武汉理工大学 高数A上 2007级 A卷及答案

合集下载

2007年高考文科数学试题及参考答案(湖北卷)

2007年高考文科数学试题及参考答案(湖北卷)

2007年普通高等学校招生全国统一考试(湖北卷)数学(文 史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 23cos 21sin 23cos 22f x x x x x ⎡⎤⎛⎫=-+-=+-⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角.依题意π6CBH ∠=,所以 在CHD Rt △中,2sin 2CH a θ=; 在BHC Rt △中,πsin62a CH a ==, 2sin 2θ=∴. π02θ<<∵,π4θ=∴.故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CBC V ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则2(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,2tan 222a a VD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭ ,,,(0)AB a a =- ,,.从而2211(0)0002222a a AB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭ ,,,,··,即AB CD ⊥.同理22211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D = ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··n n .得02tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,. 可取(112cot )θ=,,n ,又(00)BC a =-,,,A DB CVxyz于是2π2sin sin 6222cot BC a BC a θθ===+n n ···, 即2sin 2θ=π02θ<<∵,π4θ∴=.故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则222(000)0000222D A a B a C a⎛⎫⎛⎫⎛-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,220tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是220tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭ ,,,2002DC a ⎛⎫=- ⎪ ⎪⎝⎭ ,,,(020)AB a =,,.从而(020)AB DC a = ,,·20002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥. 同理22(020)0tan 022AB DV a a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DC DV D = ,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV == ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又22022BC a a ⎛⎫=-- ⎪ ⎪⎝⎭,,, 于是22tan π22sin sin 621tan a BC BC a θθθ===+ n n ···, 即πππsin 0224θθθ=<<,,∵∴=. ADBCVxy故交π4θ=时, 即直线BC 与平面VAB 所成角为π6. 18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力. 解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.x[)02,2 (212),12 (]1230,()f x ' - 0 +0 - ()f x极小极大故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力. 解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,011322322a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,,或,0322a ⇔<<-. 故所求实数a 的取值范围是(0322)-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -== ,令2()2h a a =.当a >时,()h a 单调增加,∴当0322a <<-时,20()(322)2(322)2(17122)h a h <<-=-=-1121617122=<+ ,即1(0)(1)(0)16f f f -< .解法2:(I )同解法1.(II ) 2(0)(1)(0)(0)(1)2f f f g g a -==,由(I )知0322a <<-, 41122170a -<-<∴2.又4210a +>,于是 221112(321)(421)(421)0161616a a a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,01322322a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,或0322a ⇔<<-. 故所求实数a 的取值范围是(0322)-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=,有1221n n n n n n a a a q a a a ++++==,∴ 22()n n a a q n +=∈N*.(II )证:22n n a q q -= ,22221231n n n a a q a q ---∴=== ,222222n n n a a q a q --=== , 22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111nn qa a --=,222211n n q a a -=,于是 1221321242111111111n n na a a a a a a a a -⎛⎫⎛⎫+++=+++++++ ⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭2122311112n q q q -⎛⎫=++++ ⎪⎝⎭. 当1q =时,2422122111311112n n a a a q q q-⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q q q-⎛⎫+++=++++ ⎪⎝⎭223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦. 故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩ , ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a q q ---+=+=,34212121221234212111n n n n na a a a a a a a a a a a a a a --++++++=+++ , 2222212442123322k k k k k k k a a q qa a q --+---+== ,12k n = ,,,.2221221113(1)2n k q q a a a --+∴+++=+++ . 下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122AMN BCN ACN S S S p x x =+=-△△△·.2121212()4p x x p x x x x =-=+- 222224822p p k p pk =+=+,∴当0k =,2min ()22ABN S p =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,QPQ ,的中点为H , 则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.2222111111()222O P AC x y p y p '==+-=+∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴2221111()(2)44y p a y p =+--- 1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.NOACB yxNO AC ByxO 'l解法2:(Ⅰ)前同解法1,再由弦长公式得222222212121211()4148AB k x x k x x x x k p k p =+-=++-=++··22212p k k =++·,又由点到直线的距离公式得221p d k=+.从而2222211221222221ABN p S d AB p k k p k k ==++=++△·····,∴当0k =时,2m ax ()22ABN S p =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,, 则有34114()2()22p p PQ x x a y a p a a y a p a ⎛⎫⎛⎫=-=-+-=-+- ⎪ ⎪⎝⎭⎝⎭.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。

高试2007A卷及答案范文

高试2007A卷及答案范文

武汉理工大学考试试题纸(A、B卷)备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、选择题:(每小题2分,共18分)1、丙类高频功率放大器,要实现集电极调制放大器应工作于()状态,若要实现基极调制放大器应工作于()状态。

A)欠压B)过压C)临界2、在电视信号发射中,为了压缩图象带宽采用()制式平方律调幅器、基极调幅器、集电极调幅器输出均为()调幅波,平衡调幅器、斩波调幅器、集成模拟相乘器输出均为().大信号包络检波可对()和()进行解调A)AM B)DSB C)SSB D)VSB3、调幅器、同步检波和变频器都是由非线性器件和滤波器组成,但所用的滤波器有所不同,调幅器所用的为(),同步载波所用的为(),变频器所用的为()。

A)低通滤波器B)高通滤波器C)带通滤波器D)带阻滤波器4、直接调频的优点(),缺点()。

间接调频的优点(),缺点()。

A)频率稳定度高B)频率稳定度低C)频偏小D)频偏大5、要产生频率较高的正弦波信号应采用()振荡器,要产生频率较低的正弦波信号应采用()振荡器,要产生频率稳定度高的正弦波信号应采用()振荡器。

A)LC振荡器 B)RC振荡器 C)晶体振荡器6、正弦波自激振荡器振荡建立过程,晶体管的工作状态是()。

A)甲类 B)甲乙类 C)丙类 D)甲类->甲乙类->丙类7、单边带信号通信的优点是()。

VSB通信的优点是()。

A)节省频带,节省能源,抗干扰性强B)节省频带,节省能源,抗干扰性强,解调容易C)节省频带,节省能源,抗干扰性强,难调节8、在调幅接收机中常用()减小因信号过强引起输出信号的限幅作用造成的失真,并改善接收信号的性能,而在调频接收机中常采用()提高灵敏度。

两者可采用()电路减小信号的频率不稳而引起的信号漂移。

A)AGC电路B)AFC电路C)限幅放大器D)自动控制电路9、采用电池供电的无线电发射机末级丙类功放电路工作于临界状态,当供电电池的电压下降时,电路讲向()状态过渡,当前级推动功率减小时,电路向()状态过渡,当天线短路时电路向()状态过渡,当天线折断(开路)时,电路向()状态过渡。

