带电粒子在有界匀强磁场中的运动归类
带电粒子在有界匀强磁场中的运动
廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?
带电粒子在匀强磁场中的运动知识小结
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即①为静止状态。
②则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间:(Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a点沿ab方向垂直射入匀强磁场:若从c点射出,则圆心在d处若从d点射出,则圆心在ad连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O和运动轨迹圆心O′都在入射点和出射点连线AB的中垂线上。
或者说两圆心连线OO′与两个交点的连线AB垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P为入射点,M为出射点,O为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P为入射点,M为出射点,O为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O、A、B三点时,其圆心O′在OA、OB的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A做v垂线AO,延长v线与切线CD交于C点,做∠ACD的角平分线交AO于O点,O点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法:由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
高三专题带电粒子在场中的运动归类解析(学生版)
带电粒子在场中运动高考题型归类解析1、带电粒子在匀强磁场中匀速圆周运动基本问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】(04天津)钍核Th 23090发生衰变生成镭核Ra 22688并放出一个粒子。
设该粒子的质量为m 、电荷量为q ,它进入电势差为U 的带窄缝的平行平板电极1S 和2S 间电场时,其速度为0v ,经电场加速后,沿ox 方向进入磁感应强度为B 、方向垂直纸面向外的有界匀强磁场,ox 垂直平板电极2S ,当粒子从p 点离开磁场时,其速度方向与ox 方位的夹角︒=60θ,如图所示,整个装置处于真空中。
(1)写出钍核衰变方程;(2)求粒子在磁场中沿圆弧运动的轨道半径R ; (3)求粒子在磁场中运动所用时间t 。
2、带电粒子在磁场中轨道半径变化问题。
导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。
如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。
②磁场变化导致半径变化。
如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。
③动量变化导致半径变化。
如粒子裂变,或者与别的粒子碰撞;④电量变化导致半径变化。
如吸收电荷等。
总之,由qBm vr =看m 、v 、q 、B 中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。
【例2】(06年全国2)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场,磁场方向垂直于纸面向里,且B 1>B 2。
一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?3、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题带电粒子在磁场中运动的临界问题的原因有:粒子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。
带电粒子入射有界匀强磁场问题归类解析
‘ i
图5
、 ,
B
圆心在 ( , 处 , 后把 射入 的速 度 方 向绕 0点 顺 时 OR) 然
针旋转 , 动态圆的圆心也绕 0点旋转 , 如图 2 中虚线 所示 , 从中可看出 , 到 轴上最远 的离子是沿 z轴 射 负方 向射 出的离子 , 一2 一2 y 而射到 z轴上最远 R m
方 向进入 磁场 时 , 子在 MN 上方 粒
、
有 界 匀强磁 场在 直 角坐 标 系第一 、 象 限 内 二
V
例 1 如 图 l所 示 , z轴 上 在 方 ( 0 存 在 着 垂 直 于 纸 面 向 外 ≥ )
的匀 强磁 场 , 磁感 应强 度 为 B, 原 在
点 O有一个离子源, z轴上方的 向
维普资讯
ቤተ መጻሕፍቲ ባይዱ
带电粒子入射有界匀强磁j问题 类解析 5 i ;
王 远虎 江 苏盐城 高级教 师
有界匀强磁场是指 只在局部空 间存在着匀 强磁
场 . 电粒 子垂 直 磁 场 方 向从 磁 场 边 界 进 入 , 于磁 带 由 场 方 向不 同及 磁 场 区域边 界不 同 , 成 它 在磁 场 中运 造 动 的 圆弧轨 道各 有 不 同. 于 粒 子 射 入 的方 向任 意 , 由 形成 的粒子 运动 圆轨 迹是 动态 变 化 的 , 解决 这 类 问题 需 要将 动态 圆轨 迹进 行平 移来 确 定粒 子运 动 范 围. 此 类 习题 能较 好地 考 查 学 生 运 用 数 学 知 识 解 决 复 杂 的 动 态变 化 问题 的能 力 , 高 考命 题 热 点. 文 把 此 类 是 本 高考题 按 不 同有 界匀强 磁 场进 行分 类 拓 展 , 以期 帮助 读 者掌握 解决 此类 运 动 问题 的方法 .
