一元二次方程根的判别式及韦达定理常见题型及注意事项
一元二次方程根的判别式及韦达定理常见题型及注意事项-精选.
一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值 已知23-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。
题型2:求与一元二次方程根有关的代数式的值; 1. 已知12,x x 是方程22430xx --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x -变式:已知,a b是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10xk x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。
一元二次方程判别式和韦达定理
一元二次方程根的判别式及根与系数的关系1.根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.k x k x x 有实根,求方程已知关于0132=--a x a x a x 为一元二次方程,求方程已知关于03)2(2=++-数根?)方程有两个不等的实(数根?)方程有两个相等的实(?)方程只有一个实数根(为何值时,当的方程例:已知关于32101)1(2)2(2m m x m x m x =++---的值。
求没有实数根求的值。
有两个相等的实数根,,有两个不相等的实数根的一元二次方程关于为整数、已知n m n x m x n x m x n x m x x n m ,01)4(06)4(03)7(,,2222=++--=++++=++-+2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,注意它的使用条件为a ≠0, Δ≥0. 根与系数的关系(韦达定理)⎪⎪⎩⎪⎪⎨⎧=⋅-=+acx x a bx x 2121常见变形:2212x x += 1211x x +=12(5)(5)x x -- =12||x x -==+3231x x例1、若1x 和2x 分别是一元二次方程03522=-+x x 的两根.(1)求12||x x -(2)求221211x x +(3)求3231x x +变式训练1、212,046x x m x x x 有两个实数根的一元二次方程已知关于=++-(1)的取值范围求m(2)的值求满足若m x x x x ,23,2121+=例2、设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = ,q = .变式训练1、。
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)
专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
根的判别式及其应用-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)
根的判别式及其应用【知识梳理】一:判别式的值与根的关系1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根; 当2=40b ac ∆−<时,方程没有实数根. 二:根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题. 三:韦达定理韦达定理:如果12,x x 是一元二次方程20ax bx c ++= (0)a ≠的两个根,由解方程中的公式法得,1x 2x = 那么可推得1212,b cx x x x a a+=−=. 这是一元二次方程根与系数的关系【考点剖析】 题型一:判别式的值与根的关系例1.不解方程,判别下列方程的根的情况:(1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.【变式1】已知关于x 的一元二次方程2(1)210m x mx −++=根的判别式的值为4,求m 的值. 【答案】0.【答案】【答案】【解析】∵1a m =−,2b m =,1c =, ∴()()()2224241414b ac m m m m ∆=−=−⨯−=−+=,整理即得20m m −=,解得:11m =,20m =,同时方程是一元二次方程,知10a m =−≠,故1m ≠,由此得0m =.【总结】考查一元二次方程根的判别式判定方程根的情况,对于含有字母系数的一元二次方程,尤其是二次项系数中含有字母的情况,一定要注意字母所隐含的取值范围,即二次项系数不能为0. 例2.当m 取何值时,关于x 221(2)104x m x m +−+−=,(1)有两个不相等的实数根? (2)有两个相等的实数根?(3)没有实数根? 【答案】(1)2m <;(2)2m =;(3)2m >.【解析】对此方程,1a =,2b m =−,2114c m =−,则()22214241484b ac m m m ⎛⎫∆=−=−−−=−+ ⎪⎝⎭,由此可知,(1)当480m ∆=−+>,即2m <时,方程有两个不相等的实数根; (2)当480m ∆=−+=,即2m =时,方程有两两个相等的实数根; (3)当480m ∆=−+<,即2m >时,方程无实数根.【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,先确定其∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.【变式1】一元二次方程220x x −−=的根的情况是( )A. 有两个相等的实数根;B. 有两个不相等的实数根;C. 没有实数根;D. 不确定. 【答案】B【解析】因为2(1)41(2)1890∆=−−⨯⨯−=+=>,所以方程有两个不相等的实数根. 【变式2】关于x 的方程210x mx m −+−=根的情况,下列说法正确的是( )A. 没有实数根;B. 有两个不相等的实数根;C. 有两个不相等的实数根;D. 有两个实数根. 【答案】D【解析】 因为判别式2224(1)44(2)0m m m m m ∆=−−=−+=−≥,故原方程有两个实数根,故选D. 【变式3】下列方程中,没有实数根的是( )A. 2250x x −−=B. 2210x x −+=C. 220x x −= D. 225x x −=−【答案】D.【解析】A 、420240∆=+=>,有两不等实数根;B 、440∆=−=,有两个相等实数根;C 、40∆=>,有两个不相等的实根;D 、420160∆=−=−<,无实数根. 故正确答案选D.【变式4】当a = 时,关于x 的方程2210x ax −+=有两个相等的实数根.【答案】1±【解析】由2440a ∆=−=得,1a =±.【变式5】已知方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,试判断关于x 的方程20x ax b ++=的根的情况.【答案】方程无实数根.【答案】【答案】【解析】方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,代入即得:231238a b −=⎧⎨+=⎩,可解得:22a b =⎧⎨=⎩, 此时方程即为2220x x ++=,其中1a =,2b =,2c =,2480b ac ∆=−=−<,可知方程无实数根. 【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,根据题目条件确定字母取值,再确定其∆值,判定方程解的情况.【变式6】当k 为何值时,关于x 的方程224(21)0x kx k −+−=有实数根?并求出这时方程的根(用含k 的代数式表示).【答案】14k ≥时,方程有实数根;方程的根为2x k =± 【答案】【答案】【解析】对此方程,1a =,4b k =−,()221c k =−,则()()22244421164b ac k k k ∆=−=−−−=−,因为方程有实数根,则有1640k ∆=−≥,即14k ≥时,方程有实数根;根据一元二次方程求根公式,可知方程解为()4222k b x k a −−−===【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,先确定其∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大 题型二:根的判别式的应用例3.证明:方程()()212x x k −−=有两个不相等的实数根.【解析】证明:对原方程进行整理,即为:22320x x k −+−= 其中1a =,3b =−,22c k =−则()()22224342410b ac k k ∆=−=−−−=+>恒成立,由此可证得方程有两个不相等的实数根.【总结】将方程整理成一元二次方程的一般形式,方程的根的情况,只需要根据方程的∆值即可以确定下来.【变式1】当k 为何值时,方程()()222210kx k x x k k −−=−−≠,(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.