89c51引脚图及功能中文资料
89C51单晶片接脚简介
89C51單晶片接腳簡介The 89C51 is a CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). We want to develop embedded control applications for the robot system of the telepresence agent project. For example, 89C51 can control motors with wireless devices. A PC can transmit data to 89C51 via RS232 serial port for controlling, communicating or receiving. This document is a basic introduction to 89C51.1. 89C51單晶片簡介圖1所示為89C51單晶片接腳圖,此單晶片由ATMEL公司所製造,可重複燒錄1000次以上。
89C51單晶片必須供應電壓,電源接腳為VCC(pin40)、GND(pin20),工作電壓在4V~6.6V之間,建議使用+5V電源供應器,可保持單晶片工作壽命。
圖1. 89C51單晶片接腳圖【1】89C51單晶片接腳簡介如下:PORT0PORT0包括P0.0~P0.7(pin39~pin32),主要有記憶體擴充位址∕資料匯流排、燒錄時的資料碼輸入與輸出、以及一般I/O等三個功能。
PORT1PORT1包括P1.0~P1.7(pin1~pin8),有燒錄時的低位元組位址與一般I/O 兩個功能。
PORT2PORT2包括P2.0~P2.7(pin21~pin28),有記憶體擴充時的高位元組位址匯流排、燒錄時的控制功能、以及一般I/O等三個功能。
AT89C51单片机的特性及管脚功能
AT89C51单片机的特性及管脚功能AT89C51是一种带4K 字节闪烁可编程可擦除只读存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案[4]。
1、主要特性:CPU 与MCS-51 兼容;4K 字节可编程FLASH 存储器(寿命:1000写/擦循环);全静态工作:0Hz-24KHz ;三级程序存储器保密锁定;128*8位内部RAM ;32条可编程I/O 线;两个16位定时器/计数器;6个中断源;可编程串行通道;低功耗的闲置和掉电模式;片内振荡器和时钟电路 2、AT89C51单片机的管脚功能采用HMOS 制造工艺的MCS-51单片机都采用40管脚双列直插式封装;而采用CHMOS 制造工艺的80C51/80C31,除采用40脚双列式直插式封装外,还有用方形的封装方式。
如图1-1所示为AT89C51单片机管脚图。
图1-1 AT89C51管脚图 各管脚功能说明如下:VCC :供电电压。
GND :接地。
P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL 门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH 编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O 口,P1口缓冲器(RXD)(TXD)(/INT0)(/INT1)(T0)(T1)能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
89c51引脚图及功能中文资料
89c51引脚图及功能89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
AT89C51的引脚功能和说明
AT89C51单片机各引脚图如下2-5所示:P1.0 ┫1 40┣ VccP1.1 ┫2 39┣ P0.0P1.2 ┫3 38┣ P0.1P1.3 ┫4 37┣ P0.2P1.4 ┫5 36┣ P0.3P1.5 ┫6 35┣ P0.4P1.6 ┫7 34┣ P0.5P1.7 ┫8 33┣ P0.6RST/Vpd ┫9 AT89C51 32┣ P0.7RXD P3.0 ┫10 31┣ -EA/Vpp(内1/外0 程序地址选择)TXD P3.1 ┫11 30┣ ALE/-P (地址锁存输出) -INT0 P3.2 ┫12 29┣ -PSEN (外部程序读选通输出)-INT1 P3.3 ┫13 28┣ P2.7T0 P3.4 ┫14 27┣ P2.6T1 P3.5 ┫15 26┣ P2.5-WR P3.6 ┫16 25┣ P2.4-RD P3.7 ┫17 24┣ P2.3X2 ┫18 23┣ P2.2X1 ┫19 22┣ P2.1GND ┫20 21┣ P2.0图2-5 AT89C51的引脚图AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图所示特性:与MCS-51 兼容·4K字节可编程闪烁存储器·寿命:1000写/擦循环·数据保留时间:10年·全静态工作:0Hz-24MHz ·三级程序存储器锁定·128×8位内部RAM ·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
(完整版)at89c51引脚图及功能
at89c51引脚图及功能AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
主要性能参数:·与MCS-51产品指令系统完全兼容·4k字节可重擦写Flash闪速存储器·1000次擦写周期·全静态操作:0Hz-24MHz ·三级加密程序存储器·128×8字节内部RAM ·32个可编程I/O口线·2个16位定时/计数器·6个中断源·可编程串行UART通道·低功耗空闲和掉电模式功能特性概述:AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
·P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。
作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
在FIash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。
89C51单片机引脚说明
89C51单片机引脚说明
1.8051的时钟有两种方式,一种是片内时钟振荡方式,但需在18和19脚外接石英晶体(2-12MHz)和振荡电容,振荡电容的值一般取10p-30p 。
另外一种是外部时钟方式,即将XTAL1接地,外部时钟信号从XTAL2脚输入。
2.Pin9:RESET/V pd 复位信号复用脚,当8051通电,时钟电路开始工作,在RESET 引脚上出现24个时钟周期以上的高电平,系统即初始复位。
8051的复位方式可以是自动复位,也可以是手动复位,此外,RESET/V pd 还是一复用脚,Vcc 掉电期间,此脚可接上备用电源, 以保证单片机内部RAM 的数据不丢失。
3.Pin29:PESN 当访问外部程序存储器时,此脚输出负脉冲选通信号,PC 的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU 读入并执行。
4.Pin30:ALE/当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。
