宁夏高考数学备考复习(文科)专题九:直线与圆的方程

合集下载

高三数学直线与圆知识点复习

高三数学直线与圆知识点复习

高三数学直线与圆知识点复习数学是高中阶段学生最让人头疼的科目之一,而高三阶段的数学更是难度系数加大。

在高三数学课程中,直线与圆是一个非常重要的知识点。

下面我们来复习一下直线与圆的相关知识。

1. 直线方程在平面直角坐标系中,直线可以用一般式或点斜式方程表示。

一般式方程为Ax + By + C = 0,其中A、B和C是常数。

而点斜式方程则是y - y1 = k(x - x1),其中(k是直线的斜率,(x1, y1)是直线上的一点。

直线方程中的斜率对于直线的性质起着重要作用。

斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为零表示直线为水平线,斜率不存在表示直线为竖直线。

2. 圆的方程在平面直角坐标系中,圆可以用标准方程表示。

标准方程为(x - a)² + (y - b)² = r²,其中(a, b)是圆心的坐标,r是圆的半径。

圆的方程中,圆心对圆的性质起着重要作用。

圆心坐标(a, b)表示圆心所在的位置,半径r则决定了圆的大小。

3. 直线与圆的关系直线与圆有着紧密的关系,可以分为以下几种情况:- 直线与圆相切:直线与圆相切表示直线与圆只有一个交点,此时直线的斜率与半径的斜率互为相反数。

- 直线与圆相离:直线与圆相离表示直线与圆没有交点,此时直线的斜率与半径的斜率不相等。

- 直线与圆相交:直线与圆相交表示直线与圆有两个交点。

- 直径:直径是连接圆上任意两点,并且经过圆心的线段。

直径的长度等于圆的半径的两倍。

4. 直线与圆的求解方法当我们遇到直线与圆的相交等问题时,可以通过以下几种方法求解:- 列方程求解:将直线和圆的方程列出,根据方程求解交点的坐标。

- 利用性质求解:根据直线和圆的性质,通过几何推理求解交点的坐标。

5. 直线与圆的应用直线与圆的知识在实际生活中有广泛的应用。

例如,在建筑设计中,我们需要确定两条直线是否相交,以确保结构的稳定性。

在电子设备设计中,我们需要确定一条直线是否与一个电子元件的引脚相交,以确保电子元件的正常工作。

高考数学(文科)大一轮精准复习课件:§9.1 直线方程与圆的方程

高考数学(文科)大一轮精准复习课件:§9.1 直线方程与圆的方程

=1.
当λ=1 时,直线l:x =1, 与线段AB 有公共点.
当λ≠1 时,直线l的斜率k= ,
∵直线l与线段AB 有公共点.
∴ ≥1 或 ≤-3.
∴-1≤λ<1 或1< λ≤3综. 上所述,λ的取值范围为[-1,3],故选B.
答案 B
方法2 求直线方程的方法
点的坐标确定直线的位置,斜率确定直线的方向,也就是说,要确定直线 的方程,只需找到两个点的坐标,或一个点的坐标与过该点的直线的斜 率即可.因此确定直线方程的常用方法有两种:(1)直接法:根据已知条件, 确定适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直 线方程,再根据已知条件求出待定的系数,最后代入求出直线的方程.
A.
∪ B.
C.
D∪.
解析 直线ax + y+2=0 恒过点M (0,-2),且斜率为-a,
kMA =
=- ,kMB =
= .
由图可知,-a ≤- 或- a ≥ .
∴a ≥ 或a ≤- ,故选D.

答案 D
考向二 求直线方程
例2 (2018湖北十堰模拟,17)菱形ABCD 的顶点A ,C 的坐标分别为A (-4, 7),C (6,-5),BC 边所在直线过点P(8,-1).求: (1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.
考点清单
考点一 直线的倾斜角、斜率与方程 考向基础 1.直线的倾斜角
(1)当直线l与x 轴相交时,取x 轴作为基准,x 轴① 正向 与直线l ② 向上的方向 所成的角即为直线l的倾斜角; (2)当直线l与x 轴平行或重合时,规定直线的倾斜角为③ 0 ° ; (3)直线倾斜角θ的范围为④ [0,π) .