带电粒子在有界匀强磁场中运动的临界问题
分析方法:
(1)找圆心的集合, 画各个v方向的圆, 找临界圆
(2)先画某个v方向 上的圆,再将圆绕入 射点旋转,找临界圆 (“硬币法”)
应用2.如图所示,真空室内存在匀强磁场,磁场方向垂
直于纸面向里,磁感应强度的大小B=0.60T,磁场内有
O
几何法求半径(抓住弦、弧、半
径、角度的关系;
3、找回旋角 确定运动时间
(α单位为弧度) S为弧长
类型一:给定有界匀强磁场,研究带电粒子运动情况
情景1:带正电粒子入射速度方向确定,而大小变化,垂直进入无
界匀强磁场后所有可能的运动轨迹,这些轨迹有什么共同点
粒子进入单
边磁场时,入
射速度与边 界夹角等于
a
b
L
C s
解答:
DB
a
A
D
Bb
R L 2R
C s
情景3 :入射粒子的速度大小、方向都改变,那会是什么情况?
如图所示,两个同心圆为匀强磁场的内外边界,内半径为R1,外 半径为R2,磁场方向垂直纸面向里,已知带正电粒子的电荷为q, 质量为m,匀强磁场的磁感应强度为B,带正电的粒子以某一速 度v从内边界上的A点射入磁场区域。
y
已知圆的一条弦,以此弦为 直径的圆的面积是最小的
30°
a
v
R
r O’
O
b
x
v 60°
思考:若磁场区域是矩形,求最小的矩形面积
小结
带电粒子在有界磁场中运动时,经常会有极 值与临界问题的出现。--找临界圆是关键
类型一:给定有界磁场,研究带电粒子运动情况
情景1:入射速度方向确定,而大小变化
带电粒子在有界匀强磁场中的运动归类解析
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
带电粒子在匀强磁场中的运动-临界、极值及多解问题
•
例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.
•
旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.
•
“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.
•
Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
带电粒子在有界匀强磁场中的运动
A、运动的时间相同
B 、运动的轨道半径相同 C 、重新回到边界时速度
大小和方向都相同
D
、重新回到边界的 与O点的距离相等
位
置
θ O
例2、如图所示,一束电子(电量为e)以速度V
垂直射入磁感应强度为B、宽度为d的匀强磁场,
穿透磁场时的速度与电子原来的入射方向的夹
角为 。3求0:0(1) 电子的质量m=? (2) 电子在
射入磁场,从P点射出磁场,入射方向在xy
平面内,与x轴正向夹角为 。求:
(1)该粒子射出磁场的位置。
(2)该粒子在磁场中运动的时间。(粒子
所受重力不计)
P
y
o
·
v ×××B×××××××××××××××××××××××××××××××××××0××××××
x
y V0
p
o
· × × × × × × × × × × × × × × × × × × × × × × x
××××××××××××××××××××××
××××××××××××××××××××××
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
××A××
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
B × × × × × × × × × × × × × × × × × × × × × ×
带电粒子在有界 匀强磁场中的运动(1)
简单回顾
一、带电粒子在匀强磁 场中的运动规律 1、带电粒子在匀强磁场中 运动 v B,只受洛伦兹 力作用,做匀速圆周运动. 2、洛伦兹力提供向心力:
带电粒子在有界磁场中的运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
第11单元磁场专题十六带电粒子在有界匀强磁场中的运动-2025年物理新高考备考课件
两种思路
一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后分析、讨论处于临界条件时的特殊规律和特殊解
二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值
两种方法
物理方法
(1)利用临界条件求极值;(2)利用边界条件求极值;(3)利用矢量图求极值
长,A错误;由左手定则可判断沿径迹、 运动的粒子均带负电,为电子,B错误;设圆形磁场的半径为,根据几何关系可得沿径迹、 运动的粒子的轨迹半径分别为,,根据可得,则 ,C正确;粒子在磁场中运动的时间之比为偏转角之比,所以 ,D错误.