而访问内部程序存储器时,ALE 端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。
如果单片机是EPROM ,在编程其间,PROG 将用于输入编程脉冲。
5.Pin31:EA/V PP 程序存储器的内外部选通线,8051和8751单片机,内置有4kB 的程序存储器,当EA 为高电平并且程序地址小于4kB 时,读取内部程序存储器指令数据,而超过4kB 地址则读取外部指令数据。
如EA 为低电平,则不管地址大小,一律读取外部程序存储器指令。
P3.6/P3.7/
ALE//VP /VP。
单片机引脚说明(89C51为例)
T89C2051是精简版的51单片机,精简掉了P0口和P2口,只有20引脚,但其内部集成了一个很实用的模拟比较器,特别适合开发精简的51应用系统,毕竟很多时候我们开发简单的产品时用不了全部32个I/O口,用AT89C2051更合适,芯片体积更小,而且AT89C2051的工作电压最低为2.7V,因此可以用来开发两节5号电池供电的便携式产品。
本文以ATMEL公司生产的51系列家族的AT89S51和AT89C2051两种单片机来讲解,两种单片机是目前最常用的单片机,其中 AT89S51为标准51单片机,当然其功能比早期的51单片机更强大,支持ISP在系统编程技术,内置硬件看门狗。
一、AT89S51单片机引脚介绍AT89S51有PDIP、PLCC、TQFP三种封装方式,其中最常见的就是采用40Pin 封装的双列直接PDIP封装,外形结构下图。
芯片共有40个引脚,引脚的排列顺序为从靠芯片的缺口(见右图)左边那列引脚逆时针数起,依次为1、2、3、4。
40,其中芯片的1脚顶上有个凹点(见右图)。
在单片机的40个引脚中,电源引脚2根,外接晶体振荡器引脚2根,控制引脚4根以及4组8位可编程I/O引脚32根。
1、主电源引脚(2根)VCC(Pin40):电源输入,接+5V电源GND(Pin20):接地线2、外接晶振引脚(2根)XTAL1(Pin19):片内振荡电路的输入端XTAL2(Pin20):片内振荡电路的输出端3、控制引脚(4根)RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。
ALE/PROG(Pin30):地址锁存允许信号PSEN(Pin29):外部存储器读选通信号EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。
芯片实物图片芯片引脚功能4、可编程输入/输出引脚(32根)AT89S51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。
c51引脚图及功能中文资料
89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
??1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
STC89C51单片机引脚功能介绍
C51单片机引脚功能介绍C51单片机引脚功能介绍单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。
⒈电源: ⑴VCC - 芯片电源,接+5V;⑵VSS - 接地端;⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。
⒊控制线:控制线共有4根,⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲①ALE功能:用来锁存P0口送出的低8位地址新门户②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。
⑵PSEN:外ROM读选通信号。
⑶RST/VPD:复位/备用电源。
①RST(Reset)功能:复位信号输入端。
②VPD功能:在Vcc掉电情况下,接备用电源。
⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。
①EA功能:内外ROM选择端。
②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。
⒋I/O线89C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。
P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。
拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。
1、电源:这当然是必不可少的了。
单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。
2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。
只要买来晶体震荡器,连上就能了,按下图1接上即可。
3、复位管脚:按下图1中画法连好。
EA管脚:EA管脚接到正电源端。
至此,一个单片机就接好,通上电,单片机就开始工作了。
我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个管脚相连,不然单片机就没法控制它了,单片机上除了刚才用掉的5个管脚,还有35个,我们将这个LED和1脚相连。
89C51引脚定义
P1~P3 接口:输出级接有内部上拉负载电阻,它们的每一位输出可驱动 4 个 LS 型 TTL 负载。端口只能提供几毫安的输出电流,故当作输出口去驱动一个普通晶体管的基极(或 TTL 电路输入端)时,应在他们 之间串联一个电阻,以限制高电平输出时的电流。作为输入口时,而无须外接上拉电阻。P1~P3 口都是准双向口,所以作为输入时,必须先对相应端口锁存器写 1。
89C51 引脚定义功能描述图
电源端,为+5V 普通 I/O+地址/数据接口,当把它用作通用 I/O 口时,输出级是开漏 只能作普通 I/O 接口,内部有上拉电阻,作输入时必须先向对应 的锁存器写入 1 使 FET 截止。作输出端口时直接写锁存器。 电路,故用其输出去驱动 NMO 输入时须外接上拉电阻;把它当作地址/ 数据总线时(片外扩展 ROM 或 RAM 的情况),则无须外接上拉电阻。 当用作输入时,应先向口锁存器(80H)写 1。 只有 P0 口的每一位输出可驱动 8 个 LS 型 TTL 负载。 外部 ROM 地址允许输入端/固化编程电压输入端, EA=1, 访问片内 ROM, 复位信号输入端,高电平有效,保持 2 个机器周期ቤተ መጻሕፍቲ ባይዱ 普通 I/O +第 2 输出功能接口,编程时,可不必事先由软件设置 P3 口为第一功能(通用 I/O 口)还是第二功能。进行 SFR 寻址 (位 或字节)访问时,由内部硬件自动将第二功能输出线 W 置 1; P3.0 RXD(串行口输入) P3.1 TXD(串行口输出) P3.2 INT0(外部中断 0 输入)P3.3 INT1(外部中断 1 输入) P3.4 T0(定时器 0 的外部输入)P3.5 T1(定时器 1 的外部输入) P3.6 WR(写选通控制输出) P3.7 RD(读选通控制输出) 接外部晶体和微调电容,采用外部时钟电路时,18 脚悬空,19 脚 输入外部时钟脉冲。可以用示波器检测 19 脚是否有脉冲信号输出 来检查振荡电路是否正常。 接地端 EA=0 访问片外 ROM,Flash ROM 编程时加 12V 的编程允许电压。 地址锁存允许信号端,示波器查看 ALE 端是否有脉冲信号输出确认芯 片好坏。PROG 作为对片内 ROM 写入时的编程脉冲输入端。 程序存储允许输出信号端, 取片外 ROM 指令时, 每个机器周期两次 PESN 有效;访问外部 RAM 时这两次有效信号都不出现。 普通 I/O +(高)地址接口,当 CPU 对片内存储器和 I/O 口进行读/写 时为一般 I/O 口;在只需扩展 256B 片外 RAM 的系统中,使用“MOVX A, @Ri”类指令访问片外 RAM 时,寻址范围是 256B,只需低 8 位地址线 就可以实现。P2 口不受该指令影响,仍可作通用 I/O 口。 当系统扩展片外 RAM 大于 256B 时需要高 8 位地址, 寻址范围超过 256B, 则 P2 只能用作地址总线。