高考数学二轮复习考点知识与解题方法讲解09 直线和圆的方程

高考数学二轮复习考点知识与解题方法讲解09  直线和圆的方程
3
故选:A.
4.(2023·山东潍坊·二模)已知直线 l1 : x 3y 0 , l2 : x ay 2 0 ,若 l1 l2 ,则 a ( )
A. 1
3
B. 1
3
C.3
D.-3
【答案】A
【分析】两直线斜率均存在时,两直线垂直,斜率相乘等于-1,据此即可列式求出 a
的值.
【详解】∵
项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共
弦长.
6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的
有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放 在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.
公切线条数
4
3
2
1
0
1.求倾斜角的取值范围的一般步骤 (1)求出斜率 k=tan α 的取值范围. (2)利用三角函数的单调性,借助图象,确定倾斜角 α 的取值范围.求倾斜角时要注意斜
率是否存在.
2.已知两直线的一般方程
两直线方程 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0 中系数 A1,B1,C1,A2,B2, C2 与垂直、平行的关系: A1A2+B1B2=0⇔l1⊥l2; A1B2-A2B1=0 且 A1C2-A2C1≠0⇔l1∥l2. 3.判断直线与圆的位置关系常见的方法:
ab c

因为
A2 M
与直线
y
b a
x
平行,
ab
所以
c a2
a
b a
,即
a
b
c
b a

c
所以 c 2a ,则 b2 c2 a2 3a2 ,

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==;二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0用得比较多的是点斜式、斜截式与一般式。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200B A CBy Ax d +++=③平行直线间距离:2221B A C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。

高考数学复习《直线和圆的方程》知识点

高考数学复习《直线和圆的方程》知识点

直线和圆的方程考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式. 两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念。

理解圆的参数方程.§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x . 注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠) 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当 90≠θ,则有21121tan k k k k +-=θ. 5. 过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A CBy Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。

