大数据优势介绍PPT

合集下载

大数据分析PPT(共 73张)

大数据分析PPT(共 73张)

' LOGO '
COMPANY LOGOTYPE INSERT
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
' LOGO '
COMPANY LOGOTYPE INSERT
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
ZB
' LOGO '
• 一些研究人员采取了一种不同的做法:他们开始跟踪
海地人所持手机内部的SIM卡,由此判断出手机持有人所
处的位置和行动方向。正如一份联合国(UN)报告所述,此
举帮助他们“准确地分析出了逾60万名海地人逃离太子港
之后的目的地。”后来,当海地爆发霍乱疫情时,同一批
研究人员再次通过追踪SIM卡把药品投放到正确的地点,
这些消息足够一个人昼夜不息的浏览16 年…
每天亚马逊上将产生 6.3 百万笔订单…
每个月网民在Facebook 上要花费7 千亿分钟,被移动互联
网使用者发送和接收的数据高达1.3EB…
Google 上每天需要处理24PB 的数据…
' LOGO '
COMPANY LOGOTYPE INSERT

(完整版)大数据介绍ppt

(完整版)大数据介绍ppt
•非结构化海量信息的智能化处理:自然语言 理解、多媒体内容理解、机器学习等.
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
2020/4/14
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群, 使得与属于不同簇的观测值相比,属于同 一簇的观测值相互之间尽可能类似
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。

最新大数据时代ppt课件

最新大数据时代ppt课件

公共安全监控
利用大数据技术对公共安 全领域进行实时监控和预 警,提高应对突发事件的 能力。
企业经营管理与决策支持应用
市场分析与预测
通过大数据分析市场趋势、竞争 对手和消费者行为等信息,为企 业制定市场策略提供决策支持。
客户关系管理
整合客户数据资源,实现客户画像 、需求分析和精准营销,提高客户 满意度和忠诚度。
战。
数据安全法规
各国政府加强对数据安全的监管 ,企业需要遵守相关法规,确保
数据合规性。
技术创新与人才培养问题
技术更新换代
01
大数据技术发展迅速,企业需要不断跟进新技术,提高数据处
理效率和分析能力。
人才短缺
02
大数据领域人才需求旺盛,但当前市场上合格的大数据人才相
对匮乏。
培养体系不完善
03
目前大数据人才培养体系尚不完善,需要加强高校、培训机构
区块链技术在大数据领域应用前景
数据安全与隐私保护
区块链技术通过去中心化、分布式存储等特性,保障大数据的安 全性和隐私性。
数据追溯与审计
区块链技术可实现数据全生命周期的追溯和审计,提高数据的可信 度和透明度。
跨域数据共享与交换
区块链技术可打破数据孤岛,实现跨域数据的安全共享和交换。
边缘计算推动大数据处理能力提升
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据发展历程
萌芽期
20世纪90年代至2008年,大数据概 念开始萌芽,主要关注数据存储和计 算能力的提升。
发展期
2009年至2012年,大数据概念逐渐 受到关注,出现了一批大数据创业公 司,同时Hadoop等开源技术也开始 得到广泛应用。

大数据PPT免费

大数据PPT免费

人工智能和机器学习在大数据中的应用前景
数据挖掘与预测分析
通过机器学习算法对历史数据进行深度挖掘,发现数据间的潜在 联系和规律,实现预测分析。
自动化决策支持
基于大数据和人工智能技术,构建自动化决策支持系统,提高决策 的准确性和效率。
个性化推荐与服务
利用大数据分析和机器学习技术,为用户提供个性化的产品推荐和 服务体验。
总结:把握大数据时代机遇,应对挑战
01
强化技术创新
持续推动大数据、人工智能、物联网等领域的技术创新,提升数据处理
和分析能力。
02
加强人才培养
重视大数据领域人才培养,打造具备跨学科知识和技能的专业团队。
03
完善政策法规
建立健全大数据相关政策法规,保障数据安全和个人隐私,促进大数据
产业健康发展。
THANK YOU
物联网和5G技术对大数据的影响和挑战
数据量爆炸式增长
物联网设备的普及和5G技术的推广将带来数据量的爆炸式 增长,对大数据存储和处理能力提出更高要求。
数据实时性要求提 高
物联网和5G技术使得数据实时传输和处理成为可能,对大 数据处理速度和实时性要求更高。
数据安全与隐私保 护
随着物联网设备的普及,数据安全和隐私保护问题日益突 出,需要加强相关技术和政策保障。
工具选择建议
根据数据量、分析需求、呈现效果等因素选择合适的工具。
图表类型选择及设计原则
1 2
常见图表类型
柱状图、折线图、饼图、散点图、热力图等。
图表选择原则
根据数据类型和分析目的选择合适的图表类型。
3
图表设计原则
简洁明了、颜色搭配合理、突出重点、避免过度 装饰。
报告撰写技巧与注意事项