89C51单片机引脚说明
;.1.8051的时钟有两种方式,一种是片内时钟振荡方式,但需在18和19脚外接石英晶体(2-12MHz)和振荡电容,振荡电容的值一般取10p-30p 。
另外一种是外部时钟方式,即将XTAL1接地,外部时钟信号从XTAL2脚输入。
2.Pin9:RESET/V pd 复位信号复用脚,当8051通电,时钟电路开始工作,在RESET 引脚上出现24个时钟周期以上的高电平,系统即初始复位。
8051的复位方式可以是自动复位,也可以是手动复位,此外,RESET/V pd 还是一复用脚,Vcc 掉电期间,此脚可接上备用电源, 以保证单片机内部RAM 的数据不丢失。
3.Pin29:PESN 当访问外部程序存储器时,此脚输出负脉冲选通信号,PC 的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU 读入并执行。
4.Pin30:ALE/当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。
而访问内部程序存储器时,ALE 端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。
如果单片机是EPROM ,在编程其间,PROG 将用于输入编程脉冲。
5.Pin31:EA/V PP 程序存储器的内外部选通线,8051和8751单片机,内置有4kB 的程序存储器,当EA 为高电平并且程序地址小于4kB 时,读取内部程序存储器指令数据,而超过4kB 地址则读取外部指令数据。
如EA 为低电平,则不管地址大小,一律读取外部程序存储器指令。
89C51单片机引脚说明 引脚号 引脚名称 引脚说明1~8 P1.0~P1.7 8位准双向并行I/O 口 。
9 RESET 上电复位(高电平时复位)。
RESET/Vpd 复位信号复用脚,当8051通电,时钟电路开始工作,在RESET 引脚上出现24个时钟周期以上的高电平,系统即初始复位。
8051的复位方式可以是自动复位,也可以是手动复位,此外,RESET/Vpd还是一复用脚,Vcc 掉电期间,此脚可接上备用电源, 以保证单片机内部RAM 的数据不丢失。
89c51引脚及功能
第二章89C51单片机硬件结构和原理--89C51单片机引脚及其功能主讲:武桐2.289C51单片机引脚及其功能一单片机的引脚◆89C51单片机采用40只引脚的双列直插封装DIP方式,Double In-line Package目前大多数为此类封装方式◆89C51除采用DIP封装外,还采用方形封装方式,为44只引脚图2.6 MCS - 51单片机引脚管脚图图MCS - 51单片机实物图2.289C51单片机引脚及其功能二单片机的引脚功能40只引脚按功能来分,可分为四部分电源引脚Vcc和Vss外接晶体时钟电路引脚XTAL1和XTAL2 控制信号引脚RST ALE PSEN EA输入/输出端口P0P1P2和P32.289C51单片机引脚及其功能二单片机的引脚功能电源引脚Vcc和Vss1.Vcc(40脚) 2.Vss(20脚) 电源端,+5V 接地端,GND2.289C51单片机引脚及其功能二单片机的引脚功能时钟电路引脚XTAL1和XTAL2时钟引脚外接晶体片内的相放大器构成了一个振荡器,它提供单片机的时钟控制信号时钟引脚也可外接晶体振荡器2.289C51单片机引脚及其功能时钟电路引脚XTAL1和XTAL2内部时钟方式振荡器2.289C51单片机引脚及其功能时钟电路引脚XTAL1和XTAL21XTAL1 (19脚)接外部晶体的一个引脚在单片机内部,它是一个相放大器的输入端这个放大器构成片内振荡器当采用引脚应接地外接晶体振荡器时,2XTAL2 (18脚)接外部晶体的另一端,在单片机内部,接至内部相放当采用外接晶体振荡器时,该引脚接收大器的输出端振荡器的信号2.289C51单片机引脚及其功能输入/输出端口P0P1P2和P34个8 并行I/O端口1P0口P0.0~P0.7◆◆◆漏极开路的8准向I/O口P0口可作一个数据输入/输出口在CPU访问片外存储器时,P0口线和8数据总线分时复用的8 地址总此时该口引脚浮空,可作高阻抗输入。
89C51单片机各接口简介
AT89C51单片机简介2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
第2章89C51单片机引脚及其功能
测量等。
工作模式
03
定时/计数器具有多种工作模式,可灵活配置以满足不同应用需
求。
04
89C51单片机引脚应用实例
电源电路设计
1 2
电源引脚
89C51单片机通常采用5V直流电源供电,电源引 脚包括VCC和GND。
电源滤波
为确保单片机稳定工作,需在电源输入端添加滤 波电容,一般选用10~100uF的电解电容。
THANKS
感谢观看
PSEN
外部程序存储器选通信号输出端。当访问外部程序存储器 时,PSEN端输出一个低电平有效的选通信号。
ALE/PROG
地址锁存允许/编程脉冲输入端。在访问外部存储器时, ALE端输出一个正脉冲用于锁存地址;在编程期间,此引 脚输入编程脉冲。
EA/VPP
外部访问允许/编程电源输入端。EA端用于控制对外部程 序存储器的访问;VPP端在编程期间提供+12V编程电源 。
等。
中断优先级
每个中断源都可设置不同的优 先级,确保重要中断得到及时
处理。
中断响应
当中断请求发生时,单片机会 根据中断优先级和当前状态决 定是否响应中断,并执行相应
的中断服务程序。
定时/计数器功能
89c51引脚图管脚图
89c51引脚图管脚图引脚功能说明89C51外部引脚图:(可以直接拷入ASM程序文件中,作注释使用,十分方便); ┏━┓┏━┓; P1.0 ┫1 ┗┛40┣Vcc; P1.1 ┫2 39┣P0.0; P1.2 ┫3 38┣P0.1; P1.3 ┫4 37┣P0.2; P1.4 ┫5 36┣P0.3; P1.5 ┫6 35┣P0.4; P1.6 ┫7 34┣P0.5; P1.7 ┫8 33┣P0.6; RST/Vpd ┫9 32┣P0.7; RXD P3.0 ┫10 31┣-EA/Vpp(内1/外0 程序地址选择); TXD P3.1 ┫11 30┣ALE/-P (地址锁存输出); -INT0 P3.2 ┫12 29┣-PSEN (外部程序读选通输出); -INT1 P3.3 ┫13 28┣P2.7; T0 P3.4 ┫14 27┣P2.6; T1 P3.5 ┫15 26┣P2.5; -WR P3.6 ┫16 25┣P2.4; -RD P3.7 ┫17 24┣P2.3; X2 ┫18 23┣P2.2; X1 ┫19 22┣P2.1; GND ┫20 21┣P2.0; ┗━━━━┛引脚说明:①电源引脚Vcc(40脚):典型值+5V。
Vss(20脚):接低电平。
②外部晶振X1、X2分别与晶体两端相连接。
当采用外部时钟信号时,X2接振荡信号,X1接地。
③输入输出口引脚:P0口:I/O双向口。