2023版高考数学一轮总复习第九章直线和圆的方程第一讲直线方程与两直线的位置关系课件文

2023版高考数学一轮总复习第九章直线和圆的方程第一讲直线方程与两直线的位置关系课件文

第九章 直线和圆的方程1.直线的倾斜角与斜率直线的倾斜角直线的斜率定义定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l_________之间所成的角α叫作直线l的倾斜角.规定:当直线l与x轴______________时,规定它的倾斜角为0°.向上方向平行或重合k=tan α12=2−12−1区别直线l垂直于x轴时,直线l的斜率不存在;斜率k的取值范围为R.联系续 表[0,π)大大2.直线方程的几种形式名称方程说明适用条件斜截式y =kx +bk 是斜率;b 是纵截距.与x轴不垂直的直线.点斜式____________点(x 0,y 0)是直线上的已知点;k 是斜率.两点式点(x 1,y 1),(x 2,y 2)是直线上的两个已知点.与两坐标轴均不垂直的直线.y -y 0=k (x -x 0)名称方程说明适用条件截距式 a是直线的横截距;b是直线的纵截距.不过原点且与两坐标轴均不垂直的直线.一般式Ax+By+C=0(A2+B2≠0)所有直线.+=1注意 当直线与x轴不垂直时,可设直线方程为y=kx+b;当直线与y轴不垂直时,可设直线方程为x=my+n.1. 两条直线的位置关系斜截式一般式方程y =k 1x +b 1,y =k 2x +b 2.相交k 1≠k 2._________________.垂直_________._________________.平行k 1=k 2且_______.重合k 1=k 2且_______.A 1B 2-A 2B 1=B 1C 2-B 2C 1=A 1C 2-A 2C 1=0.A 1B 2-A 2B 1≠0k 1k 2=-1A 1A 2+B 1B 2=0b 1≠b 2b 1=b 2注意 两条直线平行时,不要忘记它们的斜率都不存在的情况;两条直线垂直时,不要忘记一条直线的斜率不存在、另一条直线的斜率为零的情况.2. 两条直线的交点对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,它们的交点通过方程组1+1+1=0,2+2+2=0求解.3. 三种距离公式距离类型公式两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2|=______________________点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d = 两条平行直线Ax +By +C 1=0与Ax +By +C 2=0间的距离d = (2−1)2+(2−1)2|B 0+B 0+U2+2|1−2|2+2注意 点到直线、两平行线间的距离公式的使用条件:(1)求点到直线的距离时,应先将直线方程化为一般式;(2)求两平行线间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.理解自测1.判断正误(正确的打“√”,错误的打“✕”).(1)直线的倾斜角越大,其斜率越大. ( )(2)若直线的斜率为tan α,则其倾斜角为α. ( )(3)经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示. ( )(4)若两直线的方程组成的方程组有解,则两直线相交. ( )(5)点P (x 0,y 0)到直线y =kx +b 的距离为 . ( )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于 ,且线段AB 的中点在直线l 上. ( )✕✕✕✕✕√|kx 0+b |1+k 2-1(7)当直线l 1和直线l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2. ( )(8)若两条直线垂直,则他们的斜率之积一定等于-1. ( )2.直线2x cos α-y -3=0(α∈[π6,π3] )的倾斜角的取值范围是 ( )A.[π6,π3] B.[π4,π3] C.[π4,π2] D.[π4,2π3]3.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 . ✕✕B (-∞,-3]∪[1,+∞)1.典例 (1)已知点A(3,4),则经过点A且在两坐标轴上截距相等的直线方程为 .(2)已知直线l过点P(3,2),且与x轴,y轴的正半轴分别交于A,B两点,如图所示,当△ABO的面积最小时直线l的方程为 .4x-3y=0或x+y-7=0 2x+3y-12=0解析 (1) 设直线在x轴,y轴上的截距均为a.①若a=0,即直线过点(0,0)及(3,4).(讨论截距是否为0)则直线的方程为y=43x,即4x-3y=0.②若a≠0,设所求直线的方程为+=1,又点(3,4)在直线上,所以3+4=1,所以a=7.所以直线的方程为x+y-7=0.综上可知所求直线的方程为4x-3y=0或x+y-7=0.(2)解法一(截距式) 设A(a,0),B(0,b)(a>0,b>0),则直线l的方程为+=1.因为l过点P(3,2),所以3+2=1.因为1=3+2≥26B,整理得ab≥24,所以S△ABO=12ab≥12.当且仅当3= 2,即a=6,b=4时取等号.此时直线l的方程是6+4=1,即2x+3y-12=0.解法二(点斜式) 依题意知,直线l的斜率k存在且k<0,则直线l的方程为y-2=k(x-3),则A(3-2,0),B(0,2-3k),S△ABO=12(2-3k)(3-2)=12[12+(-9k)+4−]≥12[12+2(−9)·4− ]= 12×(12+12)=12,当且仅当-9k=4−,即k=-23时,等号成立.所以所求直线l的方程为2x+3y-12=0.方法技巧1.求解直线方程的两种方法直接法根据已知条件,选择适当的直线方程形式,直接写出直线方程.待定系数法①设所求直线方程的恰当形式(点斜式、斜截式、两点式、截距式和一般式);②由条件建立所求参数的方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.2.过两直线交点的直线方程的求法(1)先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程,但需注意分类讨论.3.与直线方程有关的最值问题的解题策略先设出直线方程,建立目标函数,再结合函数的单调性或基本不等式求最值.思维拓展常见的直线系方程过定点P(x0,y0)的直线系方程A(x-x)+B(y-y0)=0(A2+B2≠0),还可以表示为y-y=k(x-x0)或x=x0.平行于直线Ax+By+C=0的直线系方程Ax+By+λ=0(λ≠C).垂直于直线Ax+By+C=0的直线系方程Bx-Ay+λ=0.过两条已知直线l1:A1x+B1y+C1=0和l 2:A2x+B2y+C2=0的交点的直线系方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R)或A2x+B2y+C2=0.2.变式 (1)已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a= 12 .(2)过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B(5,7)等距离的直线方程为 .21x-28y-13=0或x=1解析 (1) 由题意知直线l1,l2恒过定点P(2,2),直线l1的纵截距为2-a,因为0<a<2,所以2-a>0,直线l2的横截距为a2+2,所以四边形的面积S=12×2(2-a)+12×2(a2+2)=a2-a+4=(a-12)2+154,所以当a=12时,面积最小.