第5章 测量误差的基本知识

合集下载

第五章 测量误差的基本知识

第五章 测量误差的基本知识
容 = 3m 有时对精度要求较严,也可采用容 = 2m作为容许误 差。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。

第5章-测量误差的基本知识(091023)

第5章-测量误差的基本知识(091023)

[例6-8]
∴ m A = ± 1.64 = ±1.28(m)
已知:测量斜边D′=50.00±0.05m,测得倾角 α=15°00′00″±30″ 2 ′ m D = [(c o s α ) ⋅ m D ′ ] 2 求:水平距离D 及其中误差 m + [( D ′ ⋅ s in α ) α ] 2 解:1.函数式 D = D′ cos α , ρ 2.全微分 = [(c o s 1 5 o ) ⋅ 0 .0 5 ] 2 dα dD′ = (cos α ) dD′ + ( D′ ⋅ sin α ) o 3 0 ′′ 2 + [(5 0 ⋅ s in 1 5 ) ] ρ ρ 3.化为中误差
四、线性函数 线性函数 Z = K1 X 1 ± K 2 X 2 ± ⋅ ⋅ ⋅ ± K n X n ,则有
mZ = ± K1 m X1 + K 2 m X 2 + ⋅ ⋅ ⋅ + K n m X n
2 2 2 2 2 2
[例6-5] 设对某一个三角形观测了其中α、β两 个角,测角中误差分别为mα=±3.5″,mβ =±6.2″, 现按公式γ=180°-α-β求得γ角,试求γ角的中 = 误差mγ。 解:
2 2 2 2 mZ = m X1 + m X 2 + ⋅ ⋅ ⋅ + m X n
n个观测值代数和(差)的中误差平方,等于n个观 测值中误差平方之和。 在同精度观测时,观测值代数和(差)的中误差, 与观测值个数n的平方根成正比,即 m = m n
Z
m读 ≈ ±2mm [例6-4] 已知水准仪距水准尺75m时,一次读数中误差为 (包括照准误差、气泡置中误差及水准标尺刻划中误差), 若以三倍中误差为容许误差,试求普通水准测量观测n 站所得高差闭合差的容许误差。

第五章 测量误差的基本知识

第五章 测量误差的基本知识

2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:

测量学第5章测量误差的基本知识

测量学第5章测量误差的基本知识
果对函数f(Δ )求二阶导数等于零,可得曲线拐点的横坐标为:Δ 拐 = ±σ 。由于曲线f(Δ )横轴和直线Δ =-σ ,Δ =+σ 之间的曲边梯形面
之差称为真误差,用Δ 表示。设三角形内角和的观测值为li,真值为X,则
三角形的真误差可由下式求得
用式(5.1)算得358个三角形内角和的真误差,现将358个真误差按3″为一 区间,并按绝对值大小进行排列,按误差的正负号分别统计出在各区间的误
差个数k,并将k除以总个数n(本例n=358)误差来看,其误差的出现在数
值大小和符号上没有规律性,但观察大量的偶然误差就会发现其存在着一定 的统计规律性,并且误差的个数越多这种规律性就越明显。下面以一个测量
实例来分析偶然误差的特性。
某测区在相同的观测条件下观测了358个三角形的内角,由于观测值存在误 差,故三角形内角之和不等于理论值180°(也称真值)。观测值与理论值
值(有界性);
②绝对值较小的误差出现的概率大,绝对值大的误差出现的概率小(单峰性); ③绝对值相等的正、负误差出现的概率大致相等(对称性);
④当观测次数无限增加时,偶然误差算术平均值的极限为零(补偿性)。即
式中,“[]”为总和号,即
为了更直观地表达偶然误差的分布情况,还可以用图示形式描述误差分布, 图5.1就是按表5.1的数据绘制的。其中以横坐标表示误差正负与大小,纵坐
1)仪器及工具由于测量仪器制造和仪器校正不完善,都会使测量结果产生测
量误差。 2)观测者由于观测者的技术水平和感觉器官鉴别能力的限制,使得在安置仪
器、瞄准目标及读数等方面都会产生误差。
3)外界条件观测过程所处的外界条件,如温度、湿度、风力、阳光照射等因 素会给观测结果造成影响,而且这些因素随时发生变化,必然会给观测值带

