重庆中考数学26题专项
重庆中考数学26题专项.doc
中考26题第二小问专项讲解第一大类:线段最大值一、基本题型:_ _丄2 3 9例1:如图,抛物线J = _7X +T X + 2与兀轴交于A.B两点,与y轴交于C点, P为抛物线上BC±方的一点。
1、过点P作y轴的平行线交BC于M,求PM的最大值。
2、过点P作X轴的平行线交BC于M,求PM的最大值。
二、变式题型1:过点P作y轴的平行线交BC于M,作PN丄BC于N。
3、求PN的最大值,PM+PN的最大值。
4、求APMN周长的最大值。
5、求APMN面积的最大值。
三、变式题型2:P为抛物线上E C上方的一点。
D为E C延长线上的一点且C D = B C 6、求APBC面积的最大值。
7、求APDC面积的最大值。
例2:如图,抛物线与y = -yx2+|x + 2兀轴交于4, B两点,与y轴交于C点,P为抛物线的顶点。
1、M是BC上的一点,求PM + AM最小时M点的坐标。
2、D为点C关于x轴的对称点,M是BC±的一点,求DM+PM最小时M点的坐标。
3、M是BC上的一点,N是AC上的一点,求° OMN周长的最小值及M点的坐标。
4、M. N为直线B C±的动点,N在下方且MN = V5 ,最小值。
5、M. N为直线BC上的动点,N在下方且MN = V5 , D在抛物线上且在D与C对称。
求四边形PMND周长的最小值。
6、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N A的最小值。
7、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N B的最小值。
8、M为对称轴上的一点,N为y轴上一点,D在抛物线上且在D与C对称。
求OM + MN + N D第二大类: 线段和的最小值9、M为EC上的一点,求PM + 討的最小值。
求PM + MN + AN 的10、D在抛物线上且在D与C对称,在BC±找一点N, M是x轴上的一点。
重庆中考第26题专题专训(教师版)
重庆中考数学第26题专题专训1.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.解:(1)当y=0时,﹣x2﹣x﹣2=0,解这个方程,得:x1=﹣6,x2=﹣1,∴点A(﹣6,0),B(﹣1,0),当x=0时,y=﹣2,∴C(0,﹣2),设直线AC的解析式为:y=ax+b(a≠0),将点A(﹣6,0),C(0,﹣2)代入得:,∴,∴直线AC的解析式为:y=﹣x﹣2;(3分)(2)如图1,过点P作PE∥y轴交直线AC于点E,设P(a,﹣),则点E(a,﹣﹣2),∴PE=(﹣)﹣(﹣﹣2)=﹣﹣2a,∵AO=6,OC=2,∴AC===2,∵∠PDE=∠AOC=90°,∠PED=∠ACO,∴△PDE∽△AOC,∴=,∴PD=PE==﹣﹣,对称轴是:a=﹣3,∵﹣,∴当a=﹣3时,PD的长度最大,此时点P的坐标为(﹣3,2),如图1所示,在x轴上取点F(1,0),连接CF并延长,∴CF===3,∴sin∠OCF==,点M是y轴上一点,过点M作MH⊥CF于点H,由△CHM∽△COF,可知:=,∵t==PM+MH,如图2,当P、M、H在同一直线上时,t的值最小,此时,过P作PK⊥y轴于K,由△PKM∽△COF,可知:=2,∴KM=,∴M(0,),(7分)(3)如图3,当四边形ACSO'是菱形时,过S作SG⊥y轴于G,延长O'C'交x轴于H,∵四边形ACSO'是菱形,∴AO'=AC=SC,AO'∥SC,∴∠AMC=∠BCS,∴∠AO'H+∠MC'O'=∠BCO+∠OCS,∵∠MC'O'=∠BCO,∴∠AO'H=∠OCS,∵∠AHO'=∠CGS,∴△O'AH≌△CSG,∴AH=SG,O'H=CG,Rt△OCB中,sin∠OCB==,∴sin∠BC'H==,设BH=x,则BC'=3x,∴C'H=2x,∴AH=SG=5﹣x,∵O'C'=OC=2,∴C'H=OG=2x,由勾股定理得:AC2=O'A2,∴AO2+OC2=O'H2+AH2,∴=(5﹣x)2+(2+2x)2,解得:x=,当x=时,SG=5﹣x=,OG=2x=,当x=<0时,不符合题意,舍去,SG=5﹣x=,OG=2x=,此时S的坐标为:或;②如图4,过S作SH⊥AO于H,延长O'B'到y轴交于G,∵SE∥CF,EC∥SF,∴四边形SECF是平行四边形,∴∠ESF=∠ECF,∵四边形ASO'C是菱形,∴∠ASO'=∠ACO',∴∠ASH=∠O'CG,同理得:△ASH≌△O'CG,∴AH=O'G,SH=CG,sin∠GCB'==,设GB'=x,则CB'=3x,CG=2x,∴O'G=1+x,由勾股定理得:AC2=O'C2,∴62+(2)2=(2x)2+(x+1)2解得:x=,当x=时,SH=CG=2x=,OH=6﹣AH=6﹣O'G=5﹣x=,当x=<0时,不符合题意,舍去,此时,点S的坐标为:(,);③如图5,AC为对角线时,同理可得S(,)④如图6,过S作SE⊥x轴于E,延长B'O'交y轴于H,延长O'C'交x轴于G,设GB'=x,则CB'=3x,CG=2x,∴O'G=O'H=1+x,∵∠HO'D=∠O'DA=∠EAS,易得△SEA≌△CHO',同理可得S(,);⑤如图7,过S作SH⊥x轴于H,过O'作O'E⊥SH于E,延长C'O'交x轴于G,设OG=x,则BG=1+x,∵O'B'∥BG,∴,∴,∴C'G=2(1+x),∴O'G=C'G﹣C'O'=2x,∴AG=1+x,同理得:62+(2)2=(1+x)2+(2x)2,解得:x1=,x2=(舍),可得S;综上所述,S的坐标为:或或(,)或(,)或(,).(12分)2.在平面直角坐标系中,已知抛物线322+--=x x y 的图象交x 轴于A 、B 两点(点A 在点B 左侧),交y 轴于点C .(1)求直线AC 的解析式;(2)抛物线的对称轴交直线AC 于点E ,直线AC 上方的抛物线上有一动点P ,当△PEC 面积最大时,线段CE 在直线AC 上平移,记线段CE 平移 后为E C '',求E C P ''∆的周长最小值;(3)抛物线的顶点为D ,连接AD ,将线段AD 沿直线AC 平移,记线段AD 平移后为D A '',过点D '作x 轴的垂线交x 轴于点G ,当G D A ''∆ 为等腰三角形时,求A A '的长度.解:(1)抛物线y=﹣x 2﹣2x+3,∴A (﹣3,0),B (1,0),C (0,3),∴直线AC 的解析式 y=x+3; (2)∵对称轴为x=﹣1,∴E (﹣1,2),设P (m ,﹣m 2﹣2m+3), ∴S △PEC =﹣m 2﹣m=﹣(m+)2+,∴当m=﹣时,S △PEC 的有最大值, 即:P (﹣,),将线段PC 平移,使得C 与E 重合,得到线段P'E , ∴P'(﹣,),P''(﹣,),∴△PC'E'的周长的最小值为PP''+CE=+(3)∵抛物线y=﹣x 2﹣2x+3, ∴D (﹣1,4),设A'(﹣3+n ,n ),D'(﹣1+n ,4+n ),则G (﹣1+n ,0), ∴AA'=|n|, ∴A'D'2=20,A'G 2=n 2+4,D'G 2=n 2+8n+16,∵△A ′D ′G 为等腰三角形,①当A'D'=A'G时,∴20=n2+4,∴n=±4,∴AA'=4②当A'D'=D'G时,∴20=n2+8n+16,∴n=±2﹣4,∴AA'=2±4③当D'G=A'G时,∴n2+4=n2+8n+16,∴n=﹣,∴AA'=,即:AA′的长度为4或2或.3.如图,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,连接BC,过点A作AD∥BC交y轴于点D.(1)求平行线AD、BC之间的距离;(2)如图1,点P为线段BC上方抛物线上的一动点,当△PCB的面积最大时,Q从点P出发,先沿适当的路径运动到直线BC上点M处,再沿垂直于直线BC的方向运动到直线AD上的点N处,最后沿适当的路径运动到点B处停止.当点Q的运动路径最短时,求点M的坐标及点Q经过的最短路径的长;(3)如图2,将抛物线以每秒个单位长度的速度沿射线AD方向平移,抛物线上的点A、C平移后的对应点分别记作A′、C′,当△A′C′B是以C′B为底边的等腰三角形时,将等腰△A′C′B 绕点D逆时针旋转一周,记旋转中的△A′C′B为△A″C″B′,若直线A″C″与y轴交于点K,直线A″C″与直线AD交于点I,当△DKI是以KI为底边的等腰三角形时,求出DK2的值.解:(1)如图1中,作AH⊥BC于H.对于抛物线y=﹣x2+x+3,令y=0,得到﹣x2+x+3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),令x=0,得到y=3,∴C(0,3),∴OA=,OB=3,AB=4,OC=3,BC==3,∵S△ABC=•AB•CO=•BC•AH,∴AH==,∵AD∥BC,∴AD与BC之间的距离为.(2)如图2中,设P(m,﹣m2+m+3),S△PBC =S△POB+S△PCO﹣S△BOC=×3×(﹣m2+m+3)+×3×m﹣×3×3=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,此时P(,),作B关于直线AD的对称点B′交AD于K,连接PK交BC于M,作MN⊥AD于N,连接BN,则PM+MN+BN 的值最小.∵直线BC的解析式为y=﹣x+3,AD∥BC,∴直线AD的解析式为y=﹣x﹣1,∵BB′⊥BC,∴直线BB′的解析式为y=x﹣6,由,解得,∴K(,﹣),∴直线PK的解析式为y=﹣x+,由,解得,∴M(,),∴点Q经过的最短路径的长=PM+MN+BN=MN+(PM+MK)=MN+PK,∵MN=,PK==,∴点Q经过的最短路径的长为+.4. 抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D 是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O 2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.解:(1)如图1,过点D作DK⊥y轴于K,当x=0时,y=,∴C(0,),y=﹣x2﹣x+=﹣(x+)2+,∴D(﹣,),∴DK=,CK=﹣=,∴CD===;(4分)(2)在y=﹣x2﹣x+中,令y=0,则﹣x2﹣x+=0,解得:x1=﹣3,x2=,∴A(﹣3,0),B(,0),∵C(0,),易得直线AC的解析式为:y=,设E(x,),P(x,﹣x2﹣x+),∴PF=﹣x2﹣x+,EF=,Rt△ACO中,AO=3,OC=,∴AC=2,∴∠CAO=30°,∴AE=2EF=,∴PE+EC=(﹣x2﹣x+)﹣(x+)+(AC﹣AE),=﹣﹣x+[2﹣()],=﹣﹣x﹣x,=﹣(x+2)2+,(5分)∴当PE+EC的值最大时,x=﹣2,此时P(﹣2,),(6分)∴PC=2,∵O1B1=OB=,∴要使四边形PO1B1C周长的最小,即PO1+B1C的值最小,如图2,将点P向右平移个单位长度得点P1(﹣,),连接P1B1,则PO1=P1B1,再作点P1关于x轴的对称点P2(﹣,﹣),则P1B1=P2B1,∴PO1+B1C=P2B1+B1C,∴连接P2C与x轴的交点即为使PO1+B1C的值最小时的点B1,∴B 1(﹣,0),将B 1向左平移个单位长度即得点O 1,此时PO 1+B 1C=P 2C==,对应的点O 1的坐标为(﹣,0),(7分)∴四边形PO 1B 1C 周长的最小值为+3;(8分) (3)O 2M 的长度为或或2+或2.