作用下,应变施加到晶体中的部分原子上,这些原子会沿着滑移面滑动,使晶体发生塑性变形。

扩散是指原子在晶体中的扩散过程。

扩散可以使原子重新排列,从而为滑移提供必要的能量。

正是因为扩散的存在,滑移机制才能够进行。

晶体重新排列是指晶体中原子重新排列的过程。

当外力作用于金属时,晶体内的原子会发生重新排列,以使晶体更好地适应外力。

在这个过程中,晶体内的原子会发生位错的形成和移动。

3. 晶体结构与塑性行为晶体结构是决定金属塑性行为的重要因素之一。

晶体的晶格结构有不同的排列方式,其中最常见的有面心立方和体心立方结构。

不同的晶体结构具有不同的变形机制。

体心立方结构的金属通常具有较高的强度和较低的塑性。

这是因为体心立方结构的金属在变形时,需要克服与晶格点的最近邻原子有较大的距离。

相比之下,面心立方结构的金属相对塑性较好,因为该结构中原子之间的间距较小,变形更容易发生。

此外,晶体晶格中的缺陷也会影响金属的塑性行为。

例如,在晶体中存在的位错是金属变形的主要缺陷之一。

位错会使金属的应力集中,进而导致金属发生塑性变形。

4. 温度对塑性的影响温度是另一个影响金属塑性的重要因素。

晶体在不同温度下具有不同的塑性行为。

一般来说,高温下金属的塑性较好,而低温下金属的塑性较差。

高温下,金属的活动性增强,位错的移动更容易发生。

金属的塑性变形、纤维组织及其对金属性能的影响

金属的塑性变形、纤维组织及其对金属性能的影响

金属的塑性变形、纤维组织及其对金属性能的影响一、金属的塑性变形金属受力时,其原子的相对位置发生改变,宏观上表现为形状、尺寸的变化,此种现象称为变形。

金属变形按其性质分为弹性变形和塑性变形。

当受力不大时,去除外力后原子立即恢复到原来的平衡位置,变形立即消失,这种变形称为弹性变形。

当应力超过一定值时(≥бs),金属在弹性变形的同时还会产生塑性变形。

1、单晶体的塑性变形单晶体的塑性变形,主要是以滑移的方式进行的,即晶体的一部分沿着一定的晶面和晶向相对于另一部分发生滑动,滑动后原子处于新的稳定位置,不再回到原来位置。

研究表明,滑移总是优先沿晶体中一定的晶面和晶向发生,晶体中能够发生滑移的晶面和晶向称为滑移面和滑移方向。

滑移面和滑移方向越多,金属的塑性越好。

晶体的滑移是借助于位错的移动来实现的。

大量的位错移出晶体表面,就产生了宏观的塑性变形。

2、多晶体的塑性变形常用金属材料都是多晶体。

每个晶粒内的塑性变形主要仍以滑移方式进行。

但多晶体中各相邻晶粒的位向不同,各晶粒之间有一晶界相连接,因此,具有下列特点:(1)晶粒位向的影响由于多晶体中各个晶粒的位向不同,在外力作用下,有的晶粒处于有利于滑移的位置,有的晶粒处于不利位置。

产生滑移的晶粒必然会受到周围位向不同晶粒的阻碍,使滑移阻力增加,从而提高了塑性变形的抗力。

所以多晶体的塑性变形是逐步扩展和不均匀的,其结果之一便是产生内应力。

(2)晶界的作用晶界对塑性变形有较大的阻碍作用。

试样在晶界附近不易发生变形,出现所谓“竹节”现象。

这是因为晶界处原子排列比较紊乱,阻碍位错的移动,因而阻碍了滑移的缘故。

很显然,晶界越多,多晶体的塑性变形抗力越大。

(3)晶粒大小的影响在一定体积的晶体内晶粒数目越多,晶粒越细,晶界越多,不同位向的晶粒也越多。

因而塑性变形抗力也就越大,表现出较好的塑性和韧性。

故生产中都尽一切努力细化晶粒。

二、金属的冷塑性变形对性能的影响冷塑性变形对金属性能的主要影响是造成加工硬化,即随着变形度的增加,金属强度、硬度提高,而塑性、韧性下降的现象。

金属的塑性变形和强化

金属的塑性变形和强化

⾦属的塑性变形和强化第六章⾦属的塑性变形和强化练习与思考题1 什么叫强化?可能采⽤那些强化⼿段来强化⾦属?采⽤各种⽅式使得⾦属塑性变形时位错运动的阻⼒增⼤,即可实现⾦属材料的强化。

如冷变形的加⼯硬化,添加合⾦的固溶强化和析出沉淀强化,细晶强化,亚结构强化,多相组织的相变强化等。

2 ⾯⼼⽴⽅单晶体的应⼒应变曲线的硬化系数θ为什么各个阶段各不相同?θⅡ最⼤的原因是什么?第I阶段⼀般认为只有⼀个滑移系开动,强化作⽤不⼤,θI较⼩,为易滑移阶段;第Ⅱ阶段为线性强化阶段,出现了多系滑移;多系滑移产⽣⼤量位错,使得位错运动阻⼒明显增⼤,尤其是⾯⾓位错的出现,强烈的阻⽌位错源开动,并强最⼤。