作输入口时,应先软件置“ 1”。
P1口:I/O双向口。
作输入口时,应先软件置“ 1”。
P2口:I/O双向口。
作输入口时,应先软件置“ 1”。
P3口:I/O双向口。
作输入口时,应先软件置“ 1”。
④控制引脚:RST/Vpd、ALE/-PROG、-PSEN、-EA/Vpp组成了MSC-51的控制总线。
RST/Vpd(9脚):复位信号输入端(高电平有效)。
第二功能:加+5V备用电源,可以实现掉电保护RAM信息不丢失。
ALE/-PROG(30脚):地址锁存信号输出端。
STC89C51引脚及相关参数
STC89C51引脚及相关参数主要性能:与MCS-51单片机产品兼容、8K字节在系统可编程Flash存储器、1000次擦写周期、全静态操作:0Hz~33Hz 、三级加密程序存储器、32个可编程I/O口线、三个16位定时器/计数器八个中断源、全双工UART串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看门狗定时器、双数据指针、掉电标识符。
功能特性描述STC89C52 是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单芯片上,拥有灵巧的8 位CPU 和在线系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
STC89C52具有以下标准功能:8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,STC89C52可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
8 位微控制器8K字节在系统可编程FlashP0 口:P0口是一个8位漏极开路的双向I/O口。
作为输出口,每位能驱动8个TTL逻辑电平。
对P0端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。
在这种模式下,P0具有内部上拉电阻。
在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。
程序校验时,需要外部上拉电阻。
P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。
STC89C51单片机引脚功能介绍
C51单片机引脚功能介绍C51单片机引脚功能介绍单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。
⒈电源: ⑴ VCC - 芯片电源,接+5V;⑵ VSS - 接地端;⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。
⒊控制线:控制线共有4根,⑴ ALE/PROG:地址锁存允许/片内EPROM编程脉冲① ALE功能:用来锁存P0口送出的低8位地址新门户② PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。
⑵ PSEN:外ROM读选通信号。
⑶ RST/VPD:复位/备用电源。
① RST(Reset)功能:复位信号输入端。
② VPD功能:在Vcc掉电情况下,接备用电源。
⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。
① EA功能:内外ROM选择端。
② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。
⒋ I/O线89C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。
P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。
拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。
1、电源:这当然是必不可少的了。
单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。
2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。
只要买来晶体震荡器,连上就能了,按下图1接上即可。
3、复位管脚:按下图1中画法连好。
EA管脚:EA管脚接到正电源端。
至此,一个单片机就接好,通上电,单片机就开始工作了。
我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个管脚相连,不然单片机就没法控制它了,单片机上除了刚才用掉的5个管脚,还有35个,我们将这个LED和1脚相连。
STC89C51单片机引脚功能介绍
C51单片机引脚功能介绍C51单片机引脚功能介绍单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。
⒈电源: ⑴VCC - 芯片电源,接+5V;⑵VSS - 接地端;⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。
⒊控制线:控制线共有4根,⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲①ALE功能:用来锁存P0口送出的低8位地址新门户②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。
⑵PSEN:外ROM读选通信号。
⑶RST/VPD:复位/备用电源。
①RST(Reset)功能:复位信号输入端。
②VPD功能:在Vcc掉电情况下,接备用电源。
⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。
①EA功能:内外ROM选择端。
②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。
⒋I/O线89C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。
P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。
拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们用的一块称之为89C51的芯片,下面我们就看一下如何给它连线。
1、电源:这当然是必不可少的了。
单片机使用的是5V电源,其中正极接40管脚,负极(地)接20管脚。
2、振蒎电路:单片机是一种时序电路,必须供给脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。
只要买来晶体震荡器,连上就能了,按下图1接上即可。
3、复位管脚:按下图1中画法连好。
EA管脚:EA管脚接到正电源端。
至此,一个单片机就接好,通上电,单片机就开始工作了。
我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个管脚相连,不然单片机就没法控制它了,单片机上除了刚才用掉的5个管脚,还有35个,我们将这个LED和1脚相连。
89c51引脚图及功能中文资料
89c51引脚图及功能89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
89C51中文手册