武汉理工大学大一公共课高等数学试卷及答案

武汉理工大学大一公共课高等数学试卷及答案

D y 1 x2
5 设 f (x) 的一个原函数为 e x2 ,则 xf (x)dx =(
A (2x2 1)ex2 C
B (x 1)ex2 C
三 求下列各极限(每小题 7 分,共 14)
) C 1 ex2 C
2
D ex2 C
1 lim( 1 1 ) ; x0 x e x 1
2 设 f (x) 在原点的某邻域内二阶可导,且 f (0) 0, f (0) 1 , f (0) 2;求 lim f (x) x 。
(7 分)
武汉理工大学教务处
试题标准答案及评分标准用纸
|
课程名称
( A 卷)
| 一 1 0 ;2 2 ; 3 (,) ; 4 1 二 D ;A ; A ; C ; A
;5
3 ln 2 。 2
lim( 1 1 ) lim e x 1 x 2 x0 x e x 1 x0 x(e x 1)
y(n) (x2 2nx 2Cn2 )ex 6
|
y(n) (0) n(n 1)7
d2y dx2
dt dx
1 5 f (t)
d 3 y d ( 1 ) dt f (t) 7 dx3 dt f (t) dx [ f (t)]3
3 cost e(xt)2 (x 1) 0 x 1 e(xt)2 cost2 x 2(x t)(x 1)e(xt)2 cost e(xt)2 sin t4
武汉理工大学 20XX 考试试题纸( A 卷)
课程名称 高等数学 A(上)
专业班级
题号 一 二 三 四 五 六 七 八 九 十
题分
备注: 学生不得在试题纸上答题(含填空题、选择题等客观题)
一 填空题(每小题 3 分,共 15 分)

最新武汉理工大学高等数学(上)试卷及标准答案

最新武汉理工大学高等数学(上)试卷及标准答案

武汉理工大学考试试题纸( A 卷)课程名称高等数学(上)专业班级2004级工科专业 题号 一 二 三 四 五 六 七 八 九 十 总分 题分 15151414211110100备注: 学生不得在试题纸上答题(含填空题、选择题等客观题)一、单项选择题(本题共5小题,每小题3分,共15分)1. 设⎩⎨⎧<≥-=0,sin 0,1)(x x x e x f x ,则( )A. )(lim 0x f x →不存在 B.)(lim 0x f x →存在,但()f x 在0x =处不连续c. ()f x 在0x =处连续,但不可导 D.()f x 在0x =处可导. 2.已知函数()f x 在0x =的某个邻域内连续,且(0)0f =,0()lim 21cos x f x x→=-,则( )A .(0)f '存在,且(0)0f '≠ B.(0)f '不存在c.)(x f 在0x =处取得极小值 D.)(x f 在0x =处取得极大值. 3.设20()ln(1)x f x t dt =+⎰,3()g x x =,则当x 0时,()f x 是()g x 的( )A .等价无穷小 B. 同阶但非等价无穷小 c.高阶无穷小 D.低阶无穷小. 4. 曲线1y x x=+在开区间(1,)+∞内( ) A .单调减少且凹 B.单调增加且凹 c.单调减少且凸 D.单调增加且凸. 5. 曲线32sin y x =与x 轴、y 轴及直线2x π=围成的平面图形绕x 轴旋转一周所得旋转体的体积是( )A.32π B.23π c.2π D.3π . 二.填空题(本题共5小题,每小题3分,共15分)1.设1arctan 1xy x+=-,则dy =.2. 设()ln(1)f x x =+,则()(0)n f =武汉理工大学教务处试题标准答案及评分标准用纸 | 课程名称:高等数学(上)( A 卷)|一、单项选择题(每题3分,共15分)1.D ;2.C ;3.C ;4.B ;5.B . |二、填空题(每题3分,共15分)| 1.21dx x+; 2.1(1)(1)!n n ---; 3. arctan(sin )x c + 4. 2; 5. 8k . |三、计算极限(每题7分,共14分)| 1.2300tan tan lim limtan x x x x x xx x x →→--==原式 ------------------------------------3分 222200sec 1tan 1lim lim 333x x x x x x →→-=== ---------------------------------------------------7分2.2200ln cos ln cos exp{lim}exp{lim }ln(1)x x x xx x→→==+原式 --------------------------------------3分 120sin cos exp{lim }2x xx e x-→-==---------------------------------------------------------------7分|四、计算导数(每题7分,共14分) | 1.解 原方程两边对x 求导,得:sin cos 0y y dy dye x e x dx dx⋅⋅+⋅+= --------4分 | 解得:cos sin 1y y dy e xdx e x =-+ -----------------------------5分 | 当0x =时,1y =; 故 0x dye dx==- ------------------------------------7分2.解sin sin (cot )(1cos )1cos 2dy a t t t dx a t t ===-- ----------------------------------------------3分22222cos (1cos )sin 1(1cos )(1cos )(1cos )t t t d y t dx a t a t ---==---------------------------------------7分 五、计算下列积分(每题7分,共21分)| 1.解 1ln 2xd x=-⎰原式 ---------------------------------------------2分ln 2(2)x dxx x x =---⎰ -----------------------------------------4分 ln 1[]222x dx dxx x x=-+--⎰⎰------------------------------------5分 ln 1ln 222x xc x x=-+-- --------------------------------------7分 | 2.解 23322sec cos tan tan sec sin tdt tdt x tt t tππππ==⋅⎰⎰44原式-------------------------4分341sin tππ=-=分 3.解 11211()x x e dx e -+∞-=+⎰原式 ------------------------------------------4分 11arctan 4x e π-+∞==-----------------------------------------7分|六、应用题(本题11分)| 解(1)122120()()aaS S S ax x dx x ax dx =+=-+-⎰⎰-----------------------4分3111323a a =-+ ---------------------------------------------6分 (2)2102dS a a da =-==由,得 ----------------------9分2220a a d Sada==>又所以当2a =时,S 取极小值,而驻点唯一,故所以当2a =时,S 取最小值,最小值为26- ---11分 七、证明题(每题5分,共10分) 1.证明 设21()ln(1)2f x x x x =+-+ ------------------------------------2分21()10,011x f x x x x x'=-+=>>++ ---------------------------3分 (0)0f =又 ,0()(0)0x f x f >>=则当时, ----------------4分故当0x > 时,21ln(1)2x x x -<+ -------------------------------5分2.证明 设1()()()xxF x f t dt g t dt =⎰⎰ --------------------------------------2分显然在[0,1]上连续,在(0,1)内可导又(0)(1)0F F == ------------------------------------------------3分 由罗尔定理知,(0,1)ξ∃∈,使()0F ξ'= --------------------------4分 而 1()()()()()xxF x g x f t dt f x g t dt '=-⎰⎰所以 1()()()()g f x dx f g x dx ξξξξ=⎰⎰.-----------------------------5分如何做好招商工作 艾雷特青海事业部说到招商其实就是人与人之间的合作,谈判的人就是帮助客户进行合理投资建议,让对方获得可观的投资回报,所以来说,我们是在帮助我们的客户推荐更好的赚钱通路和渠道,当然我们也不是圣人,我们为了生存和发展,不会一味的求别人办事,因为这本身就是平等的关系,我们不必委曲求全,那样的合作最终会把企业带向深渊,走向末路。

2007-2008第二学期线代试卷A及答案)

2007-2008第二学期线代试卷A及答案)