例5 (多选)[2023·全国甲卷] 光滑刚性绝缘圆筒内存在着平行于轴的匀强磁场,筒上点开有一个小孔,过的横截面是以 为圆心的圆,如图所示.一带电粒子从点沿 射入,然后与筒壁发生碰撞.假设粒子在每次碰撞前、后瞬间,速度沿圆上碰撞点的切线方向的分量大小不变,沿法线方向的分量大小不变、方向相反,电荷量不变.不计重力.下列说法正确的是( )
例6 [2023·浙江丽水模拟] 如图所示,圆形区域内有一垂直于纸面的匀强磁场, 为磁场边界上的一点.现有无数个相同的带电粒子在纸面内沿各个不同方向以相同的速率通过 点进入磁场.这些粒子射出边界的位置均处于磁场边界的某一段弧上,这段圆弧的弧长是圆周长的.若将磁感应强度的大小从原来的变为 ,相
D
A.2 B. C.3 D.
临界极值问题的四个重要结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度 一定时,弧长(或劣弧的弦长)越长,则轨迹对应的圆心角越大,带电粒子在有界磁场中运动的时间越长.(3)当速率 变化时,圆心角越大,则带电粒子在有界磁场中运动的时间越长.(4)在圆形匀强磁场中,当运动轨迹圆半径大于磁场区域圆半径,且入射点和出射点为磁场直径的两个端点时,轨迹对应的圆心角最大(所有的弦长中直径最长).
带电粒子在磁场中的运动题型归类
作出图示的二临界轨迹
,故电子击中档板的范围在P1P2间;对SP1弧由图知
OP1 (2L) 2 L2 3L
对SP2弧由图知
OP2 (4L) 2 L2 15 L
【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临 半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系 确定范围。
(1)若粒子带负电,它将从x轴上A点离开磁场,运动方向发生 的偏转角
A点与O点相距
若粒子带正电,它将从y轴上B点离开磁场,运动方向发生的偏转角 B点与O点相距
(2)若粒子带负电,它从O到A所用的时间为
若粒子带正电,它从O到B所用的时间为
【总结】受洛伦兹力作用的带电粒子,可能带正电荷,也可能 带负电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不 同,导致形成双解。
图9-15
图9-16
【审题】若带电粒子带负电,进入磁场后做匀速圆周运动,圆 心为O1,粒子向x轴偏转,并从A点离开磁场。若带电粒子带正 电,进入磁场后做匀速圆周运动,圆心为O2,粒子向y轴偏转, 并从B点离开磁场。粒子速率一定,所以不论粒子带何种电荷, 其运动轨道半径一定。只要确定粒子的运动轨迹,即可求解。 【解析】粒子运动半径: 。如图9-16,有 带电粒子沿半径为R的圆运动一周所用的时间为
有:
;
R0
d 1 Cos
故粒子必能穿出EF的实际运动轨迹半径R≥R0 mv0 d 即: R
qB 1 Cos
有:
。
v0
qBd m(1 Cos)
由图知粒子不可能从P点下方向射出EF,即只能从P点 上方某一区域射出;又由于粒子从点A进入磁场后受 洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF中有粒子射出的区域为PG, 且由图知: dSin
带电粒子在有界磁场中运动问题分类(基础)
1带电粒子在有界磁场中运动问题分类解析班级: 学号: 姓名:一、带电粒子在半无界磁场中的运动(本试卷11题,最后一题实验班选做,每题10分,共100分) 1. 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?2. 一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。
求匀强磁场的磁感应强度B 和射出点的坐标。
3、一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是t mqB 2=θ。
4.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸里,磁感应强度为B .一带负电的粒子(质量为m 、电荷量为q )以速度v 0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.求:(1)该粒子射出磁场的位置;(2)该粒子在磁场中运动的时间.(粒子所受重力不计)二、带电粒子在圆形磁场中的运动5.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?B图 1Mx2x三、带电粒子在长足够大的长方形磁场中的运动6、如图5所示,一束电子(电量为e )以速度V 垂直射入磁感强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是 ,穿透磁场的时间是( )。
带电粒子在磁场中的运动 整理
E ① 当v>E/B粒子向哪个方向偏? B ② 当v<E/B粒子向哪个方向偏?