烈阻⽌其他滑移⾯上的位错运动,从⽽使得这⼀阶段硬化指数θⅡ第Ⅲ阶段出现了交滑移,从⽽拜托了⾯⾓位错的封锁,使原被塞积的位错继续运动,使得位错的⾃由路程增⼤。

即在加⼯硬化的同时,存在着动态回复的软化过程,从⽽造成θⅢ随着γ增⼤⽽逐渐降低的现象。

3 晶界对塑性变形有什么影响?晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进⾏引起的障碍强化作⽤和变形连续性要求晶界附近多系滑移引起的强化作⽤。

为使多晶体塑性变形过程不破坏晶界连续性,相邻的晶粒必须协调变形。

多晶体塑性变形⼀旦变形传播到相邻的晶粒,就产⽣了多系滑移。

位错运动遇到的障碍⽐单系滑移多,阻⼒要增加。

存在晶界及晶界两侧晶粒取向有差别,多晶体的塑性变形有着很⼤的不均匀性。

在单个晶粒内,晶界变形要低于晶粒中⼼区域;由于细晶组织中晶界占的⽐例要⼤于粗晶组织中的晶界,细晶组织的强化效果⾼于粗晶组织。

4 多系滑移为何能起到强化作⽤?⾦属多晶体塑性变形⼀开始为什么就出现了多系滑移的强化?多系滑移产⽣⼤量位错,位错间相互作⽤使得位错运动阻⼒明显增⼤,尤其是⾯⾓位错的出现,强烈的阻⽌位错源开动,并强烈阻⽌其他滑移⾯上的位错运动。

多晶体材料中,某⼀晶粒产⽣滑移变形⽽不破坏晶界连续性,相邻的晶粒必须协调变形。

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响1. 塑性变形对金属组织结构的影响(1)晶粒发生变形金属发生塑性变形后,晶粒沿形变方向被拉长或压扁。

当变形量很大时, 晶粒变成细条状(拉伸时), 金属中的夹杂物也被拉长, 形成纤维组织。

变形前后晶粒形状变化示意图(2)亚结构形成金属经大的塑性变形时, 由于位错的密度增大和发生交互作用, 大量位错堆积在局部地区, 并相互缠结, 形成不均匀的分布, 使晶粒分化成许多位向略有不同的小晶块, 而在晶粒内产生亚晶粒。

金属经变形后的亚结构(3)形变织构产生金属塑性变形到很大程度(70%以上)时, 由于晶粒发生转动, 使各晶粒的位向趋近于一致, 形成特殊的择优取向, 这种有序化的结构叫做形变织构。

形变织构一般分两种:一种是各晶粒的一定晶向平行于拉拔方向, 称为丝织构, 例如低碳钢经高度冷拔后, 其<100>平行于拔丝方向; 另一种是各晶粒的一定晶面和晶向平行于轧制方向, 称为板织构, 低碳钢的板织构为{001}<110>。

形变织构示意图2. 塑性变形对金属性能的影响(1)形变强化金属发生塑性变形, 随变形度的增大, 金属的强度和硬度显著提高, 塑性和韧性明显下降。

这种现象称为加工硬化, 也叫形变强化。

产生加工硬化的原因是:金属发生塑性变形时, 位错密度增加, 位错间的交互作用增强, 相互缠结, 造成位错运动阻力的增大, 引起塑性变形抗力提高。

另一方面由于晶粒破碎细化, 使强度得以提高。

在生产中可通过冷轧、冷拔提高钢板或钢丝的强度。

(2)产生各向异性由于纤维组织和形变织构的形成, 使金属的性能产生各向异性。

如沿纤维方向的强度和塑性明显高于垂直方向的。

用有织构的板材冲制筒形零件时, 即由于在不同方向上塑性差别很大, 零件的边缘出现“制耳”。

在某些情况下, 织构的各向异性也有好处。

制造变压器铁芯的硅钢片, 因沿[100]方向最易磁化, 采用这种织构可使铁损大大减小, 因而变压器的效率大大提高。

金属材料的四种强化方式

金属材料的四种强化方式

金属材料的四种强化方式一.细晶强化通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,工业上将通过细化晶粒以提高材料强度。

通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。

实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。

这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。

故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。

晶粒越细小,位错集群中位错个数(n)越小,根据τ=nτ0,应力集中越小,所以材料的强度越高;细晶强化的强化规律,晶界越多,晶粒越细,根据霍尔-配奇关系式,晶粒的平均值(d)越小,材料的屈服强度就越高。

