多普勒天气雷达原理与应用6-雷达探测算法(1)
多普勒天气雷达原理与业务应用测验1(答案)剖析
多普勒天气雷达原理与业务应用测验一(一至四章)一、填空题1、天气雷达是探测降水系统的主要手段,是对强对流天气(冰雹、大风、龙卷和暴洪)进行监测和预警的主要工具之一。
2、RDA由四个部分构成:发射机、天线、接收机和信号处理器。
3、PUP可以通过以下三种方式获取产品:(1)常规产品列表;(2)一次性请求;(3)产品-预警配对。
4、S波段和C波段的雷达波在传播过程中主要受到降水的衰减,衰减是由降水离子对于雷达雷达波的散射和吸收造成的。
5、.新一代多普勒雷达估测累计降水分布时,雷达采样时间间隔一般不应超过10分钟,除受本身精度限制外,还受降水类型(Z-R关系)、雷达探测高度、地面降水差异和风等多种因素影响。
6、多普勒雷达能测量的一个脉冲到下一个脉冲的最大相移上限是180度,其对应的径向速度值称为最大不模糊速度。
7、径向速度图中,零等速线呈“S”型表示,实际风随高度顺时针旋转,由RDA处得南风转为现实区边缘对应的西风。
反之,零等速线呈反“S”型表示,实际风随高度。
逆时针旋转,由RDA处得南风转为现实区边缘对应的东风。
8、WSR-88D和我国新一代天气雷达的脉冲重复频率在300-1300范围内。
9、多普勒天气雷达的最大不模糊距离与雷达的脉冲重复频率成反比,相应的最大不模糊速度与脉冲重复频率成正比。
10、对于SA和SB型雷达,基数据中反射率因子的分辨率为1K M×1°,而径向速度和谱宽的分辨率为0.25K M×1°。
11、积状云降水一般有比较密实的结构,反射率因子空间梯度较大,其强度中心的反射率因子通常在35dbz以上,而层状云降水回波比较均匀,反射率因子空间梯度较小,反射率因子一般大于15dbz而小于30dbz。
12、雷达波束和实际风向的夹角越大,则径向速度值越小;实际风速越小,径向速度也越小。
13、如果一个模糊的径向速度值是 45 节,它的邻近值是-55 节,最大不模糊径向速度是 60节,那么这个径向速度的最可能值是节(-75)14、我国的新一代天气雷达主要采用(VCP11、VCP21、VCP31)三种体扫模式。
多普勒雷达工作原理
多普勒雷达工作原理
多普勒雷达是一种利用多普勒效应测量目标相对速度的雷达系统。
其工作原理基于多普勒效应,即当发射的电磁波与运动的目标相交时,电磁波的频率会发生变化。
多普勒雷达利用这种频率变化来计算目标的运动速度。
多普勒雷达包含一个发射器和一个接收器。
发射器发射出高频的电磁波,这些波经过天线发射出去,并与目标相交。
当电磁波与目标相交时,会发生频率的变化,这是由于目标的运动引起的。
接收器接收到目标反射回来的电磁波,并通过天线发送到接收器。
接收器会测量接收到的波的频率,并与发射时的频率进行比较。
根据频率的差异,可以计算出目标相对于雷达的速度。
为了提高测量的准确性,多普勒雷达通常会使用连续波或脉冲波进行测量。
连续波雷达通过持续地发射和接收电磁波来测量目标的速度。
脉冲波雷达则通过间歇性地发送短暂脉冲的电磁波来测量目标的速度。
除了测量速度,多普勒雷达还可以通过分析接收到的波的频谱来获得目标的运动方向和位置。
当目标接近雷达时,接收到的波的频率会增加,而当目标远离雷达时,接收到的波的频率会减小。
总之,多普勒雷达通过利用多普勒效应测量目标相对速度。
它
广泛应用于航空、气象、交通和军事等领域,可以提供有关目标速度和移动方向的重要信息。
多普勒天气雷达原理与应用6-雷达探测算法(2)
降水算法子程序1 :反射率因子预处理
降水处理算法使用来自距雷达230km范围内分辨率为 1km×1 º的四个最低仰角(0.5 º,1.5 º,2.4 º和3.4 º)的基 反射率因子作为输入(不依赖于VCP)。这个算法在第四 个仰角扫描结束后开始执行。为得到较好的反射率因子值, 在基本反射率因子数据中使用了五个质量控制步骤。
• Z估计误差 • Z-R关系误差 • 降水在波束以下的影响误差
Z估计误差
①固定地物杂波: 地物杂波定义为静止的或近似静止的 非气象目标物返回的能量。如果这些能量不被滤掉,并 输入Z-R方程,那么在地物杂波范围内降水量是过高估计 的。
②非正常传播(AP): 雷达假设它的波束是在标准大 气中传播的。这样可以计算波束高度。如果大气状态不 标准,那么波束传播会是不同的方式,或者说非正常地 传播。非正常传播,一般指的是波束被超折射并在远离 正常的地物杂波区处撞到地面。因此,AP是真正的远离 雷达区域的地物杂波。这些来自非正常传播波束的能量 会被包含在Z-R方程里,就象正常地物杂波那样会引起降 水的过量估计。
为极端值。根据极端值周围的值,它将以二种方法被更改:
a)如果所有8个相邻距离库的值都低于该临界值,则极端
值用8个相邻值的平均来取代; b)如果周围的相邻距离库
中也包含一个极端值,则此距离库将被赋予较低的dBZ值
(7dBZ)。
这一步骤不能消除所有的固定地物回波残留和异常 传播回波,需要进一步的质量控制步骤。
孤立的反射率因子值
反射率因子极端值:
第三个质量控制步骤是