【答案】(1)54k <且1k ≠;(2)54k =;(3)54k >.【答案】【答案】【解析】将方程整理成关于x 的一元二次方程的一般形式,即得:()()()212210k x k x k −−−++=,此时,1a k =−,()22b k =−−,1c k =+,由方程为一元二次方程,可知10a k =−≠,故1k ≠;()()()224424111620b ac k k k k ∆=−=−−−+=−+,由此可知,(1)当16200k ∆=−+>,即54k <且1k ≠时,方程有两不等实根; (2)当16200k ∆=−+=,即54k =时,方程有两相等实根; (3)当16200k ∆=−+<,即54k >时,方程无实根.【总结】考查一元二次方程根的判别式判定方程根的情况,首先将方程整理成一元二次方程的一般形式,然后确定二次项系数不能为0的情况,然后确定其∆值,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.【答案】【答案】【变式2】已知关于x 的一元二次方程()21230m x mx m +++−=有实数根,求m 的取值范围.【答案】32m ≥−且1m ≠−.【答案】【答案】【解析】由原方程是一元二次方程,可知10m +≠,即1m ≠−;对此方程, 其中1a m =+,2b m =,c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−;即m 的取值范围为32m ≥−且1m ≠−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定相关隐含条件,既要保证一元二次方程的二次项系数不能为0,然后在此基础上进行解题和计算.【变式3】如果m 是实数,且不等式(1)1m x m +>+的解集是1x <,那么关于x 的一元二次方程21(1)04mx m x m −++=的根的情况如何?【答案】方程无实根.【答案】【答案】【解析】由(1)1m x m +>+的解集是1x <,可知10m +<,即1m <−,对一元二次方程21(1)04mx m x m −++=而言,其中a m =,()1b m =−+,14c m =, 则()221414214b ac m m m m ∆=−=+−⋅=+,1m <−时,0∆<恒成立,由此可知方程无实数根.【总结】探求含有字母的一元二次方程根的情况,需要根据题目条件确定相关字母取值范围,再根据其∆值确定相关方程根的情况.【变式4】已知关于x 的方程()21230m x mx m +++−=总有实数根,求m 的取值范围.【答案】32m ≥−.【答案】【答案】【解析】(1)当10m +=,即1m =−时,方程为一元一次方程240x −−=,方程有实根; 当10m +≠,即1m ≠−时,方程为一元二次方程,其中1a m =+,2b m =,3c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−且1m ≠−;综上所述,m 的取值范围为32m ≥−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定二次项系数能否为0,在此基础上进行相关分类讨论和计算. 题型三:韦达定理例4.写出下列一元二次方程(方程的根为12,x x )的两实数根的和与两实数根的积 (1)2310x x −+=,12x x +=________;12x x =________;(2)23220x x −−=,12x x += ________;12x x =________.【答案】(1)3,1;(2)23,【答案】【答案】23−.【解析】(1)1a =,3b =−,1c =,根据一元二次方程根与系数的关系,可得123b x x a +=−=,121c x x a ==;(2)3a =,2b =−,2c =−,根据一元二次方程根与系数的关系,可得1223b x x a +=−=,1223c x x a ==−;【总结】考查一元二次方程根与系数的关系,在方程有实数根的前提下,由一般式确定相应的a 、b 、c 值即可快速得到结果.【变式1】已知方程2560x kx +−=的一个根是2,求另一根及k 值.【答案】方程另一根为35x =−,【答案】【答案】7k =−.【解析】根据韦达定理,可知方程两根满足条件,125kx x +=−,1265x x =−, 令12x =,则可求得235x =−,代入可得12755k x x +=−=,可得7k =−. 【总结】考查韦达定理的应用,本题可根据一元二次方式根的定义代入求值计算,但是更简单的,可以通过韦达定理直接快速得到题目结果.【变式2】已知:关于x 的方程23190x x m −+=的一个根是1,求另一根及m 值.【答案】方程另一根为163x =,【答案】【答案】16m =.【解析】根据韦达定理,可知方程两根满足条件,12193x x +=,123mx x =,令11x =,则可求得2163x =,代入可得121633m x x ==,可得16m =.【总结】考查韦达定理的应用,本题可根据一元二次方式根的定义代入求值计算,但是更简单的,可以通过韦达定理直接快速得到题目结果.【变式3】如果5−是方程25100x bx +−=的一个根,求另一个根及b 值.【答案】方程另一根为25x =,【答案】【答案】23b =.【解析】根据韦达定理,可知方程两根满足条件,125b x x +=−,121025x x −==−,令15x =−,则可求得225x =,代入可得122355b x x +=−=−,可得23b =.【总结】考查韦达定理的应用,本题可根据一元二次方式根的定义代入求值计算,但是更简单的,可以通过韦达定理直接快速得到题目结果.【变式4】已知12,x x 是方程230x px q ++=的两个根,分别根据下列条件求出p q 、的值. (1)12x x == (2)1222x x =−+=− 【答案】(1)0p =,21q =−;(2)12p =,3q =.【答案】【答案】【解析】(1)根据韦达定理,可得1203px x +=−=,1273q x x ==−,可得0p =,21q =−; (2)根据韦达定理,可得1243px x +=−=−,1213q x x ==,可得12p =,3q =. 【总结】考查韦达定理的应用,可快速由方程的根得到方程中的相关字母量.【变式5】设12,x x 是方程22430x x +−=的两个根,求()()1211x x ++的值.【答案】【答案】【答案】52−.【解析】根据韦达定理,可得方程两根满足12422x x +=−=−,1232x x =−, 由此()()()()121212*********x x x x x x ⎛⎫++=+++=−+−+=− ⎪⎝⎭. 【总结】考查韦达定理的应用,只需将所求式子转化为只含有两根之和和两根之积的式子即可进行求解计算.【变式6】已知方程22210x ax a +−+=的两个实根的平方和为174,求a 的值;【答案】【答案】【答案】3a =.【解析】根据韦达定理,可得方程两根满足122ax x +=−,12122a x x −=,依题意有 2212174x x +=,即()221212121227224a a x x x x −⎛⎫+−=−−⨯= ⎪⎝⎭,整理即得28330a a +−=,解得:111a =−,23a =;同时,韦达定理的前提是方程有实数根,由此需满足()2242211680a a a a ∆=−⨯−+=+−≥,仅在3a =时0∆≥成立,综上所述,可得3a =.【总结】考查韦达定理的应用,只需将所求式子转化为只含有两根之和和两根之积的式子即可进行求解计算,但一定要注意现阶段韦达定理的前提是方程有实数根,即还需满足0∆≥.【过关检测】一.选择题(共6小题)1.(2022秋•徐汇区期末)若方程﹣3x +m =0有一根是1,则另一根是( ) A .1B .2C .﹣1D .﹣2【分析】根据根与系数的关系列出关于另一根n 的方程,解方程即可得到答案. 【解答】解:设方程的另一根为n , ∵方程x2﹣3x+m =0有一根是1, ∴1+n =3,解得:n =2, 故选:B .【点评】本题考查了一元二次方程的解,根于系数的关系,解题的关键是弄清楚一元二次方程的两根之和与系数a 、b 的关系.2.(2022秋•青浦区校级期末)下列一元二次方程中,有两个相等的实数根的方程是( )A .B .(x ﹣2)2=5C .x 2+2x =0D .【分析】先把四个方程化为一般式,再计算各方程的根的判别式的值,然后根据根的判别式的意义进行判断.【解答】解:A.x2﹣x+=0,∵Δ=(﹣1)2﹣4×1×=0,∴方程有两个相等的实数根;B.x2﹣4x﹣1=0,∵Δ=(﹣4)2﹣4×(﹣1)=20>0,∴方程有两个不相等的实数根;C.x2+2x=0,∵Δ=22﹣4×1×0=4,∴方程有两个不相等的实数根;D.2x2﹣x+1=0,∵Δ=(﹣)2﹣4×2×1=﹣6<0,∴方程没有实数根.故选:A.ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.3.