2016年专项练习题集-定积分的计算

合集下载

专升本数学练习题辽宁

专升本数学练习题辽宁

专升本数学练习题辽宁### 专升本数学练习题(辽宁)#### 一、选择题1. 函数的极限设函数\( f(x) = \frac{x^2 - 1}{x - 1} \),当\( x \)趋近于1时,\( f(x) \)的极限是:A. 0B. 1C. 2D. 无穷大2. 导数的应用若函数\( f(x) = x^3 - 3x^2 + 2 \),则\( f'(2) \)的值是:A. -2B. 4C. 8D. 123. 定积分的计算计算定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. \( \frac{1}{4} \)4. 级数的收敛性级数\( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)是:A. 收敛的B. 发散的C. 条件收敛D. 交错收敛5. 微分方程的解求解微分方程\( y'' - y' - 6y = 0 \)的通解:A. \( y = Ce^{2x} \)B. \( y = Ce^{3x} \)C. \( y = Ce^{2x} + De^{-3x} \)D. \( y = Ce^{3x} + De^{-2x} \)#### 二、填空题6. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{\sin x} = \) _______。

7. 函数\( f(x) = \ln(1 + x^2) \)的导数\( f'(x) \)是 _______。

8. 若\( \int_{a}^{b} f(x) dx = 5 \),且\( f(x) = x^2 \),则\( a \)和\( b \)的值分别是 _______ 和 _______。

2016年专升本高数真题答案解析

2016年专升本高数真题答案解析

浙江省2016年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。

题号12345答案ACAAC1.A 解析:取整函数[]x 的图像可知,[]x x x ≤<-1,所以[]01≤-<-x x ,所以函数[]x x -是有界函数,所以选项A 正确。

2.C 解析:选项A :错,反例:3)(x x f =在0=x 处可导,且0)0(='f ,但却是非极值选项B 错,反例:⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,⎪⎩⎪⎨⎧=≠-='0,00,1cos 1sin 2)(x x xx x x f ,明显)(x f '在0=x 处不连续选项C 对,因为针对于一元函数,可导必定可微,可微也必定可导选项D 错,反例:2)(x x f =,0)0(='f ,但却是非拐点3.A 解析:111011)]([)1()())(()]([)(x f f dx x f x f x x f d x dx x f x -'='-'='=''⎰⎰⎰2)01(3))0()1((3=--=--=f f ,可见选项A 正确。

4.A 解析:x ax b a b a x x n n n n n n n 1lim )(111=+⋅+=+++∞→ρ,令11)(<=x a x ρ,解得:()a a x ,-∈,因此收敛区间为:()a a ,-,收敛半径为:a R =。

故选A5.C 解析:特征方程为:012=++r r ,043)21(2=++r ,即:i r 2321±-=,因为i i +=+0ωλ不是012=++r r 的根,所以:0=k 。

所以sin '''++=y y y x x 的特解形式可设为:x d cx x b ax y cos )(sin )(*+++=,可见选项C 正确。

2015-2016第一学期微积分IV期末试卷答案(A卷)

2015-2016第一学期微积分IV期末试卷答案(A卷)

一、求下列数列的极限(每题5分,共10分):1.21lim(1)n n n -→∞+解:2222111lim(1)lim[(1)][lim(1)]n n n n n n e n n n----→∞→∞→∞+=+=+=2.2222lim()123n n n n nn n n n n→∞+++⋅⋅⋅++++ 解:222222221231n n n n n n n n n n n n n n ≤+++⋅⋅⋅≤++++++ , 又2222211lim lim 1,lim lim 111111n n n n n n n n n n n→∞→∞→∞→∞====++++ 所以由夹逼准则知,2222lim()1123n n n n nn n n n n→∞+++⋅⋅⋅=++++二、求下列函数的极限:(每小题5分,共20分).1. x →解:23x →==厦门大学《微积分IV 》课程期末试卷试卷类型:(A 卷) 考试日期 2016.01.122. 2211lim x x x x→--解:221111lim lim 2x x x x x x x →→-+==-或者用洛必达法则,2211122lim lim 22121x x x x x x x →→-===---3.30lim sin x x x x →-解:3200036limlim lim 6sin 1cos sin x x x x x xx x x x→→→===--4. lim )x x x →+∞解:lim )limlimlimx x x x x x →+∞===12==。

三、求函数的微分或导数:(每小题5分,共20分)1. 已知2sin y x x =,求dy .解:2(2sin cos )dydy dx x x x x dx dx==+2.已知sin xy x =,求y '. 解:y '=22(sin )()sin cos sin x x x x x x xx x''⋅--=3.已知32cos (1)y x =-,求(1)y '解:22222223cos (1)[cos(1)]3cos (1)(sin(1))(1)y x x x x x '''=-⋅-=-⋅--⋅-2222223cos (1)sin(1)(2)6cos (1)sin(1)x x x x x x =--⋅-⋅-=⋅-⋅-所以222(1)61cos (11)sin(11)0y '=⋅⋅-⋅-=4. 设()y y x =由方程y e xy e +=所确定,求(0)y '.解:方程ye xy e +=两边对x 求导,得0y e y y x y ''++⋅=,从而y y y e x -'=+,又(0)1y =,因此(0)(0)1(0)0y y y e e-'==-+。