第5章 测量误差的基本知识

第5章 测量误差的基本知识
第5章
1.观测误差
测量误差的基本知识
§5-1 概述
在各项测量工作中,对同一个量进行多次重复的观测 其结果是不一致的;对若干个量进行观测,如果知道 这几个量所构成的某个函数应等于某个理论值,而实 际上用观测值计算的函数值与理论值不相符(如三角 形的内角和)。这就是存在观测误差的原因。
2.产生观测误差的原因
例3:水平角观测限差的制定
水平角观测的精度与其误差的综合影响有关,对于 J6光学经纬仪来说,设计时考虑了有关误差的影响, 保证室外一测回的方向中误差为±6″。实际上,顾 及到仪器使用期间轴系的磨损及其它不利因素的影 响,设计精度一般小于±6″,新出厂的仪器,其野 外一测回的方向中误差小于±6″,在精度上有所富 裕。
Δ2 0 1 49 4 1 1 64 0 9 1 130
0 -4 +3 +2 -3 24
+1 +8 0 +3 -1 24
2
中误差Biblioteka m1 2 2 .7 n
m
2

n
3 .6
1 2
n
2.4
正态分布
1 f ( x) e 2 x 0 ( x )2 2 2
1 1
√2π m 1 √2π m 2
y = f (Δ )
f 1 (Δ ) f 2 (Δ )
若 0, 1 1 则f ( x) e 2
( x) 2
2
-
-m1
+m1 +
x =Δ
m2
m2
两组观测值中误差图形的比较:
m1=2.7 m2=3.6
m1较小, 误差分布比较集中,观测值精度较高; m2较大,误差分布比较离散,观测值精度较低。

05章测量误差基本知识

05章测量误差基本知识
2 1 2 x1 2 x2 2 2 2 xn
例1.量得某圆形建筑物的直径D=34.50m,其中误 差 mD 0.01m ,求建筑物的园周长及其中误差。 解:圆周长
P πD 3.1416 34.50 108.38 中误差mP π mD 3.1416 ( 0.01) 0.03m 结果可写成P 108.38 0.03(m)
例6:用同样观测方法,经由长度为L1,L2,L3的三条不同路
线,测量两点间的高差,分别得出高差为h1,h2,h3。已 知每公里的高差中误差为mkm,求三个高差的权。
解: m1 mkm L 1 , m2 mkm L 2 , m3 mkm L 3 λ λ pi 2 2 mi mkm L i λ 令c 2 ,则 mkm c pi Li 1 取c 1,则pi ,即1km高差的权为单位权 Li 2 若取c 2,则pi ,即2km高差的权为单位权 Li
f m x 2
2
f ... m x n
2
2 xn
求任意函数中误差的步骤
列函数关系式 全微分 求出中误差关系式
例题一:设在三角形ABC中,直接观测∠A和∠B,其 中误差分别为mA=±3”和mB=±4”,试求由∠A和∠B 计算∠C的中误差mC 。 解:函数关系式为: ∠C= 1800-∠A-∠B
δ L X 2
(l X) (l2 X) ... (ln X) [Δ] [l ] X 1 n n n
1 2 2 (Δ1 Δ2 ... Δn 2Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) 2 n2 [ΔΔ] 2(Δ1Δ2 2Δ1Δ3 ... 2Δn1Δn ) n2 n2

第5章 误差基本知识

第5章 误差基本知识
②仪器构造本身也有一定误差。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n

n
13

从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。

第5章 测量误差理论的基础知识

第5章 测量误差理论的基础知识
第五章 测量误差理论的基本知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。