(2022秋•虹口区校级期中)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<1C.k>﹣1且k≠0D.k<1且k≠0【分析】根据一元二次方程的定义和△的意义得到k≠0且Δ>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且Δ>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.4.(2022秋•黄浦区期中)下列方程中,无实数根的方程为()A.2x2+6x=3B.3x2+4x+6=0C.x2﹣2x=0D.3x2﹣4x﹣6=0【分析】先分别计算各方程的根的判别式的值,然后根据根的判别式的意义判断四个方程的根的情况即可.【解答】解:A.方程化为一般式为2x2+6x﹣3=0,Δ=62﹣4×2×(﹣3)=60>0,则方程有两个不相等的实数根,所以A选项不符合题意;B.Δ=42﹣4×3×6=﹣56<0,则方程没有实数根,所以B选项符合题意;C.Δ=(﹣2)2﹣4×0=4>0,则方程有两个不相等的实数根,所以C选项不符合题意;D.Δ=(﹣4)2﹣4×3×(﹣6)=88>0,则方程有两个不相等的实数根,所以D选项不符合题意.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(2022秋•宝山区期中)已知关于x的一元二次方程ax2+bx﹣ab=0,其中a,b在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】根据一元二次方程根的判别式得Δ=b2+4a2b,根据根据a,b在数轴上的对应点,可得a<0,b>0,即可确定判别式得符号,进一步确定根的情况.【解答】解:在一元二次方程ax2+bx﹣ab=0中,Δ=b2+4a2b,根据a,b在数轴上的对应点,可得a<0,b>0,∴Δ>0,∴方程有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程根的情况,熟练掌握根的判别式与根的情况的关系是解题的关键.6.(2022秋•闵行区期中)已知a、b、c是三角形三边的长,则关于x的一元二次方程ax2+2(b﹣c)x+a=0的实数根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】Δ=[2(b﹣c)]2﹣4a2=4(b﹣c+a)(b﹣c﹣a),根据三角形的三边关系可知Δ<0,可知一元二次方程根的情况.【解答】解:Δ=[2(b﹣c)]2﹣4a2=4(b﹣c+a)(b﹣c﹣a),∵a、b、c是三角形三边的长,∴b﹣c+a>0,b﹣c﹣a<0,∴Δ=4(b﹣c+a)(b﹣c﹣a)<0,∴原方程没有实数根,故选:C.【点评】本题考查了一元二次方程根的判别式,三角形的三边关系,熟练掌握根的判别式与根的情况的关系是解题的关键.二.填空题(共12小题)7.(2022秋•黄浦区校级月考)方程x2﹣3x+2=0两个根的和为,积为.【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系x2﹣3x+2=0两个根的和为3,积为2.故答案为:3,2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.8.(2022秋•普陀区校级期中)若关于x的方程x2+bx﹣c=0(c≠0)有两个相等的实数根,则代数式的值是.【分析】根据方程的系数,结合根的判别式Δ=0,即可得出b2=﹣4c,将其代入中,即可求出结论.【解答】解:∵关于x的方程x2+bx﹣c=0(c≠0)有两个相等的实数根,∴Δ=b2﹣4×1×(﹣c)=0,∴b2=﹣4c,又∵c≠0,∴==﹣2.故答案为:﹣2.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.9.(2022秋•长宁区校级期中)已知关于x的方程(m+1)x2+2x=1,方程有两个不相等的实数根,那么m 的取值范围是.【分析】利用二次项系数非零及根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:将原方程转化为一般形式得(m+1)x2+2x﹣1=0,∵方程有两个不相等的实数根,∴,解得:m>﹣2且m≠﹣1,∴m的取值范围是m>﹣2且m≠﹣1.故答案为:m>﹣2且m≠﹣1.【点评】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式组是解题的关键.10.(20222,另两边的长是关于x的方程x2﹣6x+m=0的两个根,则m的值为.【分析】讨论:当底边长为2时,则腰长为方程x2﹣6x+m=0的两个根,利用判别式的意义得到∴△=(﹣6)2﹣4m=0,解方程得到m的值;当腰长为2,则x=2为方程x2﹣6x+m=0的一个根,求出m=8,方程化为x2﹣6x+8=0,解得x1=2,x2=4,然后根据三角形三边的关系可判断这种情况不符合题意.【解答】解:当底边长为2时,则腰长为方程x2﹣6x+m=0的两个根,∴△=(﹣6)2﹣4m=0,解得m=9;当腰长为2,则x=2为方程x2﹣6x+m=0的一个根,∴4﹣12+m=0,解得m=8,方程化为x2﹣6x+8=0,解得x1=2,x2=4,∵2+2=4,∴2、2、4不符合三角形三边的关系,舍去,综上所述,m的值为9.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了三角形三边的关系.11.(2022秋•浦东新区期中)已知关于x的方程mx2﹣2x+1=0有两个不相等的实数根,则m可取的最大整数是.【分析】由二次项系数非零及根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:∵关于x的方程mx2﹣2x+1=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m×1>0且m≠0,解得:m<1且m≠0.故答案为:﹣1.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式组是解题的关键.12.(2022秋•徐汇区校级期中)如果关于x的一元二次方程x2+3x﹣2m=0没有实数根,那么m的取值范围是.【分析】根据关于x的一元二次方程x2+3x﹣2m=0没有实数根,得出Δ=9﹣4×(﹣2m)<0,从而求出m的取值范围.【解答】解:∵一元二次方程x2+3x﹣2m=0没有实数根,∴Δ=9﹣4×(﹣2m)<0,∴m<﹣,故答案为:m<﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式,关键是掌握Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.13.(2022秋•浦东新区校级月考)等腰△ABC的一边长为3,另外两边的长是关于x的方程x2﹣10x+m=0的两个实数根,则m的值是.【分析】结合根与系数的关系,分已知边长3是底边和腰两种情况讨论.【解答】解:设关于x的方程x2﹣10x+m=0的两个实数根分别为a、b.∵方程x2﹣10x+m=0有两个实数根,∴Δ=100﹣4m≥0,得m≤25.①当底边长为3时,另两边相等时,a+b=10,∴另两边的长都是为5,则m=ab=25;②当腰长为3时,另两边中至少有一个是3,则3一定是方程x2﹣10x+m=0的根,而a+b=10,∴另一根为:7.∵3+3<7,不能构成三角形.∴m的值为25.故答案为:25.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.14.(2022秋•奉贤区校级期中)已知关于x的方程x2﹣2x﹣m2=0根的判别式的值36,则m=.【分析】根据根的判别式得出方程(﹣2)2﹣4×1×(﹣m2)=36,求出方程的解即可.【解答】解:∵关于x的方程x2﹣2x﹣m2=0根的判别式的值36,∴Δ=(﹣2)2﹣4×1×(﹣m2)=36,解得:m=±2,故答案为:±2.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.15.(2022秋•奉贤区期中)当k时,关于x的方程有两个实数根.【分析】根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(﹣1)2﹣4k×≥0,然后求出两不等式的公共部分即可.【解答】解:根据题意得k≠0且Δ=(﹣1)2﹣4k×≥0,解得k≤且k≠0,即k的取值范围为k≤且k≠0.故答案为:≤且k≠0.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.(2022秋•杨浦区期中)如果关于x的方程mx2﹣(2m+1)x+m﹣1=0有两个不相等的实数根,那么m 的取值范围是.【分析】根据一元二次方程的定义和根的判别式的意义得到m≠0且Δ=[﹣(2m+1)]2﹣4m(m﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得m≠0且Δ=[﹣(2m+1)]2﹣4m(m﹣1)>0,解得m>﹣且m≠0,即m的取值范围为m>﹣且m≠0,故答案为:m>﹣且m≠0,【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.17.