高中数学必修一习题答案

合集下载

高中数学必修1课后习题答案

高中数学必修1课后习题答案
2 3 3 3
x x x 即{ | 3}, { | 2}A x x B x x
21A
{ 1}A A {1, 1}=A
2{ | 1 0} { 1,1}
A x x
7_______Q 223______N 3_______Q
42_______R 59_______Z 62( 5)_______N
112
3
7
Q 2
3
7是有理数 223N
23 9是个自然数
x得反比例函数2
y
x
的自变量的值组成的集合为{ | 0}
x x
3由不等式3 4 2
x x 得4
5
x即不等式3 4 2
x x 的解集为4
{ | }
5
x x
5选用适当的符号填空
1已知集合{ |2 3 3 }, { | 2}
A B
{3,5,6,8} {4,5,7,8} {3,4,5,6,7,8}
A B
2设2 2{ | 4 5 0}, { | 1}
A x x x B x x 求,A B A B
2解方程2
4 5 0x x 的两根为1 21, 5
即B是A的真子集B
A
3因为
4与10的最小公倍数是20所以A B 113集合的基本运算 练习第11页 1设{3,5,6,8}, {4,5,7,8}A B 求,A B A B
1解{3,5,6,8} {4,5,7,8} {5,8}
15_______A 27_______A 310
_______A
215A

人教版数学必修一课后习题答案

人教版数学必修一课后习题答案

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈"或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}A B x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B .4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉"填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}AB x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ,()R A B ,()R A B ,()R A B . 10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}AB =,则集合B 有 个. 1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,AB A B . 3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅. 4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()131f x x x =-++. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦",与A 4.设素60相对应中元B 中的元素是什么?与B 中的元素22相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离时间(D )1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来. 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么? (3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上? (2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )? 4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多。

人教版高中数学必修1课后试题答案

人教版高中数学必修1课后试题答案

.人教版高中数学必修1课后习题答案(第一章会合与函数观点)人教A版'.'..习题(第24页)'.. '..练习(第32页)1.答:在必定的范围内,生产效率跟着工人数目的增添而提升,当工人数目达到某个数目时,生产效率达到最大值,而超出这个数目时,生产效率跟着工人数目的增添而降低.因而可知,并不是是工人越多,生产效率就越高.2.解:图象以下[8,12]是递加区间,[12,13]是递减区间,[13,18]是递加区间,[18,20]是递减区间.3.解:该函数在[1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设x1,x2R,且x1x2,由于f(x1)f(x2)2(x1x2) 2(x2x1)0,'..即f(x1)f(x2),因此函数f(x)2x1在R上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数f(x)2x43x2,其定义域为(,),由于对定义域内每一个x都有f(x)2(x)43(x)22x43x2f(x),因此函数(2)对于函数f(x)2x43x2为偶函数;f(x)x32x,其定义域为(,),由于对定义域内每一个x都有f(x)(x)32(x)(x32x)f(x),因此函数f(x)x32x为奇函数;(3)对于函数f(x)x21,0)(0,),由于对定义域内x,其定义域为(每一个x都有f(x)(x)21x21f(x),x x因此函数f(x)x21x为奇函数;(4)对于函数f(x)x21,其定义域为(,),由于对定义域内每一个x都有f(x)(x)21x21f(x),因此函数f(x)x21为偶函数.2.解:f(x)是偶函数,其图象是对于y轴对称的;g(x)是奇函数,其图象是对于原点对称的.'..习题1.3(第39页)1.解:(1)函数在(55,)上递减;函数在[,)上递加;22(2)函数在(,0)上递加;函数在[0,)上递减.2.证明:(1)设1x 2,而f(x1)f(x2)x12x22(x1x2)(x1x2),x由x1x20,x1x20,得f(x1)f(x2)0,即f(x1)f(x2),因此函数f(x)x21在(,0)上是减函数;(2)设x1x20,而f(x1)f(x2)11x 1x2,x2x1x1x2由x1x20,x1x20,得f(x1)f(x2)0,即f(x1)f(x2),因此函数f(x)11在(,0)上是增函数.x3.解:当m0时,一次函数y mx b在(,)上是增函数;'..当m0时,一次函数y mxb在(,)上是减函数,令f(x)mxb,设x1x2,而f(x1)f(x2)m(x1x2),当m0时,m(x1x2)0,即f(x1)f(x2),得一次函数y mx b在(,)上是增函数;当m0时,m(x1x2)0,即f(x1)f(x2),得一次函数y mx b在(,)上是减函数.4.解:自服药那一刻起,心率对于时间的一个可能的图象为5.解:对于函数y x2162x21000,50当x1624050时,y max307050(元),1)2(504050307050即每辆车的月租金为元时,租借企业最大月利润为元.6.解:当x0时,x0,而当x0时,f(x)x(1x),即f(x)x(1x),而由已知函数是奇函数,得f(x)f(x),得f(x)x(1x),即f(x)x(1x),f(x)x(1x),x0因此函数的分析式为x(1x),x.0 B组1.解:(1)二次函数f(x)x22x的对称轴为x1,则函数f(x)的单一区间为(,1),[1,),且函数f(x)在(,1)上为减函数,在[1,)上为增函数,函数g(x)的单一区间为[2,4],且函数g(x)在[2,4]上为增函数;'..(2)当x1时,f(x)min1,由于函数g(x)在[2,4]上为增函数,因此g(x)min g(2)22220.2.解:由矩形的宽为xm ,得矩形的长为30 3xS ,2m ,设矩形的面积为则Sx 303x 3(x 210x),当x 5时,S max m 2,即宽x5m 才能使22建筑的每间熊猫居室面积最大,且每间熊猫居室的最大面积是m 2.3.判断f(x)在(,0)上是增函数,证明以下:设x 1x 2,则x 1x 2,由于函数f(x)在(0,)上是减函数,得f(x 1)f(x 2),又由于函数f(x)是偶函数,得f(x 1)f(x 2),因此f(x)在( ,0)上是增函数.复习参照题(第 44页) A 组1.解:(1)方程x29的解为x 1 3,x 2 3,即会合A { 3,3};(2)1 x 2,且x N,则x1,2,即会合B {1,2};(3)方程x 23x 20的解为x 1 1,x 2 2,即会合C {1,2}.2.解:(1)由PAPB ,得点P 到线段AB 的两个端点的距离相等,即{P|PA PB}表示的点构成线段 AB 的垂直均分线;(2){P|PO3cm}表示的点构成以定点 O 为圆心,半径为3cm 的圆.3.解:会合{P|PAPB}表示的点构成线段 AB 的垂直均分线,会合{P|PA PC}表示的点构成线段AC 的垂直均分线,得{P|PAPB} {P|PAPC}的点是线段AB 的垂直均分线与线段 AC 的垂直均分线的交点,即ABC 的外心.'..4.解:明显会合A { 1,1},对于会合B{x|ax 1},当a 0时,会合B,知足B A ,即a 0 ;当a0时,会合B {1},而BA ,则 11,或 11,a aa得a 1 ,或a 1 ,综上得:实数a 的值为1,0,或1.5.解:会合AB(x,y)|2x y{(0,0)},即AB {(0,0)};3x y会合A C(x,y)|2x y 0 ,即AC;2xy3会合BC(x,y)|3x y 0 {(3, 9)};2x y 3 5 5则(AB)(BC){(0,0),(3 9,)}.5 5 6.解:(1)要使原式存心义,则x 2 0 2x 5,即x,得函数的定义域为 [2,);x 4 0 4,且x 5,(2)要使原式存心义,则5,即x|x|得函数的定义域为[4,5)(5,).7.解:(1)由于f(x)1 x ,1 x因此f(a)1 a,得f(a) 11a 12 ,1 a 1 a1 a即f(a)12;1 a 1x(2)由于f(x)1 ,x因此f(a1) 1 (a 1) a 1a 1 ,a2即f(a1)a .a 28.证明:(1)由于f(x)1 x2 ,1 x 2'..因此f(x) 1 ( x)21 x2 f(x),1 ( x)2 1x 2即f(x)f(x);(2)由于f(x)1x 2, 1 x 21211 ( x )1 x 2f(x),因此f()1x 21x1 2( )x1)f(x).即f(xk9.解:该二次函数的对称轴为x,8函数f(x) 4x 2kx 8 在 [5,20] 上拥有单一性, 则k20,或k5,得k160,或k40,88即实数k 的取值范围为k 160,或k40.10.解:(1)令f(x) x即函数yx22,而f( x)(x)2 x 2f(x),是偶函数;(2)函数3)函数4)函数yxyxy x22 2 的图象对于y 轴对称;在(0,)上是减函数;在(,0)上是增函数.B 组1.解:设同时参加田径和球类竞赛的有x 人,则1581433x28,得x3,只参加游泳一项竞赛的有15 339(人),即同时参加田径和球类竞赛的有3人,只参加游泳一项竞赛的有9人.2.解:由于会合A,且x 20,因此a0.3.解:由U (AB) {1,3},得AB{2,4,5,6,7,8,9},会合AB 里除掉A(U B),得会合B ,因此会合B{5,6,7,8,9}.'.4.解:当x0时,f(x) x(x 4),得f(1)1 (1 4) 5;当x0时,f(x) x(x4),得f(3)3( 34)21;f(a1)(a 1)(a 5),a 1. (a 1)(a3),a 1.f(x)axbf( x 1 2 x 2 )ax 1 2 x 2 bax 2)b5.证明:(1)由于,得2(x 1,f(x 1)f(x 2)ax 1bax 2ba (x 1x 2) b ,222因此f(x 12 x2)f(x 1)f(x 2);2(2)由于g(x)x 2ax b ,得g(x 1x2)1(x 12x 222x 1x 2)a(x 12 x 2)b ,24g(x 1)2 g(x 2)1[(x 1 2ax 1 b) (x 2 2 ax 2 b)]21(x 12x 22)a(x 1x 2)b ,由于1(x 1221(x 122 1(x 1x 2 2 2x 1x 2)x 22)x 2)2,即141 24222x 1x 2)2 2 ) , 4 (x 1x 22 (x 1 x 2因此g(x 1x2)g(x 1)g(x 2).226.解:(1)函数f(x)在[b, a]上也是减函数,证明以下:设bx 1x 2a ,则ax 2x 1 b ,由于函数f(x)在[a,b]上是减函数,则f( x 2)f(x 1),又由于函数f(x)是奇函数,则f(x 2)f(x 1),即f(x 1)f(x 2),因此函数f(x)在[2)函数g(x)在[b,设bx 1x 2b,a]上也是减函数;a]上是减函数,证明以下:a ,则ax 2x 1b ,由于函数g(x)在[a,b]上是增函数,则g( x 2) g( x 1),'.又由于函数g(x)是偶函数,则 g(x2) g(x1),即g(x1)g(x2),因此函数g(x)在[b, a]上是减函数.7.解:设某人的全月薪资、薪金所得为x元,应纳此项税款为y元,则0,0x2000(x2000)5%,2000x2500y25(x2500)10%,2500x4000175(x4000)15%,4000x5000由该人一月份应缴纳此项税款为元,得2500x4000,25(x2500)10%,得x,因此该人当月的薪资、薪金所得是元.'.。