《测量学》第05章 测量误差的基本知识

《测量学》第05章 测量误差的基本知识
第五章 测量误差的基本知识
5.1 测量误差概述 5.2 衡量精度的标准 5.3 误差传播定律 5.4 算术平均值及其中误差 5.5 加权平均值及其中误差
5.1 测量误差概述
测量实践中可以发现, 测量实践中可以发现,测量结果 不可避免的存在误差 比如: 存在误差, 不可避免的存在误差,比如: 1.对同一量的多次观测值不相同; 对同一量的多次观测值不相同; 对同一量的多次观测值不相同 2.观测值与理论值存在差异。 观测值与理论值存在差异。 观测值与理论值存在差异
5.3 误差传播定律
阐述观测值中误差与观测值函数的中误 差之间关系的定律,称为误差传播定律 误差传播定律。 差之间关系的定律,称为误差传播定律。 一、观测值的函数 1.和差函数 2.倍函数 3.线性函数 4.-般函数
Z = x1 + x 2 + L + x n
Z = mx
Z = k1 x1 + k 2 x 2 + L + k n x n
mZ = ± (
∂f 2 2 ∂f ∂f 2 2 ) m1 + ( ) 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) 2 mn ∂x1 ∂x2 ∂xn
5.4 算术平均值及观测值的中误差
一、求最或是值
设在相同的观测条件下对未知量观测了n次 设在相同的观测条件下对未知量观测了 次 , 观测值为l 中误差为m 观测值为 1、l2……ln,中误差为 1、m2、…mn,则 其算术平均值(最或然值、似真值) 其算术平均值(最或然值、似真值)L 为:
二、研究测量误差的目的和意义
分析测量误差产生的原因及其性质。 分析测量误差产生的原因及其性质。 确定未知量的最可靠值及其精度。 确定未知量的最可靠值及其精度。 正确评价观测成果的精度。 正确评价观测成果的精度。

第五章测量误差的基本知识

第五章测量误差的基本知识

mC
试求 中误差
5.3等精度直接观测量的最可靠值及其中 误差
▪ 当观测次数n趋于无穷大时,算术平均值趋 于未知量的真值。当n为有限值时,通常取 算术平均值做为最可靠值。
▪ 利用观测值的改正数vi计算中误差:
m [vv] (n 1)
▪ 算术平均值中误差:
M m [vv] n n(n 1)
例:对某直线丈量了6次,丈量结果如表,求算术
▪ 4相同的观测条件下,一测站高差的中误差为 _______。
▪ 5衡量观测值精度的指标是_____、_______和 ______。
▪ 6对某目标进行n次等精度观测,某算术平均值的中 误差是观测值中误差的______倍。
▪ 7在等精度观测中,对某一角度重复观测多次,观测 值之间互有差异,其观测精度是______的。
第五章 测量误差的基本知识
第五章 测量误差基本知识
5.1 测量误差与精度 5.2误差传播定律 5.3等精度直接观测量的最可靠值及其中误 差 5.4非等精度直接观测值的最可靠值及其中 误差
第五章 测量误差基本知识
▪ 主要内容:测量误差的概念、来源、分类 与处理方法;精度概念及评定标准;误差 传播定律;观测值中误差计算;直接观测 值的最可靠值及其中误差
C.水准管轴不平行与视准轴的误差
▪ 经纬仪对中误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 尺长误差和温度误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 下面是三个小组丈量距离的结果,只有( 测量的相对误差不低于1/5000的要求
)组
▪ A.100m 0.025m; B.200m 0.040m; C.150m 0.035m

第五章测量误差的基本知识

第五章测量误差的基本知识

第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。

5.测量,测角中误差均为10〃,所以A角的精度高于B角。

(X)8.在测量工作中无论如何认真仔细,误差总是难以避免的。

(X)10 .测量中,增加观测次数的目的是为了消除系统误差。

(X)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。

如估读、气泡居中判断等。

偶然误差的特性:(D有界性(2)渐降性(3)对称性(4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为m户±20〃,用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10” ?()A. 1B.2C.3D.43.偶然误差服从于一定的规律。