(2) 因为A,B到直线7x-21y-1=0的距离不相等,所以可设所求直线方程为2x+7y-4+λ(7x-21y-1)=0,(此直线系不包括直线7x-21y-1=0,解题时,要注意检验该方程是否满足题意)即(2+7λ)x+(7-21λ)y+(-4-λ)=0,考向1直线方程由点A(-3,1),B(5,7)到所求直线的距离相等,可得|(2+7)×(−3)+(7−21)×1−4−|(2+7)2+(7−21)2=|(2+7)×5+(7−21)×7−4−|(2+7)2+(7−21)2,整理可得|43λ+3|=|113λ-55|,解得λ=2935或λ=13,所以所求的直线方程为21x-28y-13=0或x=1.3.典例 (1)[2022南昌市模拟]直线l 1:ax +(a +1)y -1=0,l 2:(a +1)x -2y +3=0,则“a =2”是“l 1⊥l 2”的 ( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知直线l 1:3x -y -1=0,l 2:x +2y -5=0,l 3:x -ay -3=0不能围成三角形,则实数a 的取值不可能为 ( ) A.1B.13C.-2D.-1A A解析 (1) 若l1⊥l2,则a(a+1)+(a+1)×(-2)=0,解得a=-1或a=2,所以“a=2”是“l1⊥l2”的充分不必要条件,故选A.(2) 由题意可得,若三条直线不能围成三角形,则其中有两条直线平行或三条直线经过同一点.若其中有两条直线平行,当l1∥l3时,可得a=13,当l2∥l3时,可得a=-2;若三条直线经过同一点,由3−=1,+2=5可得直线l1与l2的交点为(1,2),则(1,2)在l3上,故可得1-2a-3=0,解得a=-1.综上,实数a的值可能为1,-2,-1.故选A.4.变式 已知直线l 的方程为3x +4y -12=0,(1)若过点(-1,3),且与l平行的直线l 1的方程为 ;(2)若直线l 2与l 垂直,且l 2与两坐标轴围成的三角形的面积为4,则直线l 2的方程为 .3x +4y-9=0 4x-3y +46=0或4x-3y -46=0 解析 (1)解法一 直线l的方程可化为y=-34x+3,可知l的斜率为-34,因为l1与l平行,所以直线l1的斜率为-34.又l1过点(-1,3),所以由点斜式得直线l1的方程为y-3=-34(x+1),即3x+4y-9=0.解法二 由l1与l平行,可设l1的方程为3x+4y+m=0(m≠-12),将(-1,3)代入,得m=-9,于是所求直线方程为3x+4y-9=0.(2) 由l2与l垂直,可设直线l2的方程为4x-3y+p=0,则l2在x轴上的截距为-4,在y轴上的截距为3.由题意可知,l2与两坐标轴围成的三角形的面积S= 12·|3|·|-4|=4,求得p=±46.所以直线l2的方程为4x-3y+46=0或4x-3y-46=0.5.典例 (1)[2022武汉市部分学校质检]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|= ( )A.23B.25C.2D.4(2)[2021全国卷乙][文]双曲线x 24-y 25=1的右焦点到直线x +2y -8=0的距离为 .B 5解析 (1)直线x +2y +1=0与x +2y +3=0间的距离d 1=|3−1|12+22=255,(使用两平行线间的距离公式时,两条直线方程中的x ,y 前的系数必须分别对应相等)直线3x-4y +c 1=0与3x-4y +c 2=0间的距离d 2=|1−2|32+(−4)2=|1−2|5.由菱形的性质,知d 1=d 2,所以|1−2|5=255,所以|c 1-c 2|=25,故选B .(2) 由双曲线的性质知c =3,双曲线右焦点的坐标为(3,0),所以双曲线的右焦点到直线x +2y-8=0的距离d =|3−8|12+22=5.方法技巧求解距离问题的策略(1)点到直线的距离问题可直接利用距离公式求解;(2)动点到两定点距离相等,一般不直接利用两点间的距离公式处理,而是转化为动点在以两定点为端点的线段的垂直平分线上,从而简化计算; (3)两平行线间的距离:①利用两平行线间的距离公式求解;②利用“转化法”将两条直线间的距离转化为一条直线上任意一点到另一条直线的距离.考向3距离问题B6.变式 [2020全国卷Ⅲ] [文]点(0,-1)到直线y=k(x+1)距离的最大值为 ( )A.1B. 2C.3D.2解析 解法一 由点到直线的距离公式知点(0,-1)到直线y=k(x+1)的距离d=|r1|2+1=2+2r12+1=1+22+1.当k=0时,d=1;当k≠0时,d=1+22+1= 1+2r1,要使d最大,需k>0且k+1最小,∴当k=1时,d max=2.解法二 记点A(0,-1),直线y=k(x+1)恒过点B(-1,0),当AB垂直于直线y=k(x+1)时,点A(0,-1)到直线y=k(x+1)的距离最大,且最大值为|AB|= 2.考向4对称问题7.典例 已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A'的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m'的方程;(3)直线l关于点A对称的直线l'的方程.解析 (1)设A'(x,y),则r2r1·23=−1,2×−12−3×−22+1=0,解得=−3313,=413,即A'(-3313,413).(2)在直线m上任取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m'上.设M关于直线l的对称点为M'(a,b),则2×r22−3×r02+1=0,−0−2×23=−1,解得=613,=3013,即M'(613,3013).设m与l的交点为N,则由2−3+1=0,3−2−6=0得N(4,3).又m'经过点N(4,3),所以由两点式得直线m'的方程为9x-46y+102=0.(3)解法一 在l:2x-3y+1=0上任取两点,如P(1,1),N(4,3),则P,N关于点A 的对称点P',N'均在直线l'上.易知P'(-3,-5),N'(-6,-7),由两点式可得l'的方程为2x-3y-9=0.解法二 设Q(x,y)为l'上任意一点,则Q(x,y)关于点A(-1,-2)的对称点为Q'(-2-x,-4-y),因为点Q'在直线l上,所以2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0点关于点对称直线关于点对称直线关于点对称的问题可转化为点关于点对称的问题.点关于直线对称直线关于直线对称直线关于直线的对称问题可转化为点关于直线的对称问题.方法技巧对称问题的解题策略8.变式 (1)一条光线从点P (-2,1)射出,与直线l :x -y +1=0交于点Q (1,2),经直线l 反射,则反射光线所在直线的斜率是 ( )A.1B.3C.2D.3(2)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为 . D x +4y-4=0点P关于直线l:x-y+1=0的对称点为(0,-1),所以反射光线的斜率为2−(−1)1−0=3.(2)设l1与l的交点为A(a,8-2a),由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把点B的坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4.因为点A(4,0),P(0,1)在直线l上,所以直线l的方程为x+4y-4=0.。