高中数学必修一习题及答案

高中数学必修一习题及答案

一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,] B.(,3] C.(1,)D.(,2)5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤415.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.418.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}21.函数定义域为()A.(0,1000]B.[3,1000]C.D.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.235.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A=.38.函数f(x)=lgx2的单调递减区间是.39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=.参考答案与试题解析一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【专题】11 :计算题;37 :集合思想;4A :数学模型法;5J :集合.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)【专题】5J :集合.【解答】解:集合M={x|lg(x﹣1)<0}={x|0<x﹣1<1}={x|1<x<2},∴则∁U M=(﹣∞,1]∪[2,+∞},故选:B.3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]【专题】11 :计算题;37 :集合思想;49 :综合法;5J :集合.【解答】解:B={x|x>2};∴∁R B={x|x≤2};∴A∩(∁R B)=(﹣2,2].故选:D.4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,] B.(,3] C.(1,)D.(,2)【专题】37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合M={x|≤0}={x|1<x≤3},N={x|y=log3(﹣6x2+11x﹣4)}={x|﹣6x2+11x﹣4>0}={x|},∴M∩N={x|1<x≤3}∩{x|}=(1,).故选:C.5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)【专题】35 :转化思想;4O:定义法;59 :不等式的解法及应用.【解答】解:集合A={x|x2﹣x﹣6<0}={x|﹣2<x<3},B={x|3x>1}={x|x>0},∴A∩B={x|0<x<3}=(0,3).故选:D.6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}【专题】11 :计算题;35 :转化思想;4O:定义法;5J :集合.【解答】解:由A={x|﹣1<x<3},B={x|x<0,或x>1},故A∩B={x|﹣1<x<0,或1<x<3}.故选:D.7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={0,1,2,3,4,5},集合B={x|x2<10}={x|﹣},∴A∩B={0,1,2,3}.故选:C.8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={x∈N||x|≤2}={x∈N|﹣2≤x≤2}={0,1,2},B={y|y=1﹣x2}={y|y≤1},∴A∩B={0,1}.故选:B.9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵A={x∈Z||x|<4}={x∈Z|﹣4<x<4}={﹣3,﹣2,﹣1,0,1,2,3},B={x|x﹣1≥0}={x|x≥1},∴A∩B={1,2,3},故选:C.10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中y=lg(x﹣1),得到x﹣1>0,即x>1,∴A=(1,+∞),由B中y==≥=2,得到B=[2,+∞),则A∩B=[2,+∞),故选:C.11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中不等式解得:﹣1≤x≤2,x∈Z,即A={﹣1,0,1,2},∵B={x|﹣2<x<2},∴A∩B={﹣1,0,1},故选:B.12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.【专题】11 :计算题;38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是,故选:C.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题是全称命题,则命题的否定是特称命题,即:¬p:∃x>1,log2x+4log x2≤4,故选:D.15.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题【专题】15 :综合题;38 :对应思想;49 :综合法;5L :简易逻辑.【解答】解:命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”,故A正确;由x>1,可得|x|>1>0,反之,由|x|>0,不一定有x>1,如x=﹣1,∴“x>1”是“|x|>0”的充分不必要条件,故B正确;命题p:“∃x∈R,使得x2+x+1<0”,则¬p:“∀x∈R,x2+x+1≥0”,故C正确;若p∧q为假命题,则p、q中至少有一个为假命题,故D错误.故选:D.16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件【解答】A“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,m=0时不正确;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题,结论正确;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可,错误;D应为必要不充分条件.故选:B.17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题P:“若x>1,则x2>1”,它是真命题;它的否命题是:“若x≤1,则x2≤1”,它是假命题;逆命题是:“若x2>1,则x>1”,它是假命题;逆否命题是:“若x2≤1,则x≤1”,它是真命题;综上,这四个命题中真命题的个数为2.故选:B.18.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=【专题】51 :函数的性质及应用.【解答】解:对于A,∵g(x)=,f(x)=|x|,∴两函数为同一函数;对于B,函数f(x)的定义域为{x|x≠0},而函数g(x)的定义域为{x|x>0},两函数定义域不同,∴两函数为不同函数;对于C,函数f(x)的定义域为{x|x≠1},而函数g(x)的定义域为R,两函数定义域不同,∴两函数为不同函数;对于D,函数f(x)的定义域为{x|x>1},而函数g(x)的定义域为{x|x<﹣1或x>1},两函数定义域不同,∴两函数为不同函数.故选:A.19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:f(x)=+有意义,可得,即为,解得﹣1<x<0或0<x≤2,则定义域为(﹣1,0)∪(0,2].故选:D.20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}【专题】33 :函数思想;4A :数学模型法;51 :函数的性质及应用.【解答】解:由log3x≥0,得x≥1.∴函数f(x)=的定义域为{x|x≥1}.故选:C.21.函数定义域为()A.(0,1000]B.[3,1000]C.D.【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:函数有意义,可得3﹣lgx≥0,且x>0,解得0<x≤1000,则定义域为(0,1000].故选:A.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象先关于y轴对称,再向右平移1个单位,故选:C.23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【专题】16 :压轴题;31 :数形结合.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.【专题】51 :函数的性质及应用.【解答】解:∵函数f(x)是偶函数,图象关于y轴对称,∴排除B,D.∵f(0)=1﹣0=0>0,∴排除C,故选:A.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)【专题】11 :计算题.【解答】解:设所求函数为g(x),g(x)==f(﹣|x|),C选项符合题意.故选:C.26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值【专题】53 :导数的综合应用.【解答】解:函数f(x)的导函数f′(x)的图象如图所示,可得x∈(﹣4,0),f′(x)>0,函数是增函数.x∈(0,4),f′(x)<0,函数是减函数.x=4时,f′(4)=0,函数取得极小值,所以选项C正确.故选:C.27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}【专题】11 :计算题;32 :分类讨论.【解答】解:当x≤0时,f(x)>1 即2﹣x﹣1>1,2﹣x>2=21,∴﹣x>1,x<﹣1,当x>0时,f(x)>1 即>1,x>1,综上,x<﹣1 或x>1,故选:D.28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)【专题】51 :函数的性质及应用.【解答】解:由5﹣4x﹣x2≥0,得函数的定义域为{x|﹣5≤x≤1}.∵t=5﹣4x﹣x2=﹣(x2+4x+4)+9=﹣(x+2)2+9,对称轴方程为x=﹣2,拋物线开口向下,∴函数t的递增区间为[﹣5,﹣2],故函数y=的增区间为[﹣5,﹣2],故选:B.29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]【专题】33 :函数思想;4J :换元法;51 :函数的性质及应用.【解答】解:令t=﹣x2+2x,则y=()t,由t=﹣x2+2x的对称轴为x=1,可得函数t在(﹣∞,1)递增,[1,+∞)递减,而y=()t在R上递减,由复合函数的单调性:同增异减,可得函数的单调递增区间是[1,+∞),故选:C.30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]【专题】35 :转化思想;48 :分析法;51 :函数的性质及应用.【解答】解:函数f(x)=|x2﹣6x+8|,当x2﹣6x+8>0即x>4或x<2,可得f(x)=x2﹣6x+8=(x﹣3)2﹣1,即有f(x)在(4,+∞)递增;当x2﹣6x+8<0即2<x<4,可得f(x)=﹣x2+6x﹣8=﹣(x﹣3)2+1,即有f(x)在(2,3)递增;则f(x)的增区间为(4,+∞),(2,3).故选:C.31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]【专题】35 :转化思想;49 :综合法;51 :函数的性质及应用.【解答】解:令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【专题】11 :计算题;59 :不等式的解法及应用.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C.34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选:C.35.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【专题】51 :函数的性质及应用.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【专题】51 :函数的性质及应用.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选:D.二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A={x|x<﹣1或x≥2} .【专题】11 :计算题;5J :集合.【解答】解:由A中不等式变形得:(x+1)(x﹣2)≤0,且x﹣2≠0,解得:﹣1≤x<2,即A={x|﹣1≤x<2},∵全集U=R,∴∁U A={x|x<﹣1或x≥2},故答案为:{x|x<﹣1或x≥2}38.函数f(x)=lgx2的单调递减区间是(﹣∞,0).【专题】51 :函数的性质及应用.【解答】解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.【解答】解:函数.若f(x)为奇函数,则f(0)=0,即,a=.故答案为40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=0.【专题】51 :函数的性质及应用.【解答】解:∵f(x)为偶函数∴f(﹣x)=f(x)恒成立即x2﹣|x+a|=x2﹣|x﹣a|恒成立即|x+a|=|x﹣a|恒成立所以a=0故答案为:0.第21页(共21页)。

人教版 高中数学必修一课后习题配套参考答案(解析版)

人教版 高中数学必修一课后习题配套参考答案(解析版)

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I; 则39()(){(0,0),(,)}55A B B C =-IU I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U ,集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。

高中数学必修一练习题及答案详解

高中数学必修一练习题及答案详解

一、选择题1.函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A .ab=0B .a+b=0C .a=bD .a 2+b 2=02.设函数11(0)2()1(0)x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩若1(())2f f a =-,则实数a =( )A.4B.-2C.4或12-D.4或-2 3.已知集合2{|ln(1),}A y y x x R ==+∈,则=A C R ( ) A.∅ B.(,0]-∞ C.(,0)-∞ D.[0,)+∞4.已知集合1{|1}1x M x x +=≥-,集合{|230}N x x =+>,则()R C M N ⋂=( ) A .3(,1)2- B .3(,1]2- C .3[,1)2- D .3[,1]2-5.设 2.8log 3.1,log ,log e a b e c ππ===,则( ) A .b c a << B .b a c << C .c a b << D .a c b << 6.函数2()1log f x x x =-的零点所在区间是( )A .11(,)42B .1(,1)2C .(1,2)D .(2,3) 7.若幂函数)(x f 的图象经过点)21,41(A ,则它在A 点处的切线方程为 (A ) 0144=++y x (B )0144=+-y x (C )02=-y x (D )02=+y x 8.y=x )51(-x 3在区间[-1,1]上的最大值等于( ) A.3 B.314 C.5 D. 316 9.已知幂函数()mf x x =的图象经过点(4,2),则(16)f =( )A.D.810.设()f x 是定义在R 上的奇函数,当20()2x f x x x ≤=-时,则(1)f = ( ) A.—3 B.—1 C.1 D.311.已知222125log 5,log 7,log 7a b ===则 ( ) A .3a b - B .3a b - C .3a b D .3ab12.设集合{}2230M x x x =--<,{}22<=x x N ,则N C M R I 等于( ) A .[]1,1- B .(1,0)- C .[)3,1 D .(0,1) 13.若3log 41x =,则44x x -+=() A. 1 B. 2 C. 83 D. 103二、填空题14.若sinx 3)(+=x x f ,则满足不等式0)3()12(>-+-m f m f 的m的取值范围为 . 15.12lg 4lg 254(4-0++--π) .16.已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x,则)3log 2(2+f 的值为17.函数()sin()3f x x π=-的图象为C ,有如下结论:①图象C 关于直线56x π=对称;②图象C 关于点4(,0)3π对称;③函数)(x f 在区间5[,]36ππ内是增函数。

(完整版)人教版高中数学必修1习题答案

(完整版)人教版高中数学必修1习题答案
Nhomakorabea1
10.解:(1)令2()fxx,而22()()()fxxxfx, 即函数2yx是偶函数; (2)函数2yx的图象关于y轴对称; (3)函数2yx在(0,)上是减函数; (4)函数2yx在(,0)上是增函数. B组 1.解:设同时参加田径和球类比赛的有x人, 则158143328x,得3x,只参加游泳一项比赛的有15339(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A,且20x,所以0a. 3.解:由(){1,3}UABUe,得{2,4,5,6,7,8,9}ABU, 集合ABU里除去()UABIe,得集合B, 所以集合{5,6,7,8,9}B. 4.解:当0x时,()(4)fxxx,得(1)1(14)5f; 当0x时,()(4)fxxx,得(3)3(34)21f; (1)(5),1(1)(1)(3),1aaafaaaa. .5.证明:(1)因为()fxaxb,得121212()()222xxxxafabxxb, 121212()()()222fxfxaxbaxbaxxb, 所以1212()()()22xxfxfxf; (2)因为2()gxxaxb, 得22121212121()(2)()242xxxxgxxxxab, 22121122()()1[()()]22gxgxxaxbxaxb 2212121()()22xxxxab,
0
得函数的定义域为[2,); (2)要使原式有意义,则40||50xx,即4x,且5x, 得函数的定义域为[4,5)(5,)U. 7.解:(1)因为1()1xfxx, 所以1()1afaa,得12()1111afaaa, 即2()11faa; (2)因为1()1xfxx, 所以1(1)(1)112aafaaa, 即(1)2afaa. 8.证明:(1)因为221()1xfxx, 所以22221()1()()1()1xxfxfxxx, 即()()fxfx; (2)因为221()1xfxx, 所以222211()11()()111()xxffxxxx, 即1()()ffxx. 9.解:该二次函数的对称轴为8kx, 函数2()48fxxkx在[5,20]上具有单调性, 则208k,或58k,得160k,或40k, 即实数k的取值范围为160k,或40k.

(完整版)人教版高中数学必修1习题答案

(完整版)人教版高中数学必修1习题答案

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页) 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U AB =,得{2,4,5,6,7,8,9}A B =,集合A B 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。

高中数学必修1所有课时练习(含答案)

高中数学必修1所有课时练习(含答案)

