中考专题培优训练-专题19《中点模型》
中考数学必考几何模型:中点四大模型
![中考数学必考几何模型:中点四大模型](https://img.taocdn.com/s3/m/02a082896137ee06eff918fa.png)
中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF DCBA图2ABCDE FM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .(3)DE =DF .图1M F E DCB A如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CDEFM。
中考数学中点四大模型专题知识解读
![中考数学中点四大模型专题知识解读](https://img.taocdn.com/s3/m/39439e1cec630b1c59eef8c75fbfc77da269978b.png)
中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。
【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。
中点模型
![中点模型](https://img.taocdn.com/s3/m/fb25ca766c85ec3a87c2c595.png)
15
(3)AG⊥DG,DG=AG×tan(α/2) 证明:延长DG与BC交于H,连接AH、AD,
16
∵四边形CDEF是菱形, ∴DE=DC,DE∥CF, ∴∠GBH=∠GED,∠GHB=∠GDE, ∵G是BE的中点,∴BG=EG, ∴△BGH≌△EGD(AAS), ∴BH=ED,HG=DG, ∴BH=DC, ∵AB=AC,∠BAC=∠DCF=α, ∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2, ∴∠ABC=∠ACD, ∴△ABH≌△ACD(SAS), ∴∠BAH=∠CAD,AH=AD, ∴∠BAC=∠HAD=α; ∴AG⊥HD,∠HAG=∠DAG=α/2, ∴tan∠DAG=tan(α/2), ∴DG=AGtan(α/2).
3
模型三 如图,在△ABC中,点D是AB边的中点.可作另一边AC 的中点,构造三角形中位线.如下图所示:由中位线的性 质可得,DE//BC且DE=1/2BC.
4
模型四:连接直角顶点,构造斜中定理
5
模型运用
6
例1、如图,在平行四边形ABCD中,AD=2AB,点E 是BC边的中点.连接AE,DE.求∠AED的度数.
19
小试身手 如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的 中点G,连接EG、CG.易证:EG=CG且EG⊥CG. (1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的 数量和位置关系?请直接写出你的猜想. (2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样 的数量和位置关系?请写出你的猜想,并加以证明. (3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG有怎样 的数量和位置关系?请直接写出结论.
中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题
![中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题](https://img.taocdn.com/s3/m/2784d15cad51f01dc381f16d.png)
中考数学基本模型——中点模型线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用线相交.即“延长中线交平行”此时,易证△BEF≌△CED模型三如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:时,只需将AE延长和DC的延长线相交,就一定会得到全等三角形,进而得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平行四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE又∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD,又∵AD=2CD∴AD=DF,又因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE至点F使EF=AE,连接CF.通过证明△ABE ≌△FCE得到AB//CF,利用经过直线外一点有且只有一条直线与已知直线平行,得到D、C、F三点共线.再证明△DAF是等腰三角形,利用等腰三角形三线合一得到结论.对于第二种方法,同学们可以自己尝试.例2、在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满足平行线间夹中点,所以可将DG延长与BF相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正方形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直角三角形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直角三角形,又∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正方形绕点C旋转任意角度,在旋转的过程中,上述结论还成立吗?试试看(2)AG⊥DG,AG=√3DG如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是菱形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等边三角形∴AB=AC,∠ACD=180°-60°-60°=60°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=60°∴△DAH是等边三角形,又∵点G是DH的中点∴AG⊥DG.∠DAG=1/2∠DAH=30°∴AG=√3DG(3)AG⊥DG,DG=AG×tan(α/2)证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是菱形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BE的中点,∴BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2,∴∠ABC=∠ACD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=α/2,∴tan∠DAG=tan(α/2),∴DG=AGtan(α/2).反思:在本题的证明中,我们结合题目中给出的平行线间夹中点这一条件,将DG进行延长和BC相交,通过全等使问题得证.对于本题我们也可以采用倍长中线法进行证明.下面用倍长中线法对第一种情况加以证明.证明:如图,延长AG至点H,使GH=AG.连接EH,AD,DH.