概述该系列单片机是采用高性能的静态80C51设计由先进CMOS工艺制造并带有非易失性Flash程序存储器全部支持12时钟和6时钟操作P89C51X2和P89C52X2/54X2/58X2分别包含128字节和256字节RAM32条I/O口线3个16位定时/计数器6输入4优先级嵌套中断结构1个串行I/O口可用于多机通信I/O扩展或全双工UART以及片内振荡器和时钟电路此外由于器件采用了静态设计可提供很宽的操作频率范围频率可降至0可实现两个由软件选择的节电模式空闲模式和掉电模式空闲模式冻结CPU但RAM定时器串口和中断系统仍然工作掉电模式保存RAM的内容但是冻结振荡器导致所有其它的片内功能停止工作由于设计是静态的时钟可停止而不会丢失用户数据运行可从时钟停止处恢复选型表特性特性y 80C51核心处理单元4k字节FLASH89C51X28k字节FLASH89C52X216k字节FLASH89C54X232k字节FLASH89C58X2128字节RAM89C51X2256字节RAM89C52X2/54X2/58X2布尔处理器全静态操作y 12时钟操作可选6个时钟通过软件或并行编程器y 存储器寻址范围64K字节ROM和64K字节RAMy 电源控制模式―时钟可停止和恢复―空闲模式―掉电模式y 两个工作频率范围6时钟模式时为0到20MHz12时钟模式时为0到33MHzy LQFP, PLCC或DIP封装y 扩展温度范围y 双数据指针y 3个加密位y 4个中断优先级y 6个中断源y 4个8位I/O口y 全双工增强型UART―帧数据错误检测―自动地址识别y 3个16位定时/计数器T0T1标准80C51和增加的T2捕获和比较y 可编程时钟输出y 异步端口复位y 低EMI (禁止ALE以及6时钟模式)y 掉电模式可通过外部中断唤醒订购信息P89C51X24K字节FLASH类型编号封装温度范围()P89C51X2BA PLCC44 0~+70P89C51X2BN DIP40 0~+70P89C51X2BBD LQFP44 0~+70P89C51X2FA PLCC44 -40~+85 P89C52X28K字节FLASH类型编号封装温度范围()P89C52X2BA PLCC44 0~+70P89C52X2BN DIP40 0~+70P89C52X2BBD LQFP44 0~+70P89C52X2FA PLCC44 -40~+85 P89C52X2FN DIP40 -40~+85 P89C52X2FBD LQFP44 -40~+85 P89C54X216K字节FLASH类型编号封装温度范围()P89C54X2BA PLCC44 0~+70P89C54X2BN DIP40 0~+70P89C54X2BBD LQFP44 0~+70P89C54X2FA PLCC44 -40~+85 P89C58X232K字节FLASH类型编号封装温度范围()P89C58X2BA PLCC44 0~+70P89C58X2BN DIP40 0~+70P89C58X2BBD LQFP44 0~+70P89C58X2FA PLCC44 -40~+85B=07040+85下表所示为操作模式电源电压以及最大外部时钟频率之间的关系操作模式电源电压最大时钟频率6-clock 5V10% 20MHz 12-clock 5V10% 33MHz框图1逻辑符号PLCC和CLCC封装及管脚功能DIP 封装及管脚功能 LQFP 封装及管脚功能管脚描述 管脚号名称 DIP LCC QFP 类型 名称和功能Vss 20 22 16I地 Vcc 40 44 38 I电源提供掉电空闲正常工作电压P0.0-0.739-32 43-36 37-30 I/O P0口 P0口是开漏双向口可以写为1使其状态为悬浮用作高阻输入P0也可以在访问外部程序存储器时作地址的低字节在访问外部数据存储器时作数据总线此时通过内部强上拉输出1P1.0-1.7 1-8 1 22-92 340-44 1-3I/O P1口 P1口是带内部上拉的双向I/O 口向P1口写入1时P1口被内部上拉为高电平可用作输入口当作为输入脚时被外部拉低的P1口会因为内部上拉而输出电流(见DC 电气特性)P1口第2功能T2(P1.0) 定时/计数器2的外部计数输入/时钟输出(见可编程输出)T2EX(P1.1)定时/计数器2重装载/捕捉/方向控制P2.0-2.7 21-28 24-31 18-25 I/O P2口 P2口是带内部上拉的双向I/O 口向P2口写入1时P2口被内部上拉为高电平可用作输入口当作为输入脚时被外部拉低的P2口会因为内部上拉而输出电流(见DC 电气特性)在访问外部程序存储器和外部数据时分别作为地址高位字节和16位地址(MOVX @DPTR)此时通过内部强上拉传送1当使用8位寻址方式(MOV@Ri)访问外部数据存储器时,P2口发送P2特殊功能寄存器的内容P3口P3口被内部上拉为高电平可用作输入口输入脚时口会因为内部上拉而输出电电气特性)串行输入口INT0(P3.2)INT1(P3.3)WR(P3.6)当晶振在运行中期高电平即可复位内部有扩散电阻连接到VssVcc输出脉冲锁存地在正常情况下ALE输出信号恒定为并可用作外部时钟或定时注意每次访问外部数据时一个ALE可以通过置位ALE只能在执行程序存储使能当执行外部程序存储器代码时个机器周期被激活两次在访问外部数据存储器时访问内部程序存储器时外部寻址使能在访问整个外部程序存储器时如果EA将执行内部程序除非程序计数器包含大于片内FLASH的地址该引脚在(Vpp)如果保密位已编程在复位时由内部锁存反相振荡放大器输入和内部时钟发生电路输入反相振荡放大器输出注: 为了避免上电时的”latch-up”效应任意管脚Vpp除外上的电压任何时候都不能高于Vcc+0.5V低于Vss-0.5V表1 P89C51X2/52X2/54X2/58X2 特殊功能寄存器双字节指针高字节*号的#80C51修改而来或新增加的表示保留位1复位值由复位源确定存储器的内容存储单先进的沟道氧化工艺和低内部电场的结合使擦除和编程操作特性y 可编程加密位y 每字节最少10000次擦除/编程周期 y 数据最少可保存10年y 从一般销售商处可获得编程支持振荡器特性XTAL1和XTAL2为输入和输出可分别作为一个反相放大器的输入和输出此管脚可配置为使用内部振荡器要使用外部时钟源驱动器件时XTAL2可以不连接而由XTAL1驱动外部时钟信号无占空比的要求因为时钟通过触发器二分频输入到内部时钟电路但高低电平的最长和最短时间必须符合手册的规定时钟控制寄存器CKCON该器件提供通过一个SFR 位CKCON 的X2位和一个Flash 位保密块中的FX2控制选择6时钟/12时钟模式当X2置0时12时钟模式有效该位置1时系统切换到6时钟模式由于该功能是通过SFR 位实现的因此可以随时访问并修改需要注意的是将X2从0改为1将导致用户代码以两倍的速度执行因为所有的系统时间间隔都变成原来的1/2从6时钟模式变为12时钟模式会将运行代码的速度降低为1/2Flash 时钟控制位FX2可通过并行编程器编程取代X2位实现6时钟模式见表2表2FX2时钟模式位只能通过并行编程器设置X2位CKCON.0CPU 时钟模式擦除 0 12时钟模式默认擦除 1 6时钟模式 编程 X 6时钟模式可编程时钟输出可从P1.0编程输出50%占空比的时钟信号P1.0除了作为常规I/O 口外还有两个可选功能它可编程为1用于定时/计数器2的外部时钟输入2使用16MHz操作频率时12时钟模式下输出50%占空比的61Hz~4MHz时钟信号6时钟模式时为122Hz~8MHz要将定时/计数器2配置为时钟发生器C/T2(T2CON.1)必须清零而T2MOD中的T20E位必须置位要启动定时器2还必须将TR2(T2CON.2)置位时钟输出频率由振荡器频率和定时器2捕获寄存器的重新装入值确定公式如下振荡器频率n65536RCAP2H,RCAP2L此处n = 166时钟模式或3212时钟模式RCAP2H,RCAP2L RCAP2H和RCAP2L的内容作为一个16位无符号整数在时钟输出模式中定时器2的翻转将不会产生中断这和它作为波特率发生器时相似定时器2可同时作为波特率发生器和时钟发生器但需要注意的是波特率和时钟输出频率相同复位在振荡器工作时将RST脚保持至少两个机器周期高电平12时钟模式为24个振荡器周期6时钟模式为12振荡器周期可实现复位为了保证上电复位的可靠RST保持高电平的时间至少为振荡器启动时间通常为几个毫秒再加上两个机器周期复位后振荡器以12时钟模式运行当已通过并行编程器设置为6时钟模式时除外低功耗模式时钟停止模式静态设计使时钟频率可以降至0MHz(停止)当振荡器停振时RAM和SFR的值保持不变该模式允许逐步应用并可将时钟频率降至任意值以实现系统功耗的降低如要实现最低功耗则建议使用掉电模式空闲模式空闲模式见表3中CPU进入睡眠状态但片内的外围电路仍然保持工作状态正常操作模式的最后一条指令执行进入空闲模式空闲模式下CPU内容片内RAM和所有SFR保持原来的值任何被使能的中断此时程序从中断服务程序处恢复并继续执行或硬件复位与上电复位使用相同的方式启动处理器均可终止空闲模式掉电模式为了进一步降低功耗通过软件可实现掉电模式(见表3)该模式中振荡器停振并且在最后一条指令执行进入掉电模式降到2.0V时片内RAM和SFR保持原值在退出掉电模式之前Vcc必须升至规定的最低操作电压硬件复位或外部中断均可结束掉电模式硬件复位使所有的SFR重新设置但不改变片内RAM的值外部中断允许SFR和片内RAM都保持原值WUPD AUXR1.3从掉电唤醒使能或禁止通过外部中断唤醒掉电WUPD0禁止WUPD=1使能要正确退出掉电模式在Vcc恢复到正常操作电压范围之后复位或外部中断开始执行并且要保持足够长的时间 ( 通常小于10ms )以使振荡器重新启动并稳定下来使用外部中断退出掉电模式时INT0和INT1必须使能且配置为电平触发将管脚电平拉低使振荡器重新启动退出掉电模式后将管脚恢复为高电平一旦中断被响应RETI之后所执行的是进入掉电模式指令的后一条指令表3 空闲模式和掉电模式时外部管脚的状态器件在内部复位之前从停止处恢复程序正常运行时间为这段时间内片内硬件禁止对内部RAM但对当Idle模式被复位所中为了消除可能产生的误写操作应用模式指令后的指令不应执行写I/O口或写外部存储器操作进入件将ALE保持低电平模式时口处于悬浮状态持工作状态器件处于该模式时可用仿真器或测试CPU驱动电路执行正常复位时恢复正常操作定时器0和1的操作定时器0和1定时和计数功能由特殊功能寄存器TMOD的控制位C/T进行选择这两个定时/计数器有4种操作模式通过TMOD的M1和M0选择两个定时/计数器的模式01和2都相同模式3不同如下所述模式0将定时器设置成模式0时类似8048定时器即8 位计数器带32分频的预分频器图2所示为模式0工作方式此模式下定时器寄存器配置为13位寄存器当计数从全为1翻转为全为0时定时器中断标志位TFn置位当TRn=1同时GATE=0或INTn=1时定时器计数置位GATE时允许由外部输入INTn 控制定时器这样可实现脉宽测量TRn为TCON寄存器内的控制位图3该13位寄存器包含THn全部8个位及TLn的低5位TLn的高3位不定可将其忽略置位运行标志TRn不能清零此寄存器模式0的操作对于定时器0及定时器1都是相同的两个不同的GATE位TMOD.7和TMOD.3分别分配给定时器0及定时器1模式1模式1除了使用了THn及TLn全部16位外其它与模式0相同模式2此模式下定时器寄存器作为可自动重装的8位计数器TLn如图4所示TLn的溢出不仅置位TFn而且将THn内容重新装入TLn THn内容由软件预置重装时THn内容不变模式2的操作对于定时器0及定时器1是相同的模式3在模式3中定时器1停止计数效果与将TR1设置为0相同此模式下定时器0的TL0及TH0作为两个独立的8位计数器图5为模式3时的定时器0逻辑TL0C/T GATETR0TH0TF1此时TH0控制定时器中断可用于需要一个额外的位定时器的场合定时器时80C513个定时计数器当定时器时定时器可通过开关进入它仍可用作串行端口的波特或者应用于任何不要求中断的场合复位值2 1 0 置位时只有在计数器清零时计数器用作定时器或计数器清零则用作定时器从内部系统时钟输入置位用作计数器从脚输入定时器模式选择定时器模式无预分频器当溢出时将计数器控制位控制1控制位控制图1 定时/计数器0/1模式控制寄存器TMOD图2 定时/计数器0/1的模式013位定时/计数器InterruptTCON 地址88H 7 6 5 4 3 2 1 0 可位寻址 复位值00HTF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0位符号功能TCON.7 TF1定时器1溢出标志定时/计数器溢出时由硬件置位中断处理时由硬件清除或用软件清除TCON.6 TR1定时器1运行控制位由软件置位/清零将定时/计数器打开/关闭TCON.5 TF0定时器0溢出标志定时/计数器溢出时由硬件置位中断处理时由硬件清除或用软件清除TCON.4 TR0定时器0运行控制位由软件置位/清零将定时/计数器打开/关闭 TCON.3 IE1 中断1边沿触发标志当检测到外部中断1边沿时由硬件置位中断处理时清零TCON.2 IT1 中断1触发类型控制位由软件置位/清零以选择外部中断以下降沿/低电平方式触发TCON.1 IE0 中断0边沿触发标志当检测到外部中断0边沿时由硬件置位中断处理时清零TCON.0 IT0 中断0触发类型控制位由软件置位/清零以选择外部中断以下降沿/低电平方式触发图3 定时器/计数器控制寄存器TCON图4 定时/计数器0/1的模式28位自动重装Interrupt通过设置特殊功能寄存器位可将其作为定时见图6定时器有三种操作模式捕获递增或递减计数和波特率发生这三种模式由T2CON 中的位进行选择见表3捕获模式 通过EXEN2设置两个选项如果定时器16位由T2CON TF2溢出标志位该位可用于产生IE 中断使能位如果EXEN21与以上描述相同即外部输入时将定时器2TL2和的当前值各自捕获到RCAP2L EXF22溢出中断地址相同定时器中断服务程序通过查询来确定引起中断的事件捕获模式如图在该模式中TL2计数器仍以的负跳变或振荡频率的1/12或6时钟模式递增递减计数器位自动重装模式中2可通过C/T2配置为定时器计数的方向是由DCEN 递减计数使能位确定的DCEN 位于T2MOD 寄存器见图8中当DCEN 0时定时器2默认为向上计数当DCEN 1时定时器2可通过T2EX 确定递增或递减计数图9显示了当DCEN 0时定时器2自动递增计数在该模式中通过设置EXEN2位进行选择如果EXEN2定时器2递增计数到0FFFFH 并在溢出后将TF2置位然后将RCAP2L 和RCAP2H 中的16位值作为重新装载值装入定时器2RCAP2L 和RCAP2H 的值是通过软件预设的如果EXEN2116位重新装载可通过溢出或T2EX 从10的负跳变实现此负跳变同时将EXF2置位如果定时器2中断被使能则当TF2或EXF2置1时产生中断在图10中DCEN 1时定时器2可递增或递减计数此模式允许T2EX 控制计数的方向当T2EX 置1时定时器2递增计数计数到0FFFFH 后溢出并置位TF2还将产生中断如果中断被使能定时InterruptInterrupt器2的溢出将使RCAP2L 和RCAP2H 中的16位值作为重新装载值放入TL2和TH2当T2EX 置零时将使定时器2递减计数当TL2和TH2计数到等于RCAP2L 和RCAP2H 