去除会造成降水过高估计的反射率因子极端值。这些极端
值往往是由残留的固定地物回波或没有被抑制的异常传播
回波造成的。极端值被定义为在可降水区域回波距离库内
多普勒激光雷达测风原理
多普勒激光雷达测风原理话说这多普勒激光雷达测风,可真是个新鲜玩意儿,咱今天就来聊聊这背后的原理,保管让你听得津津有味,跟听评书似的。
那天,我站在气象站的观测台上,手里把玩着这小巧的激光雷达,心里琢磨着:这玩意儿怎么就能测出风的速度呢?它不像咱小时候玩的风车,风一吹就呼呼转,这激光雷达可是个高科技产品,得靠点真本事。
咱先说说这多普勒效应,你开车的时候,听见过远处警车的警笛声,有时候感觉声音越来越尖,有时候又越来越低沉,对吧?这就是多普勒效应在作怪,声源和接收器之间有了相对运动,声音频率就变了。
激光雷达测风也是这个理儿,只不过它用的是激光,而不是声音。
这激光多普勒雷达,它发射的激光束被大气中的气溶胶粒子散射,就像咱们在阳光底下能看见灰尘在跳舞一样。
这些气溶胶粒子就像是小小的镜子,把激光反射回来。
可问题是,这些粒子可不是静止的,它们跟着风一起动,这样一来,反射回来的激光频率就变了,这就是多普勒频移。
就像咱们俩站在这儿说话,你一动,我耳朵里的声音就变了个调儿,这激光雷达也是,它一接收到这变了调的激光,就能算出风的速度来。
你说神奇不神奇?但这事儿还没完呢,激光多普勒雷达还得靠个叫做相干探测的技术。
啥是相干探测呢?咱得这么理解,你见过俩水波相遇吧?有时候它们会叠加在一起,形成更大的波,有时候又会相互抵消,啥也看不见。
这激光也是,两束激光相遇,也能产生干涉效应。
激光雷达里头,有一束激光是专门用来当“参照物”的,咱们叫它本振光。
这束光跟反射回来的激光一相遇,就在探测器上产生了干涉,就像俩水波相遇一样。
探测器上的信号一变,咱们就知道,风来了,风速多少,也都算得出来。
说起来,这激光雷达测风,还真得靠点运气。
大气条件得好,气溶胶粒子得够多,要不这激光反射不回来,咱就啥也测不出来。
我就碰见过一回,那天雾蒙蒙的,气象站的人说,这条件正好,激光雷达能测得更远。
嘿,还真别说,那天咱们测得那叫一个痛快,连十公里以外的风都测出来了。
天气雷达的基本工作原理和参数-168页文档资料
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
体扫模式 (VCP:Volume Cover Pattern) 扫描方式确定一次体积扫中使用多少个仰角,
而具体是哪些仰角则由体扫模式来规定。WSR-88D 可有20个不同的VCP,目前只定义了其中的4个: VCP11 -- VCP11(scan strategy #1,version 1) 规定5分钟内对14个具体仰角的扫描方式。 VCP21 -- VCP21(scan strategy #2,version 1) 规定6分钟内对9个具体仰角的扫描方式。 VCP31 --- VCP31 (scan strategy #3,version 1)规定10分钟内对5个具体仰角的扫描方式。 VCP32 --- VCP32(scan strategy #3,version 2)确定的10分钟完成的5个具体仰角与VCP31相同。 不同之处在于VCP31使用长雷达脉冲而VCP32使用 短脉冲。 WSR-98D未定义VCP32。
自相干多普勒天气雷达结构框图
全相干多普勒天气雷达结构框图
fo 发射脉冲的载频 fd 多普勒频率
发射频率 Vs 多普勒频移
发射频率 多普勒频移
中国新一代天气雷达系统简介
• 1、雷达数据采集系统(RDA) • 2、雷达产品生成子系统(RPG) • 3、主用户处理器子系统(PUP)
多普勒天气雷达
工作原理
多普勒雷达是世界上最先进的天气监测设备,并且已经在很多国家得到深入应用,因此,下面我们就多普勒 雷达的工作原理进行深入分析和研究,以便能够使人们对其工作原理有着更为清楚的认识。
1.1通过气象目标对雷达电磁波的散射和吸收
粒子能够对电磁波进行吸收和散射,这也是粒子对电磁波的两大基本形式。雷达探测大气的基础是由气象目 标对雷达电磁波的吸收和散射所得。如果电磁波的波束在大气传播途中遇到包括云滴、雨滴以及其他悬浮粒子和 空气分子,作为入射的电磁波波束中的有一部分会因为上述的粒子反射到不同地方,这类现象称之为散射。一部 分散射的电磁波波束会被粒子吸收,最终按照雷达的方向返回被雷达天线接收,多普勒天气雷达能够通过接收到 的电磁波束中自带的振幅和位相等数据,得出气象目标的平均速度以及发射率因子和速度谱宽等基本数据,进而 推断并计算出相对应的气象情况和其他内部结构特征。
重要意义