(2022秋•虹口区校级期中)已知关于x的方程(m﹣3)x2﹣(m2﹣m+2)x+2m2+2m=0的根是正整数,则整数m的值为.【分析】利用因式分解法求出方程的两个根,再根据方程的两个实数根都为正整数,即可求出m的值.【解答】解:当m﹣3=0,即m=3时,方程为8x+24=0,解得x=﹣3,不合题意舍去;当m﹣3≠0,即m≠3时,(m﹣3)x2﹣(m2﹣m+2)x+2m2+2m=0[(m﹣3)x﹣(2m+2)](x﹣m)=0,∴x1==,x2=m,∵方程的两个实数根都为正整数,∴是正整数,∴m=4或5或7或11,故答案为:3或4或5或7或11.【点评】本题考查了因式分解法解一元二次方程,解题的关键是结合方程的解为正整数,找出关于m的分式方程.18.(2022秋•黄浦区期中)写出一个一元二次方程,使它的一个根为1,另一个根为,这个方程的一般式是.【分析】根据根与系数的关系:x1+x2=﹣,x1•x2=,首先写出两根之和,再写出两根之积,可直接得到方程.【解答】解:∵1+(﹣)=1﹣,1×(﹣)=﹣,∴这个方程的一般式是x2+(﹣1)x﹣=0.故答案为:x2+(﹣1)x﹣=0.【点评】此题主要考查了根与系数的关系,将根与方程的系数相结合解题是一种经常使用的解题方法.三.解答题(共10小题)19.(2022秋•奉贤区期中)已知△ABC的两边是关于x的方程x2﹣10x+m=0的两根,第三边的长为4,当m为何值时,△ABC是等腰三角形?并求出这两边的长.【分析】设△ABC的两边a、b是关于x的方程x2﹣10x+m=0的两根,利用根与系数的关系得到a+b=10,ab=m,讨论:当a=b=5时,易得m=25,△ABC为等腰三角形;当a=4或b=4时,a=6,则m=24,△ABC为等腰三角形.【解答】解:设△ABC的两边a、b是关于x的方程x2﹣10x+m=0的两根,则a+b=10,ab=m,当a=b=5时,m=5×5=25,△ABC为等腰三角形;当a=4时,b=6,则m=24,△ABC为等腰三角形;当b=4时,a=6,则m=24,△ABC为等腰三角形;综上所述,当m=25时,△ABC为等腰三角形,这两边的长分别为5,5;当m=24时,△ABC为等腰三角形,这两边的长分别为4,6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了等腰三角形的判断.20.(2022秋•静安区校级期中)已知关于x的一元二次方程(m+1)x2+2x=1(m为实数).(1)如果该方程有两个不相等的实数根,求m的取值范围.(2)如果该方程有两个相等的实数根,求m的取值范围.(3)如果该方程没有实数根,求m的取值范围.【分析】先求出Δ=4+4(m+1)=4m+8,(1)根据该方程有两个不相等的实数根,可得Δ=4m+8>0,m+1≠0,进一步求解即可;(2)根据该方程有两个相等的实数根,可得Δ=4m+8=0,进一步求解即可;(3)根据该方程没有实数根,可得Δ=4m+8<0,进一步求解即可.【解答】解:关于x的一元二次方程(m+1)x2+2x=1(m为实数),a=m+1,b=2,c=﹣1,∴Δ=4+4(m+1)=4m+8,(1)根据题意,得Δ=4m+8>0,m+1≠0,解得m>﹣2且m≠﹣1;(2)根据题意,得Δ=4m+8=0,解得m=﹣2;(3)根据题意,得Δ=4m+8<0,解得m<﹣2.【点评】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的情况与根的判别式的关系是解题的关键.21.(2022x的一元二次方程x2﹣mx+1=0有两个相等的实数根.求m的值并求出两个实数根.【分析】由一元二次方程x2﹣mx+1=0有两个相等的实数根,得Δ=0,即Δ=m2﹣4=0,可解得m=±2,然后把m=±2代入方程,解此方程即可.【解答】解:∵关于x的一元二次方程x2﹣mx+1=0有两个相等的实数根,∴Δ=0,即Δ=m2﹣4=0,解得m=±2,当m=2时,原方程变为:x2﹣2x+1=0,∴(x﹣1)2=0,解得x1=x2=1,当m=﹣2时,原方程变为:x2+2x+1=0,∴(x+1)2=0,解得x1=x2=﹣1.【点评】此题主要考查了一元二次方程的解法和根的判别式,熟记一元二次方程ax2+bx+c=0(a≠0)的解与b2﹣4ac的关系:当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解是解决问题的关键.22.(2022秋•徐汇区校级期中)已知关于x的方程x2﹣(2m﹣2)x+m2=0有两个实数根.(1)求m的取值范围;(2)当m取最大非零整数时,求方程的两个根.【分析】(1)根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次不等式,解之即可得出m 的取值范围;(2)由(1)的结论可得出m可取的最大非零整数为﹣1,将其代入原方程中,再利用公式法解一元二次方程,即可求出此时方程的两个根.【解答】解:(1)∵关于x的方程x2﹣(2m﹣2)x+m2=0有两个实数根,∴Δ=b2﹣4ac=[﹣(2m﹣2)]2﹣4×1×m2=4﹣8m≥0,解得:m≤,∴m的取值范围为m≤.(2)∵m≤,∴当m取最大非零整数时,m=﹣1.当m=﹣1时,原方程为x2+4x+1=0,解得:x1==﹣2﹣,x2==﹣2+.∴当m取最大非零整数时,方程的两个根分别为x1=﹣2﹣,x2=﹣2+.【点评】本题考查了根的判别式以及公式法解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有两个实数根”;(2)代入m的值,利用公式法求出一元二次方程的解.23.(2022秋•杨浦区期末)关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0,其根的判别式的值为1,求m的值及该方程的根.【分析】由一元二次方程的Δ=b2﹣4ac=1,建立m的方程,求出m的解后再化简原方程并求解.【解答】解:由题意知,m≠0,Δ=b2﹣4ac=[﹣(3m﹣1)]2﹣4m(2m﹣1)=1,∴m1=0(舍去),m2=2,∴原方程化为:2x2﹣5x+3=0,解得,x1=1,x2=.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.24.(2022秋•青浦区期中)若关于x的一元二次方程(m﹣1)x2﹣4mx+4m+6=0有实数根,求m能取的正整数值.【分析】根据一元二次方程的定义和根的判别式的意义得到m﹣1≠0且Δ=(﹣4m)2﹣4(m﹣1)(4m+6)≥0,然后求出m的取值范围,进而求出结果.【解答】解:根据题意得m﹣1≠0且Δ=(﹣4m)2﹣4(m﹣1)(4m+6)≥0,解得m≤3且m≠1.故m能取的正整数值为2,3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.25.(2022秋•奉贤区校级期中)已知关于x的方程(k﹣2)x2+6kx+4k﹣1=0.(1)只有一个根,求k的值,并求此时方程的根;(2)有两个相等的实数根,求k的值,并求此时方程的根.【分析】(1)由题意得k﹣2=0≠0,即k=2,列出方程求解可得;(2)根据题意得:k﹣2≠0且Δ=0,解方程可得k的值,再代入列出关于x的方程,求解可得.【解答】解:(1)因为只有一个根所以k﹣2=0且6k≠0,解得k=2,∴方程为12x+7=0,解得x=,所以方程的根为x=;(2)根据题意,得:k﹣2≠0,即k≠2,Δ=0,即(6k)2﹣4(k﹣2)×(4k﹣1)=0,解得k1=,k2=﹣2,当k=时,方程为9x2﹣6x+1=0,即(3x﹣1)2=0,解得:x1=x2=,当k=﹣2时,方程为4x2+12x+9=0,即(2x+3)2=0,解得:x1=x2=﹣.【点评】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.26.(2022秋•杨浦区期中)已知关于x的一元二次方程x2﹣2(m+1)x+m2+5=0.(1)如果方程有两个实数根,求m的取值范围;(2)如果等腰三角形ABC的一条边长为7,其余两边的边长恰好是该方程的两个根,求m的值.【分析】(1)根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围;(2)分7为等腰三角形的底或腰两种情形,讨论求解即可.【解答】解:(1)∵关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有实数根,∴Δ=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16≥0,解得:m≥2,∴当方程有两个实数根,m的取值范围为m≥2.(2)当7为底时,由题意得,Δ=,则8m﹣16=0,解得m=2,此时一元二次方程x2﹣6x+9=0解得x=3,因为3+3<7,舍去;当7为腰时,将x=7代入得49﹣14(m+1)+m2+5=0,解得m=4或m=10,当m=10时,得三边长为7、7、15,因为7+7<15(舍去),当m=4时,算得三边长为3、7、7,可以构成三角形,故m的值为4.【点评】本题考查了等腰三角形的性质,一元二次方程的根与系数的关系,根的判别式,解题的关键是学会利用一元二次方程的根与系数的关系,把问题转化为方程解决.27.(2022秋•浦东新区校级月考)已知:设三角形ABC的三边a,b,c为方程4x2+4x+2b﹣c=0有两个。