大数据专题(共43张PPT)

大数据专题(共43张PPT)
应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。

大数据介绍ppt

大数据介绍ppt

大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域

大数据ppt课件

大数据ppt课件

改善社会治理和公共服务
2
• 大数据技术可以提升政府服务能力和效率 ,推动公共服务的个性化和精细化。
推动科技创新和进步
3
• 大数据技术为科学研究提供了更加高效和 准确的数据分析工具,推动了科技创新和进
步。
大数据的技术与发展
数据采集与存储技术
数据处理和分析技术
• 大数据的采集和存储需要使用分布式 文件系统、数据库等技术。
分析方法
结论与展望
• 采用自然语言处理、图像识别、情感 分析等方法,对社交媒体数据进行情感分 析,提取其中的情感词汇和情感表达。
• 通过基于社交媒体的情绪分析。我们 可以更好地了解公众对于某个事件或产品 的情感倾向
案例五:金融行业的风控大数据应用
背景与目标
• 金融行业是风险密集的行业,如何 有效地进行风险控制是金融行业的重要 任务之一
市场调研
02
• 通过大数据分析,了解市场趋势和竞争对手情况,制定
市场策略。
客户分析
03
• 通过分析客户数据,了解客户需求和行为,提供个性化
服务。
医疗健康
病患数据分析
• 通过分析病患数据,提高医疗质量和效率。
药物研发
• 通过大数据分析,加速药物研发过程。
健康管理
• 通过分析个人健康数据,提供个性化健康建议。
分析方法
• 采用数据挖掘、空间分析等方法, 对城市数据进行分类、预测、聚类等分 析。
结论与展望
• 通过基于公共数据的城市规划研究 。我们可以提高城市规划的科学性和有 效性
案例四:基于社交媒体的情绪分析
背景与目标
数据来源
• 社交媒体的普及使得人们可以在网络 上公开表达自己的情绪和意见

大数据课件ppt

大数据课件ppt

适用于大规模数据 集处理,具有高效 的数据处理能力和 内存管理。
Flink平台
详细描述
提供丰富的API和工具,如 DataStream API、DataSet API 、Table API等。
总结词:实时流数据处理引擎。
支持基于流的处理和批处理。
适用于实时数据处理和复杂事件 处理场景。
Kafka工具
要点二
发展
大数据的发展经历了三个阶段:第一个阶段是大数据技术 的萌芽期,这个阶段出现了许多大数据技术的基础组件, 如分布式存储和计算系统;第二个阶段是大数据技术的成 熟期,这个阶段出现了许多成熟的大数据产品和解决方案 ;第三个阶段是大数据技术的普及期,这个阶段大数据技 术被广泛应用于各个领域。
大数据的研究与应用
02
大数据处理技术
数据采集与预处理
01
02
03
数据采集
从各种数据源(如数据库 、网络、文件等)获取数 据的过程。
数据清洗
去除重复、无效或错误的 数据,保证数据的质量和 准确性。
数据转换
将数据从一种格式或结构 转换为另一种,以便进行 后续处理。
数据存储与管理
数据存储
使用存储设备(如硬盘、 闪存等)保存数据,以便 长期保存和使用。
数据挖掘与分析
关联规则挖掘
发现数据之间的关联和模式,揭 示潜或属性进行 分组,以便进行分类和识别。
预测分析
利用已有的数据进行预测,对未 来的趋势和结果进行预测和分析

03
大数据平台与工具
Hadoop平台
总结词:分布式存储和计算平台,适合 大规模数据处理。
特点
大数据通常具有四个特点,即4V:体量(Volume)指数据 的大小、速度(Velocity)指数据生成或处理的快慢、多样 性(Variety)指数据的种类、真实性(Veracity)指数据的 准确性和可信度。