在△ABG和△HEG中BG=EG,∠AGB=∠HGE,AG=HG∴△ABG≌△HEG∴AB=HE,∠ABG=∠HEG∵AB=AC∴AC=HE∵DE//BC∴∠DEG=∠EBC∴∠HED=∠HEB+∠DEG=∠ABG+∠EBC=∠ABC=45°又∠ACD=180°-45°-90°=45°∴∠ACD=∠HED在△ACD和△HED中AC=HE,∠ACD=∠HED,DC=DE∴△ACD≌△HEDDA=DH,∠ADC=∠HDE∴∠ADC-∠HDC=∠HDE-∠HDC即∠ADH=∠CDE=90°所以△ADH是等腰直角三角形又因为点G是AH的中点所以DG=AG,DG⊥AG.上面我们用倍长中线证明了第一种情况,请你对第二三问加以证明.反思:在本题的证明过程中,容易犯的一个错误是,许多同学看到HE经过点C,就说∠HED=45°.而这一结论是需要证明的.小试身手如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样的数量和位置关系?请写出你的猜想,并加以证明.(3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG 有怎样的数量和位置关系?请直接写出结论.前两问较简单,请同学们自行完成,这里只给出第三问的几种解法,仅供大家参考.解法一:如图,延长EG至点H,使GH=EG.连接DH,CE,CH.因为点G是DF的中点,所以GF=GD.根据SAS易证△GEF≌△GHDEF=HD且∠GEF=∠GHD,所以EF//DH.分别延长HD与EB交于点K,HD的延长线交BC于点M.如下图:因为EB⊥EF,而EF//DH,所以EK⊥HK,即∠BKM=∠MCD=90°.又∠BMK=∠CMD.根据三角形的内角和,可得∠KBM=∠MDC.所以∠EBC=∠HDC.又EB=HD,BC=DC所以△EBC≌△HDC.所以CE=CB且∠ECB=∠HCD.所以∠ECB=90°,即△BCE是等腰直角三角形,又因为点G是斜边EB的中点,所以CG⊥GE且CG=GE.解法二:如图,延长CG至点N,是GN=CG.连接FN,EN,EC.以下过程可参照解法一自行完成解法三:延长FE至点P使得EP=EF,连接BP;延长DC至点Q,使得CQ=CD,连接BQ.连接FQ,DP。
【中考几何模型压轴题】专题19《中点模型》
![【中考几何模型压轴题】专题19《中点模型》](https://img.taocdn.com/s3/m/46bab7475f0e7cd1842536f9.png)
中考几何压轴题(几何模型30讲)最新讲义专题19《中点模型》破解策略1.倍长中线在△ABC中.M为BC边的中点.M E CBAE MCABD图1 图2(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM,遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.2.构造中位线在△ABC中.D为AB边的中点,AB D EC C FABD图1 图2(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=12B C.(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=12 AE.三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,3.等腰三角形“三线合一”如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.AB DC4.直角三角形斜边中线如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=12 AC.反过来,在△ABC中,点D在AC边上,若BD=AD=CD=12AC,则有∠ABC=900例题讲解例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F 作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直线互相垂直,求ADEF的值解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形,所以△AGD≌△BGC,△AGD∽△EGF.方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则AH∥BC,AH=BC,而AD=BC,AD⊥BC所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD的中点,所以=212AD ADEFDH=方法二:如图2,连结BD并取中点H,连结EH,FH.则EH=12AD,且EH∥AD,FH=12BC,而AD=BC,AD⊥BC,所以△EHF为等腰直角三角形,所以2=2AD EHEF EF=例2如图,在△ABC中,BC=22,BD⊥AC于点D,CE⊥AB于E,F、G分别是BC、DE的中点,若ED=10,求FG的长.解:连结EF、DF,由题意可得EF、DF分别为RT△BEC,RT△BDC斜边的中线,所以DF=EF =12BC=11,而G为DE的中点,所以DG=EG=5,FG⊥DE,所以RT△FGD中,FG22DF DG-=6例3 已知:在RT△ACB和RT△AEF中,∠ACB=∠AEF=900,若P是BF的中点,连结PC、PE(1)如图1,若点E、F分别落在边AB、AC上,请直接写出此时PC与PE的数量关系.(2)如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.解(1)易得PC=PE=12BF,即PC与PE相等.(2)结论成立.理由如下:如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠CED=900,所以PE=12CD=PC(3)结论仍成立,理由如下:如图5,过点F作FD∥BC,交CP的延长线于点D,易得PD=PC,FD=BC所以AE EF EF AC BC FD==而∠AFE=∠PBC=∠PFD,所以∠EAC=1800-2∠AFE=∠EFD,如图,连结CE,ED,则△EAC∽△EFD,所以∠AEC=∠FED,∠CED=∠AEF=900,所以PE=12CD=PC例4已知:△ABC是等腰三角形,∠BAC=900,DE⊥CE,DE=CE=12AC,连结AE,M是AE的中点(1)如图1,若D在△ABC的内部,连结BD,N是BD的中点,连结MN,NE,求证:MN⊥AE (2)如图2,将图1中的△CDE绕点C逆时针旋转,使∠BCD=300,连结BD,N是BD的中点,连结MN,求MN AC解:(1)如图3,延长EN至点F,使得NF=NE,连结FB,易证△DEN≌△BFN,从而可得BF∥DE,BF=DE,延长FB,CE交于点G,则∠G=900,从而A、B、G、C四点共圆所以∠ABF=∠ACE,连结AF,所以△ABF≌△ACE(SAS),所以AF=AE,AF⊥AE,而MN∥AF所以MN=12AE,MN⊥AE(2)如图4,同(1)可得,MN=12AE,MN⊥AE,由题意可得AC=2CE,作EH⊥AC于H,则∠ECH=600,所以CH=12EC=14AC,EH=3AC,从而AE=227AH EH AC+=,所以7MNAC=进阶训练1.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在AB上,连结DE,M为DE的中点,连结BM,CM,求证:BM=CM.MCDEAB【答案】略【提示】延长CM,DB交于点F,则∠CBF=90°,△CME≌△FMD,从而BM=12CF=CM.MCDEB2.我们把两条中线互相垂直的三角形称为”中垂三角形”.如图1,AF,BE是△ABC的中线,且AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.