第一章 集合与函数的概念课时作业(一) 集合的含义姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列给出的对象中,能组成集合的是( ) A .一切很大的数 B .无限接近于0的数 C .美丽的小女孩D .方程x 2-1=0的实数根解析: 选项A ,B ,C 中的对象都没有明确的判断标准,不满足集合中元素的确定性,故A ,B ,C 中的对象都不能组成集合,故选D.答案: D2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉M D .0∉M,2∉M解析: 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M . 答案: B3.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1 B .-2 C .6 D .2解析: 由题设知,a 2,2-a,4互不相等,即⎩⎪⎨⎪⎧a 2≠2-a ,a 2≠4,2-a ≠4,解得a ≠-2,a ≠1,且a ≠2.当实数a 的取值是6时,三个数分别为36,-4,4,可以构成集合,故选C.答案: C4.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .4∈MB .2∈MC .0∉MD .-4∉M解析: 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M ,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知集合A 由方程(x -a )(x -a +1)=0的根构成,且2∈A ,则实数a 的值是________. 解析: 由(x -a )(x -a +1)=0得x =a 或x =a -1, 又∵2∈A ,∴当a =2时,a -1=1,集合A 中的元素为1,2,符合题意; 当a -1=2时,a =3,集合A 中的元素为2,3,符合题意. 综上可知,a =2或a =3. 答案: 2或36.设集合A 是由1,-2,a 2-1三个元素构成的集合,集合B 是由1,a 2-3a ,0三个元素构成的集合,若A =B ,则实数a =________.解析: 由集合相等的概念得⎩⎨⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案: 1三、解答题(每小题10分,共20分)7.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值. 解析: 当k =0时,原方程变为-8x +16=0, 所以x =2,此时集合A 中只有一个元素2.当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根, 需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或1.8.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解析: ∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 中含有两个元素-3、-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 中含有两个元素-4,-3,符合题意. 综上所述,a =0或a =-1. 尖子生题库☆☆☆9.(10分)设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解析: (1)由集合元素的互异性可得 x ≠3,x 2-2x ≠x 且x 2-2x ≠3, 解得x ≠-1,x ≠0且x ≠3.(2)若-2∈A ,则x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, 所以x =-2.课时作业(二) 集合的表示姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N +,且s ≤5}解析: A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.答案: D2.下列集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2} C .{2} D .{x |x 2-4x +4=0}解析: {x =2}表示的是由一个等式组成的集合,而其他三个集合均表示由元素2组成的集合.答案: B 3.(2012·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10解析: 由x ∈A ,y ∈A 得x -y =0或x -y =±1或x -y =±2或x -y =±3或x -y =±4,故集合B 中所含元素的个数为10个. 答案: D4.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0};②方程x -2+|y +2|=0的解集为{-2,2};③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的说法有( ) A .1个 B .2个 C .3个 D .0个解析: 直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎨⎧ x -2=0,y +2=0,即⎩⎨⎧x =2,y =-2,解为有序实数对(2,-2),即解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎨⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,一个是实数对,一个是实数,故这两个集合不相等,③不正确.故选A.答案: A二、填空题(每小题5分,共10分)5.用列举法写出集合⎩⎨⎧⎭⎬⎫33-x ∈Z | x ∈Z =________.解析: ∵33-x∈Z ,x ∈Z ,∴3能被3-x 整除,即3-x 为3的因数. ∴3-x =±1或3-x =±3, ∴33-x =±3或33-x=±1. 综上可知,-3,-1,1,3满足题意. 答案: {-3,-1,1,3}6.若3∈{m -1,3m ,m 2-1},则m =________. 解析: 由m -1=3,得m =4;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2.经检验,m =4或m =±2满足集合中元素的互异性. 故填4或±2. 答案: 4或±2三、解答题(每小题10分,共20分) 7.用列举法表示下列集合: ①{x ∈N|x 是15的约数};②{(x ,y )|x ∈{1,2},y ∈{1,2}}; ③{(x ,y )|x +y =2且x -2y =4}; ④{x |x =(-1)n ,n ∈N};⑤{(x ,y )|3x +2y =16,x ∈N ,y ∈N}; ⑥{(x ,y )|x ,y 分别是4的正整数约数}. 解析: ①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}(注:防止把{(1,2)}写成{1,2}或{x =1,y =2})③⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫83,-23 ④{-1,1}⑤{(0,8),(2,5),(4,2)}⑥{(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 8.用描述法表示下列集合: ①{3,9,27,81};②{-2,-4,-6,-8,-10}. 解析: ①{x |x =3n ,n ∈N *且n ≤4} ②{x |x =-2n ,n ∈N *且n ≤5} 尖子生题库☆☆☆9.(10分)定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?解析: 当x =1或2,y =0时,z =0, 当x =1,y =2时,z =2; 当x =2,y =2时,z =4. ∴A *B ={0,2,4},∴所有元素之和为0+2+4=6.课时作业(三) 集合间的基本关系姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列命题: ①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅A ,则A ≠∅. 其中正确的有( ) A .0个 B .1个 C .2个D .3个解析: ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.答案: B2.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( ) A .2 B .-1 C .2或-1 D .4解析: ∵A =B , ∴m 2-m =2,∴m =2或m =-1. 答案: C3.已知全集U =R ,则正确表示集合U ,M ={-1,0,1},N ={x |x 2+x =0}之间关系的Venn 图是( )解析: 由N ={x |x 2+x =0},得N ={-1,0},则N M U . 答案: B4.下列集合中,结果是空集的为( ) A .{x ∈R |x 2-4=0} B .{x |x >9或x <3} C .{(x ,y )|x 2+y 2=0} D .{x |x >9且x <3}解析: {x ∈R |x 2-4=0}={2,-2},{(x ,y )|x 2+y 2=0}={(0,0)},显然{x |x >9或x <3}不是空集,{x |x >9且x <3}是空集,选D. 答案: D二、填空题(每小题5分,共10分)5.设集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围为________.解析: 在数轴上表示出两个集合(图略),因为A B ,所以a ≥2. 答案: a ≥26.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析: ∵∅{x |x 2-x +a =0},∴方程x 2-x +a =0有实根,∴Δ=(-1)2-4a ≥0,a ≤14.答案: a ≤14三、解答题(每小题10分,共20分)7.已知{1}A ⊆{1,2,3},求满足条件的所有的集合A . 解析: 当A 中含有两个元素时, A ={1,2}或A ={1,3};当A 中含有三个元素时,A ={1,2,3}.所以满足已知条件的集合A 是{1,2},{1,3},{1,2,3}.8.已知集合A ={1,3,x 2},B ={x +2,1}.是否存在实数x ,使得B ⊆A ?若存在,求出集合A ,B ;若不存在,说明理由.解析: 假设存在实数x ,使B ⊆A , 则x +2=3或x +2=x 2.(1)当x +2=3时,x =1,此时A ={1,3,1},不满足集合元素的互异性.故x ≠1. (2)当x +2=x 2时,即x 2-x -2=0,故x =-1或x =2. ①当x =-1时,A ={1,3,1},与元素互异性矛盾, 故x ≠-1.②当x =2时,A ={1,3,4},B ={4,1},显然有B ⊆A . 综上所述,存在x =2,使A ={1,3,4},B ={4,1}满足B ⊆A . 尖子生题库☆☆☆9.(10分)设集合A ={x |a -2<x <a +2},B ={x |-2<x <3}. (1)若A B ,求实数a 的取值范围; (2)是否存在实数a 使B ⊆A?解析: (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3或⎩⎪⎨⎪⎧a -2≥-2,a +2<3.解得:0≤a ≤1. (2)同理可得,a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .课时作业(四) 交集、并集姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知集合M ={-1,1,2},集合N ={y |y =x 2,x ∈M },则M ∩N 是( ) A .{1,2,4} B .{1} C .{1,2} D .∅ 解析: ∵M ={-1,1,2},x ∈M , ∴x =-1或1或2. 由y =x 2得y =1或4,∴N ={1,4},M ∩N ={1}. 答案: B 2.设集合A ={x ∈Z |-10≤x ≤-1},B ={ x ∈Z ||x |≤5},则A ∪B 中的元素个数是( ) A .10 B .11 C .15 D .16 解析: A ={-10,-9,-8,-7,-6,…,-1}, B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}, ∴A ∪B ={-10,-9,-8,…,-1,0,1,2,3,4,5},A ∪B 中共16个元素. 答案: D3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}解析: M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}. 答案: D4.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4} D .{x |1≤x ≤4} 解析: 在数轴上表示出集合A 与B ,如下图.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案: A二、填空题(每小题5分,共10分)5.设集合A ={x |x ≥0},B ={x |x <1},则A ∪B =________. 解析: 结合数轴分析得A ∪B =R .答案: R6.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________. 解析: 利用数轴分析可知,a >-1.答案: a >-1三、解答题(每小题10分,共20分)7.已知M ={1},N ={1,2},设A ={(x ,y )|x ∈M ,y ∈N },B ={(x ,y )|x ∈N ,y ∈M },求A ∩B 和A ∪B .解析: A ∩B ={(1,1)},A ∪B ={(1,1),(1,2),(2,1)}8.已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =R ,求a 的取值范围. 解析: 若A ∪B =R ,如图所示,则必有2a ≤-1且a +3≥5,∴a ≤-12且a ≥2,此时a 无解.尖子生题库☆☆☆9.(10分)集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2, B ∪C =C ⇒B ⊆C , ∴-a2<2,∴a >-4.课时作业(五)补集及综合应用姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个解析:A={0,1,3},集合A的真子集共有8个.答案: D2.图中的阴影部分表示的集合是()A.A∩(∁U B) B.B∩(∁U A)C.∁U(A∩B) D.∁U(A∪B)解析:阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(∁U A).答案: B3.已知U为全集,集合M,N⊆U,若M∩N=N,则()A.∁U N⊆∁U M B.M⊆∁U NC.∁U M⊆∁U N D.∁U N⊆M解析:由M∩N=N知N⊆M.∴∁U M⊆∁U N.答案: C4.(2012·山东卷)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.答案: C二、填空题(每小题5分,共10分)5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于________________________________________________________________________.解析:∁U B={x|-1≤x≤4},A∩(∁U B)={x|-1≤x≤3}.答案:{x|-1≤x≤3}6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a的取值范围是________.解析:∵∁R B=(-∞,1)∪(2,+∞)且A∪∁R B=R,∴{x|1≤x≤2}⊆A,∴a≥2.答案:[2,+∞)三、解答题(每小题10分,共20分)7.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3},求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.解析:由下图可知,∁U A ={x |x ≤-2或3≤x ≤4}, A ∩B ={x |-2<x <3},∁U (A ∩B )={x |x ≤-2或3≤x ≤4},(∁U A )∩B ={x |-3<x ≤-2或x =3}.8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解析: ∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2. (2)若A ≠∅,则有⎩⎨⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2. 尖子生题库☆☆☆9.(10分)已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解析: 假设存在x ,使B ∪(∁A B )=A ,∴B A . (1)若x +2=3,则x =1符合题意. (2)若x +2=-x 3,则x =-1不符合题意. ∴存在x =1,使B ∪(∁A B )=A , 此时A ={1,3,-1},B ={1,3}.课时作业(六) 函数的概念姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x ,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来.A .1个B .2个C .3个D .4个 答案: B2.函数f (x )=⎝⎛⎭⎫x -120+|x 2-1|x +2的定义域为( )A.⎝⎛⎭⎫-2,12 B .(-2,+∞) C.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,+∞解析: 要使函数式有意义,必有x -12≠0且x +2>0,即x >-2且x ≠12.答案: C3.已知函数f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A .5 B .-5 C .6 D .-6解析: 由f (1)=f (2)=0,得⎩⎪⎨⎪⎧1+p +q =0,4+2p +q =0,∴⎩⎪⎨⎪⎧p =-3,q =2,∴f (x )=x 2-3x +2, ∴f (-1)=(-1)2-3×(-1)+2=6. 答案: C4.若函数g (x +2)=2x +3,则g (3)的值是( ) A .9 B .7 C .5 D .3解析: g (3)=g (1+2)=2×1+3=5. 答案: C二、填空题(每小题5分,共10分)5.函数f (x )=x 2-2x +5定义域为A ,值域为B ,则集合A 与B 的关系是________. 解析: 显然二次函数的定义域为A =R , 又∵f (x )=x 2-2x +5=(x -1)2+4≥4, ∴B =[4,+∞),∴A B . 答案: A B6.设f (x )=11+x,则f [f (x )]=________.解析: f [f (x )]=f ⎝ ⎛⎭⎪⎫11+x =11+11+x =x +1x +2(x ≠-1且x ≠-2). 答案:x +1x +2(x ≠-1且x ≠-2) 三、解答题(每小题10分,共20分) 7.判断下列各组函数是否是相等函数. (1)f (x )=(x -2)2,g (x )=x -2;(2)f (x )=x 3+xx 2+1,g (x )=x .解析: (1)∵f (x )=(x -2)2=|x -2|,g (x )=x -2,∴两函数的对应关系不同,故不是相等函数. (2)∵f (x )=x 3+xx 2+1=x ,g (x )=x ,又∵两个函数的定义域均为R ,对应关系相同,故是相等函数.8.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域; (2)求f (-1), f (12)的值.解析: (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞).(2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.尖子生题库☆☆☆9.(10分)已知函数f (x )=x 21+x 2.(1)求f (2)与f ⎝⎛⎭⎫12, f (3)与f ⎝⎛⎭⎫13. (2)由(1)中求得结果,你能发现f (x )与f ⎝⎛⎭⎫1x 有什么关系?并证明你的发现. (3)求f (1)+f (2)+f (3)+…+f (2 013)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 013. 解析: (1)∵f (x )=x 21+x 2,∴f (2)=221+22=45,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1221+⎝⎛⎭⎫122=15, f (3)=321+32=910,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1321+⎝⎛⎭⎫132=110. (2)由(1)发现f (x )+f ⎝⎛⎭⎫1x =1. 证明如下:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+11+x 2=1. (3)f (1)=121+12=12.由(2)知f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, …,f (2 013)+f ⎝⎛⎭⎫12 013=1,∴原式=12+1+1+1+…+1 2 012个=2 012+12 =4 0252.课时作业(七) 函数的三种表示法姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图象的只可能是( )解析: 根据函数的定义,观察图象,对于选项A ,B ,值域为{y |0≤y ≤2},不符合题意,而C 中当0<x <2时,一个自变量x 对应两个不同的y ,不是函数.故选D.答案: D2.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值等于( ) A .8 B .1 C .5 D .-1解析: 由f (2x +1)=3x +2,令2x +1=t , ∴x =t -12,∴f (t )=3·t -12+2,∴f (x )=3(x -1)2+2,∴f (a )=3(a -1)2+2=2,∴a =1.答案: B3.已知函数f (x )由下表给出,则f (f (3))等于( )x 1 2 3 4 f (x ) 3 2 41A.1 C .3 D .4 解析: ∵f (3)=4,∴f (f (3))=f (4)=1. 答案: A4.(2012·临沂高一检测)函数y =f (x )的图象如图所示,则函数y =f (x )的解析式为( ) A .f (x )=(x -a )2(b -x ) B .f (x )=(x -a )2(x +b ) C .f (x )=-(x -a )2(x +b ) D .f (x )=(x -a )2(x -b )解析: 由图象知,当x =b 时,f (x )=0,故排除B ,C ;又当x >b 时,f (x )<0,故排除D.故应选A.答案: A二、填空题(每小题5分,共10分)5.(2011·济南高一检测)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.解析: ∵f (3)=1,1f (3)=1,∴f ⎝⎛⎭⎫1f (3)=f (1)=2. 答案: 26.已知f (x )是一次函数,且f [f (x )]=4x +3,则f (x )=________.解析: 设f (x )=ax +b (a ≠0),则f [f (x )]=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,∴⎩⎪⎨⎪⎧ a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-3.故所求的函数为f (x )=2x +1或f (x )=-2x -3. 答案: 2x +1或-2x -3三、解答题(每小题10分,共20分) 7.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). (2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.8.作出下列函数的图象: (1)y =1-x ,x ∈Z ;(2)y =x 2-4x +3,x ∈[1,3].解析: (1)因为x ∈Z ,所以图象为一条直线上的孤立点,如图1所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图2所示.