(12分)理由是:如图3,∵H 是AB 的中点,∴OH=,∵OC=,∴CH=BC=2,∴∠HCO=∠BCO=30°,∵∠ACO=60°,∴将CO 沿CH 对折后落在直线AC 上,即O2在AC 上, ∴∠B 2CA=∠CAB=30°, ∴B 2C ∥AB , ∴B 2(﹣2,),①如图4,AN=MN ,∴∠MAN=∠AMN=30°=∠O 2B 2O 3,由旋转得:∠CB 2C 1=∠O 2B 2O 3=30°,B 2C=B 2C 1, ∴∠B 2CC 1=∠B 2C 1C=75°,过C 1作C 1E ⊥B 2C 于E , ∵B 2C=B 2C 1=2,∴=B 2O 2,B 2E=,∵∠O 2MB 2=∠B 2MO 3=75°=∠B 2CC 1, ∠B 2O 2M=∠C 1EC=90°, ∴△C 1EC ≌△B 2O 2M , ∴O 2M=CE=B 2C ﹣B 2E=2﹣;②如图5,AM=MN ,此时M 与C 重合,O 2M=O 2C=,③如图6,AM=MN ,∵B 2C=B 2C 1=2=B 2H ,即N 和H 、C 1重合,∴∠CAO=∠AHM=∠MHO 2=30°,∴O 2M=AO 2=;④如图7,AN=MN ,过C 1作C 1E ⊥AC 于E , ∴∠NMA=∠NAM=30°,∵∠O 3C 1B 2=30°=∠O 3MA ,∴C 1B 2∥AC ,∴∠C 1B 2O 2=∠AO 2B 2=90°, ∵∠C 1EC=90°, ∴四边形C 1EO 2B 2是矩形, ∴EO 2=C 1B 2=2,,∴EM=,∴O 2M=EO 2+EM=2+, 综上所述,O 2M 的长是或或2+或2.5. 如图,在平面直角坐标系中,点A 在抛物线y=﹣x 2+4x 上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(1,1). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当△PBE 的面积最大时,求PH+HF+FO 的最小值;(3)在(2)中,PH+HF+FO 取得最小值时,将△CFH 绕点C 顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.解:(1)由题意A (1,3),B (3,3), ∴AB=2.(2)如图1中,设P (m ,﹣m 2+4m ),作PN ∥y 轴J 交BE 于N .∵直线BE 的解析式为y=x , ∴N (m ,m ), ∴S △PEB =×2×(﹣m 2+3m )=﹣m 2+3m , ∴当m=时,△PEB 的面积最大,此时P (,),H (,3),∴PH=﹣3=,作直线OG 交AB 于G ,使得∠COG=30°,作HK ⊥OG 于K 交OC 于F , ∵FK=OF ,∴PH+HF+FO=PH+FH+FK=PH+HK ,此时PH+HF+OF 的值最小, ∵•HG•OC=•OG•HK,∴HK==+, ∴PH+HF+OF 的最小值为+. (3)如图2中,由题意CH=,CF=,QF=,CQ=1,∴Q (﹣1,3),D (2,4),DQ=,①当DQ 为菱形的边时,S 1(﹣1,3﹣),S 2(﹣1,3+),②当DQ 为对角线时,可得S 3(﹣1,8), ③当DR 为对角线时,可得S 4(5,3) 综上所述,满足条件的点S 坐标为(﹣1,3﹣)或(﹣1,3+)或(﹣1,8)或(5,3).6.如图1,在平面直角坐标系中,抛物线y=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为点D ,过点B 作BC 的垂线,交对称轴于点E .(1)求证:点E 与点D 关于x 轴对称;(2)点P 为第四象限内的抛物线上的一动点,当△PAE 的面积最大时,在对称轴上找一点M ,在y 轴上找一点N ,使得OM+MN+NP 最小,求此时点M 的坐标及OM+MN+NP 的最小值;(3)如图2,平移抛物线,使抛物线的顶点D 在射线AD 上移动,点D 平移后的对应点为D′,点A 的对应点A′,设抛物线的对称轴与x 轴交于点F ,将△FBC 沿BC 翻折,使点F 落在点F′处,在平面内找一点G ,若以F′、G 、D′、A′为顶点的四边形为菱形,求平移的距离.(1)证明:如图1中,令y=0,得到x2﹣x﹣3=0,解得x=﹣或3,∴A(﹣,0),B(3,0),令x=0,可得y=﹣3,∴C(0,﹣3),∵y=x2﹣x﹣3=(x﹣)2﹣4,∴顶点D(,﹣4),设对称轴与x轴交于F,则BF=2,∵△EFB∽△BOC,∴=,∴=,∴EF=4,∴E(,4),∴E、D关于x轴对称.(2)过点P作PQ∥y轴,交直线AE于点Q.∵yAE=x+2,∴设P(a,a2﹣a﹣3),Q(a,a+2),(0<a<3),7.如图1,在平面直角坐标系中,抛物线2y x x=-与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C.(1)求直线AC的解析式;(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a m+最大时,求点E的坐标,并直接写出23EQ PQ PB++的最小值;(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB 的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A O M''',同时抛物线以每秒1个单位的速度沿x 轴正方向平移,点B 的对应点为B '.△A B M '''能否为等腰三角形?若能,请求出所有符合条件的点M '的坐标;若不能,请说明理由.8.如图1,在平面直角坐标系中,抛物线423412++-=x x y 与x 轴交于A 、B 两点(点A 在点B左侧),与y 轴交于点C .(1)求抛物线的对称轴及△ABC 的周长;(2)点D 是线段AC 的中点,过点D 作BC 的平行线,分别与x 轴、抛物线交于点E 、F ,点P 为直线BC 上方抛物线上的一动点,连接PD 交线段BC 于点G ,当四边形PGEF 面积最大时,点Q 从点P 出发沿适当的路径运动到x 轴上的点M 处,再沿射线DF 方向运动5个单位到点N 处,最后回到直线BC 上的点H 处停止,当点Q 的运动路径最短时,求点Q 的最短运动路径长及点H 的坐标;(3)如图2,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A 、C 的对应点分别为点A 1、C 1,且点A 1落在线段AC 上,再将△A 1OC 1沿y 轴平移得△A 2O 1C 2,其中直线O 1C 2与x 轴交于点K ,点T 是抛物线对称轴上的动点,连接KT 、O 1T ,△O 1KT 能否成为以O 1K 为直角边的等腰直角三角形?若能,请直接写出所有符合条件的点T 的坐标;若不能,请说明理由.9.如图,在平面直角坐标系中,抛物线y=-x 2-3x+4交x 轴于A 、D 两点(点A 在点B 的左例), 交y 轴于点C,顶点为点D,连接BC,作直线AC.(1)求点D 的坐标和直线BC 的解析式;(2)若点P 为BC 上方抛物线上的一个动点,连接PC 、PB,过P 作PE ⊥y 轴于点E,当△PBC 面积最大时,将△PEC 绕平面内一点逆时针方向旋转90°后得到△111C E P .点P 、E 、C 的对应点分别是点1P 、1E 、1C ,当点C 1C 落在线段AC 上时,连接PP 1,求A C C P PP 111122++的最小值,并求出此时点1C 的坐标;(3)在(2)的条件下,将△111C E P 沿射线AC 以每秒2个单位长度的速度平移,记平移后的△111C E P 为△222C E P 点1P 、1E 、1C 的对应点分别是点2P 、2E ,C 2,设平移时间为秒,当△CD P2为等腰三角形时,求t 的值.10.如图,在平面直角坐标系中,抛物线)0≠(++=2a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C ,AO=CO=4,BO=6,点D 是第四象限抛物线上一点,且点F 的纵坐标为-4.(1)求抛物线的解析式和直线CF 的解析式; (2)如图1,点P 是直线CF 上方抛物线上一点,点E 在直线CF 上,点E 的横坐标为3,当△PCF 的面积最大时,在y 轴有一动点M ,在x 轴有一动点N ,当PM+MN+NE 的值最小时,求出PM+MN+NE 的最小值.(3)如图2,点D 为线段BO 的中点,连接CD ,将C D O∆绕着点D 顺时针旋转α度得到对应''C DO ∆()0180α︒<<︒.设直线'C D 和直线''C O 分别与直线BC 交于H 、G 两点,当三角形C ′HG 是等腰三角形11.如图1,在平面直角坐标系中,抛物线c bx x y ++-=2的图像与x 轴交于点A 和点B (5,0),与y 轴交于点C ,点D (1,8)是抛物线上一点.(1)求抛物线和直线AD 的解析式;(2)点Q 是抛物线一象限内一动点,过点Q 作QN ∥AD 交BC 于N ,QG ⊥AB 交BC 与点M ,交AB 于点G (如图1),当QNM ∆的周长最大时,求QNM ∆周长的最大值;此时,在直线BC 上有两动点P 、H ,且PH=22(P 在H 的右边),K (2,0),当HK PQ -最大时求点P 的坐标(3)直线AD 与y 轴交于点F ,点E 是点C 关于对称轴的对称点,点P 是线段AE 上的一动点,将AFP ∆沿着FP 所在的直线翻折得到FP A '∆(点A 的对应点为点A ')(如图2),当FP A '∆与AED ∆重叠部分为直角三角形时,求AP 的长.(第26题1) (第26题2) (第26题备用图)13.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.解:(1)当y=0时,﹣x 2﹣x ﹣2=0,解这个方程,得:x 1=﹣6,x 2=﹣1, ∴点A (﹣6,0),B (﹣1,0), 当x=0时,y=﹣2,∴C (0,﹣2),设直线AC 的解析式为:y=ax+b (a ≠0), 将点A (﹣6,0),C (0,﹣2)代入得:, ∴,∴直线AC 的解析式为:y=﹣x ﹣2;(3分)(2)如图1,过点P 作PE ∥y 轴交直线AC 于点E , 设P (a ,﹣),则点E (a ,﹣﹣2), ∴PE=(﹣)﹣(﹣﹣2)=﹣﹣2a ,∵AO=6,OC=2, ∴AC===2,∵∠PDE=∠AOC=90°,∠PED=∠ACO , ∴△PDE ∽△AOC ,∴=, ∴PD=PE==﹣﹣,对称轴是:a=﹣3, ∵﹣,∴当a=﹣3时,PD 的长度最大,此时点P 的坐标为(﹣3,2),如图1所示,在x 轴上取点F (1,0),连接CF 并延长, ∴CF===3,∴sin ∠OCF==,点M 是y 轴上一点,过点M 作MH ⊥CF 于点H , 由△CHM ∽△COF ,可知:=,∵t==PM+MH,如图2,当P、M、H在同一直线上时,t的值最小,此时,过P作PK⊥y轴于K,由△PKM∽△COF,可知:=2,∴KM=,∴M(0,),(7分)(3)如图3,当四边形ACSO'是菱形时,过S作SG⊥y轴于G,延长O'C'交x轴于H,∵四边形ACSO'是菱形,∴AO'=AC=SC,AO'∥SC,∴∠AMC=∠BCS,∴∠AO'H+∠MC'O'=∠BCO+∠OCS,∵∠MC'O'=∠BCO,∴∠AO'H=∠OCS,∵∠AHO'=∠CGS,∴△O'AH≌△CSG,∴AH=SG,O'H=CG,Rt△OCB中,sin∠OCB==,∴sin∠BC'H==,设BH=x,则BC'=3x,∴C'H=2x,∴AH=SG=5﹣x,∵O'C'=OC=2,∴C'H=OG=2x,由勾股定理得:AC2=O'A2,∴AO2+OC2=O'H2+AH2,∴=(5﹣x)2+(2+2x)2,解得:x=,当x=时,SG=5﹣x=,OG=2x=,当x=<0时,不符合题意,舍去,SG=5﹣x=,OG=2x=,此时S的坐标为:或;②如图4,过S作SH⊥AO于H,延长O'B'到y轴交于G,∵SE∥CF,EC∥SF,∴四边形SECF是平行四边形,∴∠ESF=∠ECF,∵四边形ASO'C是菱形,∴∠ASO'=∠ACO',∴∠ASH=∠O'CG,同理得:△ASH≌△O'CG,∴AH=O'G,SH=CG,sin∠GCB'==,设GB'=x,则CB'=3x,CG=2x,∴O'G=1+x,由勾股定理得:AC2=O'C2,∴62+(2)2=(2x)2+(x+1)2解得:x=,当x=时,SH=CG=2x=,OH=6﹣AH=6﹣O'G=5﹣x=,当x=<0时,不符合题意,舍去,此时,点S的坐标为:(,);③如图5,AC为对角线时,同理可得S(,)④如图6,过S作SE⊥x轴于E,延长B'O'交y轴于H,延长O'C'交x轴于G,设GB'=x,则CB'=3x,CG=2x,∴O'G=O'H=1+x,∵∠HO'D=∠O'DA=∠EAS,易得△SEA≌△CHO',同理可得S(,);⑤如图7,过S作SH⊥x轴于H,过O'作O'E⊥SH于E,延长C'O'交x轴于G,设OG=x,则BG=1+x,∵O'B'∥BG,∴, ∴,∴C'G=2(1+x ),∴O'G=C'G ﹣C'O'=2x , ∴AG=1+x ,同理得:62+(2)2=(1+x )2+(2x )2, 解得:x 1=,x 2=(舍), 可得S ;综上所述,S 的坐标为:或或(,)或(,)或(,).(12分)。