时定时器产生溢出定时器2溢出置位TF2并将0FFFFH 重新装入TL2和TH2当定时器2递增/递减产生溢出时外部标志位EXF2翻转如果需要可将EXF2位作为第17位在此模式中EXF2标志不会产生中断表4 定时器2工作方式图6 定时器/计数器2T2CON 控制寄存器溢出标志定时器溢出时置位必须由软件清除当TCLK 1时TF2将不会置位外部标志当EXEN21且的负跳变产生捕获或重装时置位定时器2中断使能时EXF21从中断向量处执行中断子程序EXF2位必须用软件清零在递增式DCEN 1中EXF2不会引起中断接收时钟标志RCLK 置位时定时器的溢出脉冲作为串行口模式模式的接收时钟RCLK 0时将定时器的溢出脉冲作为接收时钟发送时钟标志TCLK 置位时定时器和的发送时钟TCLK 0时将定时器的溢出脉冲作为发送时钟外部使能标志当其置位且定时器未作为串行口时钟时允的负跳变产生捕获或重装EXEN20时T2EX 的跳变对定时无效启动停止控制位置时启动定时器计数器选择定时器20内部定时器OSC/12或OSC/61外部事件计数器下降沿触发重装标志置位EXEN21T2EX 的负跳变产生捕获清零EXEN21时定时器2溢出或的负跳变都可使定时器自动重装RCLK 1TCLK 1时该位无效且定时器强制为溢出时自动重装图7 定时器2捕获模式保留将来之用2输出使能位定时器这些位在将来8051这种情况下以后用到复位时或非有效状态时而这些位为有效状态时它的值为1从保留位读到的值是不确定的图8 定时器2模式T2MOD 控制寄存器图9 定时器2自动重装模式DCEN=0EXEN 2T imer 2InterruptEXEN 2T IME R2图10 定时器2自动重装模式DCEN=1图11 定时器2波特率发生器模式波特率发生器模式寄存器T2CON 的位TCLK 和或RCLK 见表3允许从定时器1或定时器2获得串行口发送和接收的波特率当TCLK=0时定时器1作为串行口发送波特率发生器当TCLK=1时定时器2作为串行口发送波特率发生器RCLK 对串行口接收波特率有同样的作用通过这两位串行口能得到不同的接收和发送波特率 一个通过定时器1产生另一个通过定时器2产生图11所示为定时器2工作在波特率发生器模式与自动重装模式相似当TH2溢出时波特率发生器模式使定时器2寄存器重新装载来自寄存器RCAP2H 和RCAP2L 的16位的值寄存器RCAP2H 和RCAP2LR 的值由软件预置当工作于模式1和模式3时波特率由下面给出的定时器2溢出率所决定定时器2溢出速率16定时器可配置成定时或计数方式在许多应用上定时器被设置在定时方式C/T2*=0当定时器2作为定时器时它的操作不同于波特率发生器通常定时器2作为定时器它会在每个机器周期递增1/6或1/12振荡频率当定时器2作为波特率发生器时它会在每个状态周期递增例如1/2振荡频率这样波特率公式如下模式1和模式3的波特率=(UP C OUNTING R E LOADV ALUE)T2EX PINEXEN 2RXClock TXClockT imer 1OverflowNote availability of additional external interrupt.[65536n = 166或12时钟模式RCAP2H,RCAP2L)=RCAP2H 的内容为11所示定时器作为波特率发生器仅当寄存器RCLK 和或TCLK=1定作为波特率发生器才有效溢出并不置位TF2也不产生中断这样当定时器中断不必被禁止外部使能标志被置位在中1的转换会置位EXF2T2外部标志位但并不导致TH2重装载RCAP2H RCAP2L因当定时器用作波特率发生器时如果需要可用作附加的外部中断当计时器工作在波特率发生器模式下,则不要对TH2和进行读写每隔一个状态时间或定时器在此情况下对进行读写是不准确的可对RCAP2但不要进行写否则将导致自动重装错误当对定时器进行访问时应关闭定清零表列出了常用的波特率和如何用定时器得到这些波特率表由定时器外部时钟信号由波特率为2溢出率则波特率为[n[65536(RCAP2H,RCAP2L)]]此处 n = 166时钟模式或3212时钟模式f OSC = 振荡器频率 自动重装值可由下式得到RCAP2H,RCAP2L=65536-[fosc/(n波特率)]定时器/计数器2的设置除了波特率发生器模式T2CON 不包括TR2位的设置TR2位需单独设置来启动定时器表6表7给出了T2作为定时器和计数器的设置表6 T2作为定时器T2CON模式内部控制注1外部控制注216位重装00H 08H16位捕获01H 09H波特率发生器接收和发送相同波特率34H 36H只接收24H 26H只发送14H 16H 表7 T2作为计数器TMOD模式内部控制注1外部控制注216位02H 0AH自动重装03H 0BH注1.仅当定时器溢出时进行捕获和重装2.当定时/计数器溢出并且T2EX(P1.1)发生电平负跳变时产生捕获和重装定时器2用于波特率发生器模式除外全双工增强型UART标准UART操作串口为全双工结构表示可以同时发送和接收它还具有接收缓冲在第一个字节从寄存器读出之前可以开始接收第二个字节但是如果第二个字节接收完毕时第一个字节仍未读出其中一个字节将会丢失串口的发送和接收寄存器都是通过SFR SBUF进行访问的写入SBUF的数据装入发送寄存器对SBUF 的读操作是对物理上分开的接收寄存器进行访问串口有4种操作模式模式0串行数据通过RxD进出TxD输出时钟每次发送或接收以LSB最低位作首位每次8位波特率固定为MCU时钟频率的1/12模式1TxD脚发送RxD脚接收每次数据为10位一个起始位08个数据位LSB在前及一个停止位1当接收数据时停止位存于SCON的RB8内波特率可变由定时器1溢出速率决定模式2TxD脚发送RxD脚接收每次数据为11位一个起始位08个数据位LSB在前一个可编程第9位数据及一个停止位1发送时第9个数据位SCON内TB8位可置为0或1例如将奇偶位PSW内P位移至TB8接收时第9位数据存入SCON的RB8位停止位忽略波特率可编程为MCU时钟频率的1/32或1/64由PCON内SMOD1位决定模式3TxD脚发送RxD脚接收每次数据为11位一个起始位08个数据位LSB为首位一可编程的第9位数据及一个停止位1事实上模式3除了波特率外均与模式2相同其波特率可变并由定时器1溢出率决定在上述4种模式中发送过程是以任意一条以写SBUF作为目标寄存器的指令开始的模式0时接收通过设置R1=0及REN=1初始化其它模式下如若REN=1则通过起始位初始化多机通信UART模式2及模式3有一个专门的应用领域即多机通信在这些模式时接收为9位数据第9位存入RB8接下来为停止位UART可编程为接收到停止位时仅当RB8=1时串口中断才有效可通过置位SCON内SM2位来选择这一特性下述为多机系统利用这一特性的一种方法当主机需要发送一数据块给数台从机之一时首先发送出一个地址字节对目标从机进行识别地址与数据字节通过第9位数据区别其中地址字节的第9位为1而数据字节为0SM2=1时数据字节不会使各从机产生中断而地址字节则令所有从机中断这样各从机可以检查接收到的数据判断是否被寻址被寻址的从机即可清除SM2位以准备接收随后数据内容未被寻址的从机的SM2位仍为1则不理睬随后数据继续各自工作模式0时SM2无效模式1时SM2用于检验停止位是否有效在模式1时如果SM2=1那么只有接收到有效的结束位才可产生接收中断串行端口控制寄存器SCON串行端口控制及状态寄存器即SCON如图12所示其中包括模式选择位以及发送和接收的第9位数据TB8及RB8以及串行端口中断位TI及RISCON 地址98H7 6 5 4 3 2 1 0可位寻址复位值 00H SM0/FE SM1 SM2 REN TB8 RB8 TI RI 位符号功能SCON.7 