定积分典型例题20例标准答案

定积分典型例题20例标准答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n®¥+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x nD =,然后把2111n n n =×的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即入和式中各项.于是将所求极限转化为求定积分.即33322321lim (2)n n n n n ®¥+++=333112lim ()n n n n nn ®¥+++=13034xdx =ò.例2 2202x x dx -ò=_________.解法1 由定积分的几何意义知,2202x x dx -ò等于上半圆周22(1)1x y -+= (0y ³) 与x 轴所围成的图形的面积.故2202x x dx -ò=2p. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t pp-££),则,则222x x dx -ò=2221sin cos t tdt pp --ò=22021sin cos t tdt p-ò=2202cos tdt pò=2p例3 (1)若22()x t x f x e dt -=ò,则()f x ¢=___;(2)若0()()xf x xf t dt =ò,求()f x ¢=___.分析 这是求变限函数导数的问题,利用下面的公式即可这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ¢¢=-ò.解 (1)()f x ¢=422x x xee---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =ò,则可得可得()f x ¢=()()xf t dt xf x +ò.例4 设()f x 连续,且31()x f t dt x -=ò,则(26)f =_________.解 对等式310()x f t dt x -=ò两边关于x 求导得求导得32(1)31f x x -×=,故321(1)3f x x-=,令3126x -=得3x =,所以1(26)27f =.例5 函数11()(3)(0)xF x dt x t =->ò的单调递减开区间为_________.解 1()3F x x ¢=-,令()0F x ¢<得13x>,解之得109x <<,即1(0,)9为所求.为所求. 例6 求0()(1)arctan xf x t tdt =-ò的极值点.的极值点. 解 由题意先求驻点.于是()f x ¢=(1)arctan x x -.令()f x ¢=0,得1x =,0x =.列表如下:如下: 故1x =为()f x 的极大值点,0x =为极小值点.为极小值点. 例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中处的切线相同,其中2arcsin 0()xt g x e dt -=ò,[1,1]x Î-,试求该切线的方程并求极限3lim ()n nf n ®¥.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ¢¢=.解 由已知条件得由已知条件得2(0)(0)0tf g e dt -===ò,且由两曲线在(0,0)处切线斜率相同知处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x-=¢¢===-.故所求切线方程为y x =.而.而3()(0)3lim ()lim33(0)330n n f f n nf f n n®¥®¥-¢=×==-.例8 求 22sin lim(sin )x x x tdt t t t dt®-òò;分析 该极限属于型未定式,可用洛必达法则.型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt ®-òò=2202(sin )lim(1)(sin )x x x x x x ®-××-=220()(2)lim sin x x x x ®-×-=304(2)lim 1cos x x x ®-×- =2012(2)lim sin x x x®-×=0.注 此处利用等价无穷小替换和多次应用洛必达法则.此处利用等价无穷小替换和多次应用洛必达法则.x (,0)-¥(0,1)1 (1,)+¥()f x ¢-+-例9 试求正数a 与b ,使等式2021lim1sin xx t dt x b x a t®=-+ò成立.成立.分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t ®-+ò=220lim 1cos x x a x b x ®+-=22001lim lim 1cos x x x b x a x ®®×-+201lim 11cos x x b xa ®==-,由此可知必有0lim(1cos )0x b x ®-=,得1b =.又由.又由 2012lim11cos x x xaa®==-,得4a =.即4a =,1b =为所求.为所求. 例10 设sin 20()sin xf x t dt =ò,34()g x x x =+,则当0x ®时,()f x 是()g x 的(的(). A .等价无穷小..等价无穷小. B .同阶但非等价的无穷小..同阶但非等价的无穷小. C .高阶无穷小..高阶无穷小.D .低阶无穷小. 解法1 由于由于 22300()sin(sin )cos lim lim ()34x x f x x x g x x x ®®×=+ 2200cos sin(sin )lim lim 34x x x x x x ®®=×+ 22011lim 33x x x ®==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到的幂级数,再逐项积分,得到sin223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+ò,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f xg x x x x ®®®-+-+===++.例11 计算21||x dx -ò.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -ò=0210()x dx xdx --+òò=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时在使用牛顿-莱布尼兹公式时,,应保证被积函数在积分区间上满足可积条件.如应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=ò,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界积区间内无界. .例12 设()f x 是连续函数,且1()3()f x x f t dt =+ò,则()________f x =.分析 本题只需要注意到定积分()baf x dx ò是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而1()f t dt ò是常数,记1()f t dt a =ò,则,则()3f x x a =+,且11(3)()x a dx f t dt a +==òò.所以所以2101[3]2x ax a +=,即132a a +=,从而14a =-,所以,所以 3()4f x x =-.例13 计算2112211x xdx x-++-ò. 分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解2112211x x dx x -++-ò=211112221111xxdx dx x x--++-+-òò.由于22211x x +-是偶函数,而211xx +-是奇函数,有112011x dx x-=+-ò, 于是于是 2112211x xdx x-++-ò=212411x dx x+-ò=2212(11)4x x dx x--ò=11200441dx x dx --òò由定积分的几何意义可知12014x dx p-=ò, 故2111022444411x xdx dx x p p -+=-×=-+-òò.例14 计算22()x d tf x t dt dx -ò,其中()f x 连续.连续. 分析 要求积分上限函数的导数,要求积分上限函数的导数,但被积函数中含有但被积函数中含有x ,因此不能直接求导,因此不能直接求导,必须先换必须先换元使被积函数中不含x ,然后再求导.,然后再求导.解 由于由于220()xtf x t dt -ò=22201()2xf x t dt -ò.故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以,所以22()x tf x t dt -ò=201()()2xf u du -ò=21()2x f u du ò,故220()x d tf x t dt dx -ò=201[()]2x d f u du dx ò=21()22f x x ×=2()xf x . 错误解答 22()x d tf x t dt dx -ò22()(0)xf x x xf =-=.错解分析 这里错误地使用了变限函数的求导公式,公式这里错误地使用了变限函数的求导公式,公式()()()xa d x f t dt f x dx¢F ==ò中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.导,而应先换元. 例15 计算3sin x xdx pò.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法. 解 3s i n x x d x pò3(c o s )x d x p=-ò330[(c o s )](co s )x x x d x pp=×---ò 30cos 6xdx pp=-+ò326p=-. 例16 计算1200ln(1)(3)x dx x +-ò. 分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-ò=101ln(1)()3x d x +-ò=1100111[ln(1)]3(3)(1)x dx x x x +-×--+ò =101111ln 2()2413dx x x-++-ò 11ln 2ln324=-.例17 计算20sin x e xdx pò.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法. 解 由于2sin xe xdx pò20sin xxde p=ò220[sin ]cos xxe x e xdx p p=-ò220cos xe e xdx p p=-ò,(1) 而2cos xe xdx pò20cos xxde p=ò2200[cos ](sin )xxe x e x dx p p=-×-ò 2sin 1xe xdx p=-ò, (2)将(将(22)式代入()式代入(11)式可得)式可得2sin xe xdx pò220[sin 1]xe e xdx p p=--ò,故20sin xe xdx pò21(1)2e p=+.例18 计算10arcsin x xdx ò.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx ò210arcsin ()2x xd =ò221100[arcsin ](arcsin )22x x x d x =×-ò 21021421x dx x p=--ò. (1) 令sin x t =,则,则2121x dx x-ò2202sin sin 1sin t d t tp =-ò220sin cos cos t tdt tp=×ò220sin tdt p=ò 201cos 22t dt p-==ò20sin 2[]24t t p-4p =. (2) 将(将(22)式代入()式代入(11)式中得)式中得1arcsin x xdx =ò8p .例19设()f x [0,]p 上具有二阶连续导数,()3f p ¢=且0[()()]cos 2f x f x xdx p¢¢+=ò,求(0)f ¢.分析分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx p ¢¢+ò00()sin cos ()f x d x xdf x p p¢=+òò[]0000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx pppp¢¢¢=-++òò()(0)2f f p ¢¢=--=. 故 (0)f ¢=2()235f p ¢--=--=-.例20 计算2043dx x x +¥++ò. 分析 该积分是无穷限的的反常积分,用定义来计算.解 2043dx x x +¥++ò=20lim 43t t dx x x ®+¥++ò=0111lim ()213t t dx x x ®+¥-++ò =011lim [ln ]23t t x x ®+¥++=111lim (ln ln )233t t t ®+¥+-+ =ln 32.。