尖子生题库☆☆☆9.(10分)求下列函数解析式.(1)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ); (2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x , ∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .课时作业(八) 分段函数和映射姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.如图中所示的对应:其中构成映射的个数为( )A .3B .4C .5D .6解析:序号 是否为映射原因① 是 满足取元任意性,成象唯一性 ② 是 满足取元任意性、成象唯一性 ③ 是 满足取元任意性、成象唯一性 ④ 不是 是一对多,不满足成象唯一性 ⑤ 不是 是一对多,不满足成象唯一性 ⑥不是a 3,a 4无象、不满足取元任意性答案: 2.已知函数y =⎩⎪⎨⎪⎧x 2+1 (x ≤0)-2x (x >0),使函数值为5的x 的值是( )A .-2或2B .2或-52C .-2D .2或-2或-52解析: 若x ≤0,则x 2+1=5 解得x =-2或x =2(舍去).若x >0,则-2x =5,∴x =-52(舍去),综上x =-2. 答案: C3.已知映射f :A →B ,即对任意a ∈A ,f :a →|a |.其中集合A ={-3,-2,-1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的对应元素,则集合B 中元素的个数是( )A .7B .6C .5D .4解析: |-3|=|3|,|-2|=|2|,|-1|=1,|4|=4,且集合元素具有互异性,故B 中共有4个元素,∴B ={1,2,3,4}. 答案: D4.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6),则f (3)为( )A .3B .2C .4D .5解析: f (3)=f (3+2)=f (5),f (5)=f (5+2)=f (7),∴f (7)=7-5=2.故f (3)=2. 答案: B二、填空题(每小题5分,共10分)5.f (x )=⎩⎪⎨⎪⎧3x +2,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析: ∵f (x )=⎩⎪⎨⎪⎧3x +2 x <1x 2+ax x ≥1,∴f (0)=2,∴f (f (0))=f (2)=4+2a , ∴4+2a =4a ,∴a =2.答案: 26.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为________.解析: 由题意知⎩⎪⎨⎪⎧ x +y =4x -y =-2∴⎩⎪⎨⎪⎧x =1y =3答案: (1,3)三、解答题(每小题10分,共20分)7.已知f (x )=⎩⎪⎨⎪⎧x 2, -1≤x ≤11, x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解析: (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].8.如图所示,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求f (f (0))的值;(2)求函数f (x )的解析式.解析: (1)直接由图中观察,可得 f (f (0))=f (4)=2.(2)设线段AB 所对应的函数解析式为y =kx +b ,将⎩⎪⎨⎪⎧ x =0,y =4与⎩⎪⎨⎪⎧ x =2,y =0代入,得⎩⎪⎨⎪⎧ 4=b ,0=2k +b .∴⎩⎪⎨⎪⎧b =4,k =-2. ∴y =-2x +4(0≤x ≤2).同理,线段BC 所对应的函数解析式为y =x -2(2≤x ≤6).∴f (x )=⎩⎪⎨⎪⎧-2x +4, 0≤x ≤2,x -2, 2<x ≤6.尖子生题库☆☆☆9.(10分)“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y .(单位:元)解析: 由题意知,当0<x ≤5时,y =1.2x , 当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6. 当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎨⎧1.2x (0<x ≤5)2.4x -6 (5<x ≤6)4.8x -20.4 (6<x ≤7).课时作业(九) 函数的单调性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1. (2010·北京)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④D .①④答案 B解析 ①函数y =x 12在(0,+∞)上为增函数,故在(0,1)上也为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数,③y =|x -1|在(0,1)上为减函数,④y =2x +1在(-∞,+∞)上为增函数,故在(0,1)上也为增函数. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝⎛⎦⎤-∞,32 B.⎣⎡⎭⎫32,+∞ C.⎝⎛⎦⎤-1,32D.⎣⎡⎭⎫32,4答案 D解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调减区间为⎣⎡⎭⎫32,4.点评 本题的易错点是:易忽略f (x )的定义域.一定注意定义域优先的原则. 3. 若函数y =ax 与y =-bx在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增答案 B解析 ∵y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0,∴y =ax 2+bx 的对称轴方程x =-b2a <0,∴y =ax 2+bx 在(0,+∞)上为减函数.4. 已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)答案 C解析 显然(4-6)(f (4)-f (6))>0⇒f (4)<f (6),结合奇函数的定义,得-f (4)=f (-4),-f (6)=f (-6). 故f (-4)>f (-6).二、填空题(每小题5分,共15分)5. 设x 1,x 2为y =f (x )的定义域内的任意两个变量,有以下几个命题:①(x 1-x 2)[f (x 1)-f (x 2)]>0; ②(x 1-x 2)[f (x 1)-f (x 2)]<0; ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-f (x 2)x 1-x 2<0.其中能推出函数y =f (x )为增函数的命题为________.(填序号) 答案 ①③解析 依据增函数的定义可知,对于①③,当自变量增大时,相对应的函数值也增大,所以①③可推出函数y =f (x )为增函数.6. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤-14,0 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.点评 本题首先应该对参数a 进行分类讨论,然后再针对a ≠0时的情况,根据二次函数的对称轴与单调区间的位置关系确定参数的取值范围.本题易出现的问题是默认函数f (x 为二次函数,忽略对a 是否为0的讨论.7. 已知函数f (x )=⎩⎪⎨⎪⎧e -x -2 (x ≤0)2ax -1 (x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.其中正确命题的序号是________. 答案 ①③④ 解析根据题意可画出草图,由图象可知,①显然正确; 函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎡⎭⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确; 由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2成立,故④正确. 三、解答题8. (10分)已知函数y =f (x )在[0,+∞)上是减函数,试比较f ⎝⎛⎭⎫34与f (a 2-a +1)的大小.解 ∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34>0, 又∵y =f (x )在[0,+∞)上是减函数, ∴f (a 2-a +1)≤f ⎝⎛⎭⎫34.点评 本题是应用函数单调性的定义来比较函数值的大小,在应用函数单调性的定义时,必须要求自变量的值都在函数的同一单调区间内.课时作业(十) 函数的最大(小)值姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.函数y =1x 2在区间⎣⎡⎦⎤12,2上的最大值是( ) A.14 B .-1 C .4 D .-4解析: ∵函数y =1x 2在⎣⎡⎦⎤12,2上是减函数, ∴y max =1⎝⎛⎭⎫122=4.答案: C2.函数f (x )=⎩⎪⎨⎪⎧2x +6,(x ∈[1,2])x +7,(x ∈[-1,1))则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析: f (x )在[-1,2]上单调递增,∴最大值为f (2)=10,最小值为f (-1)=6. 答案: A3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 解析: f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a . ∴函数f (x )图象的对称轴为x =2, ∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1. 答案: C4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0) C .(-∞,0] D .(0,+∞)解析: a <-x 2+2x 恒成立,则a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,故a <0. 答案: B二、填空题(每小题5分,共10分)5.函数f (x )=xx +2在区间[2,4]上的最大值为________,最小值为________.解析: ∵f (x )=x x +2=x +2-2x +2=1-2x +2,∴函数f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=22+2=12,f (x )max =f (4)=44+2=23.答案: 23 126.在已知函数f (x )=4x 2-mx +1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f (x )在[1,2]上的值域________.解析: 由题意知x =-2是f (x )的对称轴,则m2×4=-2,m =-16,∴f (x )=4x 2+16x +1 =4(x +2)2-15.又∵f (x )在[1,2]上单调递增.f (1)=21, f (2)=49,∴在[1,2]上的值域为[21,49]. 答案: [21,49]三、解答题(每小题10分,共20分)7.已知函数f (x )=x 2-2x +2,x ∈A ,当A 为下列区间时,分别求f (x )的最大值和最小值. (1)A =[-2,0];(2)A =[2,3].解析: f (x )=x 2-2x +2=(x -1)2+1,其对称轴为x=1.(1)A=[-2,0]为函数的递减区间,∴f(x)的最小值是2,最大值是10;(2)A=[2,3]为函数的递增区间,∴f(x)的最小值是2,最大值是5.8.已知函数f(x)=x-1x+2,x∈[3,5],(1)判断函数f(x)的单调性并证明.(2)求函数f(x)的最大值和最小值.解析:(1)任取x1,x2∈[3,5]且x1<x2,则f(x1)-f(x2)=x1-1x1+2-x2-1x2+2=(x1-1)(x2+2)-(x2-1)(x1+2)(x1+2)(x2+2)=x1x2+2x1-x2-2-x1x2-2x2+x1+2(x1+2)(x2+2)=3(x1-x2) (x1+2)(x2+2).∵x1,x2∈[3,5]且x1<x2,∴x1-x2<0,x1+2>0,x2+2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)=x-1x+2在x∈[3,5]上为增函数.(2)由(1)知,当x=3时,函数f(x)取得最小值为f(3)=2 5;当x=5时,函数f(x)取得最大值为f(5)=47.尖子生题库☆☆☆9.(10分)如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m,问:每间笼舍的宽度x为多少时,才能使得每间笼舍面积y达到最大?每间笼舍最大面积为多少?解析:设总长为b,由题意知b=30-3x,可得y=12xb,即y=12x(30-3x)=-32(x-5)2+37.5,x∈(0,10).当x=5时,y取得最大值37.5,即每间笼舍的宽度为5 m时,每间笼舍面积y达到最大,最大面积为37.5 m2.课时作业(十一) 函数的奇偶性姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.函数f (x )=x 2+3的奇偶性是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 解析: 函数f (x )=x 2+3的定义域为R ,f (-x )=(-x )2+3=x 2+3=f (x ),所以该函数是偶函数,故选B. 答案: B2.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4解析: 偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x ,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.答案: A3.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,则f (2)等于( ) A .-10 B .-18 C .-26 D .10解析: 由函数g (x )=x 5+ax 3+bx 是奇函数,得g (-x )=-g (x ),∵f (2)=g (2)-8,f (-2)=g (-2)-8,∴f (2)+f (-2)=-16.又f (-2)=10,∴f (2)=-16-f (-2)=-16-10=-26. 答案: C4.已知函数f (x )在[-5,5]上是偶函数,f (x )在[0,5]上是单调函数,且f (-3)<f (-1),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)解析: 函数f (x )在[-5,5]上是偶函数,因此f (x )=f (-x ),于是f (-3)=f (3),f (-1)=f (1),则f (3)<f (1).又∵f (x )在[0,5]上是单调函数,从而函数f (x )在[0,5]上是减函数,观察四个选项,并注意到f (x )=f (-x ),易知只有D 正确. 答案: D二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,则m =________.解析: 当x <0时,-x >0,f (-x )=-(-x )2+2(-x )=-x 2-2x .又∵f (x )为奇函数, ∴f (-x )=-f (x )=-x 2-2x .∴f (x )=x 2+2x =x 2+mx ,∴m =2. 答案: 26.若函数f (x )=ax 2+2在[3-a,5]上是偶函数,则a =________.解析: 由题意可知3-a =-5,∴a =8. 答案: 8三、解答题(每小题10分,共20分)7.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解析: ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0.又f ⎝⎛⎭⎫12=12a 1+14=25,∴a =1, ∴f (x )=x1+x 2.8.已知函数f (x )是定义域为R 的奇函数,当x >0时, f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式; (2)画出函数f (x )的图象.解析: (1)①由于函数f (x )是定义域为R 的奇函数, 则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (x )=-f (-x ) =-[(-x )2-2(-x )] =-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , (x >0)0, (x =0)-x 2-2x . (x <0)(2)图象如图:尖子生题库☆☆☆9.(10分)已知函数y =f (x )不恒为0,且对于任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),求证:y =f (x )是奇函数.证明: 在f (x +y )=f (x )+f (y )中, 令y =-x ,得f (0)=f (x )+f (-x ),令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0. 所以f (x )+f (-x )=0, 即f (-x )=-f (x ), 所以y =f (x )是奇函数.第二章 基本初等函数(Ⅰ)课时作业(十二) 指数与指数幂的运算姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.5m -2可化为( )A .m -25B .m 52C .m 25D .-m 52答案: A2.当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果是( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 解析:2-x 有意义,须有2-x ≥0,即x ≤2,x 2-4x +4-x 2-6x +9 =(x -2)2-(x -3)2=2-x -(3-x ) =-1. 答案: C3.计算0.25-0.5+⎝⎛⎭⎫127-13-416的值为( )A .7B .3C .7或3D .5解析: 0.25-0.5+⎝⎛⎭⎫127-13-416=⎝⎛⎭⎫122×⎝⎛⎭⎫-12+⎝⎛⎭⎫133×⎝⎛⎭⎫-13-424=2+3-2=3. 答案: B4.下列式子中,错误的是( )A .(27a 3)13÷0.3a -1=10a 2B .(a 23-b 23)÷(a 13+b 13)=a 13-b 13C .[(22+3)2(22-3)2]12=-1D.4a 3a 2a =24a 11解析: 对于A ,原式=3a ÷0.3a -1=3a 20.3=10a 2,A 正确; 对于B ,原式=(a 13-b 13)(a 13+b 13)a 13+b 13=a 13-b 13,B 正确;对于C ,原式=[(3+22)2(3-22)2]12=(3+22)·(3-22)=1,这里注意3>22,a12(a ≥0)是正数,C 错误;对于D ,原式=4a 3a 52=4a ·a 56=a 1124=24a 11,D 正确. 答案: C二、填空题(每小题5分,共10分) 5.有下列说法: ①3-27=3;②16的4次方根是±2;③481=±3;④(x +y )2=|x +y |.其中,正确的有________(填上正确说法的序号). 解析: 当n 是奇数时,负数的n 次方根是一个负数,故3-27=-3,故①错误;16的4次方根有两个,为±2,故②正确;481=3,故③错误;(x +y )2是正数,故2(x +y )2=|x +y |,故④正确.答案: ②④6.化简(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得________.解析: 原式=-6a -4b134a -4b -53=-32b 2.答案: -32b 2三、解答题(每小题10分,共20分) 7.计算下列各式:(1)481×923;(2)23×31.5×612. 解析: (1)原式=[34×(343)12]14=(34+23)14=3143×14=376 =363.(2)原式=2×312×⎝⎛⎭⎫3213×(3×22)16=21-13+13×312+13+16=2×3=6.8.计算下列各式:(1)823×100-12×(0.25)-3×⎝⎛⎭⎫1681-34; (2)(2a 23b 12)·(-6a 12b 13)÷(-3a 16·b 56).解析: (1)原式=(23)23×(102)-12×(2-2)-3×⎣⎡⎦⎤⎝⎛⎭⎫234-34 =22×10-1×26×⎝⎛⎭⎫23-3=28×110×⎝⎛⎭⎫323=8625.(2)原式=4a 23+12-16·b 12+13-56=4ab 0=4a . 尖子生题库☆☆☆9.(10分)已知a 12+a -12=5,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)a 2-a -2.解析: (1)将a 12+a -12=5两边平方,得a +a -1+2=5,则a +a -1=3.(2)由a +a -1=3两边平方,得a 2+a -2+2=9,则a 2+a -2=7. (3)设y =a 2-a -2,两边平方,得y 2=a 4+a -4-2=(a 2+a -2)2-4=72-4=45, 所以y =±35,即a 2-a -2=±3 5.课时作业(十三) 指数函数及其性质姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M N B .M ⊆N C .N M D .M =N 解析: x ∈R ,y =2x >0,y =x 2≥0, 即M ={y |y >0},N ={y |y ≥0}, 所以M N . 答案: A2.函数y =2x +1的图象是( )解析: 函数y =2x的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1的图象单调递增且过点(0,2),故选A.答案: A3.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( ) A .2或-3 B .-3C .2D .-12解析: ∵函数y =b ·a x 为指数函数,∴b =1.当a >1时,y =a x 在[1,2]上的最大值为a 2,最小值为a , 则a 2+a =6,解得a =2或a =-3(舍);当0<a <1时,y =a x 在[1,2]上的最大值为a ,最小值为a 2,则a +a 2=6,解得a =2(舍)或a =-3(舍)综上可知,a =2. 答案: C4.若函数f (x )与g (x )=⎝⎛⎭⎫12x的图象关于y 轴对称,则满足f (x )>1的x 的取值范围是( ) A .RB .(-∞,0)C .(1,+∞)D .(0,+∞)解析: 根据对称性作出f (x )的图象,由图象可知,满足f (x )>1的x 的取值范围为(0,+∞).答案: D二、填空题(每小题5分,共10分)5.函数y =2x -1的定义域是________. 解析: 要使函数y =2x -1有意义,只须使2x -1≥0,即x ≥0,∴函数定义域为[0,+∞). 答案: [0,+∞)6.函数y =a x -2 013+2 013(a >0,且a ≠1)的图象恒过定点____________. 解析: ∵y =a x (a >0且a ≠1)恒过定点(0,1), ∴y =a x -2 013+2 013恒过定点(2 013,2 014). 答案: (2 013,2 014)三、解答题(每小题10分,共20分) 7.下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ; (4)y =x x ;(5)y =x α(α是常数).解析: (1)y =10x 符合指数函数定义,是指数函数; (2)y =10x +1中指数是x +1而非x ,不是指数函数; (3)y =-4x 中系数为-1而非1,不是指数函数;(4)y =x x 中底数和指数均是自变量x ,不符合指数函数定义,不是指数函数; (5)y =x α中底数是自变量,不是指数函数.8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3;f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.尖子生题库☆☆☆9.(10分)(2012·山东高考)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,求a .解析: 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.。