(1)猜想a 2,b2,c2三者之间的关系,并加以证明;(2)如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD上的中点.BE⊥EG,AD=5AB=3.求AF的长.图1A图2A【答案】(1) a 2+b 2=5c 2,证明略;(2) AF =4.【提示】(1)如图,连结EF ,由中位线定理可得PE PB =PF PA =EF BA =12.在Rt △APB ,Rt △APE 和Rt △BPF 中,利用勾股定理即可得到a 2+b 2=5c 2;(2) 如图,取AB 的中点H ,连结FH ,AC ,由中位线定理可得FH ∥AC ∥EG ,从而FH ⊥BE ,易证△APE ≌△FPB ,所以AP =FP ,所以△ABF 是“中垂三角形”从而利用(1)中结论求得AF 的长.DEBA3.巳知:△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,F 为BE 的中点.连结DF ,CF .图3图2图1EE(1)如图,当点D 在AB 上,点E 在AC 上时,请直接写出此时线段DF ,CF 的数量关系和位置关系(不用证明);(2)如图2.在(1)的条件下将△ADE 绕点A 顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3.在(1)的条件下将△ADE 绕点A 顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.【答案】(1)DF =CF ,DF ⊥CF ;(2)成立;(3)成立.【提示】(2)延长DF 交BC 于点G ,则△DEF ≌△GBF ,从而得DF =GF ,CD =CG ,即得证.E(3)延长CF 至点G ,使得FG =CF ,连结EG ,则GE =CB =CA ,GE ⊥AC ,可得∠CAD =∠GE D .连结DG ,CD ,从而△ADC ≌△EDG (SAS ).即得证.E4.巳知:P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(不与点A 、C 重合).分别过点A 、C 向直线BP 作垂线,垂足分别为E ,F ,O 为AC 的中点,如图1.将直线BP 绕点B 逆时针旋转,当∠OFE = 30°时,如图2所示,请你猜想线段CF ,AE ,OE 之间有怎样的数量关系,并给予证明.图1图2【答案】图1中OE =CF -AE ;图2中OE =CF +AE .【提示】如图1,延长EO 交FC 于点G ,易证OE =OG ,AE =CG ,从而Rt △GFE 中,OF =OG =OE .而∠OFE =30°,所以OE =CF -AE .图1如图2,同理可得OE=CF+AE.图2。
【猿辅导几何模型】中考必会几何模型:中点四大模型
![【猿辅导几何模型】中考必会几何模型:中点四大模型](https://img.taocdn.com/s3/m/cdee868d10a6f524ccbf859f.png)
中考必考几何模型(猿辅导)最新讲义中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF E DCBA图2ABCDFM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .图1M F E DCB A(3)DE=DF.如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CD FM高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =②02b x a->,则()M f p = xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2bf a-g0x x>O-=f(p) f(q)()2b f a-0x gx<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x gx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-gx。
中考必会几何模型:中点四大模型
![中考必会几何模型:中点四大模型](https://img.taocdn.com/s3/m/acb7096ff18583d0496459fa.png)
中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD=DC,∴ED=DN.在△BED与△CND中,∵⎪⎩⎪⎨⎧=∠=∠=DNEDCDNBDEDCBD∴△BED≌△CND(SAS).∴BE=NC.∵∠MDN=90°,∴MD为EN的中垂线.∴EM=MN.∴BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,∴△BEM为直角三角形,∠MBE=90°.∴∠ABC+∠ACB=∠ABC+∠EBC=90°.∴∠BAC=90°.∴AD2=(21BC)2=41(AB2+AC2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.AB CDD CBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB=AC,D是BC的中点,∴AD⊥BC,∠ADB=∠ADC=90°在Rt△AED与Rt△AFD中,⎩⎨⎧==ADADAFAB,∴Rt△AED≌Rt△AFD.(HL)∴∠ADE=∠ADF,∵∠ADB+∠ADC=90°,∴∠EDB=∠FDC.2.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DF⊥AC于E时(如图①),求证:S△DEF+S△CEF=21S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=21∠ACB=45°,CD⊥AB,CD=21AB=BD,∴∠DCE=∠B,∠CDB=90°,∵∠EDF=90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).AB CDEK HF图32.问题一:如图①,在四边形ABCD中,AB与CD相交于点O,AB=CD,E,F分别是BC,AD的中点,连接EF,分别交DC,AB于点M,N,判断△OMN的形状,请直接写出结论.问题二:如图②,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD 的形状并证明.图1NMOFEDCBAE图2GAB CDF2.证明(1)等腰三角形(提示:取AC中点H,连接FH,EH,如图①)(2)△AGD是直角三角形如图②,连接BD,取BD的中点H,连接HF,HE.∵F是AD的中点,∴HF∥AB,HF=12AB.∴∠1=∠3.同理,HE∥CD,HE=12CD,∴∠2=∠EFC,∴AB=CD,∴HF=HE.∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF E DCBA图2ABCDFM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .图1M F E DCB A(3)DE=DF.如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH.∵点D是边AB的中点,∴DG∥BM,DG=12BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CD FM高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =②02b x a->,则()M f p = xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2bf a-g0x x>O-=f(p) f(q)()2b f a-0x gx<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x gx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-gx。