定积分练习题

定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。

2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。

3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。

4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。

5. 计算 $\int_{0}^{\pi} \sin x \, dx$。

二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。

7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。

8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。

9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。

三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。

11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。

12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。

13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。

14. 计算 $\int_{0}^{2} |x 1| \, dx$。

四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。

(完整版)定积分练习题

(完整版)定积分练习题

一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( ) A .一定是正的 B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对解析: 由⎠⎛a bf (x )d x 的几何意义及f (x )>0,可知⎠⎛a b f (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛ab f (x )d x >0.答案:A 2. 若22223,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .4.11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1- 【答案】A 【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( )A .16B .13C .56D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0), 利用微积分的几何含义可得封闭图形的面积为:23201111111((2)()|().32326S x x x dx x x --=-+=--=--=⎰ 二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________.解析: f (x )=⎠⎛0x(2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3),∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________. 解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300=7890(m).∴v =s t =789030=263(m/s).答案:263 m/s 三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)(cos e )d x x x π-⎰+;(3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x .解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1eπ. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x =⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2.9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ).解:由f (0)=0得c =0, f ′(x )=3x 2+2ax +b . 由f ′(0)=0得b =0, ∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2. (1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析: (1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-ab =0.∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=⎣⎡⎦⎤13ax 3+(2-a )x | 10=2-23a =-2, ∴a =6,∴c =-4. 从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且61(),2f x dx =⎰则66()f x dx -⎰等于( )A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴661()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰答案:C2. (改编题)A . 3 B. 4 C. 3.5 D. 4.5 【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( )A .2B .1C .3D .4答案:C解析:由⎩⎪⎨⎪⎧y =x2y =kx 消去y 得x 2-kx =0,所以x =0或x =k ,则阴影部分的面积为 ∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92. 即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46.答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的A .31 B .34 C .2 D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+, 则()x f 的图象与x 轴所围成的封闭图形的面积为232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。

2012年-—2016年导数及定积分小题汇编讲解

2012年-—2016年导数及定积分小题汇编讲解

2012年-—2016年导数及定积分小题汇编一、选择题1、(2016年四川高考)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A2、(2016年全国I 高考)函数y =2x 2–e |x |在[–2,2]的图像大致为【答案】D3、(2016年山东高考)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 (A )sin y x =(B )ln y x =(C )e x y = (D )3y x =【答案】A4、(2016年四川高考)已知a 函数f(x)=x 3-12x 的极小值点,则a=(A)-4 (B) -2 (C)4 (D)2 【答案】D5、(2016年四川高考)设直线l 1,l 2分别是函数f(x)= 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B 则则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A6、(2016年全国I 卷高考)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦【答案】C7.(15年福建理科)若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫< ⎪⎝⎭ B .111f k k ⎛⎫> ⎪-⎝⎭ C .1111f k k ⎛⎫< ⎪--⎝⎭ D . 111kf k k ⎛⎫>⎪--⎝⎭ 【答案】C8.(15年福建文科)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B9.(15年新课标1理科)设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数x 0,使得0()f x 0,则a 的取值范围是( ) A.[-,1) B. [-,) C. [,) D. [,1) 【答案】D10.(15年新课标2理科)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D )【答案】A11.(15年陕西理科)对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D . 点(2,8)在曲线()y f x =上 【答案】A12.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 【答案】.C .13.[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3 【答案】.D 14.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3] 【答案】.C15.[2014·新课标全国卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1) 【答案】.C16.[2014·山东卷] 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A. 22 B. 42 C. 2 D. 4【答案】.D17.[2014·陕西卷] 定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1 【答案】.C181 .(2013年高考湖北卷(理))已知a 为常数,函数f(x)=x(lnx-ax)有两个极值点x 1,x 2(x 1<x 2),则( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【答案】D19 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x = 【答案】C20 .(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S << 【答案】B21 .(2013年普通高等学校招生统一考试辽宁数学(理))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值【答案】D22 .(2013年普通高等学校招生统一考试福建数学(理))设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D23 .(2013年高考北京卷(理))直线l 过抛物线C: x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( )A .43B .2C .83D 【答案】C24 .(2013年普通高等学校招生统一考试浙江数学(理))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( )A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【答案】C25.【2012高考真题重庆理8】设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f 【答案】D26.【2012高考真题新课标理12】设点P 在曲线12x y e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )()A 1ln2- ()Bln 2)- ()C 1ln2+()D ln 2)+【答案】B27.【2012高考真题陕西理7】设函数()x f x xe =,则( ) A. 1x =为()f x 的极大值点 B.1x =为()f x 的极小值点 C. 1x =-为()f x 的极大值点 D. 1x =-为()f x 的极小值点[学 【答案】D.28.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是(A)21x e x x ++ (211)124x x <-+(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C29.【2012高考真题湖北理3】已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为A .2π5B .43C .32D .π2【答案】B30.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A 二、填空题31 .(2013年高考江西卷(理))设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f =______________【答案】232 .(2013年高考湖南卷(理))若209,Tx dx T =⎰则常数的值为_________. 【答案】333.(2013年普通高等学校招生统一考试广东省数学(理))若曲线y=kx+lnx 在点(1,k)处的切线平行于x 轴,则k=______. 【答案】-134.【2012高考真题浙江理16】定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离,已知曲线C 1:y=x 2+a 到直线l:y=x 的距离等于曲线C 2:x 2+(y+4)2=2到直线l:y=x 的距离,则实数a=_______。