4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会。

14.测量误差的来源有、、外界条件。

3.设对某距离丈量了6 次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。

6.偶然误差的算术平均值随观测次数的无限增加而趋向于o14.设对某角度观测4个测回,每一测回的测角中误差为±5",则算术平均值的中误差为±〃。

24.衡量测量精度的指标有、、极限误差。

3.观测值与之差为闭合差。

()A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是()A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为o9.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?10测量误差按性质可分为和两大类。

1. 2.相对误差2.由估读所造成的误差是()oA.偶然误差B.系统误差C.既是偶然误差又是系统误差14.下列不属于衡量精度的标准的是()。

第五章测量误差的基本知识

第五章测量误差的基本知识

第五章测量误差的基本知识第五章测量误差的基本知识本章摘要:本章主要介绍测量误差的种类;偶然误差的统计特征和处理⽅法;精度的含义;评定测量精度的指标;不同精度指标表达的意义及其适⽤范围。

§5-1 测量误差及分类摘要内容:学习误差理论知识的⽬的,使我们能了解误差产⽣的规律,正确地处理观测成果,即根据⼀组观测数据,求出未知量的最可靠值,并衡量其精度;同时,根据误差理论制定精度要求,指导测量⼯作选⽤适当观测⽅法,以符合规定精度。

讲课重点:测量误差的概念、测量与观测值分类、测量误差及其来源、测量误差的种类、偶然误差的特性及其概率密度函数。

讲课难点:偶然误差的特性及其概率密度函数。

讲授重点内容提要:⼀、测量误差的概念⼈们对客观事物或现象的认识总会存在不同程度的误差,这种误差在对变量进⾏观测和量测的过程中反映出来,称为测量误差。

⼆、测量与观测值通过⼀定的仪器、⼯具和⽅法对某量进⾏量测,称为观测,获得的数据称为观测值。

三、观测与观测值的分类1.同精度观测和不同精度观测观测条件:构成测量⼯作的要素包括观测者、测量仪器和外界条件,通常将这些测量⼯作的要素统称为观测条件。

同精度观测:在相同的观测条件下,即⽤同⼀精度等级的仪器、设备,⽤相同的⽅法和在相同的外界条件下,由具有⼤致相同技术⽔平的⼈所进⾏的观测称为同精度观测,其观测值称为同精度观测值或等精度观测值。