武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共12分)1、 2;2、 1;3、 21t ≠;4、k >二、选择题(每小题3分,共12分)1、 A ;2、 C ;3、 B ;4、 D 三、解答题(每小题9分,共36分)1、11(2,,)(2,,)1100011111100100020012000200011i in i n i n r r r r n nn n n D n nn n nn n==+++---=-------…..…(4分)()(1)(2)(1)1122000001(1)1(1)(1)()(1)1222000n n n n n n n n n n n n n n nn n n n -------+++=⋅=⋅⋅-⋅-=⋅⋅---...….(9分)2、记 121624,1713A A ---⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,则121,1A A =-=;…..…………………………………..…..……...(4分)又1112767637,111112A A -----⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以1760011000037012A --⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭-。

………………………...(9分)3、由题意有010100001A B ⎛⎫⎪= ⎪ ⎪⎝⎭,100011001B C ⎛⎫⎪= ⎪ ⎪⎝⎭,……………..…………………………………………...(4分) 于是 010100100011001001A C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以011100001X ⎛⎫⎪= ⎪ ⎪⎝⎭。

……….……………………………………...(9分)4、()123403481011,,,21043211αααα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭~1011034801220244-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭~10110122002200-⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭~10000104001100⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭………...(4分) 则()1234,,,3R αααα=,且123,,ααα线性无关,所以123,,ααα即为1234,,,αααα的一个极大无关组,(7分) 且412304αααα=+-;…………………………………………………………………………………..………...(9分) 或者取124,,ααα,312404αααα=+-;还可以取134,,ααα,2341144ααα=+四、解()2111,1111tA b t t tt -⎛⎫⎪=-- ⎪ ⎪-⎝⎭~2223110110111t tt t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪+-++⎝⎭~ 22321101100(1)(2)1t tt t t t t t t t t ⎛⎫- ⎪--+-- ⎪ ⎪-+---+⎝⎭…………………………….…………..………...(4分) 所以当12t t ≠-≠且时,方程组有唯一解;…………………………………..…………………………….……...(6分) 当2t =时,(),A b ~112403360001-⎛⎫⎪-- ⎪ ⎪⎝⎭()(),32R A b R A =≠=,所以方程组无解。

2007年高考数学卷(湖北.理)含答案

2007年高考数学卷(湖北.理)含答案

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合.其中不正确的命题个数是( ) A.1 B.2 C.3D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围; (II )求函数2()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;VAx(II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)nnn m n n ++++=+的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.样本数据18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 22a aVD θ⎛⎫= ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理2211(0)tan 0022222a aABVD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,nn ··. ADBCHV得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是sin sin 2BC BCa ϕθ===n n ···, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)ABDC =,,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x yz =,,n,则由00AB DV ==,··n n ,得0tan 022ax az θ=⎨-+=⎪⎩,.可取(tan 01)θ=,,n,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan 2sin sin 2BC a BC θϕθ===n n ···,π02θ<<∵,0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,, (0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CBa =,,, A于是sin CB CBa ϕ====···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,. 12O P AC '===∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,. 解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

07级高等数学(上)试卷及答案

07级高等数学(上)试卷及答案

华东交通大学2007—2008学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。

专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学Ⅰ(A)》 课程 (工科本科07级) 课程类别:必 闭卷(√) 考试时间:2008.1.14题号 一 二 三四 五 总分 1 2 3 4 5 6 7 1 2分值 10 15 77777779 98阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。

2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。

一、填空题(每题2分,共10分)_____sin 1sin12lim=→xx x x 极限、_________ cos sin 2='+=y x x x y 则,设、__________)2)(1(12 32的水平渐近线为曲线、-+-+=x x x x y_________ 42围成平面图形面积为及直线由曲线、x y x y == ______5的通解为微分方程、x yy =' 二、选择题(每题 3分,共15分)D. 1 C. 2 B. 3 A.)B ()23()1()( 12第一类间断点的个数为函数、+--=x x x x x x f0 D. 4!1 C. 5!1 B. 6!1 A.)D ()1(124)( 2)16(515=+-+=f x x x x f ,则设、得分 评阅人得分 评阅人x x cos 02=y cx y =C x y +=ln ln 或61dxx f x f dx x f x f dx x f dx x f a a x f aaaaa⎰⎰⎰⎰---+=-- 0)]()([ D. )]()([ C. )(2B. 0 A.)C ()( ] [)( 3则上连续,,在设函数、arctan 1D. arctan 1 C. arctan 1B. arctan 1 A.)A ()1(1422C x x C x x C x x C x x dx x x+++-++-+--=+⎰不定积分、 0D. 4 C. 2 B. A.)B (1 5 2πππ=+⎰∞+∞-dx e e xx反常积分、三、解答题(每题 7分,共49分).)( 1322limxdte exttx ⎰-→-求极限、2322limx e e x x x -→-=原式xxe xex x x 62222lim-→+=32322lim=+=-→x x x e e.? 11 0 2说明理由等价无穷小是否为与无穷小时,当、x x x x --+→xx x x --+→11limΘ)11(2lim 0x x x xx -++=→1112lim=-++=→xx x.11 0 为等价无穷小与时,当x x x x --+→∴ 得分 评阅人评阅人. )( 333dy x y y e y xy x 求,确定隐函数设方程、==++ 033 22='+'++y y y x y x x 求导得:两边对2233 y x yx y ++-='⇒dxyx y x dx y dy 2233++-='=⇒033 22=+++dy y xdy ydx dx x 或两边取微分得:dxyx y x dy 2233++-=⇒的凹凸区间及拐点求曲线、x x y ln 42= x x x x x x x y +=⋅+='ln 21ln 2 2Θ 3ln 2112ln 2 +=+⋅+=''∴x x x x y 23 0-==''e x y 得:令0 002323>''><''<<--y ex y ex 时当,时当) [23∞+-,故凹区间为e ] 0(23-e ,凸区间为 )23(323ee --,拐点为得分 评阅人评阅人dxx x ⎰+)1ln( 5求不定积分、2)1ln(21dxx ⎰+=原式 )1ln(212)1ln(22+-+=⎰x d x x xdxx x x x ⎰+-+=1212)1ln(22dxx x x x ⎰++--+=)111(212)1ln(2Cx x x x x ++-+-+=2)1ln(242)1ln(22)1()1ln(212-+=⎰x d x 或原式)1ln()1(212)1ln()1(22+--+-=⎰x d x x x dxx x x ⎰--+-=)1(212)1ln()1(2Cxx x x ++-+-=242)1ln()1(22⎰-22221 6dxx x求定积分、tdt dx t x cos sin ==则,令⎰⎰==4240 2sin cos cos sin ππtdttdt tt原式⎰-=422cos 1πdt t40)42sin 2(πt t -=418-=π得分 评阅人得分 评阅人的通解求微分方程、x e y y y =+'-''2 7012 2=+-r r 特征方程为1 21==⇒r rx e x C C Y y y y )(0221+==+'-''⇒的通解为x e ax y 2*1==解为特征方程重根,设特λ 12 *=a y 代入原方程得把x ex y a 221* 21=⇒=⇒xx ex C C e x y )(21212++=⇒原方程通解为四、综合题(每题 9分,共18分)的通解求微分方程、xxe y x y ='-''1 1则,令 )(x p y =' xxe p x p =-'1)(111C exe e p dxx xdxx+⎰⎰=⇒---⎰)1(C dx e x x +=⎰)(1C e x x+= )(1C e x y x +='⇒⎰+=dxC e x y x )(1通解212x C xde x +=⎰2212C x Ce xe x x ++-=得分 评阅人得分 评阅人周所得旋转体的体积轴旋转一绕求轴围成平面图形为及该切线与曲线的切线,经过坐标原点作曲线、 .ln ln 2y D D x x y x y == 则,,设切点坐标为 )ln (00x x)(1ln 000x x x x y -=-切线方程为)0(1ln 0 000x x x -=-由切线过原点得:)1 ( 0,即切点为,e e x =⇒ e xy =⇒切线方程为dyey dy e V y 2112)()(⎰⎰-=⇒ππ所求体积为 或13)(212⋅-=⎰e dy e V y ππ103210232ye ey ππ-=210232eey ππ-=262ππ-=e262ππ-=e五、证明题(8分).0)()(201 ) ( 0)()() ( ] [)(='+∈==ξξξf f b a b f a f b a b a x f 使得,,存在证明:,内可导且,在上连续,,在设)()(201x f e x F x=令 内可导,在上连续,,在则) ( ] [)(b a b a x F 0)()(==b F a F 且0)( ) (='∈⇒ξξF b a 使,,存在 )()(201)(201201x f e x f e x F x x '+='又0)()(201 201201='+ξξξξf e f e 故0)()(201 0201='+≠ξξξf f e 得由得分 评阅人得分 评阅人。