高考文数直线与圆知识点

高考文数直线与圆知识点

高考文数直线与圆知识点在高考数学的考试中,直线与圆是非常重要的几何知识点。

掌握直线与圆的相关性质和计算方法,对于解题有着重要的指导意义。

本文将介绍一些高考中常见的直线与圆知识点,希望能帮助同学们更好地理解和学习。

1. 直线与圆的位置关系直线与圆的位置关系有三种:直线与圆相交、直线与圆相切和直线与圆相离。

当直线与圆相交时,可能会有两个交点或者一个交点。

这要根据直线与圆的位置关系来判断。

如果直线穿过圆的两个交点,则称为直线与圆相交于两点;如果直线与圆只有一个交点,则称为直线与圆相切。

当直线与圆相离时,直线与圆之间没有任何交点。

2. 直线与圆的性质(1)切线性质:过圆外一点,可作无数条与圆相切的直线,这些相切直线上的切点和该点到圆心的线段相等。

当直线与圆相切时,该直线被称为切线。

切线与圆相切于一个点,且切点到圆心的距离与切点到该点的距离相等。

(2)切线定理:切线所构成的角与该切点与圆心连线所构成的角相等。

当直线与圆相切时,切线与该切点与圆心连线所构成的角相等。

(3)幅度定理:圆心角的幅度是其所对应扇形的幅度的两倍。

圆心角是以圆心为顶点的角,其幅度定义为其所对应扇形的幅度的两倍。

(4)正切定理:切线与半径的正切相等。

当直线与圆相切时,该切线与切点处的半径的正切相等。

3. 直线与圆的计算方法(1)直线方程的计算方法:已知直线上的两个点,可以求出直线的方程。

设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的方程可以表示为(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1)。

(2)圆的方程的计算方法:已知圆心和半径,可以求出圆的方程。

设圆的圆心坐标为(h, k),半径为r,则圆的方程可以表示为(x - h)² + (y - k)² = r²。

通过计算直线方程和圆的方程,可以解决很多与直线与圆有关的几何问题。

4. 直线与圆的应用在实际生活和工作中,直线与圆的知识点也有很多应用。

高三总复习直线与圆的方程知识点总结及典型例题

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。

2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在`⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。

当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。

几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b!④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程。

②任何一个关于x 、y 的二元一次方程都表示一条直线。

5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) '特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴)(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。

二、两直线的位置关系(说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan kk k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B A d③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --':(2)点关于线的对称:设p(a 、b)一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则Kpp 0﹡K L =-1P , P 0中点满足L 方程:解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。

直线与圆的方程知识点总结

直线与圆的方程知识点总结

直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。

在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。

2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。

一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。

3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。

对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。

4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。

斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。

5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。

截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。

二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。

在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。

2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。

一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。

3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。

截距式方程通过圆的截距反映了圆的位置和形状。

4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。

通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。

5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。

圆的三角方程常用于解决涉及圆的三角学问题。

高中直线和圆的方程知识点总结

高中直线和圆的方程知识点总结

高中数学:直线和圆的方程知识点总结1. 引言高中数学中,直线和圆的方程是重要的知识点。

理解直线和圆的方程能够帮助我们准确描述和解决几何问题。

本文将总结和介绍直线和圆的方程的相关知识点。

2. 直线的方程2.1. 点斜式方程直线的点斜式方程是直线方程的一种常见形式。

给定直线上一点P (x₁, y₁) 和直线的斜率 k,点斜式方程可以表示为:y - y₁ = k(x - x₁)其中,(x, y) 表示直线上任意一点。

点斜式方程可以方便地描述直线的位置和方向。

2.2. 截距式方程直线的截距式方程是直线方程的另一种常见形式。

给定直线与x轴和y轴的截距分别为 a 和 b,截距式方程可以表示为:x/a + y/b = 1截距式方程可以直观地描述直线与坐标轴的交点。

2.3. 一般式方程直线的一般式方程是直线方程的一种标准形式。

给定直线上任意一点的坐标 (x, y) 和直线的系数 A、B、C,一般式方程可以表示为:Ax + By + C = 0一般式方程可以用于判断两条直线的位置关系。

3. 圆的方程3.1. 标准方程圆的标准方程是圆的方程的常见形式。

给定圆心坐标 (h, k) 和半径 r,标准方程可以表示为:(x - h)² + (y - k)² = r²标准方程可以方便地描述圆的位置和形状。

3.2. 参数方程圆的参数方程是圆的方程的另一种常见形式。

给定圆心坐标 (h, k) 和半径 r,参数方程可以表示为:x = h + rcosθy = k + rsinθ其中,θ 是圆上任意一点的极角。

参数方程可以用于描述圆上的点的坐标。

3.3. 一般方程圆的一般方程是圆的方程的一种一般形式。

给定圆心坐标 (h, k) 和半径 r,一般方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E、F 是圆的参数。