二次函数根的判别式韦达定理
一元二次方的应用及根的判别式、韦达定理一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时24b b ac --2a 的整数倍,则方程的根为整数根.说明: (1)用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.(2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点.3.一元二次方程的根的判别式的应用:一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数;(2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.二、韦达定理如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有 ()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题.利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba-<,则此方程的正根小于负根的绝对值. 当0c a >时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba -<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <② 12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m > ③ 12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:① 若有理系数一元二次方程有一根a b +a b a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =.⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.例题一、判断方程根的情况【例1】 不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=。
一元二次方程根的判别式与韦达定理
于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
第十课判别式与韦达定理
第10课 判别式与韦达定理〖知识点〗一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题. 内容分析1.一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21(2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是〔 〕〔A 〕有两个相等的实数根 〔B 〕有两个不相等的实数根〔C 〕没有实数根 〔D 〕不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中测试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,那么x 12+x 22的值是〔 〕〔A 〕15 〔B 〕12 〔C 〕6 〔D 〕33.在中测试题中常出现有关根的判别式、根与系数关系的综合解做题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的水平.考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是〔 〕〔A 〕有两个相等的实数根 〔B 〕有两个不相等的实数根〔C 〕没有实数根 〔D 〕不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,那么x 12+x 22的值是〔 〕〔A 〕15 〔B 〕12 〔C 〕6 〔D 〕33.以下方程中,有两个相等的实数根的是〔 〕(A ) 2y 2+5=6y 〔B 〕x 2+5=2 5 x 〔C 〕 3 x 2- 2 x+2=0〔D 〕3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是〔 〕(A ) y 2+5y -6=0 〔B 〕y 2+5y +6=0 〔C 〕y 2-5y +6=0 〔D 〕y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于〔 〕〔A 〕2 〔B 〕-2 〔C 〕1 〔D 〕-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.x 1,x 2是方程2x 2-7x +4=0的两根,那么x 1+x 2= ,x 1·x 2= ,〔x 1-x 2〕2=9.假设关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,那么m =二、考点练习:1、 不解方程,判别以下方程根的情况:〔1〕x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 关于x 的方程10x 2-(m+3)x+m -7=0,假设有一个根为0,那么m= ,这时方程的另一个根是 ;假设两根之和为-35,那么m= ,这时方程的两个根为 . 4、 3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值.5、 求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根.6、 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 .7、 设x 1,x 2是方程2x 2+4x -3=0的两根,利用根与系数关系求以下各式的值:(1) (x 1+1)(x 2+1) (2)x 2x 1 + x 1x 2〔3〕x 12+ x 1x 2+2 x 1 解题指导1、 如果x 2-2(m+1)x+m 2+5是一个完全平方式,那么m= ;2、 方程2x(mx -4)=x 2-6没有实数根,那么最小的整数m= ;3、 方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,那么m= ;4、 设关于x 的方程x 2-6x+k=0的两根是m 和n,且3m+2n=20,那么k 值为 ;5、 设方程4x 2-7x+3=0的两根为x 1,x 2,不解方程,求以下各式的值:(1) x 12+x 22 (2)x 1-x 2 〔3〕x1 +x2 *〔4〕x 1x 22+12x 1 *6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式st+4s+1t的值. 7.a 是实数,且方程x 2+2ax+1=0有两个不相等的实根,试判别方程x 2+2ax+1-12(a 2x 2-a 2-1)=0有无实根?8.求证:不管k 为何实数,关于x 的式子(x -1)(x -2)-k 2都可以分解成两个一次因式的积.9.实数K 在什么范围取值时,方程kx2+2〔k-1〕x-〔K -1〕=0有实数正根?独立练习〔一〕1、 不解方程,请判别以下方程根的情况;(1)2t 2+3t -4=0, ; (2)16x 2+9=24x, ;(3)5(u 2+1)-7u=0, ;2、 假设方程x 2-(2m -1)x+m 2+1=0有实数根,那么m 的取值范围是 ;3、 一元二次方程x 2+px+q=0两个根分别是2+ 3 和2- 3 ,那么p= ,q= ;4、 方程3x 2-19x+m=0的一个根是1,那么它的另一个根是 ,m= ;5、 假设方程x 2+mx -1=0的两个实数根互为相反数,那么m 的值是 ;6、 m,n 是关于x 的方程x 2-(2m-1)x+m 2+1=0的两个实数根,那么代数式m n = .7、 关于x 的方程x 2-(k+1)x+k+2=0的两根的平方和等于6,求k 的值;8、 如果α和β是方程2x 2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,使它的两个根分别等于α+1 β 和β+1 α; 9、 a,b,c 是三角形的三边长,且方程(a 2+b 2+c 2)x 2+2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角形是正三角形10.取什么实数时,二次三项式2x 2-(4k+1)x+2k 2-1可因式分解.11.关于X 的一元二次方程m2x2+2〔3-m〕x+1=0的两实数根为α,β,假设s=1 α+1 β,求s的取值范围. 