FE 帧错误位当检测到一个无效停止位时通过UART接收器设置该位但它必须由软件清零要使该位有效PCON寄存器中的SMOD0位必须置1SCON.7 SM0 和SM1定义串口操作模式要使该位有效PCON寄存器中的SMOD0必须置0SCON.6 SM1 和SM0定义串行口操作模式见下表SM0 SM1 UART模式波特率0 0 0同步移位寄存器fosc/12或fosc/6取决于时钟模式0 1 18位UART 可变1 0 29位UART fosc /64或fosc /321 1 39位UART 可变SCON.5 SM2 在模式2和3中多处理机通信使能位在模式2或3中若SM2=1且接收到的第9位数据RB8是0则RI接收中断标志不会被激活在模式1中若SM2=1且没有接收到有效的停止位则RI不会被激活在模式0中SM2必须是0SCON.4 REN 允许接收位由软件置位或清除REN=1时允许接收REN=0时禁止接收SCON.3 TB8 模式2和3中发送的第9位数据可以按需要由软件置位或清除SCON.2 RB8 模式2和3中已接收的第9位数据在模式1中或sm2=0RB8是已接收的停止位在模式0中RB8未用SCON.1 TI 发送中断标志模式0中在发送完第8位数据时由硬件置位其它模式中在发送停止位之初由硬件置位在任何模式中都必须由软件来清除TISCON. 0 RI 接收中断标志模式0中接收第8位结束时由硬件置位其它模式中在接收停止位的中间时刻由硬件置位在任何模式(SM2所述情况除外)必须由软件清除RI图12 串行控制寄存器SCON波特率操作模式0的波特率是固定的为fosc/12模式2的波特率是MCU 时钟/64或MCU 时钟/32取决于PCON 寄存器中的SMOD1位的值若SMOD1=0复位值波特率为MCU 时钟/64若SMOD1=1波特率为MCU时钟/32在80C51中模式1和模式3的波特率由定时器1的溢出速率决定使用定时器1作波特率发生器 当定时器1用作波特率发生器模式1和3中波特率由定时器1的溢出速率和SMOD1的值决定在此应用中定时器1不能用作中断定时器1可以工作在定时或计数方式和3种工作模式中任何一个在最典型应用中它用作定时器方式工作自动重装载模式TMOD 的高半字节为0010B 它的波特率值由下式给出可以定时器1的中断实现非常低的波特率将定时器配置为16位定时器TMOD 的高半字节为0001B并使用中断进行16位软件重装图13列出了几个常用的波特率以及如何从定时器1获得OS C20 MHz X SMOD图13 由定时器1产生的通用波特率UART 模式0串行数据由RxD 端出入TxD 输出同步移位时钟发送或接收的是8位数据低位在先其波特率固定为MCU 时钟的1/12图14是串行口模式0的功能方框简图及相关的时序图执行任何一条把SBUF 作为目的寄存器的指令时就开始发送S6P2时刻的写SBUF 信号将1装入发送移位寄存器的第9位并通知发送控制部分开始发送写SBUF 信号有效后一个完整的机器周期后SEND 端有效SEND 使能RxD P3.0端送出数据TxD P3.1输出移位时钟每个机器周期的S3S4及S5状态内移位时钟为低电平而S6S1及S2状态内为高在SEND 有效时每一机器周期的S6P2时刻发送移位寄存器的内容右移一位数据位向右移时左边添加零当数据字节最高位MSB 移到移位寄存器的输出端时其左边是装入1的第9位再左的内容均为0, 此时通知Tx 控制模块进行最后一位移位处理后禁止SEND 并置位T1, 所有这些步骤均在写入SBUF 后第10个机器周期的S1P1时进行的接收初始化条件是REN=1及R1=0下一机器周期的S6P2时RX 控制单元向接收移位寄存器写入1111 1110并在下一个时钟使RECEIVE 端有效RECEIVE 使能移位时钟转换P3.1功能移位时钟在每个机器周期的S3P1及S6P1跳变在RECEIVE 有效时每一机器周期的S6P2时刻接收移位寄存器内容向左移一位从右移位进来的值是该机器周期S5P2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
89c51引脚图及功能
89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:
·与MCS-51 兼容
·4K字节可编程闪烁存储器
寿命:1000写/擦循环
数据保留时间:10年
·全静态工作:0Hz-24Hz
·三级程序存储器锁定
·128*8位内部RAM
·32可编程I/O线
·两个16位定时器/计数器
·5个中断源
·可编程串行通道
·低功耗的闲置和掉电模式
·片内振荡器和时钟电路
2.管脚说明:
VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉
高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地
址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出
电流(ILL)这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:
口管脚备选功能
P3.0 RXD(串行输入口)
P3.1 TXD(串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR(外部数据存储器写选通)
P3.7 /RD(外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
RST:复位输入。
当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时,ALE只有
在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态
ALE禁止,置位无效。
/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN 有效。
但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H- FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。
在FLASH 编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.振荡器特性:
XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。
石晶振荡和陶瓷振荡均可采用。
如采用外部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。
4.芯片擦除:
整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。
在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作
必须被执行。
此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。
在闲置模式下,CPU停止工作。
但RAM,定时器,计数器,串口和中断系统仍在工作。
在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。
5.结构特点:
8位CPU;
片内振荡器和时钟电路;
32根I/O线;
外部存贮器寻址范围ROM、RAM64K;
2个16位的定时器/计数器;
5个中断源,两个中断优先级;
全双工串行口;
布尔处理器;。