重庆数学中考26题专题训练
1xyOx =4ABCPHM重庆数学中考题26题专题训练26.四边形OABC 是等腰梯形,OA ∥BC ,在建立如图的平面直角坐标系中,A (10,0),B (8,6),直线x =4与直线AC 交于P 点,与x 轴交于H 点;(1)直接写出C 点的坐标,并求出直线AC 的解析式;(2)求出线段PH 的长度,并在直线AC 上找到Q 点,使得△PHQ 的面积为△AOC 面积的51,求出Q 点坐标;(3)M 点是直线AC 上除P 点以外的一个动点,问:在x 轴上是否存在N 点,使得 △MHN 为等腰直角三角形?若有,请求出M 点及对应的N 点的坐标,若没有,请说明理由.26. 解:(1)C(2,6)…… (1分)直线AC 过点A(10,0),C(2,6), 设直线AC 解析式为: y=kx+b(k≠0) 根据题意得:⎩⎨⎧+=+=bk b k 26100 解得:k= 43-,b=215,即直线AC :y=43-x+215……(3分) (2)将x=4代入上述解析式,y=29,即PH=29……(4分)∵Q 点在直线AC 上,设Q 点坐标为(t ,43-t+215)2由题知:21PH ·|t-4|=51×21OA ·|y C |,解得t=320或34,……(6分) 即满足题意的Q 点有两个,分别是Q 1(320,25)或Q 2(34,213)……(7分)(3)存在满足题意的M 点和N 点,……(8分)设M 点坐标为(a ,43-a+215), 当a ﹥10时,无满足题意的点; ①若∠MNH 为直角,则MN=HN ,即43-a+215=︱a -4︱,解得a=746或-14,此时M 点坐标为(746,718)或(-14,18);…… (10分)②若∠HMN 为直角,则过M 作MM ′⊥x 轴交于M ′点,则H M ′= M ′N=M M ′, 综上,当M 点坐标为(746,718)时,N 点坐标为N 1(746,0)或N 2(764,0); 当M 点坐标为(-14,18)时,N 点坐标为N 3(-14,0)或N 4(-32,0).26.如图,在直角梯形ABCD 中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点E 是CD 上的一个动点(E 不与D 重合),过点E 作EF ∥AC ,交AD 于点F (当E 运动到C 时,EF 与AC 重合),把△DEF 沿着EF 对折,点D 的对应点是点G ,如图①.(1)求CD 的长及∠1的度数;(2)设DE = x ,△GEF 与梯形ABCD 重叠部分的面积为y .求y 与x 之间的函数关系式, (3)当点G 刚好落在线段BC 上时,如图②,若此时将所得到的△EFG 沿直线CB 向左平移,速度为每秒1个单位,当E 点移动到线段AB 上时运动停止.设平移时间为t (秒),在平移过程中是否存在某一时刻t ,使得△ABE 为等腰三角形?若存在,求出t 的值;若不存在,请说明理由.26题图①26题图②26.(1)过点A作AH⊥BC于点H(1∵在Rt△AHB中,AB=6,∠B=60°∴AH=AB·sin B=∵四边形ABCD∴四边形为矩形∴CD=AH=(2分)∵tan CDCADAD==∠=∴∠CAD=30°∵EF∥AC∴∠1=∠CAD=30°(4分)(2)点G恰好在BC上,由对折的对称性可知△FGE≌△FDE∴ GE=DE =x,∠FEG=∠FED=60°∴∠GEC=60°因为△CEG是直角三角形∴∠EGC=30°∴在Rt△CEG中,EC=12EG=12x由DE+EC=CD 得12x x+=∴x=(5分)当0x<≤EGF EDFy S S==△△12DE DF=⋅⋅12x=⋅2x当x≤FG,EG分别交BC于点M∵DE=x∴EC=x,NE=2()x∴NG=G E-NE=()2x x-=3x-又∵∠MNG=∠ENC=30°,∠G=90°∴MG=tan30NG⋅︒3x-(113322MNGS NG MG x x=⋅⋅=--△23x=-(9分)(3)由题意可知:AB=6,分三种情况:①若AE=BE, 解得t=9②若AB=AE,解得③若BA=BE,解得分)3。
2020重庆中考复习数学第26题专题训练六(含答案解析)
2020重庆中考复习数学第26题专题训练六 1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为 .(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案 1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°,在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.MDEFBACG解: (1)由E 为CR 中点可得AG 平分BAC ,过G 作GH AB ,则有GH=CG=1,故BG=2(2)延长FD 交AG 于点M ,易证:()BFD AMD AAS ,所以BF=AM再证:()BFC CEA AAS ,所以BF=CE=AM ,CF=AE∴CF-CE=AE-AM ,即EM=EF ∴EFM 为等腰直角三角形 ∴222EFFMDF(3)结论为:622BDEF4、(2017秋?许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋?中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018?连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠FAG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018?站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°,∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015?新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为 .(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BFA,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BFA,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°,∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=?S△ABC=××4×2=.。
2021重庆中考复习数学第26题专题训练五(含答案解析)(1) (1)
2021重庆中考复习数学第26题专题训练五1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.2020重庆中考复习数学第26题专题训练五参考答案1、(2019秋•天桥区期末)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、(2019秋•淮安期末)[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、(2019春•碑林区校级月考)【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A 为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、(2018春•铁西区期中)(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、(2019秋•武冈市期中)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、(2018秋•东海县期末)模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、(2019秋•松北区期末)已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、(2017春•合肥期末)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、(2017春•南岗区校级月考)如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、(2019秋•丹东期末)在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.证明:(1)∵∠DCB=∠FGB=∠FGC=90°,∴CD∥GF,∴∠EDP=∠GFP,且DP=PF,∠DPE=∠FPG,∴△DPE≌△FPG(ASA)∴PE=PG,DE=GF,∵BC=CD,∴EC=GC,且∠DCG=90°,PE=PG,∴CP=PG;(2)延长GP到E,使PE=PG,连接DE,CE,CG,∵DP=PF,∠DPE=∠FPG,PE=PG,∴△DPE≌△FPG(SAS)∴PE=PG,DE=GF,∠EDP=∠GFP,∵GF=GB,∴DE=BG,∵DC∥BF,。
2020重庆中考复习数学第26题专题训练六(含答案解析)