反之,则称为不同精度观测,其观测值称为不同(不等)精度观测值。

2.直接观测和间接观测直接观测:为确定某未知量⽽直接进⾏的观测,即被观测量就是所求未知量本⾝,称为直接观测,观测值称为直接观测值。

间接观测:通过被观测量与未知量的函数关系来确定未知量的观测称为间接观测,观测值称为间接观测值。

(说明:例如,为确定两点间的距离,⽤钢尺直接丈量属于直接观测;⽽视距测量则属于间接观测。

)3.独⽴观测和⾮独⽴观测独⽴观测:各观测量之间⽆任何依存关系,是相互独⽴的观测,称为独⽴观测,观测值称为独⽴观测值。

《土木工程测量》PPT课件第5章-测量误差的基本知识

《土木工程测量》PPT课件第5章-测量误差的基本知识

1 K限 2K中误差 D
△= L观– L理 = L-X
D
9.5cm =X
0
10
N1 2 3 4 5 6 7 L 9.4 9.7 9.5 9.6 9.3 9.2 9.6 △ 0.1 -0.2 0 -0.1 0.2 0.3 -0.1
Δ
o•
• •
• •
• •
N
(2)偶然误差的示例:
1)读数误差(水准测量)
1.5
1.6
1.7
1589 中丝读数: 1590
[例] 已知:D1=100m, m1=±0.02m,D2=200m,m2=±0.02m, 求: K1, K2
解:
K1
m1
D1
0.02 100
1 5000
K2
m2
D2
0.02 200
110000, 精度高。
3、相对极限误差
当绝对误差为极限误差时,K 称为相对极限误差。测量中取 相对极限误差为相对中误差的两倍,即
§5-1 测量误差概述
测量实践中可以发现,测量结果不可避免 的存在误差,比如: 1、对同一量多次观测,其观测值不相同。 2、观测值之和不等于理论值:
三角形 α+β+γ≠180°
闭合水准测量 ∑h≠0
一、测量误差及其来源
1、测量误差: 观测值:对某一被观测量进行直接观测所获得的数 值。 真值 :任一观测量, 客观存在的能代表其大小的数值 (1)误差——真值与观测值之差(严格:真误差)
➢ 方差和中误差 ➢ 极限误差 ➢ 相对误差。
一、方差和中误差
➢ 定义: 在相同观测条件下,对某量(真值为X)进行n次 独立观测,观测值为:L1、L2、…、Ln;其相应的真误差为 Δ1,Δ2,……,Δn;则定义该组观测值的

第五章测量误差的基本知识_土木工程测量

第五章测量误差的基本知识_土木工程测量

[ 例 ] 已 知 : D1=100m, m1=±0.01m , D2=200m, m2=±0.01m,求: K1, K2 解:
K1
m1
D1
0.01 100
1 10000
K2
m2
D2
0.01 200
1 20000
返回
一、 求最或是值
设在相同的观测条件下对未知量观测了n
次,观测值为l1、l2……ln,中误差为m1、 m2 …mn,则其算术平均值(最或然值、似真
第五章 测量误差的基本知识
§5.1 §5.2 §5.3 §5.4
测量误差概述 衡量精度的标准 误差传播定律 等精度直接观测平差
测量实践中可以发现,测量结果不可避 免的存在误差,比如: 1、对同一值多次观测,其观测值不相同。 2、 观测值之和不于等理论值:
三角形 α+β+γ≠180°
闭合水准 ∑h≠0
2.全微分
dD (cos )dD (D sin ) d
3.求中误差
ቤተ መጻሕፍቲ ባይዱ
mD2
[(cos
) mD ]2
[(D sin )
m
]2
[(cos15 ) 0.05]2 [(50 sin15 ) 30 ]2
mD 0.048(m)
二、 线性函数的误差传播定律
设线性函数为:
z k1x1 k2x2 knxn
偶然误差的特性
真误差 l x l 180
观测值与理论值之差
①在一定的条件下,偶然误差的绝对值不会超 过一定的限度;(有界性)
②绝对值小的误差比绝对值大的误差出现的机 会要多;(密集性、区间性)
③绝对值相等的正、负误差出现的机会相等,
可相互抵消;