独立练习〔二〕1、 方程x 2-3x+1=0的两个根为α,β,那么α+β= , αβ= ;2、 如果关于x 的方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,那么m 的值为 ;3、 方程2x 2-3x+k=0的两根之差为212,那么k= ; 4、 假设方程x 2+(a 2-2)x -3=0的两根是1和-3,那么a= ;5、 方程4x 2-2(a-b)x -ab=0的根的判别式的值是 ;6、 假设关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;7、 p<0,q<0,那么一元二次方程x 2+px+q=0的根的情况是 ;8、 以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是 ;9、 设x 1,x 2是方程2x 2-6x+3=0的两个根,求以下各式的值:(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 210.m 取什么值时,方程2x 2-(4m+1)x+2m 2-1=0(1) 有两个不相等的实数根,〔2〕有两个相等的实数根,〔3〕没有实数根;11.设方程x 2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q 的值.12.是否存在实数k,使关于x的方程9x 2-(4k-7)x -6k2=0的两个实根x 1,x 2,满足|x 1 x 2|=32 ,如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由.。
八年级数学第七讲 韦达定理的应用
一元二次方程根的判别式及韦达定理常见题型及注意事项学习过程:一、课前检测分解因式①1272++x x = 。
②1522--m m =二 、合作探究:1. 活动一:结合上面两个自测题小组讨论形如pq x q p x +++)(2的二次三项式怎样分解因式,从而理解怎样解形如0)(2=+++pq x q p x 的一元二次方程活动二:方程20(0)ax bx c a ++=≠的判别式是 ,求根公式是其中1x = ,2x = ,请你求出12x x += ,12.x x = 。
你能用文字语言概括出这两个式子的结论三、展示质疑:(1)请用十字相乘法解下列方程①2320x x ++= ②27120y y -+=③ 23100x x +-= ④27180y y --=(2)已知方程22430x x --=的两个根分别是12,x x ,不解方程直接完成下列各小题 ①12x x += , 12.x x = 。
②1211x x += ③ 112233x x x x -+= ④2212x x +=四、达标检测:(1)方程260x x --=的根是 (2)方程260x x +-=的解是(3)若12,x x 是方程235x x +-=0的两个根12x x += , 12.x x = 。
1211x x += ,12(1)(1)x x ++=(4)知方程2260x kx +-=的一个根是—3,求方程的另一个根及k 的值一、一元二次方程跟的判别式的常见题型题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2·变式1:关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠ 5注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
判别式与韦达定理
判别式与韦达定理1、 一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。
考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =二、考点训练:1、 不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值。
一元二次方程的判别式及跟与系数的关系
一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。
(完整版)一元二次方程根的判别式知识点
一元二次方程根的判别式知识点及应用1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。
(2)一元二次方程ax²+bx+c=0(a≠0)(Δ=b²4ac)一、不解方程,判断一元二次方程根的情况。
例1、判断下列方程根的情况2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。
例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、证明方程根的性质。
例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。
四、判断二次三项式能否在实数范围内因式分解。
例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。
五、判定二次三项式为完全平方式。
例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。
例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。
六、利用判别式构造一元二次方程。
例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、限制一元二次方程的根与系数关系的应用。
例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。
一元二次方程根的判别式及韦达定理常见题型及注意事项.doc
一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型题型1不解方程,判断一元二次方程根的情况(1)5x2 4x 3 0; (2)3x2 2x 1 0; (3)2x232、. 6x.题型2:证明一元二次方程根的情况求证:无论k取何实数,关于x的一元二次方程:x2(k 1)x k 4 0总有两个不等实根。
题型3:已知一元二次方程根的情况,求方程中未知系数的取值范围21. (2011 •重庆)已知关于x的一元二次方程(a—1)x - 2x+1=0有两个不相等的实数根,则a的取值范围是()A. a<2 B, a>2 C. a<2 且a 丰 1 D. a< —2 •变式1: (2010 •安徽芜湖)关于x的方程(a —5)x2—4x— 1 = 0有实数根,则a满足()A . a> 1B . a> 1 且a丰5 C. a> 1 且a* 5 D. a*5变式2: (2010 •成都)若关于x的一元二次方程x2 4x 2k 0有两个实数根,求k的取值范围及k的非负整数值.变式3:已知关于x的一元二次方程(1 2k)x .kx 1 0有两个实数根,求k的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型题型1:已知一元二次方程的一根,求另一根及未知系数k的值已知2 ,3是方程X 2 kx 1 0的一根,则方程的另一根是 ________________ , k= ______ 。
题型2:求与一元二次方程根有关的代数式的值;2 2 21 11.已知X i , X 2是方程2 x 4 x 3 0的两根,计算: (1) x i x2 ;⑵ :⑶& X 2 (X 1 X 2)22 21.关于x 的一元二次方程 x (2k 1)x k 1 变式1: (2011併9州)关于x 的方程ax 2 (3a 1)x 2(a 1) 0有两个不相等的实根 x 1、x 2,且有x 1 x 1x 2 x 2 1 a ,则a 的值是( )变式2: (2010 •中山)已知一元二次方程 . (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为 X 1, X 2,且^+3X 2=3,求m 的值。
一元二次方程根的判别式与韦达定理
一元二次方程根的判别式与韦达定理一.一元二次方程根的判别式.对于一元二次方程ax 2+bx+c=0(a≠0),记Δ=b 2-4ac.则有:Δ>0⇔方程有两个不等 实数根;Δ=0⇔方程有两个相等实数根;Δ<0⇔方程没有实数根.注意:(1)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a 、b 、c 的值。
(2)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b 2-4ac≥0切勿丢掉等号.(3)根的判别式b 2-4ac 的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0.(4)显然,当a 、c 异号时,Δ>0,方程必有两不等的根,此结论宜熟记于心. 二.根的判别式有以下应用:① 不解一元二次方程,判断根的情况.例1.不解方程,判断下列方程的根的情况: (1) 2x 2+3x-4=0;(2)2210x ax a ++-=.② 根据方程根的情况,确定待定系数的取值范围.例2.求k 的何值时,关于x 的方程2(k+1)x 2+4kx+2k-1=0(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根;(4)有一根.③ 证明字母系数方程有实数根或无实数根.例3.求证方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