多普勒雷达是世界上最先进的雷达系统,有“超级千里眼”之称。相较于传统天气雷达,多普勒雷达能够监 测到位于垂直地面8-12公里的高空中的对流云层的生成和变化,判断云的移动速度,其产品信息达72种,天气预 报的精确度比以前将会有较大提高。1991至1997年,美国在全国及海外布的165台NEXRDA被称为天气雷达系统的 典范,是世界上最先进的和最精确的天气雷达系统。它所采用的多普勒信号处理技术和自动产生灾害性天气警报 的能力无与伦比。NEXRAD可以自动形成和显示丰富多彩的天气产品,极大地提高了对超级单体、湖泊效应雪、成 层雪、雷暴、降水、风切变、下击暴流、龙卷、锋面、湍流、冰雹等重大灾害性天气的监测和预报能力。对强雷 暴的侦察率是96%,对龙卷的发现率是83%,对龙卷警告的平均预警时间是18分钟,而在未建NEXRDA络之前,美国 国家上述参数的平均值分别是60%,40%和2分钟。从中可以预料CINRDA将从根本上增强探测强雷暴的能力,能较 早地探测到晴空下威胁航行的大气湍流和发生灾害性洪水的可能,并为水资源的管理决策提供极有价值的信息。 新一代天气雷达系统建设是我国20世纪末21世纪初的一项气象现代化工程,计划在全国建成S频段和C频段雷达 156部,该系统建成后,我国的气象现代化水平会上一个新的台阶。
多普勒雷达探测原理
多普勒雷达探测原理8.1.1 多普勒效应多普勒效应是奥地利物理学家J.Doppler 1842年⾸先从运动着的发声源中发现的现象,定义为"当接收者或接收器与能量源处于相对运动状态时,能量到达接收者(器)时频率的变化"。
⼀个例⼦是:当⼀辆紧急的⽕车(汽车)鸣着喇叭以相当⾼的速度向着你驶来时,声⾳的⾳调(频率)由于波的压缩(较短波长)⽽增加。
当⽕车(汽车)远离你⽽去时,这声⾳的⾳调(频率)由于波的膨胀(较长波长)⽽减低。
多普勒频率(多普勒频移):对于⼀个运动的⽬标,向着雷达运动或远离雷达运动所产⽣的频移量是相同的,但符号不同:①如果⽬标移向雷达频移为正;②如果⽬标远离雷达频移为负。
8.1.2 径向速度径向速度简单地定义为⽬标运动平⾏于雷达径向的分量。
它是⽬标运动沿雷达径向的分量,既可以向着雷达,也可以离开雷达。
需要注意:①径向速度总是⼩于或等于实际⽬标速度;②由WSR-88D测量的速度只是⽬标向着或离开雷达的运动;③当⽬标运动垂直于雷达径向或静⽌时径向速度为零。
⽬标的实际速度与WSR-88D描述的径向速度间的关系能⽤数学⽅法描述成径向速度⽅程│Vr│=│V│•cosβ其中Vr为径向速度,V为实际速度,β为实际速度V与雷达径向之间最⼩的夹⾓。
8.1.3 多普勒天⽓雷达测速由于多普勒频移(Hz)相对发射频率(MHz)很⼩,故多普勒天⽓雷达通常不是直接测量多普勒频移,⽽是通过测量相继返回的脉冲对之间的位相差来确定⽬标物的径向速度,这种脉冲位相的变化可以⽐较容易并且⽐较准确的测量。
这种测速技术叫做"脉冲对处理"。
脉冲对处理 Pulse-Pair Method要使多普勒雷达能够提取⽬标的多普勒运动信息,必须知道每个发射波的初相位,这样就可以⽐较相继返回信号的位相。
如果每个发射波的初位相不知道,那么将⽆法知道相继返回的两个脉冲间的相移,也就⽆法对⽬标物沿雷达径向做出估计。
雷达气象学之第三章(多普勒天气雷达探测原理和方法)
2、脉冲对处理法(PPP)
在一定假设条件下对每一个距离库内的连 续两个取样值作成对处理.从而获得平均 多普勒频率和频谱宽度。此法优点在于能 实时处理.并且有一定精度,但它不能得 到频率谱。
3、相干记忆滤波器(CMF)处理法
此法只需要一个线路,在不设置距离库的 情况下同时对雷达探测范围内各个距离上 作粗略的谱分析,并能用如PSI(平面切变 线是其)等直接显示出来。但它精度不高;
垂 直 风 廓 线
补充风符号
1.风向杆 表示风的 来向。 2.风羽每 条代表风 速4米/秒, 半条代表2 米/秒,三 角旗代表 20米/秒。
谱 宽
反 射 率
三、影响速度谱宽的气象因子
• 多普勒速度谱宽表征着有效照射体内不同 大小的多普勒速度偏离其平均值的程度, 实际上它是由散射粒子具有不同的径向速 度所引起的。对气象目标物而言,影响速 度谱宽的主要因子有四个:
• 显然,雷达有效照射体中粒子直径的差别 越大,由此造成的多普勒速度谱越宽。
• 因此速度的谱宽实际上也取决于降水粒子 的谱分布。
• 当雷达水平探测时,粒子的下落末速度在 雷达波轴上的径向分量为零,所以它对多 普勒速度谱宽没有任何影响。
• 而当雷达垂直指向探测时,粒子下落末速 度即为径向速度,故由此造成的谱曾宽作 用最大。
• 在实际工作中需要了解的是有效照射体内
平均的多普勒速度和速度谱宽度,根据以
上关系式,并注意到 f 2v 关系式,则平均
多普勒速度
v
,和速度谱方差
2 v
分别为:
v 1 v v dv
Pr
2 v
1 Pr
vv
2
v dv
径向速度谱密度、平均径向速度、径向速度 谱宽三者的关系示意图
多普勒天气雷达产品的识别与分析(天气雷达基础知识)
3.2 强对流天气发生的背景环境
• 大气垂直稳定度 • 水汽条件 • 抬升 • 垂直风切变
3.3 垂直风廓线及其对对流风暴的作用
• 普通单体风暴的风向随高度的分布杂乱无章,基本上是一 种无序分布,而且风速随高度的变化也较小;
• 多单体强风暴和超级单体风暴的风向风速随高度变化分布 是有序的,风向随高度朝一致方向偏转,而且风速随高度 的变化值也比普通单体风暴的大。