细化晶粒的方法1,增加过冷度;2,变质处理;3,振动与搅拌;4,对于冷变形的金属可以通过控制变形度,退火温度来细化晶粒。

二.固溶强化定义:合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。

原理:融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。

这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。

在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。

影响因素(1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。

(2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。

(3)间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。

(4)溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随着价电子浓度的增加而提高。

金属强化的基本途径及原理

金属强化的基本途径及原理

金属强化的基本途径及原理
金属强化是指通过各种方法使金属材料具有更高的强度和硬度。

金属强化的基本途径和原理包括以下几种:
1. 晶体缺陷控制:通过改变金属材料的晶体结构和缺陷,如晶粒尺寸、晶界、位错等,来增加材料的强度。

常见的方法有冷变形、退火和合金化等。

2. 固溶体强化:通过添加合金元素,使其与基体金属形成固溶体。

固溶体的形成可以引起晶格畸变、降低位错移动速度、限制晶界扩张等效应,从而提高金属的强度和硬度。

3. 相变强化:通过控制金属材料的相变行为,如固态相变、析出相变等,来改变材料的结构和性能。

相变可以引起晶粒细化、形成弥散相,从而提高金属的强度和硬度。

4. 变形强化:通过应用外力使金属发生塑性变形,如拉伸、压缩、弯曲等,来改变材料的晶体结构和缺陷。

变形过程中会引起位错的运动和堆积,使晶粒变细、晶界增多,从而提高金属的强度和硬度。

5. 织构强化:通过控制金属材料的晶体排列方向和晶体取向,来改变材料的力学性能。

织构能够引起晶粒的取向效应和加工显微组织的优化,从而提高金属的强度和韧性。

总体而言,金属强化的基本原理是通过改变金属材料的晶体结
构、缺陷和相变行为,来调控材料的力学性能。

不同的金属强化方法可以相互结合应用,以达到最佳的强化效果。

金属材料的四种强化方式

金属材料的四种强化方式

一、形变强化(或应变强化,加工硬化)01定义材料屈服以后,随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。

02机理随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式,可知强度与位错密度ρ的二分之一次方成正比,位错的伯氏矢量b越大,强化效果越显著。

03方法冷变形,比如冷压、滚压、喷丸等。

04例子冷拔钢丝可使其强度成倍增加。

05形变强化的实际意义(利与弊)(1)利:①形变强化是强化金属的有效方法,对一些不能用热处理强化的材料,可以用形变强化的方法提高材料的强度,可使强度成倍的增加。

②是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形。

③形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。

(2)弊:①形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,始继续变形带来困难,需要消耗更多的功率。

②为了能让材料继续变形,中间需要进行再结晶退火,使材料可以继续变形而不至开裂,增加了生产成本。

二、固溶强化01定义随溶质原子含量的增加,固溶体的强度、硬度升高,塑性、韧性下降的现象叫固溶强化。

02机理(1) 溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用。

(2) 位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力。

(3) 溶质原子在层错区的偏聚阻碍扩展位错的运动。

所有阻碍位错运动,增加位错移动阻力的因素都可使强度提高。

03规律①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大②溶质原子与溶剂原子的尺寸相差越大,强化效果越显著。

金属的塑性变形与强化

金属的塑性变形与强化
才发生孪生变形。
密排六方金属滑移系少,在晶体取向不利于滑移时常以孪生方式
进行塑性变形;
体心立方金属只有在室温以下和受到冲击时才发生孪生; 面心立方的金属很少发生孪生变形。 (2)孪生变形速度极快,常产生冲击波,并伴随声响。 (3)孪生本身对晶体塑性变形的直接贡献不大。
这种取向称为硬取向。
滑移时晶体的转动
当晶体在 F力的作用下 发生滑移时,假如滑移面和 滑移方向保持不变,拉伸轴 的取向必然不断发生变化。
实际上由于夹头固定不
动,为了保持拉伸轴的方向
固定不动,因此单晶体的取
向必须相应地转动。
拉伸前
自由滑移变形
受夹头限制时的变形
如果金属在单纯的切应力作用下产生滑移,则晶体的取向不会改 变。但当任意一个力作用在晶体上时,总是可以分解为沿滑移方向的
临界分切应力的计算方法:
设圆柱形金属单晶体试样的横截面积 为A,受到轴向拉力F的作用。F与滑移方向 的夹角为λ,则F在滑移方向上的分力为 Fcosλ;F与滑移面法线的夹角为φ,则滑 移面的面积为A/cosφ。所以,外力F在滑 移方向上的分切应力为
A F/ccoossF Acoscos
式中,F/A为试样拉伸时横截面上的正应力,
金属的塑性变形与强化
1、面心立方金属的滑移面为{111},共有四个,滑移方向为〈110〉,
每个滑移面上有三个滑移方向,故面心立方金属共具有12个滑移系。
2、体心立方金属不是密堆积结构,没有最密排的晶面,因此滑移是在
几组较密排的面上进行,但滑移方向总是〈111〉。最基本的滑移面为 {110},共有六个,滑移方向为〈111〉,每个滑移面上有两个滑移方向, 因此体心立方金属共具有12个滑移系。体心立方结构也可以在其它包含 〈111〉方向的{121}和{123}两组滑移面上进行,滑移系共48个。