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.已知函数2(1),10()01x x f x x ⎧+-≤≤⎪=<≤则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.给出以下命题: (1)若()0haf x dx >⎰,则()0f x >;(2)20|sin |4x dx π=⎰;(3)()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则:()()aa TTf x dx f x dx +=⎰⎰其中正确命题的个数为( ). A .1B .2C .3D .43.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C.D4.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数5.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-26.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .17.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( ) A .240B .240-C .60-D .608.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .929.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 10.函数()325f x x x x =+-的单调递增区间为( )A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭11.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r πB .283r πC .514r πD .42r π12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.424(16)x x dx --=⎰__________.14.曲线,,0x y e y e x ===围成的图形的面积S =______ 15.定积分121(4sin )x x dx --=⎰________.16.201x dx -=⎰__________.17.函数()xf x e x =-在[-1,1]上的最小值__________.18.()12021x x dx +-=⎰________19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________.20.若,则的值是__________.三、解答题21.设函数()()3223168f x x a x ax =-+++,其中a R ∈,已知()f x 在3x =处取得极值. (1)求()f x 在点()()1,1A f 处的切线方程; (2)求函数()f x 的单调区间.22.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围.23.已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >,设()g x 是()f x 的导函数,讨论()g x 的单调性和极值。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分的计算1

定积分的计算1

π 2 0
π 2 0

当n为奇数时,设n 2k +1(k ), 有
2k 2k 2 2 (2k )!! I 2 k 1 I1 2k 1 2 k 1 3 (2k 1)!!
高州师范学院
b a
1 例3、 求 dx 0 1 x2
1
1 1 解: 0 1 x 2 dx arctanx |0 arctan 1 arctan 0 4
1
练习题 .4 2 5 8 ()

1
1
1 1 1 1 1 2 5 4 x |1 1 dx d (5 4 x ) 4 1 4 5 - 4x 5 - 4x
ln 1 2
e
ln
1 1 1 1 ln 2 2 2
1 1 1 1 1 e (l n 1) (l n l n e ) l n 2 2 2 2 2 2
高州师范学院
§8.4 定积分的计算
例5、 求

1 2 0
arcsin x dx .
dx 1 x2 xdx
1
解: u arcsin x , dv dx , 则 d u 设
移项后则得
a u( x )v( x ) d x u( x ) v( x ) a u( x )v( x) d x. 即 udv uv | vdu 定积分的分部积分公式
b a b a b a
高州师范学院
§8.4 定积分的计算
例4、求
ln 2
Hale Waihona Puke 0xe x dx.
x
则du dx, v e x 解:令 x, dv e dx, u

高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)

高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)

定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。

20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。

27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。

33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。

37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。

武汉市高中数学选修2-2第四章《定积分》测试(包含答案解析)

武汉市高中数学选修2-2第四章《定积分》测试(包含答案解析)

一、选择题1.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .42.已知)221a ex dx π-=⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e3.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .14.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .35.定积分2]x dx ⎰的值为( )A .24π- B .2π- C .22π- D .48π-6.)120d x x ⎰的值是( )A .π143- B .π14- C .π123- D .π12- 7.函数()325f x x x x =+-的单调递增区间为( ) A .5,3⎛⎫-∞-⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭8.设函数e ,10()1x x f x x ⎧-≤≤⎪=<≤,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C.e 1e - D .e 1πe 2-+ 9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.函数()22,04,02x x f x x x -<⎧⎪=⎨-≤≤⎪⎩,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .811.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2312.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.已知函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩则()22f x dx π-=⎰___________14.由直线2y x =+与曲线2yx 围成的封闭图形的面积是__________.15.定积分21d 1x x ⎰-的值为__________.16.由曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为________________.17.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________. 18.201x dx -=⎰__________.19.定积分2sin cos t tdt π=⎰________.20.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.三、解答题21.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围;(2)当0x >时,()0f x <恒成立,比较a e 与232a e+的大小. 22.如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上 已知工业用地每单位面积价值为3a 元()0a >,其它的三个边角地块每单位面积价值a 元.(Ⅰ)求等待开垦土地的面积;(Ⅱ)如何确定点C 的位置,才能使得整块土地总价值最大.23.如图:求曲线y =e x -1与直线x =-ln 2, y =e -1所围成的平面图形面积.24.设函数()32,0{,0x x x x f x axe x ->=≤,其中0a >.(1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围. 25.由定积分的性质和几何意义,求出下列各式的值: (1)22aa x dx --⎰;(2)()1201(1)x x dx --⎰.26.求曲线6y x =-和8y x =y =0围成图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .2.A解析:A 【解析】因为22x -表示的是以原点为圆心、半径为2的上半圆的面积,即22πx -=,222221e d (e )|02x x x --==⎰,所以)221e d 2a x x π-==⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).3.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.4.A解析:A 【解析】试题分析:'0xxy e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.6.A解析:A 【详解】因为定积分()()111222200011d 11)(x d x x x x dx x ⎫⎫--=---⎪⎪⎭⎭⎰⎰⎰,结合定积分的几何意义可知,原式等于圆心为(1,1),半径为1的四分之一个圆的面积减去13得到,即为143-π,选A. 7.C解析:C 【解析】由题意得,2'()325f x x x =+- ,令5'()013f x x x >⇒><-或,故选C. 8.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以102110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e xxx ---==-=-=-⎰,1201d x x -⎰表示圆221x y +=在第一象限的面积,即12π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .9.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.10.A解析:A 【分析】 先求出22()f x dx -=⎰2264x dx +-⎰,再求出2204x dx π-=⎰即得解.【详解】 由题得2022220222201()(2)4(2)|42f x dx x dx x dx x x x dx ---=-+-=-+-⎰⎰⎰⎰22064x dx =+-⎰,设24(02,0)y x x y =-<≤≥,所以22+4x y =,所以24(02,0)y x x y =-<≤≥表示圆22+4x y =在第一象限的部分(包含与坐标轴的交点),其面积为14=4ππ⨯⨯. 所以2204x dx π-=⎰.所以22()6f x dx π-=+⎰.故选:A 【点睛】本题主要考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.12.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【分析】利用定积分的计算法则可得由基本初等函数的求导公式求得原函数即可求解【详解】因为函数所以故答案为:【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题 解析:24π-【分析】利用定积分的计算法则可得()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰,由基本初等函数的求导公式求得原函数即可求解. 【详解】因为函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩, 所以()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰4222221sin 4x x xπππ-⎛⎫=++ ⎪⎝⎭24π=-,故答案为:24π- 【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题.14.【解析】作出两条曲线所对应的封闭区域如图所示由得解得或则根据定积分的几何意义可知所示的封闭区域的面积故答案为解析:92【解析】作出两条曲线所对应的封闭区域,如图所示,由22y x y x=+⎧⎨=⎩,得22x x =+,解得1x =-或2x =,则根据定积分的几何意义可知所示的封闭区域的面积223212119(2)d 21322S x x x x x x -⎛⎫=+-=-++= ⎪-⎝⎭⎰,故答案为92.15.【解析】根据定积分的定义知故填解析:23【解析】根据定积分的定义知,1231111112d |3333x x x --⎛⎫==--= ⎪⎝⎭⎰,故填23.16.【解析】由题设曲线与所围成的平面图形的面积为应填答案解析:16【解析】由题设曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为222321131251(32)(2)|23366S x x dx x x x =--=--=-+=⎰,应填答案16。