• 影响速度谱宽的主要因子有四个: 1. 垂直方向上的风切变; 2. 大气的湍流运动; 3. 不同直径的降水粒子产生的下落末速度的不均匀分布; 4. 由波束宽度引起的横向风效应。
1.8 标准大气雷达测高公式 • H=h0+R*sinθ+R2/17000,单位:千米
1.9 PPI图上距离与高度
1.10 天气雷达的局限性
衰减的暂时的解决办法
• 结合S波段雷达使用 波长:10cm, 强天气的衰减不明显
衰减的暂时的解决办法
课间休 息
3、多普勒天气雷达识别对流风暴及其强烈天气
单元重难点: • 1、风暴的运动 • 2、对流风暴的模型 • 3、个例分析
3.1 对流风暴的分类
普通单体风暴 多单体风暴 超级单体风暴 线风暴(飑线)
• 多普勒频移与目标物在雷达径向方向上的速度分量v有关,满足如下 关系: fd= 2v∕λ (式中λ是雷达波长,fd是多普勒频移)
• 多谱勒速度是径向速度,垂直于雷达波束的速度分量(切向速度)不 能直接测量。
1.7 多谱勒速度谱宽W
• 多谱勒速度谱宽 表征着雷达有效照射体积内不同大小的多谱勒速度偏离其平均值的 程度,实际上它是由散射粒子具有不同的径向速度所引起的。
1.1 天气雷达基本结构
6、多普勒天气雷达原理与应用
6、多普勒天气雷达原理与应用第六部分多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
三、了解雷达气象方程在瑞利散射条件下,雷达气象方程为:其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。
Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。
换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。
五、理解雷达探测原理。
反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。
新一代天气雷达原理与应用6-个例分析(1)
03-07-08 20:00
03-07-08 20:34
03-07-08 21:12
03-07-08 21:24
03-07-08 21:57
03-07-08 22:32
22:32
03-07-08 23:01
03-07-08 23:29
23:29
03-07-09 00:38
03-07-09 00:38
在毕家庄,记者看到龙卷风、强降水使得这个长宽都 不足百米的小村庄遭受了灭顶之灾。全村30多户人家,只有 位于村口的一家房屋还算完好,其余都已是断垣残壁,一片 狼藉,废墟中的家具、电视机、衣物、橱柜依稀可见。很多 大树被连根拔起,其中一棵有几十年树龄的榆树也未能幸免。 村庄周围的电线杆更是东倒西歪,大多都是由底部被强行扭 断。一辆拖拉机被龙卷风拖出原地十几米,陷入水坑,而另 一辆拖拉机则不知所踪。河南村小学也是屋倒墙歪,两个篮 球架静静地躺在积水里。一位村民告诉记者,村庄里有四五 个人被龙卷风卷起后而抛到远处的稻田里,受了重伤。由于 强降水,有的稻田已被打成“一边倒”,村口的一条小河沟 浑水湍急,并已漫过河岸,淌入稻田。
16:55
17:02
17:08
17:14
17:20
17:26
17:32
17:38
17:56
18:14
16:19
16:55
1543
1601
1625
1655 1655
1750 17500
0.5
1.5
3.5
4.3
16:55
0.5, 1.5,2.4,3.4
图
SRM
16:55
2003年7月8日安庆站08点探空
2003年7月8日安庆站20点探空
多普勒天气雷达原理与业务应用
多普勒天气雷达原理与业务应用Doppler weather radar is based on the principle of Doppler effect, which is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. 多普勒天气雷达基于多普勒效应的原理,这是与观察者相对运动的波的频率或波长的变化。
In the case of weather radars, this effect is used to detect motion and precipitation particles in the atmosphere. 在天气雷达的情况下,这种效应被用来探测大气中的运动和降水颗粒。
The radar emits pulses of radio waves, which interact with any particles in the atmosphere, such as raindrops, snowflakes, or even insects. 雷达发射无线电波脉冲,这些波与大气中的任何颗粒如雨滴、雪花甚至昆虫发生相互作用。