一般方程可以用于推导标准方程或参数方程。

4. 总结直线和圆的方程是高中数学中的重要知识点。

高考数学考点知识专题讲解10---直线和圆的方程

高考数学考点知识专题讲解10---直线和圆的方程
4.无论 k 取任何实数,直线 (1+ 4k ) x − (2 − 3k ) y + (2 −14k ) = 0 必经过一定点 P,则 P 的坐标为
(2,2)
【范例导析】 例 1.已知两点 A(-1,2)、B(m,3)
2 / 17
(1)求直线 AB 的斜率 k;
(2)求直线 AB 的方程;
(3)已知实数 m∈ −
3
y+2=0
π 的倾斜角范围是 0, 6

5π 6

2. 过点 P(2, 3) ,且在两坐标轴上的截距互为相反数的直线方程是 x − y +1 = 0或3x − 2 y = 0
3.直线 l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线 l 的方程为 y = x − 4或y = −x + 2
2
2.
【范例导析】 例 1.已知两条直线 l1 :x+m2y+6=0, l2 :(m-2)x+3my+2m=0,当 m 为何值时, l1 与 l2
(1) 相交;(2)平行;(3)重合?
分析:利用垂直、平行的充要条件解决. 解:当m=0 时, l1 :x+6=0, l2 :x=0,∴ l1 ∥ l2 ,
第 2 讲 两条直线的位置关系
【考点导读】
1.掌握两条直线平行与垂直的条件,能根据直线方程判定两条直线的位置关系,会求两条相
交直线的交点,掌握点到直线的距离公式及两平行线间距离公式.
2.高考数学卷重点考察两直线平行与垂直的判定和点到直线的距离公式的运用,有时考察单
一知识点,有时也和函数三角不等式等结合,题目难度中等偏易.
空间直角坐标系
圆与圆的位置关系
【方法点拨】

高中数学知识点:直线和圆的方程

高中数学知识点:直线和圆的方程

高中数学知识点:直线和圆的方程一、证一、概述在知识点圆的方程中介绍了圆的概念 ,以及直线与圆的位置关系。

在初一数学中就有学习过直线方程的知识点 ,应该清楚 ,一元一次方程与直线方程的关系。

二、直线方程1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角 ,其中直线与x轴平行或重合时 ,其倾斜角为0 ,故直线倾斜角的范围是[0,180〕注:①当倾斜角等于90时 ,直线l垂直于x轴 ,它的斜率不存在.②每一条直线都存在惟一的倾斜角 ,除与x轴垂直的直线不存在斜率外 ,其余每一条直线都有惟一的斜率 ,并且当直线的斜率一定时 ,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.三、圆的方程1.⑴曲线与方程:在直角坐标系中 ,如果某曲线C上的与一个二元方程f(x,y)=0的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解.②以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线〔图形〕.⑵曲线和方程的关系 ,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系 ,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来 ,满足方程f(x,y)=0的解所对应的点是曲线上的点.注:如果曲线C的方程是f(x,y)=0 ,那么点P0(x0,y)线C上的充要条件是f(x0,y0)=01.提出反证法:一般地 ,假设原命题不成立 ,经过正确的推理 ,最后得出矛盾 ,因此说明假设错误 ,从而证明了原命题成立.2.证明根本步骤:假设原命题的结论不成立从假设出发 ,经推理论证得到矛盾矛盾的原因是假设不成立 ,从而原命题的结论成立3.应用关键:在正确的推理下得出矛盾〔与条件矛盾 ,或与假设矛盾 ,或与定义、公理、定理、事实矛盾等〕.4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的 ,即由一个命题与其逆否命题同真假 ,通过证明一个命题的逆否命题的正确 ,从而肯定原命题真实.。