金属材料的强化方法_细晶强化_沉淀强化_固溶强化_第二相强化_形变强化

金属材料的强化方法_细晶强化_沉淀强化_固溶强化_第二相强化_形变强化

金属的五种强化机制及实例1 固溶强化(1)纯金属加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。

(2)固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。

合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。

畸变产生的应力场与位错周围的弹性应力场交互作用, 使合金组元的原子聚集在位错线周围形成“气团”。

位错滑移时必须克服气团的钉扎作用, 带着气团一起滑移或从气团里挣脱出来, 使位错滑移所需的切应力增大。

(3)实例:表1 列出了几种普通黄铜的强度值, 它们的显微组织都是单相固溶体, 但含锌量不同, 强度有很大差异。

在以固溶强化作为主要强化方法时, 应选择在基体金属中溶解度较大的组元作为合金元素, 例如在铝合金中加入铜、镁; 在镁合金中加入铝、锌; 在铜合金中加入锌、铝、锡、镍; 在钛合金中加入铝、钒等。

表1 几种普通黄铜的强度(退火状态)对同一种固溶体, 强度随浓度增加呈曲线关系升高, 见图1。

在浓度较低时, 强度升高较快, 以后渐趋平缓,大约在原子分数为50 %时达到极大值。

以普通黄铜为例: H96 的含锌量为4 % , σb 为240MPa , 与纯铜相比其强度增加911 %;H90 的含锌量为10 % , σb 为260MPa , 与H96 相比强度仅提高813 %。

2 细晶强化(1) 晶界上原子排列紊乱, 杂质富集,晶体缺陷的密度较大, 且晶界两侧晶粒的位向也不同, 所有这些因素都对位错滑移产生很大的阻碍作用, 从而使强度升高。

晶粒越细小, 晶界总面积就越大, 强度越高, 这一现象称为细晶强化。

(2) 细晶强化机制:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。

实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。

简述金属材料的四种强化机制

简述金属材料的四种强化机制

简述金属材料的四种强化机制金属材料的强化机制是材料科学中重要的研究方向,在提高金属材料性能和使用寿命方面发挥着重要作用。

目前,已经有许多种金属材料强化机制,可以归纳为四种:增强断裂硬度机制、晶界界面机制、体积变形机制和宏观变形机制。

下面将对这四种机制进行详细介绍。

首先,增强断裂硬度机制是金属材料增韧的主要机制之一。

通过增强断裂硬度机制,可以使材料的断口断裂硬度达到更高的水平,从而增加材料的抗弯损伤能力。

增强断裂硬度机制的主要方法包括加强断口的低温组织处理、改变断口的冷变形水平以及高温析出处理。

其次,晶界界面机制也是金属材料增韧的重要机制之一。

它主要是通过改变体系中晶界强度和界面晶粒尺寸,从而改善晶界组织,降低晶界间交界强度,并减少材料的断口断裂硬度,从而达到增韧的目的。

改变体系中晶界界面机制的方法包括合金化、热处理、冷处理、电子束处理等。

第三,体积变形机制是金属材料增韧的主要机制之一,它的基本原理是通过改变金属材料的内部晶粒结构,使材料具有良好的抗压强度和抗弯强度,从而达到增韧的目的。

改变金属材料体积变形机制的方法可以分为晶粒细化、塑性变形和残余应力处理。

最后,宏观变形机制也是金属材料强化的重要机制之一。

通过宏观变形机制可以改变材料的晶粒结构,从而改善材料的力学性能,增强材料的抗弯强度和断裂硬度,从而达到增韧的目的。

改变金属材料宏观变形机制的常见方法有冷变形和热变形处理,以及压力处理、冲击处理和电渣处理等。

综上所述,金属材料的强化机制主要有四种,即增强断裂硬度机制、晶界界面机制、体积变形机制、宏观变形机制,通过使用这些机制可以提高金属材料的性能和使用寿命。

为此,科学家们需要继续研究这些机制,努力为社会提供更安全、可靠的金属材料。

金属材料强化机制是材料科学中重要的研究方向,在提高金属材料性能和使用寿命方面发挥着重要作用。

目前,主要有四种金属材料强化机制,即增强断裂硬度机制、晶界界面机制、体积变形机制和宏观变形机制。

金属材料的强化方法

金属材料的强化方法

金属材料的强化方法
金属材料的强化方法可以分为以下几种:
1. 冷变形强化:通过冷加工(如冷轧、冷挤压、冷拉伸等)使金属材料发生塑性变形,从而得到更高的强度和硬度。

2. 固溶强化:将合金元素加入金属材料中,通过固溶反应形成固溶体,增加晶格的应变能,使材料的强度提高。

常见的固溶强化方法有固溶时效和固溶微合金化。

3. 晶粒细化:通过方法如冷变形、热处理等改变材料的晶粒尺寸,使晶界数量增多,从而提高晶界强度和杂质团聚能力,使材料的强度和硬度提高。

4. 相变强化:通过控制金属材料的相变温度和相变方式,使材料在相变过程中形成更加稳定的相结构,提高材料的强度和硬度。

5. 纳米材料强化:制备出颗粒尺寸在纳米级别的金属材料,由于具有较大的晶界和表面积,导致材料强度和硬度显著提高。

6. 变形温度和速率控制:通过控制材料的变形温度和变形速率,使其在发生塑性变形时得到更高的强度和硬度。

7. 加工硬化:通过工艺性变形(如滚压、挤压、拉伸、弯曲等)使材料内部发生应变堆积,从而提高材料的强度和硬度。

以上方法可以单独应用,也可以组合应用,以实现对金属材料的强化效果。

金属材料的强化和韧化金属材料的强化11材料强化简介材料强度强

金属材料的强化和韧化金属材料的强化11材料强化简介材料强度强

金属材料的强化和韧化一、金属材料的强化1.1材料强化简介材料强度:强度是指材料抵抗变形和断裂的能力。

通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。

随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等;压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度;高温条件静态拉伸所测的持久强度。