When these particles are in motion, they cause a change in the frequency of the returning radar pulses, and this change is interpreted as the motion of the particles and can be used to determine the intensity and direction of precipitation. 当这些颗粒在运动时,它们会导致返回雷达脉冲的频率变化,这种变化被解释为颗粒的运动,并且可以用来确定降水的强度和方向。
新一代天气雷达介绍www
中国气象局颁发了新一代多普勒天气雷达 统一型号命名规定: CINRAD产品型号,分为两类八种型号 中美合资生产 国内独立研制 SC ( 714SDN ) CC ( 3830CD ) CD ( 714CDN ) CC J( 3830CD J)
SA — S波段增强型 SB — S波段标准型 CA — C波段增强型 CB — C波段标准型
多普勒天气雷达也是基于物理学中的多 普勒效应发展起来的,它可用来测量降水 区域内风场结构,大气垂直速度和某些强 对流天气的风场特征。它探测的是云、雨 、冰雹等弥散的群目标物。常规数字化天 气雷达利用的是降水回波的幅度信息,即 利用信号强度来探测雨区的分布、强度、 垂直结构等,多普勒除此之外,还可利用 降水回波频率与发射频率之间变化的信息 来测定降水粒子的径向速度,并通过此推 断风速分布,垂直气流速度,大气湍流, 降水离子谱分布,降水中特别是强对流降 水中风场结构特征。
主用户处理器 PUP
主用户处理器PUP的主要功能是获取、存储和显示 产品。预报员主要通过这一界面获取所需要的雷达产 品,并将它们以适当的形式显示在图形监视器上。因 此,预报员应当熟练掌握PUP的基本操作。 PUP(CINRAD WSR-98D)的操作界面主要分为 4个区域:视窗、菜单、工具栏和状态栏。视窗进一步 分为3个子区域:图象区、标注区和属性表区。在产品 有显示状态下菜单的种类有12个。工具栏有4种:常规 工具栏、动画工具栏、警报信息栏和编辑工具栏。状 态显示栏的状态信息有三种。
2、CINRAD/CB组成:
新一代天气雷达系统由五个主要部分构成:雷达数据采 集子系统(RDA)、宽/窄带通讯子系统(WNC)、雷达产 品生成子系统(RPG)、主用户处理器(PUP)和附属安装 设备。
多普勒天气雷达资料分析与应用
引言
• RADAR
• RAdio Detecting And Ranging
• WSR-88D
• Weather Surveillance Radar 88 Doppler
• CINRDA/SA,SB,SC;
• S:10cm,A敏视达,B14所,C成都七八四厂
• CINRDA/CD,成都七八四厂生产 CINRDA/ CC,CCJ 安徽四创生产
0
5 4
m2 1 2 m2 2 Z
大粒子散射
对于不满足瑞利散射条件的降水粒子,根据雷达气象 方程求得的 Z 值就不能代表降水的实际谱分布情况, 只能是等效的 Z 值,记为 Ze ,称为等效雷达反射率 因子。
等效反射率因子Ze:
• 用瑞利散射公式计算大粒子的反射率因子
• 能够产生同样回波功iN1率PrM,i 与小球45粒mm子的22 反 射12 率2 Z因e子等效的Z值。
天气雷达的基本工作原理
• 天气雷达间歇性地向空中发射脉冲式的电磁波,电 磁波在大气中以接近光波的速度、近似于直线的路 径传播,如果在传播路径上遇到了气象目标物,脉 冲电磁波会被气象目标物向四面八方散射,其中一 部分电磁波能被散射回雷达天线(称为后向散射), 在雷达显示器上显示出气象目标物的空间位置分布 和强度等特征。
• C:5cm
Weather Radar in China
• 中国气象雷达的概况 • 711型测雨雷达 - X • 713型测雨雷达 - C • 714型测雨雷达 - S • 多普勒雷达(714-CD, 3830,敏视达雷
达)
多普勒天气雷达的组成和探测原理
•一、多普勒天气雷达的工作原理 •二、雷达的 PPI 扫描方式 •三、雷达的三部分 •四、多普勒天气雷达的产品介绍 •五、短时预报常用的雷达产品
6多普勒天气雷达原理与应用
6多普勒天气雷达原理与应用多普勒天气雷达是一种利用多普勒效应来探测降水、风速和风向等气象参数的雷达,广泛应用于气象预报、水资源管理、防灾减灾等领域。
下面将从多普勒天气雷达的原理和应用两个方面进行详细介绍。
一、多普勒天气雷达原理:多普勒天气雷达利用物体回波的多普勒频移来测量物体的运动状态。
其原理可以通过以下几个步骤来理解:1.信号发射与接收:雷达通过天线向大气中发射脉冲信号。
脉冲信号是一种特殊的波形,其特征是能够精确测量反射信号的时延。
雷达波束探测的范围称为体积样积分区(VCP)。
2.对流层的多次散射:当雷达脉冲信号遇到大气中的物质(如雨滴、冰晶等)时,部分能量会被这些物质散射反射回来,形成回波。
3.多普勒频移的测量:回波信号中包含了大气物质运动的信息。
相对于静止的物体而言,当物体以一定速度向雷达或远离雷达运动时,回波信号的频率会发生变化,这就是多普勒频移效应。
4.频谱分析与信号处理:雷达对回波信号进行频谱分析,可以得到回波信号频率的分布情况。