直线和圆的方程知识点

直线和圆的方程知识点

直线和圆的方程知识点在数学中,直线和圆分别是几何图形中的基本要素。

它们在解决几何问题和实际应用中起着重要的作用。

本文将介绍直线和圆的方程知识点,以帮助读者更好地理解和应用这些基础概念。

一、直线的方程直线的方程可以通过点斜式、截距式和一般式表示。

下面将分别介绍这三种表示直线的方法。

1. 点斜式点斜式适用于已知直线上一点和斜率的情况。

假设直线上已知一点A(x₁,y₁)和斜率k,那么直线的点斜式方程可以表示为:y - y₁ = k(x - x₁)。

例如,给定一点A(2, 3)和斜率k = 2,那么直线的点斜式方程为:y - 3 = 2(x - 2)。

2. 截距式截距式适用于已知直线与x轴和y轴的交点情况。

假设直线与x轴和y轴的交点分别为A(0, b)和B(a, 0),那么直线的截距式方程可以表示为:x/a + y/b = 1。

例如,给定直线与x轴和y轴的交点分别为A(0, 2)和B(3, 0),那么直线的截距式方程为:x/3 + y/2 = 1。

3. 一般式一般式是直线表示的常见形式,即Ax + By + C = 0,其中A、B和C分别是系数。

一般式可以通过点斜式或截距式转换得到。

例如,将点斜式方程y - 3 = 2(x - 2)转换成一般式方程,将得到2x - y + 1 = 0。

二、圆的方程圆的方程可以通过圆心和半径、直径、两点坐标等不同条件表示。

下面将分别介绍几种表示圆的方法。

1. 圆心和半径如果已知圆的圆心坐标为(h, k),半径为r,那么圆的方程可以表示为:(x - h)² + (y - k)² = r²。

例如,已知圆心坐标为(2, -1),半径为3,那么圆的方程为:(x - 2)²+ (y + 1)² = 9。

2. 直径如果已知圆的两个端点坐标为A(x₁, y₁)和B(x₂, y₂),那么圆的方程可以表示为:(x - (x₁ + x₂)/2)² + (y - (y₁ + y₂)/2)² = [(x₂ - x₁)² + (y₂ - y₁)²]/4。

宁夏高三数学期末分类汇总——直线与圆

宁夏高三数学期末分类汇总——直线与圆

宁夏省期末模拟试题分类汇编第9部分:直线与圆一.选择题1.(宁夏09)已知直线01=++my x 与直线=--122y x m 0互相垂直,则实数m 为A .32B .0或2C .2D .0或32答案::(B )2(宁夏09)过点)2,1(M 的直线l 将圆9)2(22=+-y x 分成两段弧,当其中的劣弧最短时,直线l 的方程是( ) A .1=xB .1=yC .01=+-y xD .032=+-y x答案::(D )3.(宁夏09)已知点A 是直角三角形ABC 的直角顶点,且)2,(a A ,),4(a B -,)1,1(+a C ,则三角形ABC 的外接圆的方程是 .答案::(5)2(22=++y x )4.(宁夏09)若过点)0,4(A 的直线l 与曲线1)2(22=+-y x 有公共点,则直线l 的斜率的取值范围为( )A .[]3,3-B .()3,3-C . ⎥⎥⎦⎤⎢⎢⎣⎡-33,33D .)33,33(-答案::(C )5.(宁夏09)若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是 ( ) A .1)37()3(22=-+-y x B .1)1()2(22=-+-y xC .1)3()1(22=-+-y x D .1)1()23(22=-+-y x答案::(B )6.(宁夏09)过直线x y =上的一点P 作圆2)1()5(22=-+-y x 的两条切线B A l l ,,,21为切点,当直线21,l l 关于直线x y =对称时,则=∠APB ( )A .30°B .45°C .60°D .90°、 答案::(C ) 二.填空题1.(宁夏09)已知点)4,1(P 在圆042:22=+-++b y ax y x C 上,点P 关于直线03=-+y x 的对称点也在圆C 上,则__________,==b a 。

宁夏高考模拟直线和圆的方程课件.

宁夏高考模拟直线和圆的方程课件.
A. x 1 B.y 1 C.x y 1 0 D.x 2y 3 0
3.已知点是直角三角形的直角顶点,且

三角形的外接圆的方程是

B
A
C
4.(宁夏09)若过点 A(4,0) 的直线l与曲线 (x 2)2 y2 1 有公共点,
则直线l的斜率的取值范围为(C)
k 2 1 0 (1)
②若 A(2,1) ,则 k k AC 1 k 2 1b
1 b1
得 k
2 1
2 (1)
综上,
k 2 b 1