2007年高考湖北卷(理科数学)

2007年高考湖北卷(理科数学)

2007年普通高等学校招生全国统一考试理科数学(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果22(3)n x x -的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.102.将2c o s ()36x y π=+的图象按向量(,2)4a π=--平移,则平移后所得图象的解析式为A .2cos()234x y π=+-B .2cos()234x y π=-+C .2cos()2312x y π=--D .2cos()2312x y π=++3.设P 和Q 是两个集合,定义集合{,}P Q x x P x Q -=∈∈,如果2{log 1}P x x =<,{21}Q x x =-<,那么P Q -=A .{01}x x <<B .{01}x x <≤C .{02}x x ≤<D .{23}x x ≤<4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题: ①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合. 其中不正确的命题个数是A .1B .2C .3D .45.已知p 和q 是两个不相等的正整数,且2q ≥,则1(1)1lim 1(1)1p n qn n ∞+-=+-→A .0B .1C .p q D .11p q --6.若数列{}n a 满足212n na p a +=(p 为正常数,n N *∈),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则甲是乙 A .充要条件 B .充分而不必要的条件 C .必要而不充分的条件 D .既不充分也不必要的条件7.双曲线1C :22221x y a b-=(0a >,0b >)的左准线为l ,左焦点和右焦点分别为1F 和2F ,抛物线2C 的准线为l ,焦点为2F ,1C 与2C 的一个交点为M ,则12112F F MF MF MF -等于A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是 A .2 B .3 C .4 D .5 9.连掷两次骰子得到的点数分别为m 和n ,记向量(,)a m n =与向量(1,1)b =-的夹角为θ,则(0]θπ∈2,的概率是A .512B .12C .712D .5610.已知直线1x ya b +=(a ,b 是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有A .60条B .66条C .72条D .78条 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数z a bi =+,,a b R ∈且0b ≠,若24z bz -是实数,则有序实数对(,)a b 可以是 .(写出一个有序实数对即可)13.设变量x ,y 满足约束条件023x y x +≥⎧⎨-≤≤⎩,则目标函数2x y +的最小值为 .14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t a y -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6算步骤.16.(本小题满分12分)已知ABC ∆的面积为3,且满足06AB AC ≤⋅≤,设AB 和AC 的夹角为θ. (Ⅰ)求θ的取值范围;(Ⅱ)求函数2()2sin ()24f πθθθ=+的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图; (Ⅱ)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间[1.30,1.34)的18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=(π02θ<<). (Ⅰ)求证:平面VAB ⊥VCD ;(Ⅱ)当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xoy 中,过定点(0,)C p 作直线与抛物线22x py =(0p >)相交于A ,B 两点.(Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求ANB ∆面积的最小值; (Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.VA20.(本小题满分13分)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (Ⅰ)用a 表示b ,并求b 的最大值; (Ⅱ)求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m ,n 为正整数.(Ⅰ)用数学归纳法证明:当1x >-时,(1)1m x mx +≥+; (Ⅱ)对于6n ≥,已知11(1)32m n -<+,求证1(1)32m m m -<+, 求证1(1)()32m m m n -<+,1,2,m n =,; (Ⅲ)求出满足等式34(2)(3)n n n m n n ++++=+的所有正整数n .x2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B7.A8.D9.C10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分.11.162; 12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+- ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=.(Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=. 18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .样本数据又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin CH θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴.即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,, 于是,tan 222a a VD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,ADBCHV则由00AB VD ==,nn ··.得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是sin BC BCa ϕθ===n n ···, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴.即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000D A a B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=-⎪ ⎪⎝⎭,,,002DC a ⎛⎫=-⎪ ⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即ABDC ⊥.同理(00)0tan 022AB DV a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥. 又DC DV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)θ=,,n,又022BC a a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan 2sin 2BC a BC θϕθ===n n ···,π02θ<<∵,0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴,即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a a C A a B a D ⎛⎫⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,. (Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,,(0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 又CVCD C =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .A(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CB a =,,,于是sin CB CBa ϕ====···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin ϕ<<∴π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k x p=+,与22x p y =联立得22x p yy k xp ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==,∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2pa =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2= 又由点到直线的距离公式得d =从而112222ABN S d AB p ===△··· ∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△.设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2pa =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =,即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-.令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭. (Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>.故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明:(ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x ≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1k x kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立. 综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133nnmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333nnnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)n n n n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立;当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立;当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,.解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明:当1x >-,且0x ≠时,2m ≥,(1)1m x mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1k x kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >. 于是在不等式(1)1k x kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立. 综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)n n n n n n ++++=+成立,即有000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得000000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

A2007级试卷及答案

A2007级试卷及答案

②随着 ω 的增大,由 0 变到 π , B1 B2 越来越小, A1 A2 越来越大,则 H ( jω ) 越来越小; ③当 ω = π 时, A1 = 0.4, A2 = 1.4, B1 = 0, B2 = 1 ,则 H ( e jπ ) =
B1 B2 =0; A1 A2
④随着 ω 的继续增大,由 π 变到 2 π , B1 B2 越来越大, A1 A2 越来越小,则 H ( jω ) 越来越大; ⑤当 ω = 2π 时, A1 = 1.6, A2 = 0.6, B1 = 2, B2 = 1 ,则 H ( e j 2π ) = 系统的幅频响应曲线如图所示。
r(t)=0
t +1/ 2
(3 分)
r(t)=

0
1 1 1 τ dτ = (t + )2 2 4 2 1 3 3 τ dτ = t 2 − 2 4 16 1
2
t +1/ 2
(3) 1<t<3/2
r(t)=
t −1 2

(4) 3/2<t<3 (5) 3<t
r(t)=
t −1
∫ 2 τ dτ = 4 (3 + 2t − t
1 3 F ( z) − 2 = + 2 z z −1 z − 3 1 3 − z z 2 + 2 (4分) F ( z) = z −1 z − 3
(1) z > 3
3 k 1 f ( k ) = − ε ( k ) + ⋅ ( 3) ε ( k ) 2 2
k
(Hale Waihona Puke 分)(2) z < 1
(1 分) (1 分)
(1 分)