2020重庆中考复习数学第26题专题训练六1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°, 在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.G解:(1)由E 为CR 中点可得AG平分BAC ∠,过G 作GH AB ⊥,则有GH=CG=1,故 (2)延长FD 交AG 于点M,易证:()BFD AMD AAS ∆≅∆,所以BF=AM 再证:()BFC CEA AAS∆≅∆,所以BF=CE=AM,CF=AE ∴CF-CE=AE-AM,即EM=EF ∴EFM ∆为等腰直角三角形∴2EF FM ==(3)结论为:2BD EF +=4、(2017秋•许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋•中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD, 由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018•连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG. (1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠F AG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018•站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°, ∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015•新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BF A,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BF A,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°, ∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=•S△ABC=××4×2=.。
2021年重庆中考数学第26题几何证明专题训练
2021年重庆中考数学第26题几何证明专题训练1.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH 的面积.2.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=√26,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2√2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.3.如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=4√3,DE=√3,求AD的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=√3CG.2(2)若点D与点A重合,CF//AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE−OF 的值.AC,连接4.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=12 EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=√3AB+GC;2GC最大时,直接写出直线AB,(3)如图3,若AB=3,在△AEF旋转过程中,当GB−12AC,BG所围成三角形的面积.5.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.6.如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB//CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6√2,AD=4√2,tan∠ABC=2时,求CQ+√10BQ的最小值.107.已知△ABC中,∠ACB=90°,AC=2BC.(1)如图①,若AB=BD,AB⊥BD,求证:CD=√2AB;(2)如图②,若AB=AD,AB⊥AD,BC=1,求CD的长;(3)如图③,若AD=BD,AD⊥BD,AB=2√5,求CD的长.8.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3√2,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.9.在平行四边形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,过点C作CF⊥CD交AE于点F,连接OF.以OF为直角边作Rt△OFG,其中∠OFG=90°,连接AG.(1)如图1,若∠EAB=30°,OA=2√3,AB=6,则求CE的长度;(2)如图2,若CF=CD,∠FGO=45°,求证:EC=√2AG+2EF;(3)如图3,动点P从点A运动到点D(不与点A、点D重合),连接FP,过点P作FP的垂线,又过点D作AD的垂线交FP的垂线于点Q,点A′是点A关于FP的对称点,连接A′Q.若AE=2EC,FG=2OF,EF=1,AG=√5,则在动点P的运动过程中,直接写出A′Q的最小值.10.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P′处,AB的中点为Q,直接写出P′Q的最小值.11.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.12. 如图,在菱形ABCD 中,∠ABC =60°,分别过点B 作BC 的垂线,过点D 作CD 的垂线,两垂线相交于点E .(1)如图1,若AD =4,连接AE ,BD ,求三角形ADE 的面积;(2)如图2,点F 是DE 延长线上的一点,点G 为EB 延长线上的一点,且EF =BG ,连接BF ,DG ,DG 交FB 的延长线于点H ,连接AH ,试猜想线段AH ,BH ,HD 的数量关系并证明你的结论;(3)如图3,在(2)的条件下,在AH 上取得一点P ,使得HP =3AP ,已知Q 为直线ED 上一点,连接BQ ,连接QP ,当BQ +QP 最小时,直接写出S △QDC S 菱形ABCD 的值.13. 如图,已知△ABC 中,∠ABC =45°,CD 是边AB 上的高线,E 是AC 上一点,连接BE ,交CD 于点F .(1)如图1,若∠ABE =15°,BC =√3+1,求DF 的长;(2)如图2,若BF =AC ,过点D 作DG ⊥BE 于点G ,求证:BE =CE +2DG ;(3)如图3,若R 为射线BA 上的一个动点,以BR 为斜边向外作等腰直角△BRH ,M 为RH 的中点.在(2)的条件下,将△CEF 绕点C 旋转,得到△CE′F′,E ,F 的对应点分别为E′,F′,直线MF′与直线AB 交于点P ,tan∠ACD =13,直接写出当MF′取最小值时RMPF′的值.14. 如图△ABC 为等腰直角三角形,∠A =90°,D 、E 分别为AB 、AC 边上的点,连接DE ,以DE 为直角边向上作等腰直角三角形DEF ,连接BE 、BF .(1)如图1,当CE =AD 时,求证:BF ⊥BD ;(2)如图2,H 为BE 的中点,过点D 作DG ⊥BC 于点G ,连接GH.求证:BF =2HG ;(3)如图3,BE 与DF 交于点R ,延长BF 交AC 于点P ,∠APB 的角平分线交BE 于点Q.若点E 为AC 上靠近点A 的三等分点,且tan∠AED =67,请直接写出BR QR 的值.15. 如图,△ABC 是等边三角形,△BDE 是顶角为120°的等腰三角形,BD =DE ,连接CD ,AE .(1)如图1,连接AD ,若∠ABE =60°,AB =BE =√3,求CD 的长;(2)如图2,若点F 是AE 的中点,连接CF ,DF.求证:CD =2DF ;(3)如图3,在(2)的条件下,若AB =2√3,BD =2,将△BDE 绕点B 旋转,点H 是△AFC 内部的一点,当DF 最大时,请直接写出2HA +HF +√5HC 的最小值的平方.16.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=√2CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP 长度的最大值.17.如图,已知△ABC为等腰直角三角形,AB=AC且∠CAB=90°,E为BC上一点,且BE=AC,过E作EF⊥BC且EF=EC,连接CF.(1)如图1,已知AB=2,连接AE、AF,求△AEF的面积;(2)如图2所示,D为AB上一点,连接DB,作∠DBH=45°交EF于H点,求证:CD=HF+√2CE;(3)已知△ABC面积为8+4√2,D为射线AC上一点,作∠DBH=45°,交射线EF于H,连接DH,点M为DH的中点,当CM有最小值时,请直接写出△CMD的面积.18.如图,Rt△ABC中,∠ABC=90°,AB=BC,点E是边BC上的一个动点,点D是射线AC上的一个动点;连接DE,以DE为斜边,在DE右侧作等腰Rt△DFE,再过点D 作DH⊥BC,交射线BC于点H.(1)如图1,若点F恰好落在线段AE上,且∠DEH=60°,CD=3√2,求出DF的长;(2)如图2,若点D在AC延长线上,此时,过F作FG⊥BC于点G,FG与AC边的交点记为M,当AE=DE时,求证:FM+√2MD=AB;(3)如图3,若AB=4√10,点D在AC延长线上运动,点E也随之运动,且始终满足AE=DE,作点E关于DF的对称点E′,连接CF、FE′、DE′,当CF取得最小值时,请直接写出此时四边形CFE′D的面积.19.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A顺时针旋转90°,得到AE,连接DE.(1)如图1所示,若BC=4,在D点运动过程中,当tan∠BDE=8时,求线段CD的长;11(2)如图2所示,点F是线段DE的中点,连接BF并延长交CA延长线于点M,连接DM,交AB于点N,连接CF,AF,当点N在线段CF上时,求证:AD+BF=CF;(3)如图3,若AB=2√3,将△ABC绕点A顺时针旋转得△AB′C′,连接CC′,P为线段CC′上一点,且CC′=√3PC′,连接BP,将BP绕点B顺时针旋转60°得到BQ,连接PQ,K 为PQ的中点,连接CK,请直接写出线段CK的最大值.20.在△ABC中,AC=BC,D为△ABC外一点,连接CD.(1)如图1,若∠ACB=60°,CD//AB,连接BD交AC于点E,且CD=2AB=2,求S△BCE.EC,(2)如图2,CE=CD,∠ECB=∠DCA,ED交AB于点F,FG垂直平分EC,且FG=12BF.M,N分别为AF,CD中点,连接MN,求证:MN=12(3)如图3,若∠ACB=90°,CD//AB,将AD绕着A点顺时针旋转60°得到AD′,连接DD′,BD′,且AC=√6,求BD′的最小值.21.已知,等腰直角△ABC中,AC=BC,∠ACB=90°,D为AB边上的一点,连接CD,以CD为斜边向右侧作直角△CDE,连接AE并延长交BC的延长线于点F.(1)如图1,当∠CDE=30°,AD=1,BD=3时,求线段DE的长;(2)如图2,当CE=DE时,求证:点E为线段AF的中点;(3)如图3,当点D与点A重合,AB=4时,过E作EG⊥BA交直线BA于点G,EH⊥BC交直线BC于点H,连接GH,求GH长度的最大值.22.如图,在锐角△ABC中,∠ACB=45°,点D是边BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接DE交AC于点F.(1)如图1,若∠ADC=60°,求证:DF=AF+EF;(2)如图2,在点D运动的过程中,当∠ADC是锐角时,点M在线段DC上,且AM=AD,连接ME,猜想线段ME,MD,AC之间存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,当∠ADC是钝角时,点N是线段DE上一动点,连接CN,若AF=m,请直接用含m的代数式表示2CN+√2NE的最小值.CF=3523.如图1,在Rt△ABC与Rt△ABD中,∠ACB=∠ADB=90°,∠BAC=60°,CE⊥AB交AB于点E,AE=AD,点F在线段BD上,连接AF.(1)若AC=4,求线段BD的长;(2)如图2,若∠DAF=60°,点M为线段BF的中点,连接CM,证明:2CM=BF+√3AC;(3)如图3,在(2)的条件下,将△ADF绕点A旋转得△AD′F′,连接BF′,点M为线段BF′的中点,连接D′M,当D′M长度取最小时,在线段AB上有一动点N,连接MN,将线段MN绕点M逆时针旋转60°至MN′,连接D′N′,若AC=4,请直接写出(2MN′−√2D′N′)的最小值.。