新版2016年《南方新课堂·高考总复习》数学(理科)-第二章-第16讲-定积分及其应用举例.ppt

新版2016年《南方新课堂·高考总复习》数学(理科)-第二章-第16讲-定积分及其应用举例.ppt

..分割..
22
考点4 定积分的综合应用 例 4:已知函数 y=f(x)的图象是折线段 ABC,其中 A(0,0),
B
1 2
,1
,C(1,0),函数
y=xf(x)(0≤x≤1)的图象与
x
轴围成的图
形的面积为__________.
..分割..
23
解析:根据题意,得 f(x)=-2x,2x+0≤2,x≤1212<,x≤1.
若在 D 内随机取一点,则该点落入 E 中的概率为__3___.
图 2-16-1
..分割..
18
考点3 定积分在物理方面的应用
例3:汽车以 54 千米/时的速度行驶,到某处需要减速停车, 设汽车以 3 米/秒 2 的加速度匀减速刹车,问从开始刹车到停车, 汽车走了多少千米?
解:由题意,v0=54 千米/时=15 米/秒, ∴v(t)=v0-at=15-3t,令 v(t)=0,得 15-3t=0,t=5, 即 5 秒时,汽车停车. ∴汽车由刹车到停车所行驶的路程为
s=
5 v(t)dt=
0
5 (15-3t)dt=
0
15t-32t205
=37.5(米)=0.037 5(千米).
答:汽车走了 0.037 5 千米.
..分割..
19
【规律方法】汽车刹车过程是一个减速运动过程,我们可 以利用定积分算出汽车在这个过程中所走过的路程,计算之前
应先算出这一过程所耗费的时间和减速运动变化式.若做变速
第16讲 定积分及其应用举例
..分割..
1
1.了解定积分的实际背景,了解定积分的基本思想,了 解定积分的概念.
2.了解微积分基本定理的含义.

广西重点高中2016届高三数学 定积分与微积分基本定理练习题

广西重点高中2016届高三数学 定积分与微积分基本定理练习题
同理,得D(2,-1).
故所求图形的面积S=2 [- -(-x2)]dx+ [- -(-1)]dx =2 dx- ( -1)dx =2 -( -x) = .
答案:
《定积分与微积分基本定理》
1.若S1= x2dx,S2= dx,S3= exdx,则S1,S2,S3的大小关系为()
A. S1<S2<S3B. S2<S1<S3
C. S2<S3<S1D. S3<S2<S1
解析:S1= x2dx= x3 = ,
S2= dx=lnx =ln2,
S3= exdx=ex =e2-e=e(e-1)>e> ,
所以S2<S1<S3,故选B.
答案:B
2.设f(x)= 则
f(x)dx等于()
A. B.
C. D.不存在
解析:本题画图求解,更为清晰,如图,
f(x)dx= x2dx+ (2-x)dx
= x3 +(2x- x2)
= +(4-2-2+ )= .
答案:C
3.计算定积分 dx=________.
解析: dx表示圆x2+y2=22与x=0,x=2,y=0围成的图形的面积.根据定积分的几何意义,得 dx=π.
答案:π
4.若 x2dx=9,则常数T的值为________.
解析:∵ ′=x2,
∴ x2dx= x3 = T3-0=9,∴T=3.
答案:3
5.如右图所示,则由两条曲线y=-x2,x2=-4y及直线y=-所围成图形的面积为________.
解析:由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由 得C(1,-1).