(高一)高一数学必修1习题及答案5篇

(高一)高一数学必修1习题及答案5篇

高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。

高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。

高中数学必修一练习册答案

高中数学必修一练习册答案

(数学必修1)第一章(上) [基础训练A 组]一、选择题1. C 元素的确定性;2. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0) 并非空集,选项C 所代表的集合是{}0并非空集, 选项D 中的方程210x x -+=无实数根;3. A 阴影部分完全覆盖了C 部分,这样就要求交集运算的两边都含有C 部分;4. A (1)最小的数应该是0,(2)反例:0.5N -∉,但0.5N ∉(3)当0,1,1a b a b ==+=,(4)元素的互异性5. D 元素的互异性a b c ≠≠;6. C {}0,1,3A =,真子集有3217-=。

二、填空题1. (1),,;(2),,,(3)∈∉∈∈∉∈∈ 0是自然数,5是无理数,不是自然数,164=; 2(2323)6,23236,-++=-++=当0,1a b ==时6在集合中2. 15 {}0,1,2,3,4,5,6A =,{}0,1,4,6C =,非空子集有42115-=; 3. {}|210x x <<2,3,7,10,显然A B = {}|210x x << 4. 1|12k k ⎧⎫-≤≤⎨⎬⎩⎭ 3,21,21,k k --+ ,则213212k k -≥-⎧⎨+≤⎩得112k -≤≤ 5. {}|0y y ≤ 2221(1)0y x x x =-+-=--≤,A R =。

三、解答题1.解:由题意可知6x -是8的正约数,当61,5x x -==;当62,4x x -==; 当64,2x x -==;当68,2x x -==-;而0x ≥,∴2,4,5x =,即 {}5,4,2=A ;2.解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =; 当121m m +<-,即2m >时,由B A ⊆,得12215m m +≥-⎧⎨-≤⎩即23m <≤;∴3≤m3.解:∵{}3A B =- ,∴3B -∈,而213a +≠-,∴当{}{}33,0,0,1,3,3,1,1a a A B -=-==-=--, 这样{}3,1A B =- 与{}3A B =- 矛盾; 当213,1,a a -=-=-符合{}3A B =- ∴1a =-4.解:当0m =时,1x =-,即0M ∈; 当0m ≠时,140,m ∆=+≥即14m ≥-,且0m ≠ ∴14m ≥-,∴1|4U C M m m ⎧⎫=<-⎨⎬⎩⎭而对于N ,140,n ∆=-≥即14n ≤,∴1|4N n n ⎧⎫=≤⎨⎬⎩⎭∴1()|4U C M N x x ⎧⎫=<-⎨⎬⎩⎭(数学必修1)第一章(上) [综合训练B 组]一、选择题1. A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同, (3)361,0.5242=-=,有重复的元素,应该是3个元素,(4)本集合还包括坐标轴 2. D 当0m =时,,B φ=满足A B A = ,即0m =;当0m ≠时,1,B m ⎧⎫=⎨⎬⎩⎭而A B A = ,∴11111m m=-=-或,或;∴1,10m =-或; 3. A {}N =(0,0),N M ⊆;4. D 1594x y x x y y +==⎧⎧⎨⎨-==-⎩⎩得,该方程组有一组解(5,4)-,解集为{}(5,4)-;5. D 选项A 应改为R R +⊆,选项B 应改为""⊆,选项C 可加上“非空”,或去掉“真”,选项D 中的{}φ里面的确有个元素“φ”,而并非空集;6. C 当A B =时,A B A A B == 二、填空题 1. (1),,(2),(3)∈∈∈⊆(1)32≤,1,2x y ==满足1y x =+,(2)估算25 1.4 2.2 3.6+=+=,23 3.7+=,或2(25)740+=+,2(23)748+=+ (3)左边{}1,1=-,右边{}1,0,1=-2. 4,3==b a {}{}()|34|U U A C C A x x x a x b ==≤≤=≤≤3. 26 全班分4类人:设既爱好体育又爱好音乐的人数为x 人;仅爱好体育 的人数为43x -人;仅爱好音乐的人数为34x -人;既不爱好体育又不爱好音乐的 人数为4人 。

高中数学必修一习题答案

高中数学必修一习题答案

高中数学必修一习题答案高中数学必修一习题答案高中数学是学生们在学习过程中必须面对的科目之一,而数学习题则是学生们巩固知识、提高解题能力的重要途径。

本文将为大家提供高中数学必修一习题的答案,帮助同学们更好地理解和掌握数学知识。

一、整式与分式1. 将下列各式化为最简整式:(1) 3x + 5x^2 - 2x - 4答案:5x^2 + x - 4(2) 3a^2b - ab^2 + 2ab - 4a^2b^2答案:-4a^2b^2 + 3a^2b + 2ab - ab^22. 将下列各式化为最简分式:(1) (x^2 + 3x + 2)/(x + 1)答案:x + 2(2) (2a^2 - 3ab + ab^2)/(ab - b^2)答案:2a - 3b二、一次函数与方程1. 求下列方程的解:(1) 2x - 3 = 5x + 2答案:x = -1(2) 3(x - 4) = 2(2x + 1)答案:x = 72. 求下列函数的解析式:(1) 函数图象过点(2, 3),且与x轴交于点(1, 0)答案:f(x) = x - 1(2) 函数图象过点(3, -2),且斜率为2答案:f(x) = 2x - 8三、二次函数与方程1. 求下列方程的解:(1) x^2 + 5x + 6 = 0答案:x = -2, -3(2) 2x^2 - 7x + 3 = 0答案:x = 3/2, 1/22. 求下列函数的解析式:(1) 函数图象过点(1, 4),且对称轴为x轴答案:f(x) = (x - 1)^2 + 4(2) 函数图象过点(-2, 0),且开口向上答案:f(x) = x^2 + 4x + 4四、平面向量1. 已知向量AB = (2, 3),向量BC = (4, -1),求向量AC的坐标表示。

答案:向量AC = AB + BC = (2, 3) + (4, -1) = (6, 2)2. 已知向量AB = (3, -2),向量AC = (1, 4),求向量BC的坐标表示。

高中数学必修一课后习题答案

高中数学必修一课后习题答案

高中数学必修一课后习题答案
《高中数学必修一课后习题答案》
高中数学必修一是高中阶段学习数学的基础课程,通过学习这门课程,学生可以掌握基本的数学知识和解题方法。

课后习题是巩固知识、提高能力的重要途径,下面是课后习题的答案。

1. 有理数的加减
答案:-5/6
2. 一元一次方程
答案:x=3
3. 二次根式
答案:2√3
4. 一元二次方程
答案:x=2或x=-3
5. 几何图形的面积和体积
答案:面积为24平方厘米,体积为36立方厘米
6. 函数及其图象
答案:f(x)=2x+3
7. 直角三角形的三角函数
答案:sinA=3/5, cosA=4/5, tanA=3/4
8. 统计与概率
答案:概率为1/6
通过课后习题的答案,我们可以检验自己的学习成果,找出自己的不足之处,
并加以改正。

同时,也可以对照答案,了解解题方法和思路,提高解题能力。

希望同学们能够认真对待课后习题,不断提高数学水平,取得更好的成绩。

总之,高中数学必修一课后习题答案是我们学习的重要参考资料,通过认真对待习题答案,我们可以更好地掌握数学知识,提高解题能力,取得更好的学习成绩。

希望同学们能够认真对待课后习题,不断提高数学水平,为将来的学习和工作打下坚实的数学基础。

人教版高中数学必修1课后习题答案

人教版高中数学必修1课后习题答案

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B == ,{3,5,6,8}{4,5,7,8}{3,4,A B == . 2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=- .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B 痧 .4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U A B = ð,()(){6}U U A B = 痧.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N . 1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥ ,{|34}A B x x =≤< .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,A C ,()ABC ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3,4,5,6}B C = ,{3}B C = ,则(){1,2,3,4,5,6}A B C = ,(){1,2,3,4,5,6,7,8}A B C = .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅ .(1){|}A B x x = 是参加一百米跑或参加二百米跑的同学;(2){|}A C x x = 是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求B C ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形ð,{|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥ 或ð,(){|3,7}R A B x xx =<≥ 或ð, (){|23,710R A B x x x =<<≤< 或ð, (){|2,3710R A B x x x x =≤≤<≥ 或或ð. B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B = ,则集合B 有 个.1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B == ;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.已知全集{|010}U A B x N x ==∈≤≤ ,(){1,3,5,7}U A B = ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B = ,得U B A ⊆ð,即()U U A B B = 痧,而(){1,3,5,7}U A B = ð, 得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =. 第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤, 得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应 与A B 中的元素是什么?与B中的元素2相对应的A 中元素是什的么?(A )(B )(C )(D )4.解:因为sin 60= ,所以与A 中元素60 相对应的B ;因为sin 452=,所以与B 中的元素2相对应的A 中元素是45 . 1.2函数及其表示习题1.2(第23页) 1.求下列函数的定义域:(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x =. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞ ,值域是(,0)(0,)-∞+∞ ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个? 并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235xt -=+,(012)x ≤≤,即1235xt -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00) 天气越来越暖,中午时分(12:0013:00) 一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00 期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0] 上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)(,0)-∞上递增;函数在[0,)+∞上递减. 函数在2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=. 2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC == 的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B = ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭ ,即A C =∅ ; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭ ; 则39()(){(0,0),(,)}55A B B C =- .6.求下列函数的定义域:(1)y =;(2)y =. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠, 得函数的定义域为[4,5)(5,)+∞ .7.已知函数1()1x f x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证: (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数. B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B = ð,(){2,4}U A B = ð,求集合B . 3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8,9}A B = ,集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a aa ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++,121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004175(4000)15%,4000x x x y xx x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。