通过计算信号的频移量,可以得到大气物体沿径向的速度和方向。
二、多普勒天气雷达的应用:多普勒天气雷达主要应用于气象预测、水资源管理和防灾减灾等领域,具有以下几个方面的应用:1.气象预报:多普勒天气雷达可以精确测量降水的强度、区域分布和降雨类型(如雨、雪、冰雹等),有助于提高天气预报的准确性。
通过观测和分析雷达回波,可以及时预警并预测强降水、洪水、暴风雨等极端天气事件,为防范和减轻灾害提供重要数据支持。
2.水资源管理:多普勒天气雷达能够实时监测和测量降水的强度和分布,在水资源管理中起到重要作用。
通过对降水数据的分析,可以为城市供水、水库调度、灌溉农业等方面的决策提供准确的水资源量和雨量预测信息。
3.风速与风向测量:多普勒天气雷达还可以测量大气中的风速和风向。
利用雷达的多普勒频移原理,可以从回波中获取风场流场的信息,包括垂直风速的分布、风向的变化等,为气象、航空、海洋等领域提供有关风的数据。
多普勒天气雷达原理与应用6-雷达探测算法
Z-R关系误差
①滴谱分布的变化: Z-R方程是在对滴谱分布形式做 了某种假定的条件下得到的。实际滴谱分布可以偏 离假定。 ②混合型降水与亮带: 混合型降水—雨与雹、雪或 是冻雨混合,会产生大的反射率因子值,引起降水 率的过高估计。 当冰晶下落通过溶化层时,它们的 外表面开始溶化。正好位于溶化层(0°层面)下面, 这些包着水外衣的冰晶反射率因子是高的,产生增 强的雷达信号,在PPI上象弧形结构,在常规天气雷 达上叫做“亮带”,亮带会造成降水率的过高估计。
雷达降水估计
精品文档
反射率因子Z和降水率R
反射率因子Z: 反射率因子与滴谱分布和滴的尺 度有关。表示为:
Z=∫N(D)D6dD 这里,Z=反射率因子 D=滴直径 N(D)=每立方米给定直径的滴数量
Z r 2 Pr c
精品文档
dB 1Z • 0 lg Z Z 0
Z 0 1 m6/m m 3
精品文档
精品文档
WSR-88D 降水处理子系统
WSR-88D 降水处理子系统(PPS)由五个主要算 法子程序和两个外部支持功能块构成。
五个子算法是:1)降水预处理;2)降水速率;3) 降水累加;4)降水调整;5) 降水产品。该算法包括46 个可调(适配)参数。通过调整这些参数,可以适应局地 气象条件。
R6NDD3wt DdD
这里 R=降水率 D=滴直径 N(D)=给定直径的滴数目/立方米 Wt(D)=给定直径滴的下落速度
注意:R正比于滴直径的3次方。
精品文档
精品文档
精品文档
• R正比于滴直径的3次方; • Z正比于滴直径的6次方; • 改变滴直径会引起R的大变 化,Z会产生更大的变化。
精品文档
精品文档
天气雷达的基本工作原理和参数知识讲解
性
风暴跟踪信息文本产品(上海)
风暴结构产品(SS)
冰雹指数产品(HI)
回波顶高产品(ET)
回波顶高等值线产品(ETC)
垂直液态水含量产品(VIL)
强天气概率产品(SWP)
一小时降水量产品(OHP)
三小时降水量产品(THP )
风暴总降水量产品(STP)
多普勒频率fd与目标物径向 速度Vr的关系
多普勒频率fd 定义: 目标物相对于雷达作径向运动
引起回波信号的频率变化,称 多普勒频移,亦称多普勒频率, 单位:赫兹(Hz)。
多普勒频率fd与目标物径向速度Vr 的关系(证明见P211-212)
fd
2Vr
其中: f d为多普勒频率
Vr 为目标物的径向速度
(单位 Hz )
(也称多普勒速度 , 单位 m / s)
这类产品主要有:
• 平面位置显示(PPI)
• 垂直最大回波强度显示 (CR)
• 等高平面位置显示(CAPPI)
• 距离高度显示(RHI)、
• 任意垂直剖面显示(VCS)
WSR-88D产品生成器根据用户要求生成的基本产 品有:基本反射率产品6种,平均径向速度产品6 种,速度谱宽产品3种,共计3类15种气象产品, 如下表
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26
中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)
表
示 产 生 冰 雹 的 可 能
图 中 绿 色 三 角 形
多普勒天气雷达原理与应用-雷达探测算法
雷暴特征分析
反射率因子权重 质心(雷暴中心) 体积 雷暴投影到水平 面上的面积大小和形 状(最佳适应形状是 多边形和椭圆)
雷暴追踪
假设T1和T2是相邻的两个雷达体扫资料时间
追踪思路: 1. 宁短不长(考虑
到体扫间隔为56分钟) 2. 特征相似(尺寸 和形状等) 3. 设置雷暴移动速 度上限
“区域”尺寸的选择不宜太大也不宜太小,太大会导致回 波移动向量的分辨率太粗,“区域”太小则包含的数据点 太少,不足以产生稳定的相关系数。发现对于1km ×1km 的分辨率,m取值在3-7之间比较合适。
将平面直角 坐标内的二 维坐标排列 成一维,然 后计算相关 系数:
R [(
k
Z1 (k )
Z2
(k)
1 N
Z1 2 (k) N Z1 2 ) (
Z1(k) Z2 (k)