1.速度选择器只选择速度,与电荷的正负无关;
2.注意电场和磁场的方向搭配。
• 如图所示,为一速度选择器的原理图,K为电 子枪,由枪中沿虚线KS方向射出的电子速率 大小不一,当电子通过方向互相垂直的匀强磁 场和匀强电场时,只有一定速率的电子能沿直 线前进并通过小孔S,设板间电压为300V,板 间距为5cm,垂直纸面的匀强磁场为B=0.06T, 求: (1)磁场的指向是向里还是向外? (2)速度为多大的电子才能通过小孔?
运动轨迹:匀速圆周运动
二、轨道半径和运动周期
1.轨道半径r
r mv qB
在匀强磁场中做匀速圆周运动的带电粒子,轨 道半径跟运动速率成正比。 2.运动周期T 2 m
T qB
(1)周期跟轨道半径和运动速率均无关 t (2)粒子运动不满一个圆周的运动时间:
m
qB
θ为带电粒子运动所通过的圆弧所对的圆心角
4、回旋加速器
V5
1.磁场偏转
R T 取决于磁场
电场加速
v Ek取决于电场
V4 V2
V1 V3
V0
2.工作条件:合拍
T粒子=T电源
3.获得最大速度、能量取决于
Em
Rm
1 2
mv
2
m
m vm qB
Em
B q Rm 2m
2
2
2
解题关键: 1.粒子每经过一个周期,被 电场加速二次
V4 V0
练习:回旋加速器中磁场的磁感应强度为B,D形盒的
直径为d,用该回旋加速器加速质量为m、电量为q的粒
专题 带电粒子在有界匀强磁场中运动的多解问题
量为m,电量为q的带正电粒子(不计重力),
从左边极板间中点处垂直磁场以速度v平行极板
Lv
射入磁场,欲使粒子不打在极板上,则入射速
+q , m
B
度v应满足什么条件?
L 原因3.临界状态不唯一形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
原因1.磁场方向不确定形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
例2. 如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为
m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射
入磁场中,初速度为v0,且与x轴成60º角,
y
试分析计算:
B
带电粒子在磁场中运动时间多长?
60º v
原因2.带电粒子电性不确定形成多解
60º
O 120º
x
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题
的原因?
O
例3.如图,长为L的水平不带电极板间有垂直纸
面向内的匀强磁场B,板间距离也为L,现有质
例4.如图所示,边长为l的等边三角形ACD内、外分布着方向相反
的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿
∠CAD的平分线方向发射不同速度的粒子,粒子质量均为m,电
荷量均为+q,不计粒子重力。则粒子以下列
哪一速度发射时不能通过D点
qBl A. 4m
qBl B. 2m
√3qBl Cபைடு நூலகம் 4m
例1.如图所示,A点的粒子源在纸面内沿垂直OQ方向向上射出一束带负 电荷的粒子,粒子重力忽略不计.为把这束粒子约束在OP之下的区域, 可在∠POQ之间加垂直纸面的匀强磁场.已知OA间的距离为s,粒子比荷 为 q/m ,粒子运动的速率为v,OP与OQ间夹角为30°.则所加磁场的磁感 应强度B满足条件?
带电粒子在有界磁场中的运动
所以 1 —a 1 . 一 B , 一T q —
图 4 圈 5
下 面讨论 粒子 从 AD 边 、 D 边 、 C BC边 射 出 的情
况 , 图 7 示. 如 所
j)带 电粒子 与 边 界 成任 意 角 0 人 磁 场 , 图 1 射 如
5所 示 .
当 ≤ 时 , 子将 从 AD边 射 出 , R 十, 粒 十, 一
中因只有重力做 功, 系统机械能守恒 , 以÷ ; 所 +
厶
两 边 同乘 以 △ , m 得
一m0 A =O t .
上 式对 任意 时刻 附 近 的 微小 间隔 都 成立 , 累
1
1
寺m +m L o g =寺m 5 2 ・ 。 , —2 s . 得 m _
i 带 电粒子 垂直 进入磁 场 , ) 如图 4所示.
D
、
由q譬及 mN. B一 一B  ̄ v q R
a 临界 条件 : R— 时 , 、 当 即 :q d ̄ B l
, ‘ ,
.