大数据与大数据安全介绍与应用PPT

大数据与大数据安全介绍与应用PPT

大数据与大数据安全介绍与应用PPT 幻灯片 1:封面标题:大数据与大数据安全介绍与应用幻灯片 2:目录大数据的概念与特点大数据的应用领域大数据带来的挑战大数据安全的重要性大数据安全的威胁与风险大数据安全的技术与策略大数据安全的案例分析大数据与大数据安全的未来展望幻灯片 3:大数据的概念与特点大数据,简单来说,就是指规模极其巨大的数据集合。

这些数据的规模通常达到了传统数据处理软件难以处理的程度。

大数据具有以下几个显著特点:一是数据规模大。

它不再是以 GB 或 TB 为单位,而是以 PB、EB甚至 ZB 来计量。

二是数据类型多样。

包括结构化数据,如关系型数据库中的表格;半结构化数据,如 XML、JSON 格式的数据;以及非结构化数据,如图像、音频、视频、文本等。

三是数据处理速度快。

要求能够在短时间内对大量数据进行分析和处理,以获取有价值的信息。

四是数据价值密度低。

虽然数据量巨大,但真正有价值的信息可能只占很小的一部分,需要通过有效的分析手段来挖掘。

幻灯片 4:大数据的应用领域大数据在当今社会的各个领域都有着广泛的应用:在医疗领域,通过对患者的病历、医疗影像、基因数据等进行分析,可以实现疾病的早期诊断、个性化治疗方案的制定,提高医疗效率和质量。

在金融行业,利用大数据进行风险评估、市场预测、反欺诈等,能够帮助金融机构做出更明智的决策,降低风险。

在电商领域,根据用户的浏览记录、购买行为等数据,进行精准的商品推荐,提高用户的购物体验和商家的销售额。

在交通领域,通过对交通流量、路况等数据的实时分析,实现智能交通管理,缓解交通拥堵。

在教育领域,借助大数据分析学生的学习情况,为个性化教育提供支持。

幻灯片 5:大数据带来的挑战然而,大数据的发展也带来了一系列挑战:数据存储和管理方面,如何高效地存储和管理海量的数据成为一个难题。

数据质量和准确性难以保证,错误或不完整的数据可能导致错误的分析结果。

数据隐私和安全问题日益突出,个人信息的泄露可能给用户带来严重的损失。

大数据ppt(数据有关文档)共30张

大数据ppt(数据有关文档)共30张
实时数据采集
利用流处理技术,实时采集数据源中的数 据。
网络爬虫技术
通过编写爬虫程序,从互联网上抓取指定 网站的数据。
API接口调用
通过调用第三方提供的API接口,获取相 关数据。
数据清洗与预处理
数据清洗
去除重复数据、处理缺失值、异常值 检测与处理、文本清洗(如去除停用 词、特殊符号等)。
数据转换
将数据转换成适合分析的格式,如将 文本数据转换为数值型数据。
常见的NoSQL数据库 列举几种常见的NoSQL数据库,如MongoDB、 Cassandra、Redis等,并简要介绍它们的特点 和应用场景。
NoSQL数据库的选择与使用 探讨如何根据实际需求选择合适的NoSQL数据 库,并给出使用NoSQL数据库的一般步骤和注 意事项。
数据仓库与数据挖掘技术
数据仓库概述
Tableau
专业的数据可视化工具,支持拖拽式操作和 丰富的图表类型。
Python可视化库
如Matplotlib、Seaborn等,提供强大的数 据可视化功能,可定制化程度高。
05
大数据在各领域应用案例
金融行业应用案例
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
的后盾支持。
大数据发展趋势
实时性要求更高
随着业务需求的不断变化,对大数据实时 性要求越来越高。
数据安全备受关注
大数据的快速增长使得数据安全问题日益 凸显,如何保障数据安全成为重要议题。
与人工智能深度融合
大数据与人工智能技术的深度融合将推动 智能化应用的快速发展。
行业应用不断拓展
大数据在各行各业的应用将不断拓展,为 行业转型升级提供有力支持。