【数学中考一轮复习】中点问题常考模型(含答案)
![【数学中考一轮复习】中点问题常考模型(含答案)](https://img.taocdn.com/s3/m/e8202057cc22bcd127ff0ca7.png)
专项训练中点问题常考模型模型一垂线过中点→线段的垂直平分线→等腰三角形方法点拨:当三角形一边的垂线恰好过这边的中点时,可得这条垂线即为这边的垂直平分线,故可连接构造等腰三角形,解决相应线段和角的计算和证明。
1.如图所示,在△ABC中,点E是AC边的中点,DE⊥AC于点E,交BC于点D,若∠B=70°,且AB+BD=BC,则∠BAC的度数是()A.40°B.65°C.70°D.75°2.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,D是BC的中点,且DE⊥BC交AB于点E,则BE的长是()A.4 cmB. 8 cmC. 16 cmD.32 cm3.如图所示,在△ABC中,∠C=30°,点D是AC的中点,DE⊥AC交BC于E;点O在DE 上,OA=OB,OD=1,OE=2,则BE的长为()A.3B.4C.5D.6模型二等腰三角形+底边中点→三线合一如图所示,在△ABC中,若AB=AC.通常取底边BC的中点D,则AD⊥BC,且AD平分∠BAC.方法点拨:当等腰三角形有底边上的中点时,常作出底边上的中线,利用等腰三角形底边上的中线、底边上的高和顶角的平分线“三线合一”的性质,证明线段相等、角的相等及线段的垂直、平分关系.4.如图所示,在△ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=()A.110°B.70°C.55°D.35°5.如图所示,在△ABC中,AE⊥BC于点E,点D为BC边中点,AF⊥AB交BC边于点F,∠C=2∠B,若DE=4CF=2,则CE=_________.模型三见三角形的中线或过中点的线段→加倍延长构造全等在△ABC中,M为BC边的中点.在△ABC中,点M为BC边上中点.(1)如图1,连接中线AM 并延长到点E ,使得ME =AM 连接CE ,则△ABM ≌△ECM.(2)如图2,连接过中点的线段DM 并延长到点E ,使得ME =DM.连接CE ,则△BDM ≌△CEM.方法点拨:遇到线段中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.6.如图所示,已知AB =12,AB ⊥BC 于B ,AB ⊥AD 于A ,AD =5,BC =10.点E 是CD 的中点,则AE 的长为( )A.6B.213C.5D.4123 7.已知三角形两边分别为6和9,求第三边上中线的取值范围是___________.8.(1)如图1所示,若△ABC 是直角三角形,∠BAC =90°,点D 是BC 的中点,延长AD 到点E ,使DE =AD ,连接CE ,可以得到△ABD ≌△ECD ,这种作辅助线的方法我们通常叫做“倍长中线法”.求证:△ACE 是直角三角形.(2)如图2所示,△ABC 是直角三角形,∠BAC =90°,D 是斜边BC 的中点,E ,F 分别是AB ,AC 边上的点,且DE ⊥DF.试说明BE 2+CF 2=EF 2;(3)如图3所示,在(2)的条件下,若AB =AC ,BE =12,CF =5,求△DEF 的面积.模型四 直角三角形+斜边中点→直角三角形斜边中线如图所示,在△ABC 中,∠ACB =90°,取AB 的中点D ,连接CD ,则有BD =AD =CD. 反过来,在△ABC 中,点D 在AB 边上,若BD =AD =CD ,则有∠ABC =90°.方法点拨:在直角三角形中,当有斜边中点时,常连斜边的中线,利用直角三角形斜边上的中线等于斜边的一半,来证明线段的数量关系,同时得两个等腰三角形,为角的计算提供了条件,该模型经常和三角形的中位线连用,更具综合性.9.如图所示,在△ABC 中,D ,E ,F 分别是AB ,CA ,BC 的中点,若CF =3,CE =4,EF =5,则CD 的长为( )A.5B.6C.8D.1010.如图所示,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =21BC ,若AB =10,则 EF 的长是( )A.5B.4C.3D.211.如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFC 为直角,若DF =2cm.BC =16cm ,则AC 的长为__________.→连接或作平行构造中位线方法点拨:在三角形中,如果有两个中点,往往直接连接两中点构造三角形的中位线;如果只有一个中点,可以取另一边的中点相连接,也可以过已知中点作另一边的平行线,都能构造三角形的中位线,然后利用三角形的中位线平行于第三边,并且等于第三边的一半,得到两线段的平行和倍分关系,从而进行相应的计算和证明.12.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2 cmB.2.3 cmC.2.4 cmD. 2.5 cm13.如图所示,在矩形ABCD中,E,F分别是AB,BC的中点,BD=12,则EF的长为()A.6B.5C.4D.314.如图所示,在四边形ABCD中,P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°模型六圆+弦(或弧)的中点→垂径定理或圆周角定理方法点拨:(1)圆心O是直径的中点,常和弦的两个端点相连接,构造等腰三角形或直角三角形解决问题。
中考数学压轴题专项汇编专题之19中点模型
![中考数学压轴题专项汇编专题之19中点模型](https://img.taocdn.com/s3/m/036c477bf01dc281e53af0e5.png)
专题1 中点模型破解策略 1.倍长中线在△ABC 中.M 为BC 边的中点.MECB AEMCAB De图1 图2(1)如图1,连结AM 并延长至点F ,使得ME =AM .连结CE .则△ABM ≌△ECM .(2)如图2,点D 在AB 边上,连结DM 并延长至点E .使得MF =DM .连结CE ,则△BDM ≌△CEM ,遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法. 2.构造中位线在△ABC 中.D 为AB 边的中点,图1 图2(1)如图1,取AC 边的中点E ,连结DE .则DE ∥BC ,且DF =12B C . (2)如图2.延长BC 至点F .使得CF =B C .连结CD ,AF .则DC ∥AF ,且DC =12AE . 三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线, 3.等腰三角形“三线合一”如图,在△ABC 中,若AB =A C .通常取底边BC 的中点D .则AD ⊥BC ,且AD 平分∠BA C . 事实上,在△ABC 中:①AB =AC ;②AD 平分∠BAC ;③BD =CD ,④AD ⊥B C .