人教版普通高中数学必修1习题详细答案

人教版普通高中数学必修1习题详细答案

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定地范围内,生产效率随着工人数量地增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量地增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称地;()g x 是奇函数,其图象是关于原点对称地.习题1.3(第39页) 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间地一个可能地图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车地月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数地解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-地对称轴为1x =,则函数()f x 地单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 地单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形地宽为x m ,得矩形地长为3032xm -,设矩形地面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造地每间熊猫居室面积最大,且每间熊猫居室地最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =地解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=地解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 地两个端点地距离相等,即{|}P PA PB =表示地点组成线段AB 地垂直平分线;(2){|3}P POcm =表示地点组成以定点O 为圆心,半径为3cm 地圆.3.解:集合{|}P PA PB =表示地点组成线段AB 地垂直平分线, 集合{|}P PA PC =表示地点组成线段AC 地垂直平分线,得{|}{|}P PA PB P PA PC ==地点是线段AB 地垂直平分线与线段AC 地垂直平分线地交点,即ABC ∆地外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=,得1a =-,或1a =,综上得:实数a 地值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数地定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数地定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数地对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 地取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=地图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛地有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛地有15339--=(人),即同时参加田径和球类比赛地有3人,只参加游泳一项比赛地有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U AB =,得{2,4,5,6,7,8,9}A B =,集合A B 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x axb =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.解:设某人地全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月地工资、薪金所得是2517.8元.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.RTCrp。

高中数学必修一练习册答案

高中数学必修一练习册答案

(数学必修1)第一章(上) [基础训练A 组]一、选择题1. C 元素的确定性;2. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0) 并非空集,选项C 所代表的集合是{}0并非空集, 选项D 中的方程210x x -+=无实数根;3. A 阴影部分完全覆盖了C 部分,这样就要求交集运算的两边都含有C 部分;4. A (1)最小的数应该是0,(2)反例:0.5N -∉,但0.5N ∉(3)当0,1,1a b a b ==+=,(4)元素的互异性5. D 元素的互异性a b c ≠≠;6. C {}0,1,3A =,真子集有3217-=。

二、填空题1. (1),,;(2),,,(3)∈∉∈∈∉∈∈ 04=;2==当0,1a b == 2. 15 {}0,1,2,3,4,5,6A =,{}0,1,4,6C =,非空子集有42115-=;3. {}|210x x << {2,3,7,1064748,显然A B =U {}|210x x << 4. 1|12k k ⎧⎫-≤≤⎨⎬⎩⎭ 3,21,21,2k k --+6444744481442443,则213212k k -≥-⎧⎨+≤⎩得112k -≤≤ 5. {}|0y y ≤ 2221(1)0y x x x =-+-=--≤,A R =。