第五章 测量误差的基本知识

第五章 测量误差的基本知识

一般情况下,只要是观测值必然含有误差。 一般情况下,只要是观测值必然含有误差。
5.1 测量误差的来源及分类
二、测量误差产生的原因
1. 仪器误差 2. 观测误差 3. 外界条件的影响 观测条件
如果使用的仪器是同一个精密等级, 如果使用的仪器是同一个精密等级,操作人员有相同 的工作经验和技能,工作环境的自然条件(气温、 的工作经验和技能,工作环境的自然条件(气温、风 湿度等等)基本一致,则称为相同的观测条件 相同的观测条件。 力、湿度等等)基本一致,则称为相同的观测条件。
i
正态分布曲线
图中有斜线的长方形 面积就代表误差出现 在某区间的频率。 在某区间的频率。
-21 -15 -18 -12 -9 -6 -3 0 +3 +9 +15 +21 +6 +12 +18 +24
x=∆
-24
误差分布频率直方图
5.2 偶然误差的基本特性
误差分布图
在一定的观测条件下得到一组独立的误差, 在一定的观测条件下得到一组独立的误差,对应着一种确定 的分布。 同时无限缩小误差区间, 的分布。当误差个数 n → ∞ ,同时无限缩小误差区间,上图 中的各矩形的顶边折线就成为一条光滑的连续曲线。 中的各矩形的顶边折线就成为一条光滑的连续曲线。 这条曲线称为误差分布曲线也称为 正态分布曲线。 正态分布曲线。曲线上任意一点的 纵坐标y 的函数, 纵坐标y均为横坐标 ∆ 的函数,其 函数形式为:
5.3 衡量观测值精度的指标
1、中误差
中误差不同于各个观测值的真误差, 中误差不同于各个观测值的真误差,它是衡量一组观 测值精度的指标, 测值精度的指标,它的大小反映出一组观测值的离散 程度。中误差m值小,表明误差的分布较为密集, 程度。中误差m值小,表明误差的分布较为密集,各 观测值间的差异较小,这组观测的精度就高;反之, 观测值间的差异较小,这组观测的精度就高;反之, 中误差m值较大,表明误差的分布较为离散, 中误差m值较大,表明误差的分布较为离散,观测值 之间的差异也大,这组观测的精度就低。 之间的差异也大,这组观测的精度就低。 说明:中误差越小,观测精度越高。 说明:中误差越小,观测精度越高。

5测量误差的基本知识

5测量误差的基本知识
3.外界条件的影响 例如:外界环境如温度、湿度、风力、大气折光等 因素的变化,均使观测结果产生误差。
人、仪器和外界条件,通常称 为观测条件
观测条件相同的各次观测,称 为等精度观测;
在观测结果中,有时还会出现 错误,称之为粗差。粗差在观测结 果中是不允许出现的
2
§5-1 测量误差及其分类
二、测量误差的分类
3
§5-1 Leabharlann 量误差及其分类2.偶然误差 在相同的观测条件下,
对某量进行一系列的观测, 如果误差的大小和符号都没 有表现出一致性倾向,表面 上没有任何规律,这种误差 称为偶然误差。
偶然误差是不可避免的。
4
§5-2 偶然误差的特性
偶然误差的四个特性:
(1)有限性 在一定观测条件下,偶然误差的绝对值有一定的限值;
第五章 测量误差的基本知识
§5-1 测量误差及其分类
测量误差—观测值与真值之差 真值—对一个量多次观测的算术平均值
一、测量误差产生的原因
1.仪器误差 由于仪器和工具加工制造不完善或校正之后残余误差 存在所引起的误差。
2.人为误差 由于观测者感觉器官鉴别能力的局限性所引起的误差。
1
§5-1 测量误差及其分类
2.容许误差: 在一定观测条件下,偶然误差的绝对值不应超过的限值,称 为极限误差,也称限差或容许误差。
P 2m
如果某个观测值的偶然误差超过了容许误差,就可以 认为该观测值含有粗差,应舍去不用或返工重测。
3.相对误差: 相对中误差是中误差的绝对值与相应观测结果之比,并化 为分子为1的分数,即:
m1 mK D D
m
7
(2)聚中性 绝对值较小的误差比绝对值较大的误差出现的概率大; (3)对称性 绝对值相等的正、负误差出现的概率几乎相同;