对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.AB DCCFABDABDEC4. 直角三角形斜边中线如图,在△ABC 看,∠ABC =900,取AC 的中点D ,连结BD ,则有BD =AD =CD =12AC . 反过来,在△ABC 中,点D 在AC 边上,若BD =AD =CD =12AC ,则有∠ABC =900例题讲解例1 如图,在四边形ABCD 中,E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结AG 、BG 、CG 且∠AGD =∠BGC ,若AD 、BC 所在直线互相垂直,求ADEF的值例2 如图,在△ABC 中,BC =22,BD ⊥AC 于点D ,CE ⊥AB 于E ,F 、G 分别是BC 、DE 的中点,若ED =10,求FG 的长.进阶训练I .如图,△ABD 和△ACE 都是直角三角形,其中∠ABD =∠ACE =90°,且点C 在AB 上,连结DE ,M 为DE 的中点,连结BM ,CM ,(1)求证:BM =CM .(2)设∠BAD=∠CAE ,固定△ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图乙的位置,试问:MB=MC 是否还能成立?并证明其结论.3.巳知:△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,F 为BE 的中点.连结DF ,CF .图3图2图1FEFEBBFEB AAACD CCDD(1)如图,当点D 在AB 上,点E 在AC 上时,请直接写出此时线段DF ,CF 的数量关系和位置关系(不用证明); (2)如图2.在(1)的条件下将△ADE 绕点A 顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3.在(1)的条件下将△ADE 绕点A 顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.5.巳知:P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(不与点A 、C 重合).分别过点A 、C 向直线BP 作垂线,垂足分别为E ,F ,O 为AC 的中点,如图1.将直线BP 绕点B 逆时针旋转,当∠OFE = 30°时,如图2所示,请你猜想线段CF ,AE ,OE 之间有怎样的数量关系,并给予证明.图1OE FCABDP 图2EFOCABDP6.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接连接AD,BC、点H为BC中点,连接OH.(1)如图1所示,求证:OH=AD且OH⊥AD;(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论;(3)请直接写出线段OH的取值范围.如图1,四边形ABCO为正方形。
(完整版)中考数学压轴题专项汇编专题之19中点模型
![(完整版)中考数学压轴题专项汇编专题之19中点模型](https://img.taocdn.com/s3/m/9f2fdae1561252d381eb6e54.png)
专题1 中点模型破解策略 1.倍长中线在△ABC 中.M 为BC 边的中点.MECB AEMCAB De图1 图2(1)如图1,连结AM 并延长至点F ,使得ME =AM .连结CE .则△ABM ≌△ECM .(2)如图2,点D 在AB 边上,连结DM 并延长至点E .使得MF =DM .连结CE ,则△BDM ≌△CEM ,遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法. 2.构造中位线在△ABC 中.D 为AB 边的中点,图1 图2(1)如图1,取AC 边的中点E ,连结DE .则DE ∥BC ,且DF =12B C . (2)如图2.延长BC 至点F .使得CF =B C .连结CD ,AF .则DC ∥AF ,且DC =12AE . 三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线, 3.等腰三角形“三线合一”如图,在△ABC 中,若AB =A C .通常取底边BC 的中点D .则AD ⊥BC ,且AD 平分∠BA C . 事实上,在△ABC 中:①AB =AC ;②AD 平分∠BAC ;③BD =CD ,④AD ⊥B C .对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.AB DCCFABDABDEC4.直角三角形斜边中线如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=12 AC.反过来,在△ABC中,点D在AC边上,若BD=AD=CD=12AC,则有∠ABC=900例题讲解例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直线互相垂直,求ADEF的值例2 如图,在△ABC中,BC=22,BD⊥AC于点D,CE⊥AB于E,F、G分别是BC、DE的中点,若ED=10,求FG的长.进阶训练I.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在AB上,连结DE,M为DE的中点,连结BM,CM,(1)求证:BM=CM.(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB=MC是否还能成立?并证明其结论.3.巳知:△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,F 为BE 的中点.连结DF ,CF .图3图2图1EEE(1)如图,当点D 在AB 上,点E 在AC 上时,请直接写出此时线段DF ,CF 的数量关系和位置关系(不用证明); (2)如图2.在(1)的条件下将△ADE 绕点A 顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3.在(1)的条件下将△ADE 绕点A 顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.5.巳知:P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(不与点A 、C 重合).分别过点A 、C 向直线BP 作垂线,垂足分别为E ,F ,O 为AC 的中点,如图1.将直线BP 绕点B 逆时针旋转,当∠OFE = 30°时,如图2所示,请你猜想线段CF ,AE,OE 之间有怎样的数量关系,并给予证明.图1图26.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接连接AD,BC、点H为BC中点,连接OH.(1)如图1所示,求证:OH=AD且OH⊥AD;(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论;(3)请直接写出线段OH的取值范围.如图1,四边形ABCO为正方形。
中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题
![中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题](https://img.taocdn.com/s3/m/2784d15cad51f01dc381f16d.png)