三、解答题1.解:由题意可知6x -是8的正约数,当61,5x x -==;当62,4x x -==; 当64,2x x -==;当68,2x x -==-;而0x ≥,∴2,4,5x =,即 {}5,4,2=A ;2.解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =;当121m m +<-,即2m >时,由B A ⊆,得12215m m +≥-⎧⎨-≤⎩即23m <≤;∴3≤m3.解:∵{}3A B =-I ,∴3B -∈,而213a +≠-,∴当{}{}33,0,0,1,3,3,1,1a a A B -=-==-=--, 这样{}3,1A B =-I 与{}3A B =-I 矛盾; 当213,1,a a -=-=-符合{}3A B =-I ∴1a =-4.解:当0m =时,1x =-,即0M ∈;当0m ≠时,140,m ∆=+≥即14m ≥-,且0m ≠∴14m ≥-,∴1|4U C M m m ⎧⎫=<-⎨⎬⎩⎭而对于N ,140,n ∆=-≥即14n ≤,∴1|4N n n ⎧⎫=≤⎨⎬⎩⎭∴1()|4U C M N x x ⎧⎫=<-⎨⎬⎩⎭I(数学必修1)第一章(上) [综合训练B 组]一、选择题1. A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同, (3)361,0.5242=-=,有重复的元素,应该是3个元素,(4)本集合还包括坐标轴2. D 当0m =时,,B φ=满足A B A =U ,即0m =;当0m ≠时,1,B m ⎧⎫=⎨⎬⎩⎭而A B A =U ,∴11111m m=-=-或,或;∴1,10m =-或; 3. A {}N =(0,0),N M ⊆;4. D 1594x y x x y y +==⎧⎧⎨⎨-==-⎩⎩得,该方程组有一组解(5,4)-,解集为{}(5,4)-;5. D 选项A 应改为R R +⊆,选项B 应改为""⊆,选项C 可加上“非空”,或去掉“真”,选项D 中的{}φ里面的确有个元素“φ”,而并非空集;6. C 当A B =时,A B A A B ==I U 二、填空题1. (1),,(2),(3)∈∈∈⊆(12≤,1,2x y ==满足1y x =+,(2 1.4 2.2 3.6=+=,2 3.7=,或27=+2(27+= (3)左边{}1,1=-,右边{}1,0,1=-2. 4,3==b a {}{}()|34|U U A C C A x x x a x b ==≤≤=≤≤3. 26 全班分4类人:设既爱好体育又爱好音乐的人数为x 人;仅爱好体育 的人数为43x -人;仅爱好音乐的人数为34x -人;既不爱好体育又不爱好音乐的 人数为4人 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1.1 单调性9.(09·天津文)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)[答案] A [解析] ∵f (1)=3,∴当x ≥0时,由f (x )>f (1) 得x 2-4x +6>3, ∴x >3或x <1.又x ≥0,∴x ∈[0,1)∪(3,+∞).当x <0时,由f (x )>f (1)得x +6>3∴x >-3,∴x ∈(-3,0).综上可得x ∈(-3,1)∪(3,+∞),故选A.10.设(c ,d )、(a ,b )都是函数y =f (x )的单调减区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定[答案] D [解析] 函数f (x )在区间D 和E 上都是减函数(或都是增函数),但在D ∪E 上不一定单调减(或增). 如图,f (x )在[-1,0)和[0,1]上都是增函数,但在区间[-1,1]上不单调. 16.讨论函数y =1-x 2在[-1,1]上的单调性.[解析] 设x 1、x 2∈[-1,1]且x 1<x 2,即-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=1-x 21-1-x 22 =(x 2-x 1)(x 2+x 1)1-x 21+1-x 22当1>x 1≥0,1≥x 2>0,x 1<x 2时,f (x 1)>f (x 2),∴f (x )在[0,1]上为减函数, 当-1≤x 1<0,-1<x 2≤0,x 1<x 2时,f (x 1)<f (x 2),∴f (x )在[-1,0]上为增函数.17.求证:函数f (x )=x +a 2x(a >0),在区间(0,a ]上是减函数.[解析] 设0<x 1<x 2≤a ,f (x 2)-f (x 1)=(x 2+a 2x 2)-(x 1+a 2x 1)=(x 2-x 1)+a 2(x 1-x 2)x 1x 2=(x 2-x 1)(x 1x 2-a 2)x 1x 2.∵0<x 1<x 2≤a ,∴0<x 1x 2<a 2,∴(x 2-x 1)(x 1x 2-a 2)x 1x 2<0,∴f (x 2)<f (x 1),∴f (x )=x +a 2x(a >0)在(0,a ]上是减函数.1.3.1.2 最值2.函数y =x |x |的图象大致是( )[答案] A [解析] y =⎩⎪⎨⎪⎧x 2 x ≥0-x 2 x <0,故选A.4.已知f (x )在R 上是增函数,对实数a 、b 若a +b >0,则有( ) A .f (a )+f (b )>f (-a )+f (-b ) B .f (a )+f (b )<f (-a )+f (-b ) C .f (a )-f (b )>f (-a )-f (-b ) D .f (a )-f (b )<f (-a )+f (-b )[答案] A [解析] ∵a +b >0 ∴a >-b 且b >-a ,又y =f (x )是增函数 ∴f (a )>f (-b ) 且f (b )>f (-a )故选A. 8.函数y =|x -3|-|x +1|有( )A .最大值4,最小值0B .最大值0,最小值-4C .最大值4,最小值-4D .最大值、最小值都不存在[答案] C [解析] y =|x -3|-|x +1| =⎩⎪⎨⎪⎧-4 (x ≥3)2-2x (-1<x <3)4 (x ≤-1),因此y ∈[-4,4],故选C.10.(08·重庆理)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.32[答案] C [解析] ∵y ≥0,∴y =1-x +x +3 =4+2(x +3)(1-x ) (-3≤x ≤1),∴当x =-3或1时,y min =2,当x =-1时,y max =22,即m =2,M =22,∴m M =22.12.已知函数f (x )在R 上单调递增,经过A(0,-1)和B(3,1)两点,那么使不等式|f (x +1)|<1成立的x 的集合为________. [答案] {x |-1<x <2} [解析] 由|f (x +1)|<1得-1<f (x +1)<1,即f (0)<f (x +1)<f (3),∵f (x )在R 上是增函数, ∴0<x +1<3∴-1<x <2 ∴使不等式成立的x 的集合为{x |-1<x <2}.13.如果函数f (x )=-x 2+2x 的定义域为[m ,n ],值域为[-3,1],则|m -n |的最小值为________. [答案] 2 [解析] ∵f (x )=-x 2+2x =-(x -1)2+1,当m ≤x ≤n 时,-3≤y ≤1,∴1∈[m ,n ], 又令-x 2+2x =-3得,x =-1或x =3,∴-1∈[m ,n ]或3∈[m ,n ], 要使|m -n |最小,应取[m ,n ]为[-1,1]或[1,3],此时|m -n |=2.14.求函数f (x )=-x 2+|x |的单调区间.并求函数y =f (x )在[-1,2]上的最大、小值.[解析] 由于函数解析式含有绝对值符号,因此先去掉绝对值符号化为分段函数,然后作出其图象,由图象便可以直观地判断出其单调区间.再据图象求出最值.①∵f (x )=-x 2+|x |=⎩⎪⎨⎪⎧-x 2+x (x ≥0)-x 2-x (x <0)即f (x )=⎩⎨⎧-(x -12)2+14(x ≥0)-(x +12)2+14(x <0)作出其在[-1,2]上的图象如右图所示由图象可知,f (x )的递增区间为(-∞,-12)和[0,12],递减区间为[-12,0]和[12,+∞).②由图象知:当x =-12或12时,f (x )max =14,当x =2时,f (x )min =-2.1.3.2.1 奇偶性1.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数 ②奇函数的图象一定过原点③偶函数的图象与y 轴一定相交 ④图象关于y 轴对称的函数一定为偶函数 A .①② B .③④ C .①④ D .②③[答案] D [解析] f (x )=1x 为奇函数,其图象不过原点,故②错;y =⎩⎪⎨⎪⎧x -1 x ≥1-x -1 x ≤-1为偶函数,其图象与y 轴不相交,故③错.4.若f (x )在[-5,5]上是奇函数,且f (3)<f (1),则下列各式中一定成立的是( ) A .f (-1)<f (-3) B .f (0)>f (1) C .f (2)>f (3) D .f (-3)<f (5)[答案] A [解析] ∵f (3)<f (1),∴-f (1)<-f (3), ∵f (x )是奇函数,∴f (-1)<f (-3).8.(09·辽宁文)已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 取值范围是( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 ` D.⎣⎡⎭⎫12,23 [答案] A [解析] 由题意得|2x -1|<13⇒-13<2x -1<13 ⇒23<2x <43⇒13<x <23,∴选A.9.若函数f (x )=(x +1)(x +a )为偶函数,则a =( ) A .1 B .-1 C .0 D .不存在 [答案] B [解析] 解法1:f (x )=x 2+(a +1)x +a 为偶函数,∴a +1=0,∴a =-1.解法2:∵f (x )=(x +1)(x +a )为偶函数,∴对任意x ∈R ,有f (-x )=f (x )恒成立,∴f (-1)=f (1), 即0=2(1+a ),∴a =-1.12.偶函数y =f (x )的图象与x 轴有三个交点,则方程f (x )=0的所有根之和为________.[答案] 0[解析] 由于偶函数图象关于y 轴对称,且与x 轴有三个交点,因此一定过原点且另两个互为相反数,故其和为0. 16.定义在(-1,1)上的奇函数f (x )是减函数,且f (1-a )+f (1-a 2)<0,求实数a 的取值范围. [解析] 由f (1-a )+f (1-a 2)<0及f (x )为奇函数得,f (1-a )<f (a 2-1),∵f (x )在(-1,1)上单调减, ∴⎩⎪⎨⎪⎧-1<1-a <1-1<1-a 2<11-a >a 2-1解得0<a <1. 故a 的取值范围是{a |0<a <1}. 17.f (x )是奇函数,当x ≥0时,f (x )的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f (x )的解析式,并画出其图象.[解析] 设x ≥0时,f (x )=a (x -1)2+2,∵过(3,-6)点,∴a (3-1)2+2=-6, ∴a =-2.即f (x )=-2(x -1)2+2.当x <0时,-x >0,f (-x )=-2(-x -1)2+2=-2(x +1)2+2, ∵f (x )为奇函数,∴f (-x )=-f (x ),∴f (x )=2(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧-2(x -1)2+2 (x ≥0)2(x +1)2-2 (x <0),其图象如图所示.1.3.2.2 函数性质应用1.已知定义域为R 的函数f (x )在(8,+∞)上为减函数,且函数f (x +8)为偶函数,则( ) A .f (6)>f (7) B .f (6)>f (9)C .f (7)>f (9)D .f (7)>f (10) [答案] D[解析] ∵y =f (x +8)为偶函数,∴y =f (x )的图象关于直线x =8对称,又f (x )在(8,+∞)上为减函数,∴f (x )在(-∞,8)上为增函数,∴f (10)=f (6)<f (7)=f (9),故选D.2.(胶州三中2009~2010)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)[答案] D[解析] 奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,f (x )-f (-x )x =2f (x )x<0.由函数的图象得解集为(-1,0)∪(0,1).4.偶函数f (x )=ax 2-2bx +1在(-∞,0]上递增,比较f (a -2)与f (b +1)的大小关系( ) A .f (a -2)<f (b +1)B .f (a -2)=f (b +1)C .f (a -2)>f (b +1)D .f (a -2)与f (b +1)大小关系不确定[答案] A [解析] 由于f (x )为偶函数,∴b =0,f (x )=ax 2-1,又在(-∞,0]上递增,∴a <0,因此,a -2<-1<0<1=b +1,∴f (a -2)<f (-1)=f (1)=f (b +1),故选A. 9.(2010·安徽理,6)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )[答案] D[解析] 若a <0,则只能是 A 或B 选项,A 中-b2a<0,∴b <0,从而c >0与A图不符;B 中-b2a>0,∴b >0,∴c <0与B 图也不符;若a >0,则抛物线开口向上,只能是C 或D 选项,则当b >0时,有c >0与C 、D 不符.当b <0时,有c <0,此时-b2a>0,且f (0)=c <0,故选D.12.函数f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.[答案] ⎝⎛⎭⎫12,+∞ [解析] 解法1:f (x )=a +1-2a x +2可视作反比例函数y =1-2a x 经平移得到的.由条件知1-2a <0,∴a >12.解法2:∵f (x )在(-2,+∞)上为增函数,故对于任意x 1,x 2∈(-2,+∞)且x 1<x 2,有f (x 1)<f (x 2)恒成立,而f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=(x 1-x 2)(2a -1)(x 1+2)(x 2+2)∵-2<x 1<x 2,∴x 1-x 2<0,x 1+2>0,x 2+2>0,若要f (x 1)-f (x 2)<0,则必须且只需2a -1>0,故a >12.∴a 的取值范围是⎝⎛⎭⎫12,+∞. 14.已知f (x )是定义在(-1,1)上的偶函数,且在(0,1)上为增函数,若f (a -2)-f (4-a 2)<0,求实数a 的取值范围. [解析] 由f (a -2)-f (4-a 2)<0得 f (a -2)<f (4-a 2)又f (x )在(-1,1)上为偶函数,且在(0,1)上递增, ∴⎩⎪⎨⎪⎧-1<a -2<1-1<4-a 2<10<|a -2|<|4-a 2|,解得3<a <5,且a ≠2. 16.已知函数f (x )=2x x 2+1(1)求函数的定义域;(2)判断奇偶性;(3)判断单调性;(4)作出其图象,并依据图象写出其值域. [解析] (1)函数的定义域为R .(2)∵f (-x )=-2x1+x 2=-f (x )∴f (x )是奇函数,其图象关于原点O 对称,故在区间(0,+∞)上研究函数的其它性质.(3)单调性:设x 1、x 2∈(0,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 11+x 21-2x 21+x 22=2(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22) 当0<x 1<x 2≤1时,可知f (x 1)-f (x 2)<0,∴f (x )在(0,1]上是增函数.当1<x 1<x 2时,f (x 1)-f (x 2)>0,∴f (x )在(1,+∞)上是减函数,由于f (x )是奇函数,且f (0)=0,因此,f (x )的减区间为(-∞,-1]、[1,+∞),增区间为[-1,1].并且当x →+∞时,f (x )→0,图象与x 轴无限接近.其图象如图所示.可见值域为[-1,1].1.3.2.3 习题5.(哈三中2009~2010)已知y =f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -2,那么不等式f (x )<12的解集是( )A .{x |0≤x <52}B .{x |-32<x ≤0}C .{x |-32<x <0,或x >52}D .{x |x <-32或0≤x <52} [答案] D[解析] x <0时,-x >0,∴f (-x )=-x -2,∵f (x )为奇函数,∴f (x )=x +2,又当x =0时,f (x )=0,∴f (x )=⎩⎪⎨⎪⎧x -2 x >00 x =0x +2 x <0,故不等式f (x )<12化为⎩⎪⎨⎪⎧ x >0x -2<12或⎩⎪⎨⎪⎧x =00<12或⎩⎪⎨⎪⎧x <0x +2<12,∴0≤x <52或x <-32,故选D. 9.(2010·湖南理,8)已知min{a ,b }表示a ,b 两数中的最小值,若函数f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t 的值为( )A .-2B .2C .-1D .1 [答案] D[解析] 如图,要使f (x )=min{|x |,|x +t |}的图象关于直线x =-12对称,则t =1.17.已知二次函数f (x )=ax 2+bx +c (x ∈R),当x =2时,函数取得最大值2,其图象在x 轴上截得线段长为2,求其解析式.[解析] 解法1:由条件知a <0,且顶点为(2,2),设f (x )=a (x -2)2+2,即y =ax 2-4ax +4a +2,设它与x 轴两交点为A (x 1,0),B (x 2,0),则x 1+x 2=4,x 1x 2=4+2a,由条件知,|x 1-x 2|=(x 1+x 2)2-4x 1x 2=16-4(4+2a )=-8a=2,∴a =-2,∴解析式为f (x )=-2x 2+8x -6.解法2:由条件知f (x )的对称轴为x =2,设它与x 轴两交点为A (x 1,0),B (x 2,0)且x 1<x 2,则 ⎩⎪⎨⎪⎧ x 2-x 1=2x 1+x 2=4,∴⎩⎪⎨⎪⎧x 1=1x 2=3,故可设f (x )=a (x -1)(x -3),∵过(2,2)点,∴a =-2,∴f (x )=-2x 2+8x -6. 第一章综合素能检测2.(09·陕西文)定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) [答案] A [解析] 若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数, ∵3>2>1,∴f (3)<f (2)<f (1),又f (x )是偶函数,∴f (-2)=f (2),∴f (3)<f (-2)<f (1),故选A. 6.f (x )=-x 2+mx 在(-∞,1]上是增函数,则m 的取值范围是( ) A .{2} B .(-∞,2] C .[2,+∞) D .(-∞,1] [答案] C[解析] f (x )=-(x -m 2)2+m 24的增区间为(-∞,m 2],由条件知m2≥1,∴m ≥2,故选C.7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .A ∩B B .A ∪B C .A D .B [答案] D[解析] A *B 的本质就是集合A 与B 的并集中除去它们的公共元素后,剩余元素组成的集合. 因此(A *B )*A 是图中阴影部分与A 的并集,除去A 中阴影部分后剩余部分即B ,故选D.[点评] 可取特殊集合求解.如取A ={1,2,3},B ={1,5},则A *B ={2,3,5},(A *B )*A ={1,5}=B .8.(广东梅县东山中学2009~2010高一期末)定义两种运算:a b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=为( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇函数且非偶函数 [答案] A[解析] 由运算与⊗的定义知,f (x )=4-x 2(x -2)2-2,∵4-x 2≥0,∴-2≤x ≤2,∴f (x )=4-x 2(2-x )-2=-4-x 2x ,∴f (x )的定义域为{x |-2≤x <0或0<x ≤2},又f (-x )=-f (x ),∴f (x )为奇函数.12.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值[答案] B[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B.20.(本题满分12分)一块形状为直角三角形的铁皮,直角边长分别为40cm 与60cm 现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少? [解析] 如图,剪出的矩形为CDEF ,设CD =x ,CF =y ,则AF =40-y .∵△AFE ∽△ACB .∴AF AC =FE BC 即∴40-y 40=x 60∴y =40-23x .剩下的残料面积为:S =12×60×40-x ·y =23x 2-40x +1 200=23(x -30)2+600 ∵0<x <60∴当x =30时,S 取最小值为600,这时y =20.∴在边长60cm 的直角边CB 上截CD =30cm ,在边长为40cm 的直角边AC 上截CF =20cm 时,能使所剩残料最少. 21.(本题满分12分)(1)若a <0,讨论函数f (x )=x +ax ,在其定义域上的单调性;(2)若a >0,判断并证明f (x )=x +ax在(0,a ]上的单调性.[解析] (1)∵a <0,∴y =ax在(-∞,0)和(0,+∞)上都是增函数,又y =x 为增函数,∴f (x )=x +ax在(-∞,0)和(0,+∞)上都是增函数.