《测量学》第5章 测量误差基本知识

《测量学》第5章 测量误差基本知识

4 180-00-01.5
5 180-00-02.6
S
m
244 .3 7.0秒 5
m2 3m2 m 3m
-10.3
+2.8 +11.0 -1.5 -2.6 -1.6
106.1
7.8 121 2.6 6.8 244.3
A BC
m m / 3 4.0秒
误差传播定律应用举例
1、测回法观测水平角时盘左、盘右的限差不超 过40秒; 2、用DJ6经纬仪对三角形各内角观测一测回的 限差; 3、两次仪器高法的高差限差。
24
130
中误差 m 1
2 2 .7 n
m2
2 3 .6
n
三、相对误差
某些观测值的误差与其本身 大小有关
用观测值的中误差与观测值之比 的形式描述观测的质量,称为相 对误差(全称“相对中误差”)
T m l
1 l
m
例,用钢卷尺丈量200m和40m两段距 离,量距的中误差都是±2cm,但不 能认为两者的精度是相同的
x l1 l2 ln
已知:m1 =m2 =….=mn=m
n
求:mx
dx
1 n
dl1
1 n
dl2
1 n
dln
mx
(
1 n
)2
m12
(1)2 n
m22
(1)2 n
mn2
1m n
算例:用三角形闭合差求测角中误差
次序 观测值 l
Δ ΔΔ
1 180-00-10.3
2 179-59-57.2
3 179-59-49.0
误差传播定律
应用举例
观测值:斜距S和竖直角v 待定值:水平距离D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式工中程测量[Δ]
——偶然误差的代数和,

1
2
n
13
5 测量误差的基本知识 §5.2 衡量精度的标准
在测量工作中,常采用以下几种标准评定测 量成果的精度。
中误差
相对中误差
极限误差
工程测量
14
5 测量误差的基本知识 §5.2 衡量精度的标准
中误差
设在相同的观测条件下,对某量进行n次重复观测, 其观测值为l1,l2,…,ln,相应的真误差为Δ1,Δ2,…, Δn。则观测值的中误差m为:
4
24″~27″
1
0
1
27″以上
0
0
0
工程测量 合计
107
110Βιβλιοθήκη 217115 测量误差的基本知识 §5.1 偶然误差的特性
(1)绝对值较小的误差比绝对值较大的 误差个数多;
(2)绝对值相等的正负误差的个数大致 相等;
(3)最大误差不超过27″。
工程测量
12
5 测量误差的基本知识 §5.1 偶然误差的特性 偶然误差的四个特性:
工程测量
10
5 测量误差的基本知识 §5.1 偶然误差的特性
真误差绝对值大小统计结果
误差区间 正误差个数 负误差个数
总计
0″~3″
30
29
59
3″~6″
21
20
41
6″~9″
15
18
33
9″~12″
14
16
30
12″~15″
12
10
22
15″~18″
8
8
16
18″~21″
5
6
11
21″~24″
2
2
(1)在一定观测条件下,偶然误差的绝对值有一定的限值, 或者说,超出该限值的误差出现的概率为零;
(2)绝对值较小的误差比绝对值较大的误差出现的概率大;
(3)绝对值相等的正、负误差出现的概率相同;
(4)同一量的等精度观测,其偶然误差的算术平均值,随着
观测次数n的无限增大而趋于零,即

lim 0 n n
三内角和的观测值 真误差△ -3″ -2″ +2″ +4″ -1″ 0″ -4″ +3″ +2″ -3″ 24
△平方 9 4 4 16 1 0 16 9 4 9 72
工程测量
17
5 测量误差的基本知识
相对误差
相对中误差是中误差的 绝对值与相应观测结果 之比,并化为分子为1 的分数,即相对误差用 下式求得:
在相同观测条件下,对某量进行一系列观测,如果误 差出现的符号和大小均相同,或按一定的规律变化,这种 误差称为系统误差。
系统误差在测量成果中具有累积性,对测量成果影响 较大,但它的符号和大小又具有一定的规律性,一般可采 用下列方法消除或减弱其影响。
(1)进行计算改正
(2)选择适当的观测方法
工程测量
6
5 测量误差的基本知识 §5.1 观测误差及其分类
工程测量
9
5 测量误差的基本知识 §5.1 偶然误差的特性
例如,对三角形的三个内角进行测量,由于观测值含 有偶然误差,三角形各内角之和l不等于其真值180˚。用X 表示真值,则l与X的差值Δ称为真误差(即偶然误差), 即
lX
现在相同的观测条件下观测了217个三角形,计算出 217个内角和观测值的真误差。再按绝对值大小,分区间 统计相应的误差个数,列入表中。
m
K