中考数学基本模型——中点模型线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用线相交.即“延长中线交平行”此时,易证△BEF≌△CED模型三如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:时,只需将AE延长和DC的延长线相交,就一定会得到全等三角形,进而得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平行四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE又∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD,又∵AD=2CD∴AD=DF,又因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE至点F使EF=AE,连接CF.通过证明△ABE ≌△FCE得到AB//CF,利用经过直线外一点有且只有一条直线与已知直线平行,得到D、C、F三点共线.再证明△DAF是等腰三角形,利用等腰三角形三线合一得到结论.对于第二种方法,同学们可以自己尝试.例2、在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满足平行线间夹中点,所以可将DG延长与BF相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正方形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直角三角形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直角三角形,又∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正方形绕点C旋转任意角度,在旋转的过程中,上述结论还成立吗?试试看。
中考专题培优训练-专题19《中点模型》
![中考专题培优训练-专题19《中点模型》](https://img.taocdn.com/s3/m/47f09f3ec1c708a1294a4485.png)
专题19《中点模型》破解策略1. 倍长中线在△遊中・M为应'边的中点.E E图1 图2(1)如图1,连结刖并延长至点尸,使得ME=AM.连结宓则△也必△应M(2)如图2,点D(£AB边上,连结功,并延长至点仅使得MF=DM.连结炉,则△劭1/Q'CEH、遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.2. 构造中位线在△磁中.。
为初边的中点,图1 图2(1)如图1,取肚边的中点伐连结应则DE//BC.且DF=1氏・2(2)如图2・延长證至点尸.使得CF=EC・连结⑦AF.则DC//AE 5. DC= 1 AE.2三角形的中位线从位置关系和数量关系两方而将将图形中分散的线段关系集中起来•通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,3. 等腰三角形“三线合一”如图,在△磁中,若AB=AC・通常取底边氏的中点D・则初丄万G且肋平分ZBAC.事实上,在△磁中:(£)AB=AC;②初平分ZBAC;③BD=CD、④初丄反・对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”・B u4・直角三角形斜边中线如图,在△遊看,Z磁=90°,取胚的中点Q,连结助,则有BD=AD=CD=-AC. 2反过来,/£AABC中,点Q在川7边上,若BD=AD=CD=、AC,则有ZABC=90Q例题讲解例1如图,在四边形丽G?中,E、尸分别是曲、仞的中点,过点疋作曲的垂线,过点尸作切的垂线,两垂线交于点G,连结/1G、BG、CG且ZAGD=ZBGC,若肋、證所在直线互相垂直,求呼的值EF解由题意可得阳和为共顶点等顶角的两个等腰三角形,所以△必谑△07G HEGF.方法一:如图1,连结传并延长到F,使曲=云7,连EH、AH,则AH//BC. AH=BC、而/1P=万G ADLBC所以肋=加肋丄加连结加则△妙为等腰直角三角形,又因为E尸分别为阳、CD的中点,所停益皿2方法二:如图2,连结助并取中点/连结胡FH.则EH= ' AD,孔EH"AD 、FH= 1 BC. 2 2 而AD=BC. ADLBC.所以△时为等腰直角三角形,所以—=—=^2 EF EF解:连结曰DF >由题意可得厅、ZF 分别为砒△亦G A7△磁斜边的中线,所以DF=EF 存“,而6沁的中点,所以心心仆丄加所以刃△磁中,心阿F=4\/6如图,在△磁中,氏=22,BD 丄AC 于点D, CE 丄AB 于E, F 、G 分别是应; 眩的中点,若劭=10,求尺;的长.例3 已知:在RT/^ACB和斤7△遁■中.ZACB=ZAEF=9,若尸是莎的中点,连结FGPE(1)如图1,若点忒尸分别落在边仙、/1Q上,请直接写出此时陽与肱的数量关系. (2)如图2,把图1中的△川莎绕着点£顺时针旋转,当点f落在边©的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,若点尸落在边丽上,则上述结论是否仍然成立?若成立,请给予证明:若不解(1)易得PC=PE=、BF、即尸0与胶"相等.2(2)结论成立.理由如下:如图4,延长6P交疗的延长线于点Q,则證〃刊,易证△毋倶所以PC=PD.而Z㈤=90°,所以PE=-CD=PC2cD(3)结论仍成立,理由如下:如图5,过点F作FD//BC,交疗的延长线于点Q,易得PD=PC, FD=BC 所以兰=空=空AC BC FD而ZAFE= ZPBC= ZPFD.所以ZEAC=\8”一2ZAFE= ZEFD、如图,连结比ED、则△內,所以ZAEC= ZFED,乙CED=乙AEF=90 所以PE=、CD=PC2例4 已知:△磁是等腰三角形,ZBAC=9Q0. DELCE. DE=CE=-AC.连结也 "是血2的中点(1) 如图1,若0在△磁的内部,连结加,"是加的中点,连结.0,宓求证:.0丄血(2) 如图2,将图1中的△宓绕点Q逆时针旋转,使ZBCD=3Q\连结助,片是別的中点,连结MV;求岂丄AC解:(1)如图3,延长£¥至点斤使得八尸="乙连结刊,易证△宓、竺△朋从而可得BF//DE. BF= DE.延长尬CE交于点G,则ZG=9Q\从而月、B、G. Q四点共圆所以ZABF= ZACE、连结处所以△ ABF^^ACE (SAS),所以£尸=也AFLAE.而M丫〃月尸所以.1AE. MNLAE2G(2)如图4,同(1)可得・亞¥=丄也 丄亦由题意可得AC=2CE.作EHVAC 于忆则 2 ZM-600,所以 CH= ' EC=丄",EH=—AC,从而 AE= ylAH 2+EH 2 = — AC ,所以 24 4 2MN _萌 AC =T【答案】略【提示】延长饰场交于点尸,则ZCBF=90c, \CME3\FMD 、从而BM=-CF=CM. 22. 我们把两条中线互相垂直的三角形称为”中垂三角形”・如图b AF.亦是△月證的中 线,且处丄庞于点只像△磁这样的三角形均称为“中垂三角形”,设BC=a, AC=b, AB=c ・(1) 猜想a‘,歹,£三者之间的关系,并加以证明;(2) 如图2,在平行四边形月万G?中,E. F, G 分别是月必BC 、切上的中点.BE LEG.AD=2y/5 . AB=3.求府的长.2 如图2.在(1)的条件下将绕点月顺时针旋转45° .请你判断此时(1) 中的结论是否仍然成立,并证明你的判断:进阶训练1. 如图,△.