武汉理工大学级期末考试高等数学a(上)试卷

武汉理工大学级期末考试高等数学a(上)试卷

武汉理工大学 考试试题纸(A 卷)课程名称:高等数学A (上) 专业班级:全校2008级理工类各专业备注: 学生不得在试题纸上答题(含填空题、选择题等客观题) 一、单项选择题(本题共5小题,每小题3分,共15分) (1) 0x →时, (1)1x x +-是x 的( )阶无穷小。

A. 1B. 2C. 3D. 4(2) 函数1222sin 12xxxy x+=++在0x =处是( )间断点。

A. 可去B. 跳跃C. 无穷D. 振荡(3) 设()f u 是可导函数,则函数2(sin )y f x =的微分dy =( )A. 2(sin )f x dx ' B. 22(sin )sin f x d x 'C. x d x f sin )sin2(' D. x xd x f sin cos 2)(sin 2'(4)函数20()()xx f t dt 'Φ=⎰是下列( )函数的原函数。

A. 2()f x 'B. ()f x 'C. 2()f xD. ()f x(5) 下列反常积分收敛的是( )A.ln exdx x+∞⎰B.1+∞⎰C. 101dx x ⎰ D.10⎰二、填空题(本题共5小题,每小题3分,共15分)(1) 函数()y f x =的麦克劳林公式是36611()()53f x x x x R x =-++, 其中6()R x 是()f x 的麦克劳林公式的拉格朗日型余项,则(6)(0)y =_____________. (2) 函数32(1)x y x =+的单调减区间_____________.(3) 曲线2xy xe -=的凹区间_____________.(4)1sin sin 1()x x e e dx ---=⎰_____________.(5)曲线0y =⎰在[]0,ln 4x ∈上的一段长度L=______________.三、计算下列极限(本题共2小题,每小题7分,共14分)(1) 222011cos sin 22lim(1)x x x x x x e →--- (2)201lim sin x x x x →-⎰四、计算下列导数或微分(本题共2小题,每小题7分,共14分)(1) 2231223x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(0)t > , 求22d y dx(2) ()y y x =由方程sin()xy x y =+所确定, 求(0)y '五、计算下列积分(本题共3小题,每小题7分,共21分)(1)1cos xdx x +⎰(2)arctan⎰(3) 设440()sin (2)f x x f x dx π+=⎰, 求20()f x dx π⎰。

2007年普通高等学校招生全国统一考试理科数学试卷及答案-湖北卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-湖北卷

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果的展开式中含有非零常数项,则正整数的最小值为()A.3 B.5 C.6 D.102.将的图象按向量平移,则平移后所得图象的解析式为()A.B.C.D.3.设和是两个集合,定义集合,如果,,那么等于()A.B.C.D.4.平面外有两条直线和,如果和在平面内的射影分别是和,给出下列四个命题:①;②;③与相交与相交或重合;④与平行与平行或重合.其中不正确的命题个数是()A.1 B.2 C.3 D.4 5.已知和是两个不相等的正整数,且,则()A.0 B.1 C.D.6.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.双曲线的左准线为,左焦点和右焦点分别为和;抛物线的准线为,焦点为与的一个交点为,则等于()A.B.C.D.8.已知两个等差数列和的前项和分别为A和,且,则使得为整数的正整数的个数是()A.2 B.3 C.4 D.59.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.C.D.10.已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有()A.60条 B.66条 C.72条 D.78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数的反函数是,则;.12.复数,且,若是实数,则有序实数对可以是.(写出一个有序实数对即可)13.设变量满足约束条件则目标函数的最小值为.14.某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率.(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:()从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为;()据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知的面积为,且满足,设和的夹角为.()求的取值范围;分组频数合计()求函数的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:()在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;()估计纤度落在中的概率及纤度小于的概率是多少?()统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此,估计纤度的期望.18.(本小题满分12分)如图,在三棱锥中,底面,,是的中点,且,.(I)求证:平面;(II)当解变化时,求直线与平面所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.(此题不要求在答题卡上画图)20.(本小题满分13分)已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.(I)用表示,并求的最大值;(II)求证:().21.(本小题满分14分)已知为正整数,(I)用数学归纳法证明:当时,;(II)对于,已知,求证,求证,;(III)求出满足等式的所有正整数.2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分.1.B 2.A 3.B 4.D 5.C6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分.11.12.(或满足的任一组非零实数对)13.14.15.;0.6三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设中角的对边分别为,则由,,可得,(Ⅱ).,,.即当时,;当时,.17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.解:(Ⅰ)分组频数频率4 0.0425 0.2530 0.3029 0.2910 0.102 0.02 合计100 1.00(Ⅱ)纤度落在中的概率约为,纤度小于1.40的概率约为.(Ⅲ)总体数据的期望约为.18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ),是等腰三角形,又是的中点,,又底面..于是平面.又平面,平面.(Ⅱ)过点在平面内作于,则由(Ⅰ)知平面.连接,于是就是直线与平面所成的角.在中,;设,在,.,,.又,.即直线与平面所成角的取值范围为.解法2:(Ⅰ)以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则,于是,,,.从而,即.同理,即.又,平面.又平面.平面平面.(Ⅱ)设直线与平面所成的角为,平面的一个法向量为,则由.得可取,又,于是,,,.又,.即直线与平面所成角的取值范围为.解法3:(Ⅰ)以点为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐标系,则,,于是,,.从而,即.同理,即.又,平面.又平面,平面平面.(Ⅱ)设直线与平面所成的角为,平面的一个法向量为,则由,得可取,又,于是,,,.又,,即直线与平面所成角的取值范围为.解法4:以所在直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则.设.(Ⅰ),,即.,即.又,平面.又平面,平面平面.(Ⅱ)设直线与平面所成的角为,设是平面的一个非零法向量,则取,得.可取,又,于是,,关于递增.,.即直线与平面所成角的取值范围为.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点的坐标为,可设,直线的方程为,与联立得消去得.由韦达定理得,.于是.,当时,.(Ⅱ)假设满足条件的直线存在,其方程为,的中点为,与为直径的圆相交于点,的中点为,则,点的坐标为.,,,.令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得,又由点到直线的距离公式得.从而,当时,.(Ⅱ)假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入得,则.设直线与以为直径的圆的交点为,则有.令,得,此时为定值,故满足条件的直线存在,其方程为,即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设与在公共点处的切线相同.,,由题意,.即由得:,或(舍去).即有.令,则.于是当,即时,;当,即时,.故在为增函数,在为减函数,于是在的最大值为.(Ⅱ)设,则.故在为减函数,在为增函数,于是函数在上的最小值是.故当时,有,即当时,.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.解法1:(Ⅰ)证:用数学归纳法证明:(ⅰ)当时,原不等式成立;当时,左边,右边,因为,所以左边右边,原不等式成立;(ⅱ)假设当时,不等式成立,即,则当时,,,于是在不等式两边同乘以得,所以.即当时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数,不等式都成立.(Ⅱ)证:当时,由(Ⅰ)得,于是,.(Ⅲ)解:由(Ⅱ)知,当时,,.即.即当时,不存在满足该等式的正整数.故只需要讨论的情形:当时,,等式不成立;当时,,等式成立;当时,,等式成立;当时,为偶数,而为奇数,故,等式不成立;当时,同的情形可分析出,等式不成立.综上,所求的只有.解法2:(Ⅰ)证:当或时,原不等式中等号显然成立,下用数学归纳法证明:当,且时,,.①(ⅰ)当时,左边,右边,因为,所以,即左边右边,不等式①成立;(ⅱ)假设当时,不等式①成立,即,则当时,因为,所以.又因为,所以.于是在不等式两边同乘以得,所以.即当时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当时,,,而由(Ⅰ),,.(Ⅲ)解:假设存在正整数使等式成立,即有.②又由(Ⅱ)可得,与②式矛盾.故当时,不存在满足该等式的正整数.下同解法1.。