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(4)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(4)

一、选择题1.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-2.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78543.设11130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>4.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e5.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12- B .1或12-C .12-D .16.定积分220[4(2)]x x dx ---⎰的值为( )A .24π- B .2π- C .22π- D .48π-7.121(1)x x dx --+=⎰( )A .1π+B .1π-C .πD .2π 8.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( )A .1B .12-C .1或12-D .-1或12-9.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J10.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3 B .32ln 2+C .223e -D .e11.曲线2y x 与直线y x =所围成的封闭图形的面积为( )A .16 B .13C .12D .5612.20sin xdx π=⎰( )A .4B .2C .-2D .0二、填空题13.由直线2x y +=,曲线2y x =所围成的图形面积是________ 14.已知函数()xxf x e =,在下列命题中,其中正确命题的序号是_________. (1)曲线()y f x =必存在一条与x 轴平行的切线; (2)函数()y f x =有且仅有一个极大值,没有极小值;(3)若方程()0f x a -=有两个不同的实根,则a 的取值范围是1()e-∞,; (4)对任意的x ∈R ,不等式1()2f x <恒成立; (5)若1(0,]2a e∈,则12,x x R +∃∈,可以使不等式()f x a ≥的解集恰为12[,]x x ; 15.若二项式2651()5x x +的展开式中的常数项为m ,则21(2)d mx x x -=⎰_________.16.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.17.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 18.π4cos xdx =⎰______.19.若,则的值是__________.20.曲线2y x 和曲线y x =________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数f (x )=x 3+32x 2+mx 在x=1处有极小值, g (x )=f (x )﹣23x 3﹣34x 2+x ﹣alnx . (1)求函数f (x )的单调区间;(2)是否存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有1212()()1g x g x x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围.24.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻. 25.(2015秋•钦州校级期末)求曲线y=sinx 与直线,,y=0所围成的平面图形的面积.26.已知定义域为R 的函数f (x)有一个零点为1, f (x)的导函数()12f x x '=()()2212ax a g x f x +-=+,其中a R ∈.(1)求函数f (x)的解析式; (2)求()g x 的单调区间;(3)若()g x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.2.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题3.D解析:D 【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

南开大学2016年数学分析考研试题解答

南开大学2016年数学分析考研试题解答

南开大学2016年数学分析考研试题解答1.(15分)求定积分xdx en x ln 1⎰,Z n ∈.解:令t x =ln ,则[]1,0,∈=t x e t 且.则原积分化为dt t etn )1(10+⎰=11+n )()1(1etn d t +⎰=11+n ⎥⎦⎤⎢⎣⎡-⎰++10)1(1dt e e t n n =11+n . 2.(20分)求曲线积分,2yzds L x -⎰其中L 是0=++z y x 和1222=++z y x 的交线.解:首先,根据对称性可知,=⎰ds Lx 2ds zy x L 22231++⎰=32π又有⎰-Lyzds =61-⎰++Lzxds yz xy 222=61-ds zy x z y x L2222)(---⎰++=3π 故原积分=-⎰yzds L x 23π+32π=π. 3.(15分)求)2(120121x xn n n +∑+∞=+的收敛域及和函数. 解:命()=x a n)2(12121x x n n +++,则()=+x a n 1)2(32321xx n n +++.故 ()()x x a a nn n 1lim +∞→=)2()2(lim 12323212x x x x n n n n n ++++∞→++=)2(2xx +, 故由Alembert d '判别法可知, 当)2(2xx +<1时所给的广义幂级数绝对收敛;当xx+2=-1时,由Leibnitz 判别法易知级数收敛.解上述关于x 的不等式即得此广义幂级数的收敛域为)[∞+-,1. 记()=x S )2(120121xxn n n +∑+∞=+,则易验证其在)(∞+-,1内一致收敛.因而()∑+∞=='02)2(n nxx x S =xx x 444442+++,)(∞+-∈∀,1x .两边对x 积分及结合()00=S 即可得到())1ln(4181432x x x S x +++=,)(∞+-∈∀,1x . 又由于()41π=-S ,即得()x S 表达式. 4.(15分)求)(y xy y x f y x 12469,22-++=在闭域D :)({}3669,22≤+y x y x 内的最大值.5.(15分)设()x f n 在I 上一致连续,且()x f n 一致收敛于()x f .证明:()x f 在I上一致连续.证明:由()x f n 一致连续知,0>∀ε,0>∃δ只要δ<-x x 21就有()()321ε<-x f x f nn.又由()x f n一致收敛于()x f 知,对上述,0>εN N ,+∈∃当N n >时,()()3ε<-x f x f n 对I x ∈成立.则有()()≤-x x f f 21()()+-x f x nf 11()()x f x f nn21-()()x x f f n22-+3ε<εεε=++33.由此知()x f 在I上一致连续.6.(15分)设()x f 在)(∞+,0上非负,对,0>∀A ()x xf 在][A ,0上可积,且()dx x f ⎰+∞收敛.证明:().01lim 0=⎰+∞→dx x xf A AA证明:()dx x f ⎰+∞0收敛知:,0>∀ε..,0t s M >∃()ε<⎰+∞dx x f M.取A,..M A t s >ε则()=⎰dx x xf A A1()=⎰dx x f AxA()()dx x f A x dx x f AxA A A ⎰⎰+εε()()dx x f dx x f AA A ⎰⎰+<εεε0()⎪⎭⎫ ⎝⎛+<⎰+∞01dx x f ε 由此即可得证. 7.(20分)求极限+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx 解:注意到+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx =()⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++++∞→e e x x x x x x 11ln 111ln 12lim ,则有()⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛++++∞→ee xx x x x x 11ln 111ln 12lim=⎥⎦⎤⎢⎣⎡-+++-+++∞→++e xxx x x x xx )111ln()1()11ln(211lim )111(=()⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+++++++∞→)11ln(111ln 1lim 21)111(x x x x x xxx , ()1 又有()()⎥⎥⎦⎤⎢⎢⎣⎡+-++=⎪⎭⎫ ⎝⎛+++++)(21111111ln 1)11()11(22x x o x x x x ,as +∞→x ,及 ⎥⎥⎦⎤⎢⎢⎣⎡+-=+)1()1(21)11ln(22x x o x x x x ,as +∞→x .代入()1中即可得,+∞→x lim ⎥⎥⎦⎤⎢⎢⎣⎡-++++)11()111(12x x x xx =2e .8.(20分)设二元函数)(y x f ,二阶可偏导,)({}1,22≤+=y x y x D 且.12222=∂+∂∂∂y xf f求证:dxdy y fy x f x D)(∂∂+∂∂⎰⎰=4π.证:先引进Laplacian f ∆,则.1=∆f我们只要考虑fdxdy Dy x ∆+⎰⎰)2(22即可.根据第二Green 公式可知,fdxdy Dy x ∆+⎰⎰)2(22=-dxdy y f y x f xD)(∂∂+∂∂⎰⎰+ds n Ly x ∂+⎰2(22, 其中L 方向为单位圆周沿逆时针方向,n 为外法向量.故dxdy y f y x f xD)(∂∂+∂∂⎰⎰=n L y x ∂+⎰2(22-fdxdy Dy x ∆+⎰⎰)2(22=ds n L ⎰∂21-dxdy Dy x ⎰⎰+)2(22=)(21dx y fdy x f L ∂∂-∂∂⎰-rdr d r ⎰⎰102202πθ =4π,证毕!9.(15分)已知()x f 在][1,0上连续,在)(1,0上可导.且()x f =()1+x f ,()0f =0,()x f '单调递减,对x ∀和Z n ∈∀,求证:()nx f ≤()x nf .证:)1由于()0f =0,故当0=x 时,()()x nf nx f =(Z n ∈∀).又()x f =()1+x f ,故()()1nf n f =也易验证.)2[]1,0∈∀x 注意到()nx f =()dtt f nx⎰'0=()dt t f nk kxx k ∑⎰=-'1)1(以及()x nf =()dt t f nk x∑⎰='1,因此只要证()dt t f kxxk ⎰-')1(≤()dt t f x⎰'0即可.N k +∈∀,若][][1,0,)1(⊂-kx x k ,根据()01≥-x k ,0≥kx 以及()x f '的递减性,上述不等式显然成立.若()x k 1-1<2<<kx (the case where1=kxis trivial),则有()dt t f kxxk ⎰-')1(=()()dt t f dt t f kxxk ⎰⎰'+'-11)1(=()()dt t f dt t f kx xk ⎰⎰--'+'101)1(将上述不等式左边减去右边,有()()dt t f dt t f kx xk ⎰⎰--'+'11)1(-()dt t f x⎰'0=()dt t f xk ⎰-'1)1(-()01≤'⎰-dt t f xkx ,此即所要证明的命题成立.。