2020年重庆中考26题二次函数综合
二次函数二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。
) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。
2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。
】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。
在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。
4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。
5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。
6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。
最新重庆中考数学第26题专题训练
N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。
(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。
4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线233334y x x=-++交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D。
重庆中考26题专题训练
1. 已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2. 已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。
(1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。
当△CQE 的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0)。
问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。
Y XE C A D Q B O 28题图3.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想; (2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CB D A 28-1图P E F A D 1B C 1D 2C 228-3图 C 2D 2C 1B D 1A 28-2图4.如图1,在平面直角坐标系中有一个Rt △OAC ,点A (6,8),点C (6,0),将其沿直线AC 翻折,翻折后图形为△BAC .动点P 从点O 出发,沿折线O →A →B 的方向以每秒2个单位的速度向B 运动,同时动点Q 从点B 出发,在线段BO 上以每秒1个单位的速度向点O 运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t (秒).(1)设△OPQ 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)如图2,固定△OAC ,将△ACB 绕点C 逆时针旋转,旋转后得到的三角形为△''CB A ,设''B A 与AC 交于点D ,当∠'BCB =∠CAB 时,求线段CD 的长;(3)如图3,在△ACB 绕点C 逆时针旋转的过程中,若设C A '所在直线与OA 所在直线的交点为E ,是否存在点E 使△ACE 为等腰三角形,若存在,求出点E 的坐标,若不存在,请说明理由.图1 图2 图3备用图42251015BEB'A'OCAxyx642251015DB'A'OCBAyxy42251015OCBAx422451015Q POCBAy5.如图1,抛物线24y x x c =-+交x 轴于点A 和(1,0),B -交y 轴于点C ,且抛物线的对称轴交x 轴于点D . (1)求这个抛物线的解析式;(2)若点E 在抛物线上,且位于第四象限,当四边形ADCE 面积最大时,求点E 的坐标;(3)如图2,在抛物线上是否存在这样的点P ,使PAB ∆中的内角..中有一边与x 轴所夹锐角..的正切值为12?若存在,求出点P 的坐标,若不存在,请说明理由.6. 如图1,矩形OABC 的顶点O 为原点,点E 在AB 上,把CBE ∆沿CE 折叠,使点B 落在OA 边上的点D 处,点A D 、坐标分别为(10,0)和(6,0),抛物线215y x bx c =++过点C B 、. (1)求C B 、两点的坐标及该抛物线的解析式;(2)如图2,长、宽一定的矩形PQRS 的宽1PQ =,点P 沿(1)中的抛物线滑动,在滑动过程中x PQ //轴,且RS 在PQ 的下方,当P 点横坐标为-1时,点S 距离x 轴511个单位,当矩形PQRS 在滑动过程中被x 轴分成上下..两部分的面积比为2:3时,求点P 的坐标;(3)如图3,动点M N 、同时从点O 出发,点M 以每秒3个单位长度的速度沿折线ODC 按C D O →→的路线运动,点N 以每秒8个单位长度的速度沿折线OCD 按D C O →→的路线运动,当M N 、两点相遇时,它们都停止运动.设M N 、同时从点O 出发t 秒时,OMN ∆的面积为S .①求出S 与t 的函数关系式,并写出t 的取值范围:②设0S 是①中函数S 的最大值,那么0S = .。
中考数学真题《规律探究题》专项测试卷(附答案)
中考数学真题《规律探究题》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(26题)一 、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .542.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案 其中第①个图案中有2个圆圈 第①个图案中有5个圆圈 第①个图案中有8个圆圈 第①个图案中有11个圆圈 … 按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .263.(2023·云南·统考中考真题)按一定规律排列的单项式:23452345,a a a a a 第n 个单项式是( )A nB 11n n a --C n naD 1n na -4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 每个网格小正方形的边长均为1个单位长度 以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,05.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .26.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004C .2022D .20238.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .2029.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a =以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 .11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为点2023A 的坐标为 .18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .25.(2023·四川广安·统考中考真题)在平面直角坐标系中 点1234A A A A 、、、在x 轴的正半轴上 点123B B B 、、在直线()0y x =≥上 若点1A 的坐标为()2,0 且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为 .26.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .参考答案一 单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【答案】B【分析】根据各图形中木棍的根数发现计算的规律 由此即可得到答案. 【详解】解:第①个图案用了459+=根木棍 第①个图案用了45214+⨯=根木棍 第①个图案用了45319+⨯=根木棍 第①个图案用了45424+⨯=根木棍 ……第①个图案用的木棍根数是45844+⨯=根 故选:B .【点睛】此题考查了图形类规律的探究正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案其中第①个图案中有2个圆圈第①个图案中有5个圆圈第①个图案中有8个圆圈第①个图案中有11个圆圈… 按此规律排列下去,则第①个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律即可求解.=⨯-【详解】解:因为第①个图案中有2个圆圈2311=⨯-第①个图案中有5个圆圈5321=⨯-第①个图案中有8个圆圈8331=⨯-第①个图案中有11个圆圈11341…⨯-=所以第①个图案中圆圈的个数为37120故选:B.n-是解题的【点睛】本题考查了图形类规律探究根据前四个图案圆圈的个数找到第n个图案的规律为31关键.3.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a第n个单项式是()B1n-C n D1n-A【答案】C字母为a指数为1开始的自然数据此即可求解.【分析】根据单项式的规律可得【详解】解:按一定规律排列的单项式:2345,a第n n故选:C.【点睛】本题考查了单项式规律题找到单项式的变化规律是解题的关键.