k
k
Z2 2 (k) N Z2 2 )]
k
k
其中Z1和Z2是分别是相继两个体扫t1和t2时刻的反射率因子, N是一个“区域”内数据点的数量(N=m2)。
14Байду номын сангаас雷暴和降水的临近预报系统
• TITAN • TREC • Auto-Nowcaster
跟踪和外推算法
雷暴或降水的临近预报系统的基础是跟踪和外 推。主要分为两种类型:
• 单体质心跟踪和外推: 将雷暴或降水单元视为三维 单体加以识别、跟踪和外推。典型的例子有WSR-88D 和WDSS中的风暴单体识别与跟踪、以及TITAN等, 下面我们会对TITAN重点进行介绍;
• 区域跟踪和外推:对反射率因子超过某一阈值的二 维区域进行跟踪和外推。典型的例子有TREC等,我 们下面给以重点介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Oklahoma 发生大冰雹所必须的VIL估计值。
基于单体的VIL
垂直剖面产品
垂直剖面产品包括反射率因子剖面RCS、平 均径向速度剖面VCS和速度谱宽剖面SCS。可在半 径为230公里的雷达覆盖范围内的任意两点间做剖 面。 垂直剖面产品是由如下过程产生的体积产品: 1) 用1km分辨率的基本数据连接所有的仰角扫描; 2)对没有数据的地方用相邻二个仰角的资料垂直插 值, 垂直间隔为0.5km;3)没有从最高或最低仰 角向外外插。 反射率因子剖面和速度剖面产品各有两个, 分别对应于16个和8个数据级,谱宽剖面产品只有 一个。
步骤4 TVS处理:1)检查搜寻范围TPC (threshold search percentage)内所有的中气旋 2D特征;2)如果一个2D特征最大和最小径向速 度间的切变超过阈值TTS,则这个2D特征包含 一个潜在的TVS;3)如果一个3D特征中有2个 或更多的2D特征包含潜在的TVS,则一个TVS 被识别。
表6-7 新的冰雹探测算法HDA的评分 日期 11/02/1992 17/02/1992 25/03/1992 19/04/1992 28/04/1992 28/05/1992 02/06/1992 12/06/1992 09/06/1992 01/09/1989 总体 WT (Jm-1s-1) 20 26 63 66 74 97 100 120 126 134 H 16 13 30 16 94 5 3 0 0 40 217 M 1 10 9 12 39 0 3 0 0 20 94 FA 33 11 18 21 32 10 6 5 0 71 207 POD(%) 94 57 77 57 71 100 50 67 70 FAR(%) 67 46 38 59 25 67 67 100 64 49 CSI(%) 32 38 53 31 57 33 25 0 31 42
相对于风暴的平均径向速度图(SRM)
回波顶(ET)
回波顶定义为高反射率核上空18.3 dBZ回 波的高度。 回波顶算法估记反射率因子大于等于18.3 dBZ所在的高度,然后将RDA的MSL高度加到回波 顶高度里。该产品的分辨率为 4km x 4km,显示 范围230公里。
局限性:1)由于雷达静锥区的存在,雷达附近的顶会 被过低估计;2)由于缺乏向上的垂直外推,很难决定 风暴的最高回波顶。
中心落在较高阈值分量区域中的较低 阈值分量被抛弃
确定风暴质心
风 暴 单 体 质 心 输 出
质心(在极坐标中), 质心的高度(ARL—相对于雷达高度),
最大反射率(3个距离库的平均), 最大反射率的高度(波束中心点高度—ARL) 单体底和顶(ARL), 分量数目, 基于单体的垂直累积 液态水含量(VIL)。
Composite reflectivity
Applications combines radar data and numerical model data to plot reflectivity at constant temperature levels.
Hail algorithm uses reflectivity at 0oC and -20oC. This allows forecaster to see the inner-workings of the algorithm.
垂直累积液态水(VIL)
反映降水云体中,在某一确定的底面 积(4KM ×4KM)的垂直柱体内液态水 总量分布的图形产品。产品号为57,显示 范围230公里。
它可以表征雷暴的总体强度。
垂直累积液态水(VIL)算法
液态水混合比的经验公式:
M 3.44 10 Z
3
4/7
这里M =液态水混合比,Z=雷达反射率因子。从每个4 ×4KM 网格里导出值M,然后再垂直积分得到VIL。 算法假定反射率因子是由液态水滴散射得到的。Z值的 上限取为55dBZ以减少冰雹污染。
n 6
4/7
High-Resolution VIL
Same resolution as Level-II data Rapidly updating (20-30 seconds).