2016考研数学一真题和答案解析

2016考研数学一真题和答案解析

2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。

(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。

因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。

2016数学分析2复习题定积分应用

2016数学分析2复习题定积分应用

1 定积分的应用一、写出下图阴影部分面积A 的定积分表达式.1.求由抛物线2y x =与直线230x y --=所围平面图形的面积.2.求由抛物线222x y x y -==与所围图形的面积.3.求星形线33cos ,sin (0)x a t y a t a ==>所围图形的面积4. 求二曲线sin r θ=与r θ=所围公共部分的面积.二、叙述平行截面面积已知的立体体积公式及阴影部分绕坐标轴旋转而成旋转体的体积公式;绕x 轴 绕y 轴1.求0sin ,0y x x π≤≤≤≤所围平面图形分别绕x 轴及y 轴旋转所得立体的体积.三、非负光滑曲线y = f (x ))(b x a ≤≤绕x 轴旋转,所得旋转曲面面积的定积分表达式为_____________ .1.设有曲线1-=x y ,过原点作其切线,求由此曲线,切线及x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的表面积.四、弧长公式(直角坐标、极坐标情形、参数方程).1)若曲线方程为(),(),[,]x x t y y t t αβ==∈,则曲线弧长为2)若曲线方程为],[),(b a x x f y ∈=,则曲线弧长为3)若曲线方程为],[),(βαθθ∈=r r ,则曲线弧长为1. 求心形线(1cos )r a θ=+的全长.2. 计算内摆线2/32/32/3x y a +=()0a >的周长.3. 求x y = 4在点(2,2)指定点处的曲率.五、过原点作ln y x =的切线,该切线与ln y x =及x 轴所围图形为D ,(1)求D 的面积;D 周长的定积分表达式;(2)求D 绕x e =旋转所得旋转体的体积及绕x 轴旋转所得旋转体的侧面积的定积分表达式.六、设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(上大于零,并满足223)()(x a x f x f x +='(a 为常数). 假设曲线)(x f y =与直线1=x 和0=y 所围的图形S 的面积为2.(1) 求函数)(x f ;(2) 当a 为何值时,图形S 绕x 轴旋转一周所得旋转体的体积最小?。

定积分的计算

定积分的计算

§8.4 定积分的计算一、按照定义计算定积分定积分的定义其实已经给出了计算定积分的方法,即求积分和的极限:∑⎰=→∆=nk kk T l bax f dx x f 10)()()(lim ξ但在定义中,分法T 是任意的,ξk 的取法也是任意的,这给我们的计算带来了困难。

因此,一般我们都是对已知是可积的函数才用定义求它的定积分。

这时,我们可以选用特殊的分割T (比如用等分)和特殊的点ξk (比如取每个小区间的右端点、或左端点、或中点等等)来计算。

例1 求由抛物线2x y =,]1,0[∈x ,及0=y 所围平面图形的面积。

解 根据定积分的几何意义,就是要计算定积分⎰102dx x .显然,这个定积分是存在的。

取分割T 为n 等份,并取k ξnk 1-=,n k ,,2,1 =。

则所求面积为:n n k dx x S nk n 1)1(lim2112⋅-==∑⎰=∞→=∑=∞→-nk n k n123)1(1lim=316)12()1(lim3=--∞→nn n n n 。

二、积分上限函数从上面的例子看到,用定积分的定义计算定积分是相当麻烦的。

下面我们探讨计算定积分的简便方法。

为此,先引入积分上限函数的概念。

设函数)(x f 在区间],[b a 上可积,],[b a x ∈∀,函数)(x f 在区间],[x a 上可积。

于是,由⎰=Φxadt t f x )()(, ],[b a x ∈定义了一个以积分上限x 为自变量的函数,称为积分上限函数。

定理1(原函数存在定理) 若函数)(x f 在],[b a 上连续,则⎰=Φxadt t f x )()(在],[b a 上处处可导,且)()()(x f dt t f dxd x xa==Φ'⎰,],[b a x ∈。

此定理沟通了导数与定积分之间的关系,也就沟通了不定积分(原函数)与定积分的关系。

同时也证明了连续函数必有原函数这一结论,并以积分的形式给出了)(x f 的一个原函数⎰=Φxadt t f x )()(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年专项练习题集-定积分的计算
一、选择题
1.dx x )5(1
22-⎰=( ) A.233
B.
31 C.3
4 D .83
【分值】5分
【答案】D
【易错点】求被积函数的原函数是求解关键。