2007年高考数学试题(湖北.理)含答案

2007年高考数学试题(湖北.理)含答案

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合. 其中不正确的命题个数是( ) A.1 B.2 C.3 D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率.(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC的夹角为θ.(I )求θ的取值范围; (II)求函数2()2sin cos 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值; (II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132mmm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n = ,,,;VAx(III )求出满足等式34(2)(3)n n n mn n ++++=+ 的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力. 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.301.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin 2CH a θ=; 样本数据设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=∴. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭ ,,,(0)AB a a =- ,,. 从而2211(0)0002222a a AB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭ ,,,,··,即AB CD ⊥.同理2211(0)tan 002222a a AB VD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D = ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD == ,nn ··.得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是sin 2BC BC ϕθ=== n n ··, ADBCHVπ02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴.即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan V θ⎛⎫ ⎪ ⎪⎝⎭,,于是0tan DV θ⎛⎫= ⎪ ⎪⎝⎭ ,,00DC a ⎛⎫= ⎪ ⎪⎝⎭ ,,,(00)AB =,.从而(00)AB DC = ,·000⎛⎫= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥. 又DC DV D = ,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV == ,··n n,得0tan 022ax θ=⎨-+=⎪⎩,. 可取(tan 01)θ=,,n,又0BC ⎛⎫= ⎪ ⎪⎝⎭,,,于是tan sin BC BCθϕθ=== n n ··, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<. A又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭ ,,,,,,,,,(0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C = ,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩ ,,,,,,,,,,n n····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CB a =,,,于是sin CB CB ϕ====··n n ,(0)t ∈+,∵∞,sin ϕ关于t 递增.0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴.即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k xp=+,与22x p y =联立得22x p yy k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122ABN BCN ACNS S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵, 111222y p O H a a y p +'=-=--, 222PH O P O H''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =,即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=, 则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x '=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去).即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>.故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得 2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥,于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n = ,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n n nnnn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2131333n n nn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴.即34(2)(3)nnnnn n ++++<+ .即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,.解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴,而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm m m n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤. (Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nnn n n n ++++=+ 成立,即有000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ . ②又由(Ⅱ)可得0000000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭0000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭0011111112222nn n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

2007年普通高等学校招生全国统一考试湖北卷

2007年普通高等学校招生全国统一考试湖北卷

2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan 690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10 B.6 C.5 D.34.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到平面1D EF 的距离为( )6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所1D1C得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F为其右焦点,54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++. 21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵xπ12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin CH θ=; 在BHC Rt △中,πsin62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,.从而2211(0)0002222a aAB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CDVD D =,AB ⊥∴平面VCD .又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··n n .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===n n ···, 即sin 2θ=π02θ<<∵,π4θ∴=.故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DCDB ,所在的直线分别为x 轴、y轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪⎪⎝⎭,,,002DC ⎛⎫=- ⎪⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022ABDV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时,即直线BC 与平面VAB 所成角为π6.18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算A能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()2)2(22)2(17122)h a h <<=-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g g a-==,由(I )知03a <<-1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*.(II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111nn qa a --=,222211n n q a a -=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++⎪⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121nq q --⎛⎫-=⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a q q ---+=+=,34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k x p =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122AMN BCN ACN S SS p x x =+=-△△△·.12px x =-=2p == ∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-=2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。

武汉理工大学考试试题(A卷)07高数A下

武汉理工大学考试试题(A卷)07高数A下

武汉理工大学考试试题(A 卷)课程名称:高等数学(下) 专业班级:2003级工科专业一、单项选择题(3分×5=15分)1. 函数22(,)(0,0)(,)(,)(0,0)0xy x y x yf x y x y ⎧≠⎪+=⎨=⎪⎩在点(0,0)处( ). (A)连续,偏导数存在; (B)连续,偏导数不存在;(C)不连续,偏导数存在;(D)不连续,偏导数不存在2. 设区域{}22(,)|14D x y x y =≤+≤,f 是区域D 上的连续函数,则D f dxdy =⎰⎰( ).(A)21002()()f r rdr f r rdr π⎡⎤-⎢⎥⎣⎦⎰⎰;(B)2122002()()f r rdr f r rdr π⎡⎤-⎢⎥⎣⎦⎰⎰;(C)2212()f r rdr π⎰; (D)212()f r rdr π⎰ 3. 设有级数1(0)1nn na a n ∞=⎛⎫> ⎪+⎝⎭∑,则下列结论正确的是( ).(A)01a <<时级数收敛,1a ≥时级数发散;(B)01a <<时级数发散,1a >时级数收敛,1a =时级数敛散性不能确定;(C)对任意数0a >,级数收敛;(D)对任意数0a >,级数发散4. 设函数123,,y y y 是二阶非齐次线性微分方程()()()y P x y Q x y f x '''++=的三个线性无关的解,12,C C 为任意常数,则该微分方程的通解是( ). (A)1122123(1)C y C y C C y +---;(B)1122123(1)C y C y C C y ++--;(C)1122123()C y C y C C y +-+; (D)11223C y C y y ++5. 在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线( ).(A)只有1条; (B)只有2条; (C)至少有3条; (D)不存在二、填空题(3分×5=15分) 1. 设函数1(,,)zx f x y z y ⎛⎫= ⎪⎝⎭,则(1,1,1)df = . 2. 函数(,,)ln(u x y z x =+在点(1,0,处沿方向{}1,2,1l =- 的方向导数u l∂∂ = . 3. 设L为下半圆周11)y x =-≤≤,则曲线积分()Lxy y ds +=⎰ .4. 记平面1x y z -+=位于第四卦限的部分平面片的面积为A ,则A = .5. 将函数2()(0)f x x x π=≤≤展开成周期为2π的正弦级数,其和函数为()S x ,则32S π⎛⎫ ⎪⎝⎭= . 三、计算题(请写明主要计算过程)(7分×8=56分)1. 设函数(ln ,)x z f xy y =,其中(,)f u v 具有二阶连续偏导数,求2,z z x x y∂∂∂∂∂. 2. 试交换2220y x I dx e dy -=⎰⎰的积分次序,并计算I 的值. 3. 设区域Ω2≤及z ≥222()I x y z dxdydz Ω=++⎰⎰⎰.4. 设L 是从点(2,0)A 沿上半椭圆221(0)49x y y +=≥至点(2,0)B -的弧段,计算(sin 5)(cos 5)x x LI e y y dx e y dy =-+-⎰. 5. 设曲面∑为圆锥面z =与平面1z =所围成立体的整个表面,取外侧,试计算:222(2)I x dydz y dzdx z z dxdy ∑=++-⎰⎰ . 6. 将函数1()5x f x x-=-展开成(1)x -的幂级数,并指出其收敛域. 7. 设函数()f x 连续且满足关系式20()()ln 22x t f x f dt =+⎰,求()f x . 8. 设积分曲线222()[()]L xyf x dx x y f x dy ++-⎰与路径无关,且(0)2f =,其中()f x 具有连续的导数,求()f x .四、(5分)设L 是直线3412x y +=介于两坐标轴间的线段,记L I =⎰,证明:9255I e ≤≤. 五、(9分)设幂级数为212(2)!nn x n ∞=+∑. 1. 求该幂级数的收敛域;2. 证明该幂级数的和函数()y x 满足微分方程//1yy -=-; 3. 求微分方程//1y y -=-的通解,并由此求出该幂级数的和函数()y x 的表达式.标答:一、 C ; D ; A ; B ; B二、 dx dy -;-2;14- 三、 11;u v v uu vv f yf f f xyf x xy '''''''+-+; 412e --;64(1)52π-; 15π; 2π; 1(1),(3,5)4nn n x x ∞=-∈-∑;2()ln2x f x e =; 2()1x f x e -=+ 四、 条件级值五、 ()1(,)2x xe e y x x -+=+∈-∞+∞。