k 2 1b
.
5、设点C为曲线
y

2 x
(x

0)
上任一点,以点C为圆心的圆与x轴交
于点E、A,与y轴交于点E、B.
4k 2 6k 4
x2 1 k 2 , y2 1 k 2
kBC

y1 y2 x1 x2

3 4
3、已知圆C与两坐标轴都相切,圆心C到直线 y x的距离等于 2.
((12))求若圆直线C的l 方: mx程 .ny 1(m 2, n 2) 与圆C相切,求证:mn 6 4 2 .
n m mn 1, (n m mn)2 n2 m2,
n2 m2
m n mn 2 . 2
∵ m 0, n 0, m n 2 mn
mn 2 2 mn ( mn)2 4 mn 2 0,
2
mn 2 2,或 mn 2 2. ∴ mn 2 2 ∴ mm 6 4 2.
A. 3, 3 B . 3, 3
C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏高考数学备考复习(文科)专题九:直线与圆的方程
姓名:________ 班级:________ 成绩:________
一、单选题 (共16题;共32分)
1. (2分) (2016高二上·泉港期中) 已知Ω={(x,y)| },直线y=mx+2m和曲线y=
有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若P(M)∈[ ,1],则实数m的取值范围()
A . [ ,1]
B . [0, ]
C . [ ,1]
D . [0,1]
2. (2分)点A(2,5)到直线l:x﹣2y+3=0的距离为()
A . 2
B .
C .
D .
3. (2分) (2017高二上·安平期末) 已知动圆P过定点A(﹣3,0),并且与定圆B:(x﹣3)2+y2=64内切,则动圆的圆心P的轨迹是()
A . 线段
B . 直线
C . 圆
D . 椭圆
4. (2分)(2020·长春模拟) 已知直线与圆相切,则()
A .
B .
C . 或
D .
5. (2分) (2015高一上·洛阳期末) 在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0)(m,0),则m的最大值为()
A . 4
B . 5
C . 6
D . 7
6. (2分) (2019高二上·潜山月考) 过点的直线,将圆形区域分两部分,使得这两部分的面积之差最大,则该直线的方程为()
A .
B .
C .
D .
7. (2分) (2015高二上·淄川期末) 点P是双曲线﹣y2=1的右支上一点,M、N分别是(x+ )2+y2=1和(x﹣)2+y2=1上的点,则|PM|﹣|PN|的最大值是()
A . 2
B . 4
C . 6
D . 8
8. (2分)已知直线x+7y=10把圆x2+y2=4分成两段弧,这两段弧长之差的绝对值等于()
A .
B .
C . π
D . 2π
9. (2分) (2016高一下·威海期末) 若圆x2+y2﹣2x+4y+1=0上至少有两个点到直线2x+y﹣c=0的距离等于1,则实数c的取值范围为()
A .
B .
C .
D .
10. (2分)(2019·浙江模拟) 直线与圆交于不同的两点,则
()
A .
B .
C .
D .
11. (2分)已知两圆相交于A(﹣1,3),B(﹣6,m)两点,且这两圆的圆心均在直线x﹣y+c=0上,则m+2c 的值为()
A . ﹣1
B . 26
C . 3
D . 2
12. (2分)已知圆:C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()
A .
B .
C .
D .
13. (2分) (2016高二上·襄阳期中) 方程x2+y2﹣2x+m=0表示一个圆,则x的范围是()
A . m<1
B . m<2
C . m≤
D . m≤1
14. (2分) (2020高二上·安徽月考) 已知椭圆:的左,右焦点分别为,, ,
分别为椭圆与 , 正半轴的交点,若直线与以为直径的圆相切,则的值为()
A .
B .
C .
D .
15. (2分)圆C1:x2+y2=1与圆C2:x2+(y﹣2)2=1的位置关系是()
A . 两圆相交
B . 两圆内切
C . 两圆相离
D . 两圆外切
16. (2分) (2016高二上·公安期中) 若圆C与圆D:(x+2)2+(y﹣6)2=1关于直线l:x﹣y+5=0对称,则圆C的方程为()
A . (x+2)2+(y﹣6)2=1
B . (x﹣6)2+(y+2)2=1
C . (x﹣1)2+(y﹣3)2=1
D . (x+1)2+(y+3)2=1
二、填空题 (共7题;共8分)
17. (2分) (2020高二上·长春期中) 已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为________.
18. (1分)(2017·西城模拟) 已知圆O:x2+y2=1.圆O'与圆O关于直线x+y﹣2=0对称,则圆O'的方程是________.
19. (1分) (2018高二上·宁波期末) 已知圆C:,则实数a的取值范围为________;若圆与圆C外切,则a的值为________.
20. (1分)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线4x﹣3y+c=0的距离为1,
则实数c的取值范围是________.
21. (1分) (2016高二上·台州期中) 过点(1,2)总可以作两条直线与圆 x2+y2+kx+2y+k2﹣15=0 相切,则实数k的取值范围是________.
22. (1分)(2017·渝中模拟) 已知P为函数的图象上任一点,过点P作直线PA,PB分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为________.
23. (1分) (2017高一上·濉溪期末) 已知圆x2+y2=4,则圆上到直线3x﹣4y+5=0的距离为1的点个数为________.
三、综合题 (共2题;共20分)
24. (10分) (2018高二上·定远期中) 在平面直角坐标系中,圆:与轴的正半轴交于点
,以为圆心的圆:()与圆交于,两点.
(1)若直线与圆切于第一象限,且与坐标轴交于,,当直线长最小时,求直线的方程;
(2)设是圆上异于,的任意一点,直线、分别与轴交于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.
25. (10分)在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足 ?
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
四、解答题 (共1题;共5分)
26. (5分) (2019高一下·钦州期末) 已知圆C的半径是2,圆心在直线上,且圆与直线
相切.
(1)求圆C的方程;
(2)若点P是圆C上的动点,点Q在x轴上,的最大值等于7,求点Q的坐标.
参考答案一、单选题 (共16题;共32分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
二、填空题 (共7题;共8分) 17-1、
18-1、
19-1、
20-1、
21-1、
22-1、
23-1、
三、综合题 (共2题;共20分) 24-1、
24-2、
25-1、
25-2、
四、解答题 (共1题;共5分)
26-1、
26-2、
第11 页共11 页。

相关文档
最新文档