D
1 D
m
工程测量
18
5 测量误差的基本知识
例如测量了两段距离,一段为100m,另一段 为200m,观测值的中误差均为±20mm。显 然不能认为两段距离的精度相同,因为距离 的测量精度与距离本身长度的大小有关。为 了客观地反映观测精度,必须引入一个评定 精度的标准,即相对误差。相对误差K就是观 测值的中误差绝对值与观测值之比,通常以 分子为1的分式表示。相对误差能够确切描述 观测量的精确度。
2.偶然误差
在相同的观测条件下,对某量进行一系 列的观测,如果观测误差的符号和大小都不 一致,表面上没有任何规律性,这种误差称 为偶然误差。
工程测量
7
5 测量误差的基本知识 §5.1 偶然误差的特性
偶然误差从表面上看没有任何规律性,但是随 着对同一量观测次数的增加,大量的偶然误差就表 现出一定的统计规律性,观测次数越多,这种规律 性越明显。
m
n
式中 [∆∆]——真误差的平方和, 21 22 2n
工程测量
15
5 测量误差的基本知识
§5.2 衡量精度的标准
[ 例5-1] :对 10 个三角形的内角进行了观测,根据观 测值中的偶然误差(三角形的角度闭合差,即真误差), 计算其中误差。
工程测量3.6
工程测量
8
5 测量误差的基本知识
§5.1 偶然误差的特性
例如,对三角形的三个内角进行测量,由于观测值含 有偶然误差,三角形各内角之和l不等于其真值180˚。用X 表示真值,则l与X的差值Δ称为真误差(即偶然误差), 即
lX
现在相同的观测条件下观测了217个三角形,计算出 217个内角和观测值的真误差。再按绝对值大小,分区间 统计相应的误差个数,列入表中。
道路工程测量
第5章 测量误差的基本知识
教学课件
5 测量误差的基本知识
本章的主要内容: 1、测量误差的基本概念;
2、衡量观测值精度的指标(中误差);
3、误差传播律;

4、权、算术平均值、加权平均值及其中误差 。
工程测量
2
5 测量误差的基本知识 §5.1 观测误差的概述
一、测量误差产生的原因
在观测结果中,有时还会出现错误,称之为粗 差。
粗差在观测结果中是不允许出现的,为了杜绝
粗差,除认真仔细作业外,还必须采取必要的检核
措施。
工程测量
4
5 测量误差的基本知识 §5.1 观测误差及其分类
二、测量误差的分类
系统误差 偶然误差
工程测量
5
5 测量误差的基本知识 §5.1 观测误差及其分类
1.系统误差
1.测量仪器和工具
由于仪器和工具加工制造不完善或校正之后残余误差 存在所引起的误差。
2.观测者
由于观测者感觉器官鉴别能力的局限性所引起的误差。
3.外界条件的影响
外界条件的变化所引起的误差。
工程测量
3
5 测量误差的基本知识 二、 观测误差及其分类
人、仪器和外界条件,通常称为观测条件。 观测条件相同的各次观测,称为等精度观测; 观测条件不相同的各次观测,称为非等精度观测。
16
5 测量误差的基本知识
序号
1 2 3 4 5 6 7 8 9 10 ∑
中误差
观测值 L 180 ° 00 ′ 03 ″ 180 ° 00 ′ 02 ″ 179 ° 59 ′ 58 ″ 179 ° 59 ′ 56 ″ 180 ° 00 ′ 00 ″ 180 ° 00 ′ 04 ″ 180 ° 00 ′ 03 ″ 179 ° 59 ′ 57 ″ 179 ° 59 ′ 58 ″ 180 ° 00 ′ 03 ″
相关文档
最新文档