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中每个网格小正方形的边长均为1个单位长度以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【答案】A【分析】根据图象可得移动3次完成一个循环 从而可得出点坐标的规律()323n A n n --,.【详解】解:①()121A -, ()412A -, ()703A , ()1014A ,①()323n A n n --,①1003342=⨯-,则34n =①()1003134A , 故选:A .【点睛】本题考查了点的规律变化 解答本题的关键是仔细观察图象 得到点的变化规律. 5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =- 413a = 52a =…… 由此可得规律求解.【详解】解:①12a =①212312a +==-- 3131132a -==-+ 411121312a -==+51132113a +==- ……. 由此可得规律为按2 3- 12- 13四个数字一循环①20234505.....3÷= ①2023312a a ==- 故选A .【点睛】本题主要考查数字规律 解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π【答案】A【分析】曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+ 得到1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+ 得出半径 再计算弧长即可.【详解】解:由图可知 曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+∴112AD AA ==111BA BB == 1132CB CC == 112DC DD ==12122AD AA ==+2221BA BB ==+ 22322CB CC ==+ 2222DC DD ==+ ⋯⋯1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+故20232023A B 的半径为()202320231420231140452BA BB ==⨯⨯-+=∴20232023A B 的弧长90404540451802ππ=⨯=. 故选A【点睛】此题主要考查了弧长的计算 弧长的计算公式:180n rl π= 找到每段弧的半径变化规律是解题关键. 7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果. 【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ 122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ …2100200(100)1100101f ⨯==+ 1212100()11001011100f ⨯==+1(100)()2100f f += 11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+ 201=故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则 找到数字变化规律是解本题的关键. 9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 . 【答案】 15 45【分析】根据新定义 列举出前几个智慧优数 找到规律 进而即可求解.【详解】解:依题意 当3m = 1n =,则第1个一个智慧优数为22318-= 当4m = 2n =,则第2个智慧优数为224214-= 当4m = 1n =,则第3个智慧优数为224115-= 当5m = 3n =,则第5个智慧优数为225316-= 当5m = 2n =,则第6个智慧优数为225221-= 当5m = 1n =,则第7个智慧优数为225324-= ……6m =时有4个智慧优数 同理7m =时有5个 8m =时有6个12345621+++++=第22个智慧优数 当9m =时 7n = 第22个智慧优数为2297814932-=-= 第23个智慧优数为9,6m n ==时 2296813645-=-= 故答案为:15 45.【点睛】本题考查了新定义 平方差公式的应用 找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .【答案】1226C H【分析】根据碳原子的个数 氢原子的个数 找到规律 即可求解. 【详解】解:甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H ……碳原子的个数为序数 氢原子的个数为碳原子个数的2倍多2个十二烷的化学式为1226C H 故答案为:1226C H .【点睛】本题考查了规律题 找到规律是解题的关键. 12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数 等式的右边为这个数乘以这个数减1 即可求解. 【详解】解:①21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …①第n (n 为正整数)个等式是()21n n n n -=-故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律 找到规律是解题的关键.13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏. 【答案】10【分析】灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮” 确定1-100中 各个数因数的个数 完全平方数的因数为奇数个 从而求解.【详解】所有灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮”因数的个数为奇数的自然数只有完全平方数 1-100中 完全平方数为1 4 9 16 25 36 49 64 81 100 有10个数 故有10盏灯被按奇数次 为“亮”的状态 故答案为:10.【点睛】本题考查因数分解 完全平方数 理解因数的意义 完全平方数的概念是解题的关键. 14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).【答案】66n +/66n +【分析】当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根计算即可.【详解】解:当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根故第n 个图案需要火柴棍的根数为66n +. 故答案为:66n +.【点睛】本题考查了整式的加减的数字规律问题 熟练掌握规律的探索方法是解题的关键.15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯ ⋯ 可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯⋯①第(1)n n >个图案中有()22n +个白色圆片. 故答案为:()22n +.【点睛】此题考查图形的变化规律 通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素 然后推广到一般情况.解题关键是总结归纳出图形的变化规律. 16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为 点2023A 的坐标为 .【答案】 20232 ()202220222,2【分析】根据旋转角度为60︒ 可知每旋转6次后点A 又回到x 轴的正半轴上 故点2023A 在第四象限 且202320232OA = 即可求解.【详解】解:①AOB 为等边三角形 点A 的坐标为()1,0 ①1OA =①每次旋转角度为60︒ ①6次旋转360︒第一次旋转后 1A 在第四象限 12OA =第二次旋转后 2A 在第三象限 222OA =第三次旋转后 3A 在x 轴负半轴 332OA =第四次旋转后 4A 在第二象限 442OA =第五次旋转后 5A 在第一象限 552OA =第六次旋转后 6A 在x 轴正半轴 662OA =……如此循环 每旋转6次 点A 的对应点又回到x 轴正半轴①202363371÷=点2023A 在第四象限 且202320232OA =如图,过点2023A 作2023A H x ⊥轴于H在2023Rt OHA 中 202360HOA ∠=︒①202320232022202320231cos 2cos60222OH OA HOA =⋅∠=⨯︒=⨯=202320222023202320233sin 232A H OA HOA =⋅∠= ①点2023A 的坐标为()202220222,32.故答案为:20232 ()202220222,32.【点睛】本题考查图形的旋转 解直角三角形的应用.熟练掌握图形旋转的性质 根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =. 【答案】()()111n n -++【分析】根据已有的式子 抽象出相应的数字规律 进行作答即可. 【详解】解:①21312⨯+= 22413⨯+=23514⨯+=……①()()2211n n n ++=+①()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律. 19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标 从而可计算出1234,,,S S S S …的高 进而求出1234,,,S S S S … 从而得出123n S S S S +++⋯+的值.【详解】当1x =时 1P 的纵坐标为8 当2x =时 2P 的纵坐标为4 当3x =时 3P 的纵坐标为83当4x =时 4P 的纵坐标为2当5x =时 5P 的纵坐标为85…则11(84)84S =⨯-=- 2881(4)433S =⨯-=-3881(2)233S =⨯-=-481(2)2558S =⨯-=- (881)n S n n =-+ 1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ①12320238202320242532023S S S S ⨯+++⋯+==. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用 解题的关键是求出881n S n n =-+. 20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究 可发现第n 个数对的第一个数为:()11n n ++ 第n 个数对的第二个位:()211n ++ 即可求解.【详解】解:每个数对的第一个数分别为3 7 13 21 31 … 即:121⨯+ 231⨯+ 341⨯+ 451⨯+ 561⨯+ … 则第n 个数对的第一个数为:()2111n n n n ++=++ 每个数对的第二个数分别为5 10 17 26 37 … 即:221+ 231+ 241+ 251+ 261+… 则第n 个数对的第二个位:()221122n n n ++=++①第n 个数对为:()221,22n n n n ++++ 故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律 找出数字之间的排列规律 利用拐弯出数字的差的规律解决问题. 