(2024年)大数据介绍PPT课件

(2024年)大数据介绍PPT课件
副本机制
为确保数据可靠性和可用性,对每个数据分片创建多个副本,并将 它们存储在集群的不同节点上。
一致性协议
通过分布式一致性协议(如Paxos、Raft等)确保数据在多个副本之 间保持一致性。
2024/3/26
28
数据备份与恢复策略
定期备份
制定定期备份计划,将数据备份到远程存储或云 存储中,以防止数据丢失。
绿色计算与节能 随着环保意识的提高,如何在保证计算性能的同时降低能 耗成为大数据处理的重要挑战。
39
未来发展趋势预测
2024/3/26
人工智能与机器学习融合
大数据将与人工智能和机器学习更紧密地结合,实现更高级别的数据 分析和预测。
实时数据处理与分析
随着5G、物联网等技术的发展,实时数据处理和分析将成为可能,为 各行业提供更准确、及时的数据支持。
分布式文件系统
适用于具有大数据集的应 用程序
流式数据访问模式
高吞吐量访问数据
01
2024/3/26
03 02
9
分布式文件系统
• GlusterFS: 一个开源的分布式文件系统, 具有弹性哈希算法、可配置的传输层及支 持多种客户端接口。
2024/3/26
10
分布式文件系统
可扩展性
高可用性
数据一致性
2024/3/26
推论性统计
通过样本数据推断总体特 征,包括假设检验、方差 分析等。
多元统计分析
研究多个变量之间的关系, 包括回归分析、聚类分析、 主成分分析等。
32
机器学习算法
2024/3/26
监督学习
通过已知输入和输出数据进行训练,预测新数据的输出。如线性 回归、逻辑回归、支持向量机等。

大数据分析ppt课件完整版

大数据分析ppt课件完整版

数据质量与可信度问题
数据质量问题
大数据中包含了大量不准确、不完整或格式不统一的 数据,如何保证数据质量是数据分析的关键。
数据可信度挑战
虚假数据、误导性信息等可能影响数据分析结果的准 确性,如何提高数据可信度是重要议题。
数据治理与标准化
通过建立数据治理机制和标准化流程,提高数据质量 和可信度,保证数据分析结果的准确性。
数据仓库
构建数据仓库,实现数据的整合、管理和优化,提供统一的数据视图。
数据湖
利用数据湖技术,实现多源异构数据的集中存储和管理。
数据安全与隐私保护
制定数据安全策略,采用加密、脱敏等技术手段保护数据安全与隐私。
数据分析与挖掘
描述性分析
运用统计学方法对数据进行描述性分析,如数据 分布、集中趋势、离散程度等。
NoSQL数据库
如HBase、Cassandra等 ,适用于非结构化数据存 储和大规模数据处理。
云存储服务
如AWS S3、阿里云OSS 等,提供高可用、高扩展 性的在线存储服务。
数据挖掘算法
分类算法
如决策树、随机森林等,用于预测离 散型目标变量。
聚类算法
如K-means、DBSCAN等,用于发 现数据中的群组结构。
诊断性分析
通过数据挖掘技术,如关联规则挖掘、聚类分析 等,发现数据中的异常和模式。
ABCD
预测性分析
运用回归分析、时间序列分析等方法对数据进行 预测性分析,揭示数据间的潜在关系。
处方性分析
基于诊断结果,提供针对性的解决方案和优化建 议。
数据可视化呈现
数据可视化工具
运用Tableau、Power BI等数据可视化工具 ,将数据以图表、图像等形式呈现。