强化机理主要有:固溶强化、形变强化、细晶强化和第二相弥散强化等四种,以下将分别予以介绍。

1.2 固溶强化即利用金属材料内部点缺陷(间隙原子置换原子)对金属基体(溶剂金属)进行强化。

合金元素的固溶强化效果一般可以表示为:△σs= K i C i n式中,K i为系数;C i n为固溶度。

对于C、N等间隙原子,n=0.33~2.0;对于Mo、Si、Mn等置换原子,n=0.5~1.0。

固溶强化的机理:原子固溶与钢的基体中,一般都会使晶格发生畸变,从而在基体中产生了弹性应力场,弹性应力场与位错的交互作用将增加位错运动的阻力,宏观上即表现为提高了材料的强度。

1.3 形变强化金属在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错的运动越来越困难—位错强化。

作用是为了提高材料的强度,使变形更均匀,防止材料偶然过载引起破坏。

金属晶体中的位错是由相变和塑性变形引入的,位错密度愈高,位错运动愈困难,金属抵抗塑性变形的能力就愈大,表现在力学性能上,金属强度提高,即当造成金属晶体内部位错大量增殖时,金属表现出强化效果。

理论研究同时也说明:制成无缺陷,几乎不存在“位错”的完整晶体,使金属晶体强度接近理论强度,则会使金属强化效果表现得更为突出。

因此,金属有两种强化途径:一是对有晶体缺陷的实际金属,即存在位错金属,可以通过位错增殖而强化,二是制成无晶体缺陷的理想金属,使晶体中几乎不存在位错,则金属强化效果会更大。

形变强化遵循以下规律:第一,随着变形量增加,强度提高而塑性和韧性逐渐降低,逐渐接近于零。

塑性变形与强化

塑性变形与强化

σ
n b 2

即形成裂纹。
裂纹形成时滑移面切应力分量为τc, 单向拉伸时τc=σ/2

切应变为
c i ( ) G
)d nb
σ
裂纹位错示意图

晶粒切应变位移:
(
c i
G
4G 形成裂纹时 f d
36
3.杂物边界形成裂纹理论(Smith理论)
(1) 模型 σ
铁素体(γp) 裂纹 晶 界 炭 化 物 (γc)
固溶体位错运动与溶质原子价有关约为弹性交互作用的1316化学交互作用约为弹性交互作用的110但其不随温度变化而变化在高温中十分重要2位错线上溶质原子偏聚效应3有序固溶强化位错在具有有序结构的固溶体中运动时因异类原子对构成的局部有序受到破坏增加了系统能量相当于反向畴界增加位错继续运动需要更高的能量起到强化作对于面心立方结构中的短程有序固溶体位错运动阻力可表示为
E:弹性模量; γ:切应变;G:剪切模量
3
3. 弹性模量影响因素 弹性模量主要取决于金属本性,与晶格类型和原子间距 密切相关。 过渡族金属Fe、Ni、Mo、W、Mn、Co等弹性模量都很 大。 合金中固溶合金元素随可改变晶格常数,但对钢铁材料 改变不大。 热处理改变组织对弹性模量影响不大。
(1)加工硬化率明显高于单晶体,无第一阶段。
(2)加工硬化率高。
要使处于硬取向的滑移
系启动,必须增大外力;
塑性变形过程中各晶粒 内部运动位错的强烈交互 作用使位错塞积严重,晶 界处应力集中,硬化曲线 很陡,加工硬化率高。
应力,MN/mm2
伸长,%
32
4. 加工硬化作用及工程应用
(1)通过冷变形强化金属材料 是一些金属材料强化的重 要手段,如铜、铝、奥氏体不锈钢等。 通过拔丝、轧板、拉伸使金属材料在成型的同时,整 体强化。