21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .【答案】20221⎛ ⎝⎭【分析】分别求出点点1B 的横坐标是1 点2B 的横坐标是1 点3B 2413⎛+= ⎝⎭找到规律 得到答案见即可.【详解】解:当0y = 0= 解得1x = ①点()11,0A ,①111A B C O 是正方形 ①11111OA A B OC === ①点()11,1B ①点1B 的横坐标是1当1y =时 1 解得1x =+①点21A ⎛⎫⎪ ⎪⎝⎭①2221A B C C 是正方形①2212211A B C C A C ===①点212B ⎛ ⎝⎭即点2B 的横坐标是1当2y =时 2= 解得)223x =①点34,23A ⎝⎭①3332A B C C 是正方形①33233243A B C C A C ===①点3B 2413⎛= ⎝⎭……以此类推,则点2023B 的横坐标是202231⎛ ⎝⎭故答案为:202231⎛ ⎝⎭【点睛】此题是点的坐标规律题 考查了二次函数的图象和性质 正方形的性质等知识 数形结合是是解题的关键.23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .【答案】 1024 202422024-+【分析】通过观察第一行数的规律为(2)n - 第二行数的规律为(2)1n n -++ 代入数据即可. 【详解】第一行数的规律为(2)n - ①第①行数的第10个数为10(2)1024-= 第二行数的规律为(2)1n n -++①第①行数的第2023个数为2023(2)- 第①行数的第2023个数为2023(2)2024-+ ①202422024-+故答案为:1024 202422024-+.【点睛】本题主要考查数字的变化 找其中的规律 是今年考试中常见的题型. 24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .。
2023重庆中考数学b卷压轴题26题
2023重庆中考数学b卷压轴题26题题目:已知二次函数y=x²-2x-3一、对题目进行分析,这道题主要考察二次函数的性质和图像,需要理解二次函数的表达式,掌握其对称轴和开口方向等信息。
二、解题步骤:1. 根据二次函数表达式,我们可以得到对称轴为直线x=1,开口向上。
2. 在B卷压轴题中,通常需要考生进行一些复杂的计算和推理。
首先,我们需要找到函数图像与x轴的交点,这可以通过令y=0来求解。
解方程x²-2x-3=0,得到x₁=3,x₂=-1。
也就是说,函数图像与x轴有两个交点(-1,0)和(3,0)。
3. 将已知的两个交点坐标代入图像中,可以得到图像大致呈抛物线形状,开口向上,与x轴有两个交点(-1,0)和(3,0)。
对称轴为直线x=1。
4. 接下来,我们需要根据题目要求,求出函数图像与直线y=4的交点坐标。
将直线y=4代入二次函数表达式中,得到一元二次方程x²-2x-7=0。
解得,该方程的两个解分别为x₃=5和x₄=-2。
也就是说,图像与直线y=4有两个交点(5,4)和(-2,4)。
5. 最后,根据题目要求,求出图像与直线y=-2的交点与对称轴的间距。
由于题目中未给出具体的坐标值,因此需要进行一些简单的代数计算。
综上,通过以上步骤的推理和计算,我们可以得出以下结论:当x=1时,y=2当x=-2时,y=-5当x=5时,y=4因此,函数图像与直线y=-2的交点坐标为(5,4),该点与对称轴的距离为4。
三、总结:这道题考察了二次函数的性质和图像,需要考生具备一定的数学基础和推理能力。
解题的关键在于理解二次函数的表达式,掌握其对称轴和开口方向等信息,并能够进行一些复杂的计算和推理。
同时,考生还需要注意题目中的细节和要求,确保解题的准确性和完整性。
2021重庆中考26题专题复习及答案2
重庆中考26题专题复习1、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.2、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.3、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.。
2021重庆中考26题专题复习及答案5
重庆中考数学26题专题复习1、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC 于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;①如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF2、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.3、一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.。
2021年重庆年中考26题三角形四边形几何综合专题(3)
2021重庆年中考25题二次函数综合专题(3)1(巴蜀2021级初三上定时训练二)如图,在等腰直角△ABC 中,AB=AC ,∠BAC=90,点E 为AC 的中点,EF=EC ,讲线段EF 绕点E 顺时针旋转90,连接FG ,FC ;点D 为BC 的中点,连接GD ,直线GD 与直线CF 交于点N 。
(1)如图1,若30FCA ∠=,求CF 的长; (2)连接BG 并延长至点M ,使BG=MG ,连接CM ;①如图2,若NG ⊥MB ,求证AB =; ②如图3,当点G 、F 、B 共线时 ,=90BCH ∠。
连接CH ,45CH BC =,请直接写出FGFH的值。
2(重庆一外2021级九上第四次周考)已知:在Rt△ABC中,∠ACB=90,过点C作CD⊥AB与点D,点E 是BC上一点,连接AE交CD于点F.(1)如图1,若AE平分脚CAB,CP平分∠BCD,求证:FP=EP;(2)如图2,若CE=CA,过点E作EG⊥CD与点G,点H为AE的中点,连接DH,GH,判断△GDH的形状,并证明;(3)如图3,在(2)的条件下,点K为AE上一点,连接GK,点M为GK的中点,连接MH,过点D作DN⊥-∠,若NH:HM=8:5,△GHK的面积为10,求△GDH的面积。
MH,交MH得延长线于点N,∠GHA=90GHM3(重庆育才成功学校2021级九上第一次周考)早ABCD 中,连接对角线BD ,AB=BD ,AB ⊥BD ,点E 在线段AD 上,点F 在线段DC 上,且∠BEF=∠BDC ,连接BF 。
(1)当BC=6,∠FBC=15时,求CF 的长度;(2)求证:222BC ED DF -=;(3)若点P 为BD 边上一点,且624BC -=,求12BP PC +的最小值。
4(重庆育才2021级九上第一次月考复习)在矩形ABCD 中 ,点E 是BC 边上一点,连接AE ,点F 是CB 延长线上一点,点G 是矩形ABCD 外一点,连接GC ,GE ,GB ,GF ,GF ⊥GC ,CE 平分∠BGC ,∠GEF=45. (1)如图1,当∠EGC=15,BG=2时,求△CGF 的面积;(2)如图2,当矩形ABCD 是正方形,FB=CE 时,求证:AE=2FG ;(3)如图3,若线段PQ 在GE 上运动,22PA =,2BE =,3FB BE =,请直接写出线段FP+PQ+QC 的和的最小值以及此时△PBE 的面积。
2021重庆中考26题专题复习及答案1
重庆中考数学第26题专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF 是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.。
2023年重庆中考第26题压轴题专题:几何变换综合题
2023年重庆中考第26题压轴题专题:几何变换综合题1.(2023•重庆)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2.(2023•渝中区校级二模)如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,AE ⊥CD于E点.(1)如图1,过B作BF⊥AB交AE的延长线于点F.若BD=1,BF=2,求AE的长度;(2)如图2,将AE绕A点逆时针旋转90°到AF,连接BF交AE于点H,猜想AH和CE之间存在的数量关系,并证明你的猜想;(3)如图3,在第(2)问的条件下,将△ABH沿着AB翻折得到△ABP,连接PC,当线段PC取得最大值,请直接写出的值.3.(2023•渝中区校级一模)如图,△ABC是等边三角形,D为AB上一点,连接CD,将CD绕点C顺时针旋转120°至CE,连接BE,分别交AC、CD于点F、G.(1)若AD=3,BD=1,求△BCE的面积;(2)请猜想线段AF,BD,CF之间的数量关系,并证明你的猜想;(3)当△BCE周长最小时,请直接写出的值.4.(2023•沙坪坝区校级一模)在等腰三角形ABC中,AB=AC.点E为AC上一点,连接BE.(1)如图1,若∠BAC=90°,过点C作CD⊥BE交BE延长线于点D,连接AD,过点A作AF⊥AD交BD于点F,连接CF,求证:FC2=FB2+2FA2;(2)如图2,过A作AD∥BC交BE延长线于点D,将AD绕着点A逆时针旋转至AN,连接DN,使得DN⊥AC于点G,AN与BD交于点M,若点M为BD的中点,且∠DAM=∠DMA,猜想线段AM与DE之间的数量关系,并证明你的猜想;(3)如图3,若∠BAC=60°,,将AC沿着AP翻折得到AC′(∠CAC′<120°),点C′落在BE延长线上,BC′交AP于点P,点Q、R分别是射线AC、AB上的点,连接CP、PQ、QR,满足,当BP取得最大值时,直接写出的最小值的平方.。
2020重庆中考数学复习----26题专题复习 (无答案)
2020二次函数中“将军饮马”类问题综合复习例1、如图1,已知抛物线213222y x x =--,与x 轴交于点A 、B ,与y 轴交于点C ,顶点为D ,点M (5,02)为x 轴上一点,点N 为抛物线上的点,且横坐标为3。
(1)求S △ABD 的面积;(2)点E 、F 是抛物线对称轴上的两个动点(点E 在点F 下方),且EF=1.当四边形EFMN 的周长最小时,过直线NF 下方抛物线上的一动点H 作y 轴的平行线交直线NE 于点G ,求当GH 的长度取得最大时H 点点坐标。
(3)如图2,将直线BC 绕点B 顺时针旋转90°后与对称轴交于点I ,点P 为抛物线一动点,点Q 为y 轴上一动点。
请问是否存在以点A 、I 、P 、Q 为顶点的平行四边形?若存在,求出所有满足条件的P 的坐标;若不存在,请说明理曲。