2007-2008第一学期线代试卷A及标答

2007-2008第一学期线代试卷A及标答

武汉理工大学教务处试题标准答案及评分标准用纸课程名称:线性代数 ( A 卷)一、填空题(每小题3分,共15分)1、23-; 2、E ; 3、-15; 4、5t ≠; 5、 2 二、选择题(每小题3分,共15分)1、C2、A3、B4、C 5 、D 三、解答题(每小题8分,共32分)1、 121000121000(1)2121000121121n n n x xn x n xn n D x x n n x x n nn n-+-++⎡⎤==+⎢⎥⎣⎦+-+--………………(4分) (1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦………………………………………………………………(8分) 2、 由题意(1,2)B AE = ……………………………………………………………………………………(4分)又BX A =,即(1,2)A E X A =,所以1(1,2)X E -=(1,2)E =……………………………………………(8分) 3、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫== ⎪-⎝⎭,故112110A -⎛⎫= ⎪-⎝⎭ …………………………………………………………(4分)*21211,31A A -⎛⎫=-= ⎪-⎝⎭,故122131A --⎛⎫= ⎪-⎝⎭………………………………………………………(6分)所以12100100000210031A -⎛⎫⎪-⎪= ⎪- ⎪-⎝⎭。

…………………………………………………………………(8分) 4、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪-⎪= ⎪--- ⎪-⎝⎭~1211003200320064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~121100320000000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭~11203201300000000⎛⎫-⎪⎪⎪-⎪ ⎪⎪ ⎪⎝⎭…………………(4分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(6分)且212αα=,4131233ααα=--。

武汉大学2007年到2012年高数考题

武汉大学2007年到2012年高数考题

武汉大学2007-2008第一学期《高等数学》期末考试试题(数统)一.试解下列各题(每小题6分,共48分) 1.计算().21ln arctan lim 30x xx x +-→2.计算()().21ln 12⎰-+dx x x3.计算积分.arctan 12⎰+∞dx xx4.已知两曲线由()x f y =与1=++y x e xy 所确定,且在点()0,0处的切线相同,写出此切线方程,并求极限.2lim 0⎪⎭⎫⎝⎛→n nf x5.设⎪⎩⎪⎨⎧-==⎰.cos 21cos ,cos 2122t udu u t t y t x 试求,dx dy .|222π=t dx y d6.确定函数xt xx t x t sin sin sin sin lim -→⎪⎭⎫⎝⎛的间断点,并判断间断点的类型.7.设(),11x x y -=求().n y8.求位于曲线()0≥=-x xe y x 下方,x 轴上方之图形的面积.二.(12分)设()x f 具有二阶连续导数,且().0=a f()()⎪⎩⎪⎨⎧=≠-=.,,,a x A a x a x x f x g(1)试确定A 的值,使()x g 在a x =处连续.(2)求()x g '. (3)证明:()x g '在a x =处连续三.(15分)设()y x P ,为曲线⎩⎨⎧==.sin 2,cos :2t y t x L ⎪⎭⎫ ⎝⎛≤≤20πt 上一点,作过原点()0,0O 和点P 的直线OP , 由曲线L 、直线OP 以及x 轴所围成的平面图形记为A .(1)将y 表示为x 的函数.(2)求平面图形A 的面积()x S 的表达式. (3)将平面图形A 的面积()x S 表示成t 的函数()t S S =,并求dtdS取得最大值时 点P 的坐标.四.(15分)已知函数(),352--=x x x f 求 (1)函数()x f 的单调增加、单调减少区间,极大、极小值; (2)函数图形的凸性区间、拐点、渐进线.五.( 10分)设函数()x f 在[]l l ,-上连续,在0=x 处可导,且().00≠'f (1)证明:对于任意()l x ,0∈,至少存在一个()1,0∈θ,使得()()()()[].0x f x f x dt t f dt t f xx θθ--=+⎰⎰-(2)求极限.lim 0θ+→x 武汉大学2008-2009第一学期《高等数学》期末考试试题一、试解下列各题:(''⨯=8756)1、求极限: 2201lim(cot )x x x→-2、已知04x →=,求极限0lim ()→x f x3、试证:若()f x 是可导的周期为l 的函数,则'()f x 也是以l 为周期的周期函数.4、求函数xx x x f )1(1)(2--=的间断点,并判断其类型。

2007年普通高等学校招生全国统一专业考试理科数学试卷及其规范标准答案内容湖北卷

2007年普通高等学校招生全国统一专业考试理科数学试卷及其规范标准答案内容湖北卷

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合.其中不正确的命题个数是( ) A.1 B.2 C.3D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC u u u r u u u r g ≤≤,设AB u u u r 和AC u u ur 的夹角为θ.(I )求θ的取值范围; (II)求函数2()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;VAx(II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =L ,,,; (III )求出满足等式34(2)(3)nnnmn n ++++=+L 的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力. 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率样本数据约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin 2CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 002222a a AB VD a a a a θ⎛⎫=-=-++= ⎪ ⎪⎝⎭u u u r u u u r ,,,,··, 即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .ADBCHV∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r u u u r ,nn ··.得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是sin sin 2BC BC ϕθ===u u u r u u u r n n ··, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭u u u r u u u r ,,,·,即AB DV ⊥. 又DC DV D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n,得0tan 022ax az θ=⎨-+=⎪⎩,. 可取(tan 01)θ=,,n,又0BC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,于是tan sin 2a BC BC θϕθ===u u u r u u u r n n ··, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭u u u r u u u r u u u r ,,,,,,,,, (0)(00)0000AB CV a a t =-=++=u u u r u u u r ,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.又CV CD C =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,A则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩u u u r u u u r,,,,,,,,,,n n····取z a =,得x y t ==. 可取()t t a =,,n ,又(00)CB a =u u u r,,,于是sin CB CB ϕ====u u u ru u u r ··n n(0)t ∈+,∵∞,sin ϕ关于t 递增.0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵, 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-=2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+,因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =L ,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n n nnnn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L , 2131333n n nn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭L ∴.即34(2)(3)nnnnn n ++++<+L .即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立.综上,所求的n 只有23n =,. 解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴,而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nnn n n n ++++=+L 成立,即有00000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭L . ②又由(Ⅱ)可得0000000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭L0000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭L00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭L ,与②式矛盾.故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉理工大学
高数A 上 2007级 A 卷及答