第七章 金属的塑性变形与强化

第七章 金属的塑性变形与强化

滑移系
金属中的滑移是沿着一定的晶面和晶面上一定的晶向进行的,这些晶面 称为滑移面,晶向称为滑移方向。一个滑移面和此面上的一个滑移方向结 合起来,组成一个滑移系。 滑移系表示金属晶体在发生滑移时滑移动作可能采取的空间位向。当其 它条件相同时,金属晶体中的滑移系越多,则滑移时可采取的空间位向越多, 该金属的塑性越好。
层错能较低的 FCC金属(金、银、镍 BCC 金属单晶体(铁和铌)在一定 HCP 金属(锌、镁和镉)其主要 和铜),易于出现易滑移区。随变形温度 的条件下也可以得到三阶段的应力—应 滑移系均为基面滑移,在合适的取向 的降低,第一阶段升高,硬化率有所降低, 变曲线。低于室温变形时,第一阶段开 下有利于发展易滑移变形,曲线的第 第二阶段变长而硬化率不变;随变形温度 始所需的应力随温度的降低而急剧提高; 一阶段很长,第二阶段尚未充分发展 的升高,曲线大体呈抛物线状。层错能较 在室温以上变形时,随温度的升高,第 就已经断裂。而当取向不利时,易滑 高的金属(铝),只有在低温变形,才能 二阶段应变范围减小,第三阶段应变范 移区显著缩短,而使相应的硬化率逐 得到三阶段的加工硬化曲线。 围增大。 渐提高。
应力方向。
通过这两种转动可使金属晶体轴线与外力轴线在整个滑移过程中始 终重合,但晶体的空间位向却发生了改变。 由于滑移时晶体要发生转动,所以各滑移系的取向和分切应力不断 变化。原来取向有利的滑移系可能转到不利的取向,从而使继续滑移所 需的外力增加,而原来取向不利的滑移系则可能转到有利的取向,并且 继续开始滑移。通常把这种由于晶体转动所引起的硬化或软化现象,称 为几何硬化或几何软化。
金属塑性的好坏,还与滑移面上原子的密排程度和滑移方向的数目等因 素有关。
滑移面和滑移方向与金属的晶体结构有关,滑移面通常是金属晶体中原 子排列最密的晶面,而滑移方向则是原子排列最密的晶向。这是因为在晶体 的原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离却最 大,即密排面之间的原子结合力最弱,滑移的阻力最小,因而最易于滑移。 沿原子密度最大的晶向滑动时,阻力也最小。

实验一-- 金属冷塑性变形强化与再结晶

实验一-- 金属冷塑性变形强化与再结晶

实验一:金属冷塑性变形强化与再结晶一、实验目的1、掌握冷变形后金属的显微组织特点和硬度变化规律,理解变形量对金属硬度的影响。

2、掌握再结晶退火温度对再结晶组织形貌及晶粒大小的影响。

二、实验原理金属在外力作用下,当应力超过其弹性极限时将发生不可恢复的永久变形称为塑性变形。

金属发生塑性变形后,除了外形和尺寸发生改变外,其显微组织与各种性能也发生明显的变化。

经塑性变形后,随着变形量的增加,金属内部晶粒沿变形方向被拉长为偏平晶粒。

变形量越大,晶粒伸长的程度越明显。

变形量很大时,各晶粒将呈现出“纤维状”组织。

同时内部组织结构的变化也将导致机械性能的变化。

即随着变形量的增加,金属的强度、硬度上升,塑性、韧性下降,这种现象称为加工硬化或应变硬化。

在本实验中,首先以工业纯铁为研究对象,了解不同变形量对硬度和显微组织的影响。

冷变形后的金属是不稳定的,在重新加热时会发生回复、再结晶和晶粒长大等过程。

其中再结晶阶段金属内部的晶粒将会由冷变形后的纤维状组织转变为新的无畸变的等轴晶粒,这是一个晶粒形核与长大的过程。

此过程完成后金属的加工硬化现象消失。

金属的力学性能将取决于再结晶后的晶粒大小。

对于给定材料,再结晶退火后的晶粒大小主要取决于塑性变形时的变形量及退火温度等因素。

本实验以变形量为50%的工业纯铁为试样,在不同温度下进行再结晶退火,研究退火温度对再结晶组织的影响,并测定再结晶晶粒大小。

三、实验设备和材料1、实验设备液压机,实验轧机,金相显微镜,布氏硬度计2、实验材料(1)变形度为0%、30%、50%、70%的工业纯铁试样两套,一套经表面磨平后用于硬度的测定,一套经磨制、抛光处理后,用4%HNO3硝酸酒精溶液腐蚀;(2)工业纯铁经50%塑形变形后,分别在450℃、600℃、750℃保温30分钟,缓冷至室温,经镶嵌、磨制、抛光处理后,用4%HNO3硝酸酒精溶液腐蚀;四、实验内容及步骤1、变形量对工业纯铁冷变形显微组织和硬度的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章金属的塑性变形和强化练习与思考题1 什么叫强化?可能采用那些强化手段来强化金属?采用各种方式使得金属塑性变形时位错运动的阻力增大,即可实现金属材料的强化。

如冷变形的加工硬化,添加合金的固溶强化和析出沉淀强化,细晶强化,亚结构强化,多相组织的相变强化等。

2 面心立方单晶体的应力应变曲线的硬化系数θ为什么各个阶段各不相同?θⅡ最大的原因是什么?第I阶段一般认为只有一个滑移系开动,强化作用不大,θI较小,为易滑移阶段;第Ⅱ阶段为线性强化阶段,出现了多系滑移;多系滑移产生大量位错,使得位错运动阻力明显增大,尤其是面角位错的出现,强烈的阻止位错源开动,并强最大。