(完整版)大数据介绍ppt

(完整版)大数据介绍ppt
大数据的定义与特性
定义
大数据是指在传统数据处理软件难以处理的庞大的、复杂的数据集。这些数据可 以是结构化的,如数据库里的表格,也可以是非结构化的,如社交媒体上的文字 或图片。
大数据通常涉及对海量数据的采集、存储、管理和分析,以发现数据背后的规律 和趋势,从而帮助企业和组织做出更好的决策。
特性:4V(体量、速度、多样性和价值)
传感器
各种传感器在工业生产、环境监测等领域中广泛应用,能 够实时监测和收集各种数据,如温度、湿度、压力等。
生成方式
社交网络
用户在社交媒体上的互动行为 ,如发布动态、点赞、评论等 ,以及社交网络中的用户关系
数据。
电子商务
在线购物平台上的商品浏览、 添加购物车、下单等行为,以 及用户的购买记录和偏好数据 。
数据治理与元数据管理
加强数据治理和元数据管理,确保数据的统一管理和有效利用。
PART 06
大数据未来发展趋势与展 望
人工智能与大数据的融合
人工智能与大数据的融合将进一步加深,通过数据挖掘、机 器学习和深度学习等技术,实现更高效的数据处理和分析, 为各行业提供更智能的决策支持。
人工智能将进一步提高大数据的处理速度和准确性,同时大 数据也将为人工智能提供更丰富、更真实的训练数据,促进 人工智能技术的不断进步。
疾病诊断与预测
通过分析患者的医疗记录、生理数据 等,辅助医生进行疾病诊断,同时预 测疾病发展趋势和预后情况。
金融
风险评估
通过对企业的财务数据、市场数据等 进行深度分析,评估企业的信用风险 和投资风险,帮助金融机构做出更明 智的决策。
欺诈检测
投资策略
通过分析市场数据、经济数据等,制 定更有效的投资策略和风险管理方案 ,提高投资回报率。

2024版大数据分析PPT模板

2024版大数据分析PPT模板

02
03
Spark
Flink
一个快速、通用的大规模数据处 理引擎,提供了Java、Scala、 Python等多种编程语言的API。
一个流处理和批处理的开源框架, 支持实时数据流分析和处理。
8
数据存储技术
03
Hadoop HDFS
一个分布式文件系统,用于存储大规模数 据集,提供高吞吐量访问和容错能力。
临床试验数据分析
对临床试验数据进行深入挖掘和分析,发现新的治疗方法和药物作用 机制,推动医学研究的进步。
2024/1/26
29
其他领域的大数据分析应用
2024/1/26
智慧城市
利用大数据分析技术,对城市交通、环境、能源等领域的 数据进行全面分析,提高城市管理的智能化水平。
教育领域 通过分析学生的学习数据、教师的教学数据等,发现教育 过程中的问题和不足,优化教学方法和策略,提高教育质 量。
大数据分析PPT模板
2024/1/26
1
目录
2024/1/26
• 大数据分析概述 • 大数据技术基础 • 大数据分析方法 • 大数据分析流程 • 大数据分析工具与平台 • 大数据分析实践案例
2
01
大数据分析概述
2024/1/26
3
大数据的定义与特点
数据量大
大数据通常指数据量在TB、PB甚至EB级 别以上的数据。
金融
信用评分、风险管 理、投资策略等。
2024/1/26
政府
城市规划、交通管 理、公共安全等。
制造业
生产优化、故障预 测、供应链管理等。
6
02
大数据技术基础
2024/1/26
7
分布式计算技术

大数据分析PPT(共73张)

大数据分析PPT(共73张)
分布式计算架构
Master-Slave架构、 MapReduce架构、DAG架构 等
分布式计算编程模型
MapReduce编程模型、BSP编 程模型、Dryad编程模型等
分布式计算资源调度
资源调度策略、任务调度算法 、容错机制等
存储技术
01
分布式文件系统
HDFS、GFS、Ceph等
02
03
04
NoSQL数据库
针对性和有效性。
医疗行业应用
1 2 3
个性化医疗
通过大数据分析,对患者的基因、生活习惯、病 史等信息进行综合分析,为患者提供个性化的治 疗方案和健康建议。
精准医疗
运用大数据分析技术,对疾病的发生、发展、转 归等过程进行深入研究,为精准诊断和治疗提供 科学依据。
医疗资源管理
通过大数据分析,对医疗资源的分布、利用、需 求等进行实时监测和预测,提高医疗资源的配置 效率和管理水平。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据发展历程
萌芽期
成熟期
20世纪90年代至2008年,大数据概 念开始萌芽,主要关注数据存储和计 算能力的提升。
2013年至今,大数据技术逐渐成熟, 应用领域不断扩大,同时大数据产业 也开始形成。
未来发展趋势预测
人工智能与大数据融合
人工智能技术将进一步提高大数据处 理和分析的效率和准确性。
数据驱动决策
大数据将更广泛地应用于企业决策、 政府治理等领域,提高决策的科学性 和有效性。
跨界融合与创新
大数据将与云计算、物联网、区块链 等技术相结合,推动跨界融合和创新 发展。