一、单项选择题(本题共5小题,每小题3分,共15分)
(1)设1
11,0()11
,0x x e x f x e x ⎧-⎪≠⎪
=⎨+⎪⎪=⎩ ,则0x =是()f x 的( )。

A .连续点;
B .可去间断点;
C .跳跃间断点;
D .无穷间断点。

(2)设()f x 在0x =处连续,则下列命题错误的是( )。

A. 若0()lim
x f x x →存在,则(0)0f =; B 、若0()()
lim x f x f x x →+-存在,则(0)0f =
C 、若0()lim x f x x →存在,则)0(f '存在;
D 、若0()()
lim x f x f x x
→--存在,则0)0(='f 。

(3)设当0x →时,2(1cos )ln(1)x x -+是比sin()(n x x n 是正整数)
高阶的无穷小,而sin()n x x 是比2
1x e -高阶的无穷小,则n 等于( )。

A 、1;
B 、2;
C 、3;
D 、4
(4)设()f x 在(,)-∞+∞内可导,周期为4,且0(1)(1)
lim
12x f f x x
→--=-,则曲线()y f x =在点(5,(5))f 处的切线的斜率为( )。

A 、1/2;
B 、-2;
C 、0;
D 、-1
(5)设32()2912f x x x x a =-+-恰有两个不同的零点,则a 为( )。

A 、8;
B 、6;
C 、4;
D 、2。

二、填空题(本题共5小题,每小题3分,共15分)
(1)设21lim(
)1
a ax
t x x te dt x -∞→∞+=-⎰,则a = ; (2)设()f x 具有任意阶导数,且2)]([)(x f x f =',n 为大于2的整数,则()()n f x = ;
(3)曲线x y xe -=的拐点坐标为 ; (4
)1
1sin )x x dx -⎰= ;
(5)已知()f x 的一个原函数为2ln x ,则⎰'dx x f x )(= 。

三、计算下列极限(本题共2小题,每小题7分,共14分)
(1) 2211lim(1)n
n n n
→∞
+
+; (2) 2
2
2
020
()lim
x
t x
x t e dt te dt
→⎰⎰
四、计算下列导数或微分(本题共2小题,每小题7分,共14分)
(1)设2ln(1)arctan x t y t ⎧=+⎨=⎩,求22,dy d y
dx dx ;
(2)
设ln(x y e =+,求dy 。

五、求解下列各题(本题共4小题,每小题7分,共28分)
(1)ln tan sin cos x
dx x x

; (2)设0sin ()x t f x dt t π=-⎰,求0()f x dx π
⎰; (3)设20()ln 2()2
x t
f x f dt =+⎰,求()f x ;
(4)求微分方程12
+=
xy y dx dy 的通解。

六、应用题(本题7分)
设抛物线2y ax bx c =++通过坐标原点,且01,0x y ≤≤≥,试确定a 、b 、
c 的值,使该抛物线与直线1,0x y ==所围成的面积为4/9,且使该图形绕x 轴旋转而成的旋转体的体积最小。

七、证明题(本题7分)
设()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0,(1)1f f ==。

证明:(1)至少存在一点(0,1)ξ∈,使()1f ξξ=-;
(2)存在与ξ相异的两个不同的点,(0,1)ηζ∈,使1)()(=''ζηf f 。

武汉理工大学2007级理工类各专业
高等数学A (上)试题(A 卷)答案及评分标准
一、(1) C (2) D (3)B (4) B (5)C
二、(1) 1; (2)1![()]n n f x +; (3) 22(2,)e ;(4)2
π
; (5)22l n l n x x C -+
三、(1)解 原式=)]1
11ln(2lim exp[2n
n n n ++∞→ -------(3分)
=])
1(2lim
exp[2
n n n n +∞→ -------(5分) =2e -------(7分)
(2)解 原式=2
2
2
20
2lim
x x
t x
x xe
dt
e e ⎰
→ -------(3分)
=2
2
2
2
22lim
x x x
x e
x e e +→ -------(5分)
=2 -------(7分)
四、(1)解 22
111
122dy t dx t t t
+=⋅=+ -------(4分) 222
2231111()2224d y d dt t t dx dt t dx t t t
++=⋅=-⋅=- -------(7分)
(2)解 )]1[ln(2x x e e d dy ++=x x
de e 211+=
-------(4分)
dx e
e x
x 21+=
-------(7分)
五、(1)解 原式=⎰⎰
=⋅x xd dx x x x
tan ln tan ln cos tan tan ln 2
-------(4分) =c x +2
)tan (ln 2
1 -------(7分)
(2)解
dx x
x
x
x xf dx x f ⎰⎰
--=π
π
π
π0
00
sin )()( -------(3分) =dx x x
x dx x x ⎰⎰---π
ππππ0
0sin sin -------(5分)
2sin 0
==⎰π
xdx -------(7分)
(3)解 两边求导得:)(2)(x f x f =' x ce x f 2)(=⇒-------(4分)
(0)ln 2f = ⇒ ln 2c = -------(6分) ⇒ 2()ln 2x f x e = -------(7分)
(4)解方程变形为:
21
1y
x y dy dx =- -------(3分) ]1[1
21
c dy e y
e
x dy
y dy
y +⎰⎰=⇒-⎰ -------(5分) ]21
[2
c y
y +-
= -------(7分) 六、解 依题意:0c =,又120
489()3296
a b b A ax bx dx a -=+=
+=⇒=⎰ (1) 而22
1
2
2
0()()523
a a
b b V ax bx dx ππ=+=++⎰ -------(4分)
将(1)代入有2(64246)180
V b b π
=-+
令'
12(2)0180V b π
=⋅-=,得2b =,此时5
3
a =- 因''015
V π
=
>,所以当2b =时,V 最小。

故当5,2,03
a b c =-==时抛物线2
523
y x x =-
+满足要求。

-------(7分) 七、解 (1)令()()1gx f x x =+-,则()g x 在[0,1]上连续,且(0)10,(1)10g g =-<=>,
由零点定理,(0,1)ξ∃∈,使()0g ξ=,即()1f ξξ=- -------(4分) (2)()f x 在]1.[],,0[ξξ上分别使用拉格朗日中值定理有
(0,)ηξ∃∈,使'()
1()f f ξξ
ηξ
ξ
-=
=
(,1)ζξ∃∈,使'(1)()()11f f f ξξ
ζξξ
-=
=
-- 故'
'
()()1f f ηζ⋅= -------(7分)。

相关文档
最新文档