【考查方向】求定积分
【解题思路】求出被积函数的原函数,应用微积分基本定理求解。

【解析】dx x )5(122-⎰=123153x x -=83
. 2.直线9y x =与曲线3
y x =在第一象限内围成的封闭图形的面积为( )
A 、
B 、
C 、2
D 、4
【分值】5分
【答案】D
【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函
数一般表示为曲边梯形上边界的函数减去下边界的函数.
【考查方向】定积分求曲线围成的图形的面积
【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积.
【解析】由⎩
⎨⎧==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4
81034129942303
=⎪⎭⎫ ⎝⎛-=-=⎰x x dx x x S ,故选D. 3.2
2-⎰2412x x -+dx =( ) A.π
4 B.π
2
C.π
D.π3
【分值】5分
【答案】A
【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型.
【考查方向】求定积分
【解题思路】利用定积分的几何意义,转化为圆的面积问题。

【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2
2-⎰2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2
2-⎰2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v
=10t (m/s)的速度与A 同向运动,出发后赛车A 追上赛车B 所用的时间t (s)为( )
A .3
B .4
C .5
D .6
【分值】5分
【答案】A
【易错点】将问题转化为定积分的理解
【考查方向】本题主要考查了变速直线运动的路程问题。

【解题思路】先表示出变速直线运动物体的速率v 关于时间t 的函数是v =v (t )(v (t )≥0),然后应用“物体从时刻t =a 到t =b (a <b )所经过的路程为s =⎰a b v (t )d t ”求解定积分问题.
【解析】因为赛车A 在t 秒内行驶的路程为⎰0t (3t 2+1)d t ,赛车B 在t 秒内行驶的路程为

0t 10t d t ,所以⎰0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪
⎪⎪⎪ t 0=t 3+t
-5t 2=5⇒(t -5)(t 2+1)=0,即t =5.
5.如图,阴影部分的面积为( )
A .9
B .
136
C .92
D .73 【分值】5分
【答案】C
【易错点】曲线所围成的面积与定积分几何意义的理解。

【考查方向】本题主要考查了曲线围成面积的求法。

【解题思路】首先应该根据图形的面积所表达的条件找出被积函数,写出积分形式,以x 为变量设定,被积函数即为y=-x 2-x +2,然后求定积分。

【解析】由22,y x y x
=-⎧⎨=-⎩求得两曲线交点为A(-2,-4),B(1,-1).结合图形可知阴影部分的面积为S =1
2-⎰[-x 2-(x -2)]d x =
12-⎰(-x 2-x +2) d x = 321
21192322x x x -⎛⎫--+= ⎪⎝⎭
.所以选C.
二、填空题
6.=+⎰-dx x x 1
13)sin (___________.
【分值】5分
【答案】0
【易错点】微积分基本定理即导数的逆运算的应用。

【考查方向】本题主要考查了定积分的求解。

【解题思路】先将被积函数进行求导的逆运算,然后计算函数值的增量。

【解析】0)cos 41()sin (1141
13=-=+--⎰x x dx x x 7.设f (x )=[][]⎪⎩⎪⎨⎧∈∈e x
x e x ,111,0,(e 为自然对数的底数),则=________. 【分值】5分
【答案】e
【易错点】应用微积分定理求积分的关键是求被积函数的原函数,注意求一个函数的原函数与求一个函数的导数是互逆运算;当被积函数是分段函数时,依据定积分的性质,分段求定积分,再求和.
【考查方向】本题主要考查了分段函数定积分的求解。

【解题思路】先将被积函数的各段进行求导的逆运算,然后分别计算函数值的增量。

dx x f e
)(0⎰
【解析】1
ln 011101)(0e x e dx x e dx e dx x f e x x +=+=⎰⎰⎰=e-1+lne =e. 8.设.若曲线与直线所围成封闭图形的面积为,则______. 【分值】5分
【答案】0
【易错点】曲线所围成的面积与定积分几何意义的理解。

【考查方向】本题主要考查了定积分的几何意义。

【解题思路】先分清是求曲边图形面积,还是利用曲边图形面积解决其他问题,再正确作出图形,确定积分区间和被积函数,然后根据条件,建立等量关系或方程,进行求解.
【解析】由已知得,所以,所以. 三、解答题
9.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎰01(x )d x =-2,求a ,b ,c 的值.
【分值】10分
【答案】a =6,b =0,c =-4
【易错点】定积分与导数逆运算的关系
【考查方向】本题主要考查了定积分的运算。

【解题思路】 根据题设条件,列出方程组,求出a ,b ,c .
【解析】由f (-1)=2,得a -b +c =2.①
因为f ′(x )=2ax +b ,所以f ′(0)=b =0.②
又因为⎰01f (x )d x =⎰01(ax 2+bx +c )d x
=⎝ ⎛⎭
⎪⎫13ax 3+12bx 2+cx |10=13a +12b +c , 所以13a +12
b +
c =-2.③ 0a
>y =
,0x a y ==2a a =223023032|32a a x x S a a ====⎰3221=a 94=a
联立①②③,解得a =6,b =0,c =-4.
10.已知两抛物线y =-x 2+2x ,y =x 2,以其图像在第一象限的交点为对角顶点恰好能构建一正方形,设两抛物线所围成的图形区域为M ,则某人向该正方形区域内撒一粒黄豆,求黄豆能落在M 内的概率.
【分值】10分 【答案】13 【易错点】注意应用定积分求面积,构建几何概型的几何测度。

【考查方向】本题主要考查了定积分的几何意义及运算,几何概型。

【解题思路】求出两抛物线的交点,画出图象,利用定积分求解.
【解析】函数y =-x 2+2x ,y =x 2在同一平面直角坐标系中的图象如图所示.
由图可知,图形M 的面积S =⎰01(-x 2+2x -x 2)dx
=⎰01(-2x 2+2x)dx =⎝ ⎛⎭⎪⎫-23x 3+x 2⎪⎪⎪⎪10=13
. 正方形面积为1,有几何概型的概率公式可得黄豆能落在M 内的概率P=3
1131
=。

相关文档
最新文档