血和△川工•都是直角三角形, 朋匕连结眩”为亦的中点,连结 英中Z ABD =ZACE=90° ,且点C 在PE PF EF【提示】(1)如图,连结丽由中位线左理可得一=—=—=一・在Rt△月丹,PB PA BA 2RtAAPE和Rt△咖中,利用勾股怎理即可得到』+歹=5c;(2)如图,取M的中点连结曲,AC,由中位线泄理可得FH//AC//EG.从而必丄亦,於込APE^'FPB、所以莎=〃,所以△月肿是"中垂三角形"从而利用(1)中结论求得£尸的长・3. 巳知:△磁和是等腰直角三角形,ZACB=ZADE=9Q° ,尸为亦的中点・连结DF、CF.【答案】(1)DF= CF. DFLCFx(2)成立:(3)成立.【提示】(2)延长DF交氏于点G,则咤△如,从而得DF=GF, CD=CG,即得证・(3)延长G7至点G使得尸片G7,连结%,则GE=CB=CA, GE LAC.可得乙CAD=乙必D・连结QG, CD.从而△ ADX'EDG JSAS)•即得证.4. 匚知:F是平行四边形对角线“所在直线上的一个动点(不与点丛Q重合)・分别过点川、Q向直线歹作垂线,垂足分别为E F, 0为川6•的中点,如图1.将直线册绕点万逆时针旋转,当ZOFE= 30°时,如图2所示,请你猜想线段併,AE,处之间有怎样的数量关系,并给予证明.[答案]图]中处二/一处:图2中OE=CF+AE・【提示】如图1,延长丹交尸C于点G,易证莎=&, AE=CG.从而R也GFE中,OF=OG=OE.而ZOFE=30° ,所U OE=CF-AE・快乐学数学如图2,同理可得处=6F+必(1) 如图,当点D^AB 上,点疋在EC 上时,请直接写出此时线段力;G 7的数量关系 和位宜关系(不用证明);(3)如图3.在(1)的条件下将△川疋绕点月顺时针旋转角",请你判断此时(1)中的结论是否仍然成立,井证明你的判断.。
本初中数学突破中考压轴题几何模型之中点模型教案
![本初中数学突破中考压轴题几何模型之中点模型教案](https://img.taocdn.com/s3/m/42df5bc40066f5335a8121f7.png)
中点模型讲课日期时 间主 题中点模型教课内容1. 2. 3. 4. 5. 6. 7.8. 学习过中位线以后,你可否总结一下,当前我们学习了哪些定理或性质与中点相关?9.直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么?10. 直角三角形斜边中线定理:如图,在RtABC 中,ACB90,D 为AB 中点,则有:CDA DB D1AB 。
2CBAD三线合一:在 A BC 中:(1)AC BC ;(2)CD 均分 ACB ;(3)AD BD ,(4)CD AB .“知二得二”:比方由(2)(3)可得出(1)(4).也就是说,以上四条语句,随意选择两个作为条件,就能够推出余下两条。
CADB13.中位线定理: 如图,在ABC 中,若AD BD ,AE CE ,则DE//BC 且DEBC 。
2A D ECB中线倍长(倍长中线):如图(左图),在ABC中,D为BC中点,延伸AD到E使DE AD,联络BE,则有:ADC≌EDB。
作用:转移线段和角。
AA BB C MDE C D例1:如下图,已知D为BC中点,点A在DE上,且AB CE,求证:BAD CED.EABD C提示:用倍长中线法,借助等腰三角形和全等三角形证明试一试:如图,已知在ABC中,AD 是BC边上的中线,E是AD上一点,且BEAC,延伸BE交AC于F,求证:AF EF。
AF EB D C证明:延伸DE至点G,使得ED=DG,联络CGA 类比倍长中线易得:△BDE≌△CDG F因此∠BED=∠DGC,BE=CG E由于BE=AC,因此AC=GCB D C因此∠EAC=∠DGC,由于∠BED=AEF G因此∠AEF=∠FAE 因此AF=EF例2:如图,已知ABC中,BD,CE为高线,点M是BC的中点,点N是DE的中点..求证:MNDE。
AENDB MC 证明:联络EM、DM在Rt△BEC中EM 1BC,在Rt△BDC中DM1BC 22因此EM=DM,又由于EN=ND,因此MN DE例3:如图,在ABC中,AD为A的均分线,M为BC的中点,AD//ME,求证:BE CF 1 ABAC。
中点模型巩固练习(提优)-冲刺2020年中考几何专项复习(原卷版)
![中点模型巩固练习(提优)-冲刺2020年中考几何专项复习(原卷版)](https://img.taocdn.com/s3/m/c98a4fe2be23482fb5da4c0f.png)
中点模型巩固练习(提优)
1.如图,在矩形ABCD中,E为CB延长线一点且AC=CE,F为AE的中点,求证:BF⊥FD.
2. 如图,在梯形ABCD中,∠B+∠C=90º,EF是两底中点的连线,求证:BC-AD=2EF.
3.如图,在△ABC中,∠BAC=90º,AB=AC,AD=CD,AF⊥BD于点E交BC于点F,求证:BF=2FC.
4.如图,在四边形ABCD中,E为AB上的一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA 的中点分别为P、Q、M、N,试判断四边形PQMN的形状.
5.如图,P是圆O外的一点,过P点引两条割线PAB、PCD,点M、N分别是、的中点,连接MN分别交AB、CD于点E、F.
(1)求证:△PEF是等腰三角形;
(2)若点P在圆上或圆内,其他条件不变,结论还能成立吗?
6.半径为1的半圆形纸片,按如图方式沿AB折叠,使折叠后半圆弧的中点M与圆心O重合,求图中阴影部分面积?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题19《中点模型》破解策略
1.倍长中线
在△ABC中.M为BC边的中点.
M E C
B
A
E M
C
A
B
D
图1 图2
(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.
(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM,
遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.
2.构造中位线
在△ABC中.D为AB边的中点,
A
B D E
C C F
A
B
D
图1 图2
(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1
2
B C.
(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=1
2 AE.
三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,
3.等腰三角形“三线合一”
如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.
对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.A
B D C
4.直角三角形斜边中线
如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=
1
2
AC.
反过来,在△ABC中,点D在AC边上,若BD=AD=CD=
1
2
AC,则有∠ABC=900
例题讲解
例1 如图,在四边形ABCD中,E、F分别是AB、CD的中点,过点E作AB的垂线,过点F 作CD的垂线,两垂线交于点G,连结AG、BG、CG且∠AGD=∠BGC,若AD、BC所在直线互相垂直,求
AD
EF
的值
解由题意可得△AGB和△DGC为共顶点等顶角的两个等腰三角形,
所以△AGD≌△BGC,△AGD∽△EGF.