烈阻止其他滑移面上的位错运动,从而使得这一阶段硬化指数θⅡ第Ⅲ阶段出现了交滑移,从而拜托了面角位错的封锁,使原被塞积的位错继续运动,使得位错的自由路程增大。

即在加工硬化的同时,存在着动态回复的软化过程,从而造成θⅢ随着γ增大而逐渐降低的现象。

3 晶界对塑性变形有什么影响?晶界对塑性变形过程的影响,主要是在温度较低时晶界阻碍滑移进行引起的障碍强化作用和变形连续性要求晶界附近多系滑移引起的强化作用。

为使多晶体塑性变形过程不破坏晶界连续性,相邻的晶粒必须协调变形。

多晶体塑性变形一旦变形传播到相邻的晶粒,就产生了多系滑移。

位错运动遇到的障碍比单系滑移多,阻力要增加。

存在晶界及晶界两侧晶粒取向有差别,多晶体的塑性变形有着很大的不均匀性。

在单个晶粒内,晶界变形要低于晶粒中心区域;由于细晶组织中晶界占的比例要大于粗晶组织中的晶界,细晶组织的强化效果高于粗晶组织。

4 多系滑移为何能起到强化作用?金属多晶体塑性变形一开始为什么就出现了多系滑移的强化?多系滑移产生大量位错,位错间相互作用使得位错运动阻力明显增大,尤其是面角位错的出现,强烈的阻止位错源开动,并强烈阻止其他滑移面上的位错运动。

多晶体材料中,某一晶粒产生滑移变形而不破坏晶界连续性,相邻的晶粒必须协调变形。

理论计算证明,相邻晶粒通过滑移协调一个可以变成任意形状的晶粒的变形,至少需六个滑移系统。

所以多晶体塑性变形一旦形传播到相邻的晶粒,就产生了多系滑移。

位错运动遇到的障碍比单系滑移多,阻力增加很快。

5 细化晶粒对金属材料的力学性能有什么影响?细化晶粒可以解决哪些问题?有哪些途径可以细化晶粒?根据Hall-Petch关系,流变应力与晶粒直径方根的倒数(D-1/2)有明显的线性关系。

σs=σi+KD-1/2式中σs——屈服应力; D——平均晶粒直径;σi、K——实验常数。

细化晶粒非常重要,在工程上有重要的应用(1)在高强度的钢种中,细化晶粒可以提高其韧性;有助于防止脆性断裂发生,可降低脆性转化温度,提高材料使用范围。

(2)在低强度钢中(如低碳结构钢),利用细化晶粒来提高屈服强度有明显效果。

尤其是超细晶组织对提高强度和韧性作用更突出。

(3)在超塑性变形时,细化晶粒可以得到理想的超塑性变形。

因为超塑性变形的控制机理为晶间滑动机理,等轴细小晶粒更有利于晶间滑动变形。

晶粒细化的途径有以下几种:1)改变结晶过程中的凝固条件,尽量增加冷却速度,另一方面调节合金成分以提高液体金属过冷能力,使形核率增加,进而获得细化的初生晶粒。

2)进行塑性变形,严格控制随后的回复和再结晶过程以获得细小的晶粒组织。

采用低温轧制和随后控制冷却,是得到细晶组织的有效生产工艺。

3)利用固溶体的过饱和和分解或粉末烧结等方法,在合金中产生弥散分布的第二相以控制基体组织的晶粒长大。

4)通过同素异形转变的多次反复快速加热冷却的热循环处理来细化晶粒。

6 什么是屈服效应?其在变形金属的外观上有何反应?体心立方金属单向拉伸过程出现上下屈服点和屈服平台的现象,称之为屈服效应。

其原因是位错与间隙原子形成的柯氏气团的反复钉扎的相互作用。

屈服效应会在变形金属的外观上有所反应,当金属变形量恰在屈服延伸区内时,金属表面会产生粗糙不平的表面缺陷,称之为吕德斯带。

吕德斯带的形成:是外应力作用下,某些位置位错钉扎不牢,它们首先摆脱溶质原子的气团,开始运动、变形是集中在局部区域,在金属外观上的反映就是一种带状的表面粗糙的缺陷。

吕德斯带的消除:(1)加入少量的AI、Ti等强氮、碳化物形成元素,固定C、N,使之不能有效钉扎位错。

(2)在钢板冲压前进行小量的预变形(稍大于屈服延伸区的变形程度),使被溶质原子钉扎住的位错大部分基本脱钉.7 什么是形变时效和动态形变时效?形变时效:体心立方金属第一次加载屈服后卸载,停留一段时间再加载,重新出现屈服效应现象。

其屈服极限、强度极限和硬度均有所提高,而塑性与疲劳极限等则要下降,容易发生脆断。

a-第一次实验;b-卸载后立即加载实验;c-卸载后停留一段时间再加载实验蓝脆:碳钢在150~350℃范围内变形时,存在着动态形变时效现象,因而降低塑性,使金属变脆。