图 1
,
轨 迹恰 好
《 例1 如图2 所示, <o 域内 在 的区 存在匀强
磁场 , 场方 向垂 直 x 磁 y平 面并指 向纸 面外 , 感应 强 磁 度为 B .一带 正 电的粒 子 以速 度 从 0 点射 入 磁 场 ,
:兰 J :
子 射 出磁场 的位 置与 0 点 的距 离 为 1 .求 :( )该 粒 1 子 的 电荷 量 和质量 之 比 ;( )该粒 子 在磁 场 中 的运 2
动 时 间?
,
l
0 ,
D
‘
~
◇
湖南 肖永 良
D
带电粒子在有界磁场中的运动分类解析
d V - -
f f ห้องสมุดไป่ตู้f
2 R。
因朝 不 同方 向 发 射 的 a 粒子 的圆轨迹 都经 过 S, 由此
子 。图 中板 MN 上 方 是 磁 感 应强 度大 小为 B、 方 向垂 直纸 面 向里 的匀 强磁 场 , 板 上 有两 条宽度分别为 2 和 d的缝 , 两
图 2
.
代 人 数 据 解 得: R =
0 . 1 m一1 0 c r r l , 可 见 R< <
2 d
. .
×
【 例2 】( 2 0 0 4 ・ 广东 :
_
垂直纸面 向里 的匀 强 磁场 。带 电粒
子 由 边 界 上 P 点 从 图示 方 向进 入 磁
卷・ 1 8 ) 如图 3 , 真空 室 内 x x x x ; x x x x 存 在 匀强 磁 场 , 磁场方 向 x × x x i x x x x
中学 教 学 参 考
专题 论析
带 电粒 子在 有 界 磁 场 中的运 动 分 类 解 析
湖北 宜 昌市三峡 高中( 4 4 3 1 0 0 ) 席 晓阳 纵观近几年的高考理综 物理试题 , 带 电粒 子在有 界 磁场 中的运 动年年 都考 , 备 受高考 命题 者的青 睐 , 而 且 我们注意到在新课标 全国卷 中, 带 电粒子在有 界磁场 中 的运动往往 是 以压 轴题 的形 式 出现 。这充 分说 明带 电 粒子在有界磁场 中的运动问题是 高考 的重 点和热 点 , 也 是难点 , 所 以无 论 是高考 第一 轮复 习还是 第 二轮 复习 , 这部分 内容 都应 该作 为重 点复 习。带 电粒 子在 有界 磁 场 中的运 动问题综合性较强 , 解决 这类 问题 既要用 到物 理 中的洛仑兹力 、 圆周 运动 知识 , 又要 用到数 学 中的平 面几何 、 三角函数 和解析几 何知识 。而 且有时候 又牵涉 到临界情况 , 思维 含量 高 , 难 度大 。笔 者认 为要 处理 好 这部分内容的复习教学 , 除了要搞好基 础知识 的复习外 ( 比如圆心 的确定 , 准确 、 清 晰地 画 出运 动轨 迹 , 半 径 和 时间 的确定等 ) , 更要 注意 归纳 总结带 电粒 子在 有界磁
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在有界匀强磁场中的运动归类
命题人:罗 通 审题人:李吉彬
一、单直线边界磁场
1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:
(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.
(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;
正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或
2+=ϕθ).
2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子. 规律要点:(以图2中带负电粒子的运动轨迹为例) (1)最值相切:当带电粒子的运动轨迹小于
1
2
圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);
(2)最值相交:当带电粒子的运动轨迹大于或等于
1
2
圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.
图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则
m υr=
Bq
()2
222aO=r -d-r =dr-d ()
2
22Ob=r -d
22224x=ab=aO+Ob=dr-d +r -d
例1.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比
m
q 。
υ
υ θ θ υ
υ
O -
O + θ φ+ φ- 图1
图2
d S
b
O 2
O 1 a O
二、双直线边界磁场
规律要点: 最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.
对称性:过粒子源S 的垂线为ab 的中垂线. 在图3中,ab 之间有带电粒子射出,可求得222ab=dr-d 最值相切规律可推广到矩形区域磁场中.