(2024年)大数据介绍pptppt课件

(2024年)大数据介绍pptppt课件

Flink
03
一个流处理和批处理的开源框架,提供了高吞吐、低延迟的数
据处理能力。
8
数据存储与管理技术
2024/3/26
Hadoop HDFS
一个分布式文件系统,设计用来存储和处理大规模数据集,具有 高容错性和高吞吐量。
HBase
一个高可扩展性的列存储系统,用于存储非结构化和半结构化的 稀疏数据。
Cassandra
一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障 的数据存储服务。
9
数据处理与分析技术
SQL与NoSQL数据库
用于数据的存储和查询,包括关系型数据库 (如MySQL、PostgreSQL)和非关系型数 据库(如MongoDB、Redis)。
2024/3/26
数据挖掘与机器学习
通过统计学、计算机视觉、自然语言处理等技术, 从数据中提取有用信息和预测未来趋势。
金融科技
金融机构利用大数据分析进行 风险评估、信用评级、反欺诈 等。
商业智能
通过大数据分析,帮助企业了 解市场趋势、客户需求和行为 模式,为决策提供支持。
2024/3/26
医疗健康
大数据在医疗健康领域的应用 包括疾病预测、个性化医疗、 药物研发等。
物联网
物联网产生的海量数据需要大 数据技术进行处理和分析,以 实现智能化应用。
6
02
大数据技术基础
Chapter
2024/3/26
7
分布式计算技术
2024/3/26
MapReduce
01
一种编程模型,用于大规模数据集的并行计算,将问题拆分为
若干个可以在集群中并行处理的小任务。
Spark
02