方法一:如图1,连结CE并延长到H,使EH=EC,连EH、AH,则
AH∥BC,AH=BC,而AD=BC,AD⊥BC
所以AD=AH,AD⊥AH,连结DH,则△ADH为等腰直角三角形,又因为E、F分别为CH、CD
的中点,所以=2
1
2
AD AD
EF DH
=
方法二:如图2,连结BD并取中点H,连结EH,FH.则EH=
1
2
AD,且EH∥AD
,
FH=
1
2
BC,而AD=BC,AD⊥BC,所以△EHF为等腰直角三角形,所以
2
=2
AD EH
EF EF
=
例2如图,在△ABC中,BC=22,BD⊥AC于点D,CE⊥AB于E,F、G分别是BC、DE的中点,若ED=10,求FG的长.
解:连结EF、DF,由题意可得EF、DF分别为RT△BEC,RT△BDC斜边的中线,所以DF=EF =
1
2
BC=11,而G为DE的中点,所以DG=EG=5,FG⊥DE,所以RT△FGD中,FG22
DF DG
-
=6
例3 已知:在RT△ACB和RT△AEF中,∠ACB=∠AEF=900,若P是BF的中点,连结PC、PE
(1)如图1,若点E、F分别落在边AB、AC上,请直接写出此时PC与PE的数量关系.(2)如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
解(1)易得PC=PE=1
2
BF,即PC与PE相等.
(2)结论成立.理由如下:
如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠
CED=900,所以PE=1
2
CD=PC
(3)结论仍成立,理由如下:
如图5,过点F作FD∥BC,交CP的延长线于点D,易得PD=PC,FD=BC
所以AE EF EF AC BC FD
==
而∠AFE=∠PBC=∠PFD,所以∠EAC=1800-2∠AFE=∠EFD,
如图,连结CE,ED,则△EAC∽△EFD,所以∠AEC=∠FED,∠CED=∠AEF=900,
所以PE=1
2
CD=PC
例4已知:△ABC是等腰三角形,∠BAC=900,DE⊥CE,DE=CE=1
2
AC,连结AE,M是AE
的中点
(1)如图1,若D在△ABC的内部,连结BD,N是BD的中点,连结MN,NE,求证:MN⊥AE (2)如图2,将图1中的△CDE绕点C逆时针旋转,使∠BCD=300,连结BD,N是BD的中
点,连结MN,求MN AC
解:(1)如图3,延长EN至点F,使得NF=NE,连结FB,易证△DEN≌△BFN,从而可得BF∥DE,BF=DE,延长FB,CE交于点G,则∠G=900,从而A、B、G、C四点共圆
所以∠ABF=∠ACE,连结AF,所以△ABF≌△ACE(SAS),所以AF=AE,AF⊥AE,而MN∥
AF所以MN=1
2
AE,MN⊥AE
(2)如图4,同(
1)可得,MN=
1
2
AE,MN⊥AE,由题意可得AC=2CE,作EH⊥AC于H,则
∠ECH=600,所以CH=1
2
EC=
1
4
AC,EH=
3
AC,从而AE=22
7
AH EH AC
+=,所以
7
MN
AC
=
进阶训练
1.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在AB上,连结DE,M为DE的中点,连结BM,CM,求证:BM=CM.
M
C
D E
A
B 【答案】略
【提示】延长CM,DB交于点F,则∠CBF=90°,△CME≌△FMD,从而BM=1
2
CF=CM.
M
C
D E
B
2.我们把两条中线互相垂直的三角形称为”中垂三角形”.如图1,AF,BE是△ABC的中线,且AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
(1)猜想a 2,b2,c2三者之间的关系,并加以证明;
(2)如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD上的中点.BE⊥EG,AD=5AB=3.求AF的长.
图1
A
图2
A
【答案】(1) a 2
+b 2
=5c 2
,证明略;(2) AF =4.
【提示】(1)如图,连结EF ,由中位线定理可得
PE PB =PF PA =EF BA =1
2
.在Rt △APB ,Rt △APE 和Rt △BPF 中,利用勾股定理即可得到a 2
+b 2
=5c 2
;
(2) 如图,取AB 的中点H ,连结FH ,AC ,由中位线定理可得FH ∥AC ∥EG ,从而FH ⊥BE ,易证△APE ≌△FPB ,所以AP =FP ,所以△ABF 是“中垂三角形”从而利用(1)中结论求得AF 的长.
D
E
B
A
3.巳知:△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,F 为BE 的中点.连结DF ,CF .
图3
图2
图1
E
E
(1)如图,当点D 在AB 上,点E 在AC 上时,请直接写出此时线段DF ,CF 的数量关系和位置关系(不用证明);
(2)如图2.在(1)的条件下将△ADE 绕点A 顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3.在(1)的条件下将△ADE 绕点A 顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.
【答案】(1)DF =CF ,DF ⊥CF ;(2)成立;(3)成立.
【提示】(2)延长DF 交BC 于点G ,则△DEF ≌△GBF ,从而得DF =GF ,CD =CG ,即得证.
E
(3)延长CF 至点G ,使得FG =CF ,连结EG ,则GE =CB =CA ,GE ⊥AC ,可得∠CAD =∠GE D .连结DG ,CD ,从而△ADC ≌△EDG (SAS ).即得证.
E
4.巳知:P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(不与点A 、C 重合).分别过点A 、C 向直线BP 作垂线,垂足分别为E ,F ,O 为AC 的中点,如图1.将直线BP 绕点B 逆时针旋转,当∠OFE = 30°时,如图2所示,请你猜想线段CF ,AE ,OE 之间有怎样的数量关系,并给予证明.
图1
图2
【答案】图1中OE =CF -AE ;图2中OE =CF +AE .
【提示】如图1,延长EO 交FC 于点G ,易证OE =OG ,AE =CG ,从而Rt △GFE 中,OF =OG =OE .而∠OFE =30°,所以OE =CF -AE .
图1
如图2,同理可得OE=CF+AE.
图2。