(2)f (x )=x +a x 在(0,a ]上单调减,设0<x 1<x 2≤a ,则f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+ax 2)=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)(1-ax 1x 2)>0,∴f (x 1)>f (x 2),∴f (x )在(0,a ]上单调减.22.(本题满分14分)设函数f (x )=|x -a |,g (x )=ax . (1)当a =2时,解关于x 的不等式f (x )<g (x ).(2)记F (x )=f (x )-g (x ),求函数F (x )在(0,a ]上的最小值(a >0).[解析] (1)|x -2|<2x ,则⎩⎪⎨⎪⎧ x ≥2,x -2<2x .或⎩⎪⎨⎪⎧x <2,2-x <2x .∴x ≥2或23<x <2.即x >23.(2)F (x )=|x -a |-ax ,∵0<x ≤a ,∴F (x )=-(a +1)x +a . ∵-(a +1)<0,∴函数F (x )在(0,a ]上是单调减函数,∴当x =a 时,函数F (x )取得最小值为-a 2.2.1.1.1 根式6.已知函数y =ax 2+bx +c 的图象如图所示,则f 2(1)的值为( ) A .2b B .a -b +c C .-2b D .0 [答案] C[解析] 由图象开口向下知,a <0.又f (-1)=a -b +c =0,∴b =a +c ,又-b2a<0,∴b <0,∴f (1)=a +b +c =2b ,∴f 2(1)=|2b |=-2b .7.若xy ≠0,那么等式4x 2y 3=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 [答案] C[解析] ∵xy ≠0,∴x ≠0,y ≠0,由⎩⎪⎨⎪⎧4x 2y 3>0-2xy >0y >0得,⎩⎨⎧x <0y >0.8.当n <m <0时,(m +n )-m 2-2mn +n 2=( )A .2mB .2nC .-2mD .-2n [答案] B[解析] (m +n )-m 2-2mn +n 2=(m +n )-|m -n |=(m +n )-(m -n )=2n . 9.11-230+7-210=( ) A.6+2-2 5 B.2- 6 C.6- 2D .25-6- 2 [答案] C[解析] 11-230+7-210=6-230+5+5-210+2=(6-5)+(5-2)=6- 2.12.x +y x +y +2xy x y +y x=__________. [答案] x +y[解析] 原式=x +y x +y +2xy xy (x +y )=x +y x +y +2xyx +y =(x +y )2x +y=x +y .13.已知15+4x -4x 2≥0,化简:4x 2+12x +9+4x 2-20x +25=________.[答案] 8[解析] 由15+4x -4x 2≥0得:-32≤x ≤524x 2+12x +9+4x 2-20x +25=|2x +3|+|2x -5|=2x +3+5-2x =8.16.若x >0,y >0,且x (x +y )=3y (x +5y ),求2x +2xy +3yx -xy +y的值.[解析] 将条件式展开整理得x -2xy -15y =0.分解因式得(x +3y )(x -5y )=0,∵x >0,y >0,∴x =5y ,∴x =25y ,∴2x +2xy +3y x -xy +y =50y +225y 2+3y25y -25y 2+y=3.17.已知x =12(a b+b a ),(a >b >0),求2ab x -x 2-1的值. [解析] ∵x =12⎝⎛⎭⎫a b +b a =12⎝⎛⎭⎫ab b +ab a =ab (a +b )2ab =a +b 2ab,又a >b >0, ∴原式=2ab a +b 2ab-(a +b )24ab -1=2ab a +b 2ab -a -b 2ab =4ab2b =2a .[点评] 若把条件a >b >0改为a >0,b >0则由于x 2-1=|a -b |2ab,故须分a ≥b ,a <b 进行讨论.18.已知f (x )=e x -e -x ,g (x )=e x +e -x (e =2.718…).(1)求[f (x )]2-[g (x )]2的值;(2)设f (x )f (y )=4,g (x )g (y )=8,求g (x +y )g (x -y )的值.[解析] (1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )]=2·e x ·(-2e -x )=-4e 0=-4.(2)f (x )f (y )=(e x -e -x )(e y -e -y )=e x +y +e -(x +y )-e x -y -e -(x -y )=g (x +y )-g (x -y )=4 ①同法可得g (x )g (y )=g (x +y )+g (x -y )=8. ②解由①②组成的方程组得,g (x +y )=6,g (x -y )=2.∴g (x +y )g (x -y )=62=3.2.1.1.2 分数指数幂2.使(3-2x -x 2)-34有意义的x 的取值范围是( )A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1 [答案] C[解析] ∵(3-2x -x 2)-34=14(3-2x -x 2)3有意义,∴应满足3-2x -x 2>0,解得-3<x <1,故选C.14.化简下列各式: (1)a 35b 2·35b 34a 3;(2)(1-a )[(a -1)-2(-a )12]12;(3)(3a 2b )2·ab 4ab 3. 16.设a =112,b =1312,求下式的值:=1a +b -1a -b 1a +b +1a -b =a -b a -b -a +ba -b a -b a -b +a +b a -b=-2b 2a=-ba=-3.2.1.2.1 指数函数及其性质A .a >b >cB .b >a >c B .C .b >c >aD .c >b >a [答案] B 即a >c ,∴b >a >c .[点评] 指数函数的图象第一象限内底大图高,6.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a 等于( ) A.12 B .2 C . 4 D.14[答案] B [解析] 当a >1时,y min =a 0=1;y max =a 1=a ,由1+a =3,所以a =2.当0<a <1时,y max =a 0=1,y min =a 1=a . 由1+a =3,所以a =2矛盾,综上所述,有a =2.7.在同一平面直角坐标系中,函数f (x )=ax 与指数函数g (x )=a x 的图象可能是( )[答案] B[解析] 由指数函数的定义知a >0,故f (x )=ax 的图象经过一、三象限,∴A 、D 不正确.若g (x )=a x 为增函数,则a >1,与y =ax 的斜率小于1矛盾,故C 不正确.B 中0<a <1,故B 正确.16.判断函数f (x )=x 2x -1+x2的奇偶性.[解析] ∵2x-1≠0,∴x ≠0,定义域{x ∈R |x ≠0} ∵f (x )=x 2x -1+x 2=x (2x +1)2(2x -1),∴f (-x )=-x (2-x +1)2(2-x -1)=-x (1+2x )2(1-2x )=x (2x +1)2(2x -1)=f (x ),∴f (x )为偶函数. 17.求下列函数的定义域和值域(3)要使函数有意义,必须且只须x +1≠0,即x ≠-1.∴函数的定义域为{x ∈R |,x ≠-1}设t =x +2x +1,则t ∈R 且t ≠1,y =(13)t ,∴y >0且y ≠13∴函数的值域为(0,13)∪(13,+∞)2.1.2.2 指数函数性质的应用1.当a >1时,函数y =a x +1a x -1是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 [答案] A[解析] 由a x-1≠0得x ≠0,∴此函数定义域为(-∞,0)∪(0,+∞),又∵f (-x )=a -x+1a -x -1=1a x +11a x -1=1+a x1-a x=-f (x ),∴y =f (x )为奇函数.4.若定义运算a *b =⎩⎪⎨⎪⎧b (a ≥b )a (a <b ),则函数f (x )=3x *3-x 的值域是( )A .(0,1]B .[1,+∞)C .(0,+∞)D .(-∞,+∞) [答案] A[解析] f (x )=3x *3-x =⎩⎪⎨⎪⎧3-x (x ≥0)3x (x <0)∴f (x )∈(0,1],故选A.6.设a 、b 满足0<a <b <1,下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b [答案] C[解析] 解法1:∵0<a <1,∴y =a x 是减函数,又∵a <b ,∴a a >a b .排除A ; 同理得b a >b b ,排除B.在同一坐标系中作出y =a x 与y =b x 的图象. 由x >0时“底大图高”知x >0时,y =b x 图象在y =a x 图象上方,当x =b 时,立得b b >a b ,排除D ;当x =a 时,b a >a a ,∴选C.解法2:取特值检验,令a =14,b =12,则a a =22,a b =12,b a =142,b b =22,排除A 、B 、D ,∴选C.8.已知x 、y ∈R ,且2x +3y>2-y +3-x ,则下列各式中正确的是( ) A .x +y >0 B .x +y <0 C .x -y >0 D .x -y <0 [答案] A[解析] 作函数f (x )=2x -3-x .因为2x 为增函数,由3-x =(13)x 为减函数,知-3-x 也是增函数,从而f (x )为增函数,由2x -3-x >2-y -3y =2-y -3-(-y )可知f (x )>f (-y ).又f (x )为增函数,所以x >-y ,故x +y >0.选A.9.函数f (x )=a x (a >0且a ≠1),在x ∈[1,2]时的最大值比最小值大a 2,则a 的值为________.[答案] 32或12[解析] 注意进行分类讨论(1)当a >1时,f (x )=a x 为增函数,此时f (x )max =f (2)=a 2,f (x )min =f (1)=a ∴a 2-a =a 2,解得a =32>1.(2)当0<a <1时,f (x )=a x 为减函数,此时f (x )max =f (1)=a ,f (x )min =f (2)=a 2∴a -a 2=a 2,解得a =12∈(0,1)综上所述:a =32或12.12.当x >0时,指数函数y =(a 2-3)x 的图象在指数函数y =(2a )x 的图象的上方,则a 的取值范围是________. [答案] a >3[解析] ⅰ)a 2-3>2a >1解得:a >3;ⅱ)a 2-3>1>2a >0不等式无解;ⅲ)1>a 2-3>2a >0不等式无解;综上所述a >3.14.已知f (x )=12x -1+a 是奇函数,求a 的值及函数值域.[分析] 本题是函数奇偶性与指数函数的结合,利用f (-x )=-f (x )恒成立,可求得a 值.其值域可借助基本函数值域求得.[解析] ①∵f (x )是奇函数,∴f (-x )=-f (x )对定义域内的每一个x 都成立.即-[12x -1+a ]=12-x -1+a ,∴2a =-12-x -1-12x -1=1,∴a =12.②∵2x -1≠0∴x ≠0∴定义域为(-∞,0)∪(0,+∞)∵u =2x -1>-1且u ≠0,∴1u <-1或1u>0∴12x -1+12<-12或12x -1+12>12∴f (x )的值域为(-∞,-12)∪(12,+∞).15.对于函数y =(12)x 2-6x +17,(1)求函数的定义域、值域;(2)确定函数的单调区间.[解析] (1)设u =x 2-6x +17,∵函数y =(12)u 及u =x 2-6x +17的定义域是R ,∴函数y =(12)x 2-6x +17的定义域是R .∵u =x 2-6x +17=(x -3)2+8≥8,∴(12)u ≤(12)8=1256,又∵(12)u >0,∴函数的值域为{y |0<y ≤1256}.(2)∵函数u =x 2-6x +17在[3,+∞)上是增函数,∴当3≤x 1<x 2<+∞时,有u 1<u 2.∴y 1>y 2,即[3,+∞)是函数y =(12)x 2-6x +17的单调递减区间;同理可知,(-∞,3]是函数y =(12)x 2-6x +17的单调递增区间.16.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数;(2)求f (x )的值域.[解析] (1)证法1:f (x )=10x -10-x 10x +10-x =102x -1102x+1=1-2102x +1. 令x 2>x 1,则f (x 2)-f (x 1)=.故当x 2>x 1时,f (x 2)-f (x 1)>0,即f (x 2)>f (x 1).所以f (x )是增函数. 证法2:考虑复合函数的增减性.由f (x )=10x -10-x 10x +10-x =1-2102x +1.∵10x 为增函数,∴102x +1为增函数,2102x +1为减函数,-2102x +1为增函数. ∴f (x )=1-2102x +1在定义域内是增函数.(2)令y =f (x ).由y =102x -1102x +1,解得102x =1+y 1-y. ∵102x>0,∴-1<y <1.即f (x )的值域为(-1,1).2.1.2.3 习题8.当0<a <1时,函数y =a x 和y =(a -1)x 2的图象只能是下图中的( )[答案] D [解析] 0<a <1,a x 单调递减排除A ,C ,又a -1<0开口向下,∴排除B ,∴选D.9.下图的曲线C 1、C 2、a ∈{22,12,3,π},则图象C 1、C 2、C 3、C 3、C 4是指数函数y =a x 的图象,而C 4对应的函数的底数依次是______、________、________、________.[答案] 22、12、π、 3[解析] 由底数变化引起指数函数图象的变化规律可知,C 2的底数<C 1的底数<C 4的底数<C 3的底数. 12.如果x >y >0,比较x y y x 与x x y y 的大小结果为________.[答案] x y y x <x x y y[解析] x y y x x x yy =x y y x y -y x -x =x y -x y x -y =⎝⎛⎭⎫x y y -x .∵x >y >0,∴y -x <0,xy>1,∴0<⎝⎛⎭⎫x y y -x <1,∴x y y x <x x y y . 14.求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0且a ≠1).15.[解析] 原不等式等价于a -x 2+8>a -2x .(1)当a >1时,上面的不等式等价于-x 2+8>-2x ,即x 2-2x -8<0,解得-2<x <4. (2)当0<a <1时,上面的不等式等价于-x 2+8<-2x ,即x 2-2x -8>0,解得x <-2或x >4.∴原不等式的解集为:当a >1时为{x |-2<x <4};当0<a <1时为{x |x <-2或x >4}.15.某商品的市场日需求量Q 1和日产量Q 2均为价格p 的函数,且Q 1=288(12)p +12,Q 2=6×2p ,日成本C 关于日产量Q 2的关系为C =10+13Q 2.(1)当Q 1=Q 2时的价格为均衡价格,求均衡价格p ;(2)当Q 1=Q 2日利润y 最大,求y .[解析] (1)当Q 1=Q 2时,即288(12) p +12=6×2p ,令2p =t ,代入得288·1t+12=6×t ,所以t 2-2t -48=0,解得t=8或t =-6,因为t =2p >0,所以t =8,所以2p=8,所以p =3.(2)日利润y =p ·Q 2-C =p ·Q 2-(10+13Q 2)=(p -13)Q 2-10,所以y =(p -13)×6×2p -10.当Q 1=Q 2时,p =3,代入得y=118.答:当Q 1=Q 2时,均衡价格为3,此时日利润为118.2.2.1.2 对数运算性质4.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2 C .3a -(1+a )2 D .3a -a 2-1 [答案] A [解析] 由log 38-2log 36=3log 32-2(log 32+log 33)=3a -2(a +1)=a -2. 5. 的值等于( )A .2+ 5B .2 5C .2+52D .1+52[答案] B [解析] 据对数恒等式及指数幂的运算法则有:6.与函数y =10lg(x -1)的图象相同的函数是( ) A .y =x -1 B .y =|x -1| C .y =x 2-1x +1 D .y =(x -1x -1)2 [答案] D [解析] y =10lg(x-1)=x -1(x >1),故选D.7.已知f (log 2x )=x ,则f (12)=( )A.14B.12C.22D. 2 [答案] D [解析] 令log 2x =12,∴x =2,∴f (12)= 2.8.如果方程lg 2x +(lg2+lg3)lg x +lg2·lg3=0的两根为x 1、x 2,那么x 1·x 2的值为( )A .lg2·lg3B .lg2+lg3C .-6 D.16[答案] D[解析] 由题意知lg x 1和lg x 2是一元二次方程u 2+(lg2+lg3)u +lg2·lg3=0的两根∴lg x 1+lg x 2=-(lg2+lg3),即lg(x 1x 2)=lg 16,∴x 1x 2=16.10.(09·江西理)函数y =ln(x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] [答案] C[解析] 要使函数有意义,则需⎩⎪⎨⎪⎧ x +1>0-x 2-3x +4>0,即⎩⎪⎨⎪⎧x >-1-4<x <1,解得-1<x <1,故选C. 13.已知lg3=0.4771,lg x =-3.5229,则x =________.[答案] 0.0003[解析] ∵lg x =-3.5229=-4+0.4771=-4+lg3=lg0.0003,∴x =0.0003.15.计算:(3)lg 23-lg9+1=________;[答案] lg 103[解析] (3)lg 23-lg9+1=lg 23-2lg3+1=(1-lg3)2=1-lg3=lg 10317.已知lg(x +2y )+lg(x -y )=lg2+lg x +lg y ,求xy的值.[解析] 由已知条件得⎩⎪⎨⎪⎧x +2y >0x -y >0x >0y >0(x +2y )(x -y )=2xy即⎩⎪⎨⎪⎧ x >y y >0(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y y >0(x -2y )(x +y )=0∴x -2y =0,因此xy=2.2.2.1.3 换底公式4.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A .pq B.q p +q C.p p +q D.pq1+pq[答案] B[解析] 由已知得:log 72log 75=p q ,∴log 52=p q 变形为:lg2lg5=lg21-lg2=p q ,∴lg2=pp +q,故选B.5.设x = ,则x ∈( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)[答案] D[解析] x ==log 310∈(2,3),故选D. 7.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( )A .1B .-2C .-103D .-4 [答案] C[解析] 由已知得:lg a +lg b =2,lg a lg b =-3那么log a b +log b a =lg b lg a +lg a lg b =lg 2b +lg 2a lg a lg b =(lg a +lg b )2-2lg a lg b lg a lg b =4+6-3=-103,故选C.8.已知函数f (x )=2x2+lg(x +x 2+1),且f (-1)≈1.62,则f (1)≈( )A .2.62B .2.38C .1.62D .0.38 [答案] B[解析] f (-1)=2+lg(2-1),f (1)=2+lg(2+1)因此f (-1)+f (1)=4+lg[(2-1)(2+1)]=4,∴f (1)=4-f (-1)≈2.38,故选B.9.设log 89=a ,log 35=b ,则lg2=________.[答案] 22+3ab [解析] 由log 89=a 得log 23=32a ,∴lg3lg2=3a 2,又∵log 35=lg5lg3=b ,∴lg3lg2×lg5lg3=32ab ,∴1-lg2lg2=32ab ,∴lg2=22+3ab. 11.若log a c +log b c =0(c ≠1),则ab +c -abc =______.[答案] 1[解析] 由log a c +log b c =0得:lg(ab )lg a lg b·lg c =0,∵c ≠1,∴lg c ≠0∴ab =1,∴ab +c -abc =1+c -c =1. 12.光线每透过一块玻璃板,其强度要减弱110,要使光线减弱到原来的13以下,至少要这样的玻璃板______块(lg3=0.4771).[答案] 11[解析] 设光线原来的强度为1,透过第n 块玻璃板后的强度为(1-110)n .由题意(1-110)n <13,两边同时取对数得n lg(1-110)<lg 13,所以n >-lg32lg3-1=0.47710.0458≈10.42故至少需要11块玻璃板. 15.若25a =53b =102c ,试求a 、b 、c 之间的关系.[解析] 设25a =53b =102c =k ,则a =15log 2k ,b =13log 5k ,c =12lg k .∴log k 2=15a ,log k 5=13b ,log k 10=12c, 又log k 2+log k 5=log k 10,∴15a +13b =12c. 17.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值是3,求a 的值.[解析] ∵f (x )的最大值等于3∴⎩⎪⎨⎪⎧ lg a <016lg 2a -44lg a =3,∴(4lg a +1)(lg a -1)=0∵lg a <0,∴lg a =-14,∴a =10-14.。

相关文档
最新文档