例2.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁
场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;
(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
三、圆形边界
1.圆形磁场区域:
(1)相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心;(如图4所示)
(2)直径最小:带电粒子从圆与某直径的一个交点射入磁场则从该直径与圆的另一交点射出时,磁场区域最小.(如图5所示) 2.环状磁场区域:
(1)带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场; (2)最值相切:(如图6所示)当带电粒子的运动轨迹与圆相切时,粒子有最大速度υm 或磁场有最小磁感应强度B .
图3 d
O 2
O 1 a
b υ S
例3.地磁场可以“屏蔽”来自太空的带电粒子,防止这些高速运动的带电粒子对地球带来的危害.在高能物理实验中,为了避免宇宙射线中的带电粒子对实验的影响,可在实验装置外加磁场予以屏蔽.如图所示,半径为r 2的圆管形实验通道为实验中高能带电粒子的通道,在r 2到r 1的圆环形加有匀强磁场.假设来自太空的带电粒子的最大速度为υ,粒子均沿半径方向射入磁场区,为了使这些粒子均不能进入实验通道,则磁感应强度B 至少为多大?已知带电粒子的质量均为m ,电荷量均为-q .
四、带电粒子在磁场中运动的极值问题
寻找产生极值的条件: ① 直径是圆的最大弦;
② 同一圆中大弦对应大的圆心角; ③ 由轨迹确定半径的极值。
例4.如图半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=3.2×106
m/s 的α粒子;已知α粒子质量为m=6.6×10-27
kg ,电量q=3.2×10-19
c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少?
练习
r 1
O ’
r
r
υ υ
r 2 图6 B
b a O
θ
B
R b a O
υ υ r 图5 B
O
r R b a O ’
υ υ
图4
m
υ
1.如图所示,一束电子(电量为e)以速度v垂直射入磁感强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是,穿透磁场的时间是。
2.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是()
A.使粒子的速度v<BqL/4m;
B.使粒子的速度v>5BqL/4m;
C.使粒子的速度v>BqL/m;
D.使粒子速度BqL/4m<v<5BqL/4m。
3.如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
4.圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O'处有一竖直放置的荧屏MN,今有一质量为m的电子以速率v从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P点,如图所示,求O'P的长度和电子通过磁场所用的时间。
O'
M
N
L
带电粒子在有界匀强磁场中的运动归类参考答案
例1.解析:根据带电粒子在有界磁场的对称性作出轨迹,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得:R L sin θ=
1
2
① 带电粒子在磁场中作圆周运动,由qv B mv R
00
2
=
解得R mv qB
=
② ①②联立解得
q m v LB
=
20sin θ
例2.解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。
(1)为单直线边界进入型,由图可知:O 1为轨道圆心,由于对称性,速度的偏转角θ1=60°,故轨道半径12
L r =
据2
001m υq υB r =, 则102qBr qBL
υm m
==
(2)当0υ最大时,轨道与cd 相切:
11cos602
L
R R -︒=,得R 1=L
则1max qBR qBL
υm m
==
当0υ最小时,轨道与ab 相切: 22sin302
L
R R +︒=,得23L R =
则2min 3qBR qBL υm m ==03qBL qBL
υm m
∴<≤
带电粒子从ab 边射出磁场,当速度为max υ时,运动时间最短。
O 3 O 2
O 1 60°
min 15053606m
t T Bq
π=
=
速度为min υ时,运动时间最长 max 24043603m
t T Bq
π=
= ∴粒子运动时间t 的范围5463m m
t Bq Bq
ππ≤<
例3.解析:要使带电粒子不进入实验通道,则粒子运动的轨道只能与半径为r 2的内圆相切,因此由几何关系可得
()
2
2221r+r =r +r ①m υr=
Bq
② 联立解得 221222r -r m υ=r Bq ,即(
)
2
22
12
2m υr B=q r -r 例4.解析:α粒子在匀强磁场后作匀速圆周运动的运动半径:r 2m 2.0qB
mv
R ===
α粒子从点O 入磁场而从点P 出磁场的轨迹如图圆O /
所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。
由上面计算知△SO /
P 必为等边三角形,故θ=60° 此过程中粒子在磁场中运动的时间由
即粒子在磁场中运动的最长时间。