WSR-88D VIL
Hi-res VIL
70 60 50 40 30 20 10 0 1
1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
。
风暴单体质心
定义 分量——在某一仰角扫描所构成的 锥面内,段的二维区域。 质心——单体质量中心的三维位 置。
处理过程 在仰角扫描的最后一个径向被 分析完后,单个风暴段在空间相邻的基 础上被组合成2D风暴分量。
图
砖形轮廓线表示30dBZ阈值风暴段,假定它们满足方位和距离阈值, 则所有30-dBZ风暴段将被组合成一个2D分量。风暴段将被组合成一个 2D分量。
14% 21% 18% 0% 4% 17%
21% 33% 23% 7% 24% 24%
61% 45% 35% --30% 41%
表6-2 对于各种风暴类型(30-39dBZ,40-49dBZ, 50dBZ以上) SCIT算法的正确识别率(POD)
风暴类型 孤立强单体 孤立非强单体 MCS/Line 层状降水 微型超级单体 总体
POD 27% 43% 25% 0% 71% 28%
70% 68% 64% 13% 82% 68%
96% 97% 96% --96% 96%
表6-5
SCIT算法对不同的 Lead Time 的平均预报误差
样本中单体的数量 平均预报误差(公里)
预报时效(分钟)
5 15 30 45 60
898 498 227 109 55
合成反射率(CR)
、 冰 雹 指 数 和 中 气 旋
组 合 反 射 率 因 子 、 风 暴 路 径 跟 踪
风暴相对平均径向
速度图(SRM)
与基本速度产品类似,只不过减 去了由风暴跟踪信息(STI)识别的所 有风暴的平均运动速度(缺省值), 或减去由操作员选定的风暴运动速度 (分辨率1公里,显示范围230公里, 序号56)。
计算步骤
1)把每个仰角的极坐标形式转换成直角坐 标。 2)把回波强度dbz转换成反射率因子Z值。 3)计算第I层的PPI资料中位于4 ×4KM底面 积的垂直柱体内的所有资料的算术平均值。 4)计算每一个底面积的柱体内的累积液态 水含量。
( Z i Z i 1 2 VIL 3.44 10 h (kgm ), 2 i 1
表6-8 旧的冰雹探测算法HDA的评分,利用“probable”作警报阈值 (即“probable”和“positive”指示都作为有强冰雹的预报) 日期 11/02/1992 17/02/1992 25/03/1992 19/04/1992 28/04/1992 28/05/1992 02/06/1992 12/06/1992 09/06/1992 01/09/1989 总体 WT (Jm-1s-1) probable probable probable probable probable probable probable probable probable probable H 0 6 25 24 103 5 3 0 0 53 219 M 19 18 14 3 26 0 3 0 0 7 90 FA 0 4 24 78 43 37 28 81 21 204 520 POD(%) 0 25 64 89 80 100 50 88 71 FAR(%) 40 49 76 29 88 90 100 79 70 CSI(%) 0 21 40 23 60 12 9 0 0 20 26
中气旋(M)与龙卷涡旋特 征(TVS)产品和算法
步骤1 1D中气旋处理:识别1D 型矢量并测试它们是 否满足切变(THS, TLS)和角动量(THM,TLM) 阈值。 步骤2 2D中气旋处理:1)将1D型矢量组成2D特征, 组成2D特征的最小型矢量的个数为可调参数TPV;2) 确定2D特征的对称性;3)计算2D特征的属性;4) 去掉在高度TFM以上的2D特征。 步骤3 3D中气旋处理:1)将2D特征组成3D特征;2) 丢弃不能组成3D特征的非对称的2D特征;3)不能组 成3D特征的2D特征归类为“非相关切变”;4)包含 少于2个对称2D特征的3D特征归类为“3D相关切变”; 5)包含2个或更多对称2D特征的三维特征归类为“中 气旋”。
2.0 5.0 9.9 15.2 22.8
冰雹指数(HI)
冰雹指数的显示形式
冰雹探测算法
最小显示临界值 <=POH<填充的临界值
POH>=填充的临界值以及POSH <最小POSH显示临界值 最小显示临界值<=POSH< 填充的临界值
POSH >填充的临 界值
预于 期 3 冰 的 雹 冰 4 概 雹英 率 尺寸 ( 寸) (概 率) ( ) 强 冰 )雹 ( 最直 大径 大 / C)
风暴单体跟踪
预报位置
R7
前次体积扫位置 预报位置
R3
前次体积扫位置
风暴未来位置预报
风暴位置预报是依据过 去风暴移动的记录来预报单 体将来的质心位置。
表6-1 对于各种风暴类型(30-39dBZ,40-49dBZ, 50dBZ以上) 风暴系列算法的正确识别率(POD)
风暴类型 孤立强单体 孤立非强单体 MCS/Line 层状降水 微型超级单体 总体
中气旋(M)
龙卷涡旋特征(TVS)
TVS Detection Algorithm (TDA)
Reflectivity
Velocity
Rotational shear
Rotation tracks
TVS评分对比(6个例)
NSSL TVS
POD FAR CSI HSS 43 48 31 46