大数据的介绍PPT课件

大数据的介绍PPT课件
东海岸的沃尔玛营业两小时后之后,中海岸才开始营业,沃尔玛就会把东海岸当天 这两小时的营业情况、相关数据传给中海岸。
中海岸就会根据这个数据知道了这天人们的购物喜好,决定货品怎么摆放,哪些货 物摆放在一起会比较好。
这种方式给沃尔玛带来了很大的利润。
12
美国折扣零售商塔吉特与怀孕预测
塔吉特公司能在不被清楚告知的情况下预测出一个女性的怀孕情况
19
日本先进工业技术研究院的坐姿研究与汽车
防盗系统
该研究所教授把每个驾车者的坐姿量化为精确的数据,使其对司机识别的正确率高 达98%。
这项技术作为汽车防盗系统,一旦识别驾车者不是车主,就会自动熄火。
这一技术还可汇集事故发生前驾车者的姿势变化数据,分析坐姿与行驶安全的关系, 在司机疲劳驾驶时发出警示或自动刹车。
疾控中心得到流感方面的信息往往会有一两周的滞后,这种滞后导致公共卫生机构 在疫情爆发的关键时期反而无所适从。
谷歌通过观察人们在网上的搜索记录来预测流感的传播,得到的信息是非常准确和 及时的。
23
“量化自我”
通过一种非干预的手段,把一些所谓的医疗传感器放到我们的身边,比如我们戴一 个腕表、一枚戒指、一个耳塞、一副眼镜等,通过这些设备我们可以了解自己的心 跳、血压情况,甚至包括我们体表的健康状况,从而对一些大病(如癫痫等)进行 早期预测。
20
UPS快递——大数据技术下的最佳行车路径
UPS快递多效地利用了地理定位数据。为了使总部能在车辆出现晚点的时候跟踪到 车辆的位置和预防引擎故障,它的货车上装有传感器、无线适配器和GPS。同时, 这些设备也方便了公司监督管理员工并优化行车线路。
UPS为货车定制的最佳行车路径是根据过去的行车经验总结而来的。2011年,UPS 的驾驶员少跑了近4828万公里的路程,节省了300万加仑的燃料并且减少了3万公吨 的二氧化碳排放量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 真实性(Veracity)
数据的质量
❖ 可变性(Variability)
妨碍了处理和有效地管理数 据的过程
大数据的结构
结构化
大数据包括结构化、半结构化和非结 构化数据,非结构化数据越来越成为 数据的主要部分。
非结构化
在以云计算为代表的技术创新大幕的 衬托下,这些原本看起来很难收集和 使用的数据开始容易被利用起来了
机遇2:大数据蓝海成为企业竞争的新焦点
“棱镜门”引爆大数据时代争议
❖ 事情的起因是美国中情局前职员斯诺登向媒体爆料,过去6 年间,美国的情报部门通过一个代号为“棱镜”的项目,从 多家知名互联网公司获取电子邮件、在线聊天内容、照片、 文档、视频等网络私人数据,跟踪用户一举一动。他说,自 己只需要坐在办公桌前,动动指头,敲敲键盘,就能了解很 多人的私密信息。
大数据定义
高增长率
多样化
来适应海量、高增长率和多样 化的信息资产。
大数据是“未来的新石油”
大数据是需要新处理模式才 能具有更强的决策力、洞察 发现力和流程优化能力的海 量、高增长率和多样化的信 息资产。 大数据就是“未来的新石 油”。
何谓大?
(数据度量)
1Byte = 8 Bit 1 KB = 1,024 Bytes = 8192 bit 1 MB = 1,024 KB = 1,048,576 Bytes 1 GB = 1,024 MB = 1,048,576 KB 1 TB = 1,024 GB = 1,048,576 MB 1 PB = 1,024 TB = 1,048,576 GB 1 EB = 1,024 PB = 1,048,576 TB 1 ZB = 1,024 EB = 1,048,576 PB 1 YB = 1,024 ZB = 1,048,576 EB 1 BB = 1,024 YB = 1,048,576 ZB 1 NB = 1,024 BB = 1,048,576 YB 1 DB = 1,024 NB = 1,048,576 BB
“智能”
大数据带 来的变革
1
更多 不是随机样本
而是全部数据
2
更好 不是因果关系
而是相关关系
3
更杂 不是精确性
而是混杂性
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
半结构化
企业中80%的数据都是非结构化 数据,这些数据每年都按指数增 长60%。
01
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
学习
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超 出了计算机科学的范畴,人工智能与思维科学的关系是实践和理
02
思考
论的关系,人工智能是处于思维科学的技术应用层次,是它的一 个应用分支。
❖ 容量(Volume)
数据的大小决定所考虑的数 据的价值和潜在的信息
❖ 种类(Variety)
数据类型的多样性
❖ 速度(Velocity)
指获得数6
5 4
❖ 价值(value)
合理运用大数据,以低成本 创造高价值
❖ 复杂性(Complexity)
数据量巨大,来源多渠道
从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、
03
推理
灵感思维才能促进人工智能的突破性的发展,数学常被认为是多
种学科的基础科学,数学也进入语言、思维领域,人工智能学科
规划
也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发
04
挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
大数据(BIG DATA)
指无法在一定时间范围内用常规软件工具进行捕捉、 管理和处理的数据集合,是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海 量、高增长率和多样化的信息资产。
对于“大数据”(Big data) 研究机构Gartner给出了这样
的定义。
海量
“大数据”是需要新处理模 式才能具有更强的决策力、 洞察发现力和流程优化能力。
“人工”
“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所 能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地 步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我 (SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一 了解的智能是人本身的智能,这是普遍认同的观点。
机遇和挑战
机遇
大数据技术促进国家和社会发展大数据蓝海成为 企业竞争的新焦点大数据时代呼唤创新型人才
挑战
大数据技术的运用仍有困难大数据给信息安全带 来新挑战
机遇1:大数据技术促进国家和社会发展
实现科学发展 做出科学决策
当前,我国正处在全面建成小康社会征程 中,工业化、信息化、城镇化、农业现代 化任务很重,建设下一代信息基础设施, 发展现代信息技术产业体系,健全信息安 全保障体系,推进信息网络技术广泛运用, 是实现四化同步发展的保证。大数据分析 对我们深刻领会世情和国情,把握规律, 实现科学发展,做出科学决策具有重要意 义,我们必须重新认识数据的重要价值。
CONTENT
1. 大数据是什么? 2. 大数据的特征和结构 3. 大数据时代的机遇和挑战 4. 大数据的趋势 5. 大数据的应用和
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, pur
相关文档
最新文档