三.韦达定理(一元二次方程根与系数的关系).若一元二次方程ax 2+bx+c=0(a≠0)有两个根分别为1x 、2x ,则有: 12b x x a +=-,12c x x a=. 注意:此定理成立的前提是方程为一元二次方程(a ≠0),且方程有两根(包括相等的两根,即要满足Δ≥0) 四.韦达定理的应用. ① 求根或参数的值.例4.(1)已知方程20x px q ++=的两个根为2-和4,求p 、q 的值.(2)已知方程240x x m -+=的一个根是2求方程的另一个根及m 的值. (3)若方程250x kx k --+=的一个根是2, 求方程的另一个根及k 的值.说明:这3个题目均有两种解法,即代根法与韦达定理法,其中(1)(2)用韦达定理更简单,(3)用代根法更简单.② 求与两根有关的对称式的值.例5.设1x 、2x 是方程2430x x +-=的两根,试求下列各式的值:(1)12x x +;(2)12x x ;(3)2212x x +;(4)1211x x +;(5)12(1)(1)x x --;(6)12x x -; (7)3223112122x x x x x x +++;(8) 2112x x x x +;(9)2212224x x x ++.说明(1)这类题目除了利用韦达定理解外,也可以直接求出方程的根代入各式求值,对于 此题这样做显然计算量大.但如果方程的根为全整数时,比如方程替换为2320x x -+=,则宜选用带人求值的方法.(2)一般的,对于方程ax 2+bx+c=0(a≠0),当0∆≥时,有12x x -=====,此结论及其推导过程必须牢记于心.③ 分析一元二次方程根的范围(主要指符号).例 6.已知关于x 的方程24(2)10x k x k -++-=.根据下列各条件分别求k 的取值范围.(1)两根异号;(2)两根均为正数;(3)两根异号,且负根绝对值大.④构造一元二次方程.理论依据是:以x 1、x 2为根的一元二次方程是x 2-(x 1+x 2)x+x 1x 2=0. 例7. 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 .例8.解下列方程组:(1)56x y xy +=⎧⎨=⎩; (2)56x y xy -=⎧⎨=⎩; (3) 2312x y xy -=⎧⎨=⎩; (4) 22135x y x y ⎧+=⎨+=⎩. 五.作业1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且 2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ . 8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++= 的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ .11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求mn的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长. (1) k 取何值时,方程存在两个正实数根?(2)k 的值.15.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.16.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.17.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1. (1) 求实数k 的取值范围; (2) 若1212x x =,求k 的值.练习答案: 1. B 2. A 3.A 4.A 5.A6.2,a c b b c +=≠且 7. 38. 9或3-9.1,3p q =-=- 10.3,3,0a b c ===11.正确12.413.21(1)1650 (2)2m m ∆=+>=- 14.3(1) (2)22k k ≥= 15.13(1)112k k <≠且 (2) 不存在 16.1m = (1)当3k =时,方程为310x +=,有实根;(2) 当3k ≠时,0∆>也有实根.17.(1) 314k k ≥≠且 ; (2) 7k =.。
一元二次方程判别式以及根与系数关系
一元二次方程判别式以及根与系数关系知识总结1.一元二次方程的根的判别式(1)一元二次方程ax 2+bx +c =0(a ≠0)的根的情况由b 2-4ac 来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac .注意:要想利用根的判别式求解方程,首先要将方程化为一元二次方程的一般式ax 2+bx +c =0(a ≠0),以便确定a ,b ,c 并代入b 2-4ac 计算. (2)一元二次方程的根的情况与根的判别式的关系①利用根的判别式判定根的情况.一般地,方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根.②根据方程根的情况,确定Δ的取值范围.当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.注意:①如果说一元二次方程有实数根,那么应该包括有两个不相等实数根或有两个相等的实数根两种情况,此时b 2-4ac ≥0,切勿丢掉等号.②当b 2-4ac <0时,方程在实数范围内无解(无实数根),但在复数范围内方程仍有两个解,这将在高中阶段学习.【例1】不解方程,判别下列方程的根的情况:(1)2x 2+3x -4=0;(2)3x 2+2=26x ;(3)ax 2+bx =0(a ≠0);(4)ax 2+c =0(a ≠0).(3)利用根的判别式确定方程中字母系数的取值范围若一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac >0;若一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则b 2-4ac =0.从而根据关于字母系数的方程或不等式求出字母系数的值或取值范围.在运用时应注意前提条件:必须是一元二次方程且符合其一般形式.【例2】已知关于x 的方程kx 2-4kx +k -5=0有两个相等的实数根,求k 的值,并解这个方程.【例3】当k 取何值时,关于x 的一元二次方程kx 2+9=12x ,(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?2.一元二次方程的根与系数的关系(1)如果方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a.这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a ≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a ≠0.(2)如果方程x 2+px +q =0的两根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q .【例4】不解方程,说明一元二次方程2x 2+4x =1必有实数根,并求出两根之和与两根之积.(2)利用根与系数的关系确定一元二次方程若x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两根. 注意:(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 【例5】已知一个关于x 的一元二次方程,它的两根为2和6,请你写出这个一元二次方程.总结:已知两根求一元二次方程,其一般步骤是:①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.【例6】求作一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.(3)利用一元二次方程根与系数的关系求关于两根x 1,x 2的代数式的值已知一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形:①21x +22x =(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2;③(x 1+a )(x 2+a )=x 1x 2+a (x 1+x 2)+a 2;④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.【例7】已知方程2x 2+5x -6=0的两个根为x 1,x 2,求下列代数式的值.(1)(x 1-2)(x 2-2);(2)x 2x 1+x 1x 2.(4)已知含未知常数m 的一元二次方程两根关系式,求未知常数m 。
2、判别式与韦达定理的应用
第二讲判别式及韦达定理的应用常见题型(1)一元二次方程根的情况:①当时,方程有两个不相等的实数根;②当时,方程有两个相等的实数根;③当时,方程无实数根.(2)确定字母的值或取值范围。