这个温度区间试样或工件表面很容易生长蓝色的氧化膜,有发蓝的现象。

8 处于不同时效阶段的沉淀强化合金的应力应变曲线有何特点?如图所示,应力应变曲线可分为四个阶段,即溶质原子的偏聚阶段、偏聚区有序化阶段、过渡相阶段和平衡阶段。

溶质原子的偏聚阶段:GPⅠ区所对应的一段曲线。

在GPⅠ区,随着时效时间增长,强度增加。

偏聚区有序化阶段:GPⅡ区(体心点阵形成)。

形成共格相θ``强化曲线达到峰值时,沉淀相中有80-90%是θ``相。

过渡相阶段:θ′相出现后,共格关系开始破坏,强化作用不如θ“相,标志着过时效开始。

平衡阶段:长时间时效后,沉淀相完全转变成粗大体心正方结构的有序稳定平衡θ相,完全失去共格关系,导致软化,强化作用比不上固溶强化。

9 沉淀析出相质点越小,沉淀强化合金的强化效果越好吗?第二相析出强化作用机理主要有两种:切过第二相的强化机理和绕过机理,如下图所示。

位错切过第二相质点时,位错运动的阻力将随质点尺寸加大而增加,如曲线B所示;位错绕过第二相质点时,位错运动的阻力将随质点尺寸减小而增加,如曲线A所示。

最佳的粒子尺寸:位错总是选择需要克服阻力最小的方式通过.故当质点相当于两曲线交点P所对应的尺寸大小时,得到最佳的强化效果。

10 影响金属材料塑性的因素有哪些?影响金属材料塑性的因素可分为内在因素和变形的外部条件。

其中内在因素又可分为材料的组织结构和其化学成分。

变形的外部条件为变形温度、变形速度、应力状态、变形的均匀性等。

(1)组织结构对塑性的影响不同晶体结构的金属塑性不同。

面心、体心立方塑性较好、而密排六方滑移系少,塑性较差;纯金属和合金比较,一般纯金属有较好的塑性;单相合金同多相合金材料比较,一般是单相合金材料的塑性好-些。

各相的性质不同,变形的难易程度是不同的;存在第二相的材料,第二相质点的性质、数量、大小、形态和分布对材料的塑性都有很大的影响;晶粒细小均匀的组织比晶粒粗大不均匀的组织塑性好。

特别是冷变形时这种影响的差别更显著;变形组织比铸态组织塑性好。

(2)成分对塑性的影响a)低熔点S化物及其共晶通常分布于晶界上。

在900℃左右变形过程中产生热脆(红脆);b)钢中含0.15~0.30%的铜时,热加工过程中钢的表面会产生龟裂,称为铜脆。

c)钢中含P量不大时,在热加工范围内对塑性影响不大。

在冷状态下时,磷使钢的强度增高。

塑性降低,产生冷脆现象。

P含量超过0.1%时,冷脆现象很明显。

磷还引起高温回火脆性,d)Pb、Sn、As、Sb、Bi,它们都是低熔点元素,俗称“五害” ,对塑性影响很坏。

它们在钢中的溶解度都很小,剩余量分布于晶界。

它们在加热时熔化而使钢材塑性破坏。

e)氢对钢热加工时的塑性没有明显的影响,因为加热到1000℃左右时,过饱和的氢易于从钢中析出。

但含氢量较高的钢,热加工后快速冷却时会产生白点。

冷加工时会产生氢脆现象。

f)低碳钢中固溶的N和C量增大时,形变时效现象显著,在300℃左右加工时会出现蓝脆现象。

(3)外部变形条件的影响a)变形温度对塑性的影响一般规律是温度升高,塑性改善。

原因: 温度升高,热激活作用增强,位错的活动性能提高,温度升高可能出现新的滑移系统,可能使扩散塑性变形机理同时起作用,使塑性变形容易进行。

温度升高有利于回复和再结晶软化过程的发展,可使变形过程造成的破坏和缺陷修复,从而提高了塑性。

b)应变速率对塑性的影响应变速率对塑性的影响是比较复杂的,应变速率效应: 应变速率增加,位错运动没有足够的时间,不利于异号位错的合并、重排,不利于回复和再结晶过程的进行,不利于变形过程中形成的内裂修复。

加工硬化加剧。

温度效应: 应变速率增加,变形热来不及散发,提高了变形温度,促进变形过程中产生的排列混乱的位错重新排列为某些低能组态,利于异号位错合并,位错密度可降低一些。

温度提高促进回复和再结晶,促进裂纹修复, 促使扩散塑性变形机理发生作用。

分析应变速率对塑性的影响时,不能脱离温度的影响区,c)应力状态对塑性的影响从提高塑性的角度来看,各种应力状态中三向压应力最好,两压一拉次之,两拉一压更次之,三向拉应力对塑性潜能的发挥最不利。

d)不均匀变形对塑性的影响变形不均匀而出现的应力叫附加应力。

附加应力的出现影响了变形体的应力分布。

e)其他因素对塑性的影响变形状态、尺寸因素、周围介质等都对塑性有影响。

相关文档
最新文档