例2、如图,在平面直角坐标系中, 抛物线223y x x =--+与轴交于A 、B 两点,与y轴交于点C ,点D 为抛物线的顶点.(1)求直线AC 的解析式,并直接写出D 点的坐标.(2)如图1,在直线AC 的上方抛物线上有一动点P ,过P 点作PQ 垂直于x 轴交AC 于点Q ,PM ∥BD 交AC 于点M. ①求△PQM 周长最大值;②当△PQM 周长取得最大值时,PQ 与x 轴交点为H ,首位顺次连接P 、H 、O 、D 构成四边形,它的周长为L ,若线段OH 在x 轴上移动,求L 最小值时OH 移动的距离及L 的最小值. (3)如图2,连接BD 与y 轴于点F ,将△BOF 绕点O 逆时针旋转,记旋转后的三角形为△BOF ',B 'F '所在直线与直线AC 、直线OC 分别交于点G 、K ,当△CGK 为直角三角形时,直接写出线段BG的长.例3、已知如图1,抛物线343832+--=x x y 与x 轴交于A 和B 两点(点A 在点B 的左侧),与y 轴相交于点C ,点D 的坐标是(0,-1),连接BC 、AC .(1)求出直线AD 的解析式;(2)如图2,若在直线AC 上方的抛物线上有一点F ,当ADF ∆的面积最大时,有一线段5MN =(点M 在点N 的左侧)在直线BD 上移动,首尾顺次连接点A 、M 、N 、F 构成四边形AMNF ,请求出四边形AMNF 的周长最小时点N 的横坐标;(3)如图3,将DBC ∆绕点D 逆时针旋转 α( 1800<<α),记旋转中的DBC ∆为C B D ''∆,若直线C B ''与直线AC 交于点P ,直线C B ''与直线DC 交于点Q ,当CPQ ∆是等腰三角形时,求CP 的值.图2 图1 图3′′例4、如图1,抛物线24y ax bx =++交x 轴于A 、B 两点(点A 在点B 的左侧),交y 于点C ,连接AC 、BC ,其中2CO BO AO ==.(1)求抛物线的解析式;(2)点Q 为直线BC 上方的抛物线上一点,过点Q 作E AC 交BC 于E ,作QN x ⊥轴于N ,交BC 于M ,当EMQ ∆的周长L 最大时,求点Q 的坐标及L 的最大值;(3)如图2,在(2)的结论下,连接AQ 分别交BC 于F ,交OC 于G ,四边形BOGF 从F 开始沿射线FC 平移,同时点P 从C 开始沿折线CO OB -运动,且点P 的运动速度为四边形BOGF 平移速度的2倍,当点P 到达点B 时四边形BOGF 停止运动,设四边形BOGF 平移过程中对应的图形为1111B O G F ,当1PFF ∆为等腰三角形时,求1B F 长度.如图1 如图2 备用图例5、如图1,在平面直角坐标系中,抛物线3332312++-=x x y 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的顶点为点E 。
重庆中考数学26题
一、中考数学26题26.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC 向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.26.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2,点O是AB的中点,点P在AB的延长线上,26、如图,矩形ABCD中,AB=6,BC=3且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF 为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆中考数学26题专项中考数学专项讲解 杨明军223212++-=x x y 中考26题第二小问专项讲解第一大类:线段最大值一、基本题型:例1:如图,抛物线与x 轴交于A ,B 两点,与y 轴交于C点,P为抛物线上BC上方的一点。
1、过点P作y 轴的平行线交BC于M,求PM的最大值。
2、过点P作X 轴的平行线交BC于M,求PM的最大值。
二、变式题型1:过点P作y 轴的平行线交BC于M,作PN⊥BC于N。
3、求PN的最大值,PM+PN的最大值。
4、求∆PMN周长的最大值。
5、求∆PMN面积的最大值。
中考数学专项讲解 杨明军223212++-=x x y 三、变式题型2:P为抛物线上BC上方的一点。
D为BC延长线上的一点且CD=BC6、求∆PBC面积的最大值。
7、求∆PDC面积的最大值。
第二大类:线段和的最小值例2:如图,抛物线与x 轴交于A ,B 两点,与y 轴交于C点,P为抛物线的顶点。
1、M是BC上的一点,求PM+AM最小时M点的坐标。
2、D为点C关于x轴的对称点,M是BC上的一点,求DM+PM最小时M点的坐标。
3、M是BC上的一点,N是AC上的一点,求∆OMN周长的最小值及M点的坐标。
4、M、N为直线BC上的动点,N在下方且MN=5,求PM+MN+AN的最小值。
5、M、N为直线BC上的动点,N在下方且MN=5,D在抛物线上且在D与C对称。
求四边形PMND周长的最小值。
6、M为对称轴上的一点,MN⊥y轴于N,D在抛物线上且在D与C对称。
求DM+MN+NA的最小值。
中考数学专项讲解杨明军7、M为对称轴上的一点,MN y轴于N,D在抛物线上且在D与C对称。
求DM+MN+NB的最小值。
8、M为对称轴上的一点,N为y轴上一点,D在抛物线上且在D与C对称。
求OM+MN+ND5BM的最小值。
9、M为BC上的一点,求PM+510、D在抛物线上且在D与C对称,在BC上找一点N,M是x轴上的一点。
求DM+MN的最小值。
中考数学专项讲解杨明军中考数学专项讲解杨明军中考数学专项讲解杨明军中考数学专项讲解杨明军26.如图,抛物线223y x x=-++与x轴交于A,B两点,中考数学专项讲解杨明军与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG AD⊥于点G,作FH平行于x轴交直线AD于点H,求FGH∆周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点'Q与点Q关于直线AM对称,连接'MQ,'PQ.当'∆与□APQM重PMQ时,合部分的面积是□APQM面积的14求□APQM面积.图 1 图2 备用图26.抛物线与直线相交于A、B 两点,其中点A的坐标为(-3,3),点B的坐标为(3,b)。
(1)求抛物线顶点M的坐标和b的值。
(2)如图1,若P是抛物线上位于M、B 两点之间的一个动点,连接AM、MP、PB,求四边形PMAB的面积最大值及此时P点的坐标。
(3)如图2,将直线绕B点逆时针方向旋转一定角度后沿轴向下平移5个单位得到,与y轴交于点,P为抛物线上一动点,过P点作x轴的垂线交于点D,若点D´是点D关于直线PC的对称点,是否存在点P,使点D´恰好落在y轴上?若存在,请直接写出相应点P的坐标,若不存在,请说明理由。
26、已知,如图1,在平面直角坐标系中,抛物线211433y x x =-++与x 轴交于点A 、B ,与y 轴交于点C,直线AD 经过点A ,交y 轴于点D ,交抛物线于点E ,且点E 的横坐标为5,连接AC 。
(1)求直线AD 的解析式;(2)如图2,点F 为第一象限内抛物线上的动点,过点F 作//FG y 轴交直线AD 于点G ,过点F 作//FH AC交直线AD 于点H ,当FHG ∆周长最大时,求点F 的坐标。
此时,点T 为y 轴上一动点,连接,TA TF ,当TA TF -最大时求点T 的坐标;(3)如图3,点F 仍为第一象限内抛物线上的动点,如(2)中条件得FHG ∆,边FH 交x 轴于点M ,点N 为线段FG 上一动点,将FMN ∆沿着MN 翻折得到PMN ∆,当PMN ∆与FGH ∆重叠部分图形为直角三角形,且PM PG =时,求线段FN 的长。
26、如图所示,已知二次函数)0(2≠++=a c bx axy 的图像与x 轴交于A,B 两点,与y 轴交于点C,其中A(-2,0),B(0,4),对称轴为直线x=1,顶点为E(1)求抛物线顶点的坐标;(2)若点P(0,n)为y 轴上一个动点,当PC PA 55+最小时,此时抛物线上是否存在一点Q使得PBA QBA ∠=∠,若存在这样的点,求出其坐标,若不存在说明理由;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E ′,点A 的对应点为点A ′,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A ,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A ′,C 1E ′,△A ′C 1E ′是否能为等腰三角形?若能,请求出所有符合条件的点E ′的坐标;若不能,请说明理由.26.如图1,在平面直角坐标系中,抛物线2833y x x =- 与x 轴交于A 、B 、两点(点A 在点B 的左侧),与y 轴交于点C 。
(1)判断ABC V 形状,并说明理由。
(2)在抛物线第四象限上有一点,它关于x 轴的对称点记为点P ,点M 是直线BC 上的一动点,当PBC V 的面积最大时,求PM +的最小值;(3)如图2,点K 为抛物线的顶点,点D 在抛,对称轴右侧的抛物线上有一动点E ,过点E 作EH//CK ,交对称轴于点H ,延长HE 至点F ,使得3EF =,在平面内找一点Q ,使得以点F 、H 、D 、Q 为顶点的四边形是轴对称图形,且过点Q 的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由。
26、已知:如图1,直线1y x =--分别交x 轴、y 轴于A 、E 两点,抛物线249y x bx c =-++经过点A ,且过点()5,0B ,与y 轴交于点C ,点D 为抛物线的顶点,连接BC 。
(1)求抛物线的解析式及顶点D 的坐标;(2)如图2,若在直线BC 上方的抛物线上有一点F ,当BCF ∆的面积最大时,有一线段MN ≈M 在点N 的左侧)在直线AE 上移动,首尾顺次连接点F 、M 、N 、B 构成四边形FMNB ,请求出四边形FMNB 的周长最小时点M 的横坐标;(3)如图3,连接AD 、BD ,把DAB ∠沿x 轴平移到'''D A B ∠,在平移过程中把'''D A B ∠绕'A 旋转,使'''D A B ∠的一边始终经过点D ,另一边交直线BD 于点R ,是否存在这样的点R ,使'DRA ∆为等腰三角形,若存在,求出BR 的长;若不存在,说明理由。
26.如图,抛物线219522y x x =-++与x 轴交于点A 、点B ,与y 轴交于点D ,在y 轴负半轴有一点E ,使得EBO DBO ∠=∠,第一象限抛物线上有一点C ,与点D 关于对称轴对称。
(1)求直线BE 解析式?(2)在线段BE 、AB 上各有一动点M 、N ,当AM MN +最小时,过点M 作y 轴平行线,与抛物线交于点P ,求点P 的坐标?(3)分别连接BD 、OC ,一动点Q 从点O 出发,以每秒l个单位向终点B运动,过点Q作QH⊥x轴,与直线DC交于点H,延长QH至点F,使FH=QH,以QF为斜边,在QF右侧作等腰直角三角形QFK;同时另一动点G从点B出发,以每秒2个单位向终点O运动,过点G作GI⊥x轴,与直线BD交于点I,延长GI至点J,使IJ=GI,以GI为斜边,在GJ左侧作等腰直角三角形GJR。
已知一个动点停止运动,另一动点也随之停止运动,请问当点Q运动多少秒时,两个等腰直角三角形分别有一边恰好落在同一直线上?26. 如图1,已知抛物线3332332++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作xDH⊥轴于点H,过点A作ACAE⊥交DH的延长线于点E.(1)求点E的坐标;(2)如图2,已知线段AE与y轴交于点F,点P为线段DE上的一动点,点M为直线PF上方抛物线上的一动点,当CPF∆的周长最小时,求点P的坐标和MPF∆面积的最大值;(3)在(2)问的条件下,将得到的CFP∆沿直线AE平移得到P F C'''∆,将P F C'''∆沿P C''翻折得到F P C''''∆,记在平移过程中,直线P F''与x轴交于点K,则是否存在这样的点K,使得K F F'''∆为等腰三角形,若存在,求出OK的值;若不存在,说明理由.图1 备用图。