(3)与一元二次方程根有关的证明题。
(4) 判定二次三项式为完全平方式题型一、判断一元二次方程根的情况例1、已知方程x2-2x-m=0没有实数根,其中m是实数,试判断方程x2+2mx+m(m+1)=0有无实数根例2、已知关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.题型二、确定字母的值或取值范围例3、已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m-1(2m-1)2+2m的值.题型三、与一元二次方程根有关的证明题例5、已知关于x的一元二次方程mx2-(m+2)x+2=0,(1)证明:不论m为何值,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.例6、已知关于的一元二次方程,求证:不论为任何实数,方程总有两个不相等的实数根.题型四、判定二次三项式为完全平方式例7、若x2-2(k+1)x+k2+5是完全平方式,求k的值。
例8、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m-2是完全平方式。
变式练习A. B. C. D.2.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.关于的方程有实数解,那么的取值范围是()A. B. C. D.且4.关于的方程有实数根,则的取值范围是()A. B.且 C. D.且5.若,则关于的一元二次方程根的情况是________.6.关于的一元二次方程有两个相等的实数根,则________.7.若关于的一元二次方程有实数根,则的取值范围是________.8.关于的方程有实数根,则的取值范围是________.9.若,则关于的一元二次方程的根的情况是________.10.关于的方程有实数根,的取值范围________.11.已知:关于的方程有两个不相等的实数根.求实数的取值范围.取一个的负整数值,且求出这个一元二次方程的根.12.已知关于的一元二次方程若方程有两个相等的实数根时,求的值.当方程没有实数根时,求出的最小正整数的值.常见题型(2)求与方程的根有关的代数式的值;(3) 利用根与系数的关系求字母的值或取值范围;(4)确定根的符号:( 是方程两根);题型一、已知一根求另一根及未知系数例9、已知:关于x 的方程226350x x m m -+--=的一个根是-1,求方程的另一个根及m 的值。
2021年中考一轮复习数学重难点 :一元二次方程解法、判别式和韦达定理、整数根问题
重难点突破:一元二次方程解法、判别式和韦达定理、整数根问题题型一、一元二次方程的定义:关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 【例1】关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【解析】21a +恒大于0 【答案】C【巩固】已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 【解析】整理方程得:2(3)10a x ax --+=,当3a ≠时,原方程是一元二次方程. 【答案】3a ≠【例2】若2(3)330n m x nx ---+=是关于x 的一元二次方程,则m 、n 的取值范围是( )A.0m ≠、3n =B.3m ≠、4n =C.0m ≠,4n =D.3m ≠、0n ≠【答案】B【例3】若2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 【答案】分以下几种情况考虑:⑴22a b +=,2a b -=,此时43a =,23b =-; ⑵22a b +=,1a b -=,此时1a =,0b =; ⑶21a b +=,2a b -=,此时1a =,1b =-【巩固】已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值.【答案】本题有3种情况:22a b a b +=⎧⎨-=⎩;21a b a b +=⎧⎨-=⎩;12a b a b +=⎧⎨-=⎩;解得20a b =⎧⎨=⎩;3212a b ⎧=⎪⎪⎨⎪=⎪⎩;3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.题型二:一元二次方程根的考察关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。
(将根代入方程,这是很多同学都容易忽略的一个条件)【例4】关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.12【答案】B【例5】若m 是方程23220x x --=的一个根,那么代数式2312m m -+的值为________【解析】∵m 是方程23220x x --=的一个根, ∴23220m m --= 即2312m m -=,∴代数式23122m m -+=(像这样的恒等变形,很多学生掌握都不是很熟练)【答案】2【巩固】若两个方程20x ax b ++=和20x bx a ++=只有一个公共根,则( )A.a b =B.0a b +=C.1a b +=D.1a b +=-【解析】先确定方程的公共根,再将这个公共根代入某一方程,即可得a 、b 满足的关系式 【答案】设两方程的公共根为m ,则20m am b ++=①,20m bm a ++=②,①-②得,()0a b m b a -+-=,∴()a b m a b -=-,解得1m = 将1m =代入①得10a b ++= ∴1a b +=-选D【例6】一元二次方程22110a x ax a +-+-=()的一个根为0,则a =________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的判别式及韦达定理常见题型及注
意事项
一、一元二次方程跟的判别式的常见题型
题型1:不解方程,判断一元二次方程根的情况
.6232)3(;0123)2(;
0345)1(222x x x x x x =+=++=--
题型2:证明一元二次方程根的情况
求证:无论取何实数,关于的一元二次方程:总有两个不等实根。
题型3:已知一元二次方程根的情况,求方程中未知系数的取值范围
1.( 2011·重庆)已知关于x 的一元二次方程(a -1)x2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )
A.a<2 B,a>2 C.a<2且a≠1
D.a<-2·
变式1:(2010·安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足()
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5
注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
变式2:(2010 ·成都)若关于的一元二次方程有两个实数根,求的取值范围及的非负整数值.
变式3:已知关于x的一元二次方程有两个实数根,求的取值范围
二、一元二次方程根与系数的关系------韦达定理的常见题型
题型1:已知一元二次方程的一根,求另一根及未知系数的值
已知是方程的一根,则方程的另一根是,= 。
题型2:求与一元二次方程根有关的代数式的值;
1. 已知是方程的两根,计算:(1);⑵ ;⑶
变式:已知是方程的两实根,求的值
题型3:已知一元二次方程两根的关系,求方程中未知系数的取值1.关于的一元二次方程的两个实根的平方和等于9,求的值
变式1:(2011·荆州)关于的方程有两个不相等的实根、,且有,则的值是()
A.1 B.-1 C.1或-1 D. 2
注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。
故最后需验根
变式2:(2010·中山)已知一元二次方程.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为,,且+3=3,求m的值。
三、综合练习
1.(2010·贵州毕节)已知关于的一元二次方程有两个实数根和.
(1)求实数的取值范围;(2)当时,求的值.
2. (2011·四川南充市)关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
3.(2010·绵阳)已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2.
(1)求m的取值范围;
(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
4.(2010·孝感)关于x的一元二次方程、
(1)求p的取值范围;(2)若的值.
5.(2011·四川乐山)已知关于x的方程的两根为、,且满足.求的值。
6. (2010·孝感)已知关于x的方程x2-2(k-1)x+k2=0有两个
实数根x1,x2.
(1)求k的取值范围;(2)若,求k的值.。