2016考研数学怎么复习-考研数学各知识点复习资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016考研数学怎么复习_考研数学各知识点复习资料

2016考研数学复习资料——向量和线性方程组部分复习建议

向量和线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。向量和线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组和向量以及其它章节的各种内在联系。

(1齐次线性方程组和向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量和线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2齐次线性方程组的解和秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩→线性相关、无关→线性方程组解的判

定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系线性表示。

(3非齐次线性方程组和线性表出的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

2016考研数学复习资料——线性代数部分复习建议

线性代数有两条学习的主线,一条是方程组理论,一条是特征值理论。第一条主线线性方程组理论由两个主要问题构成,一是线性方程组解是否存在,就是解的判定问题;二是如果线性方程组有无穷多解,那如何表示这无穷多解呢?就是解的构成问题。第二条主线主要是研究矩阵对角化问题。其中第一章行列式,第二章矩阵都是为后续章节做准备。下面,尚考考研数学老师就和大家具体分析一下各章之间的联系和复习方法。

第一章行列式,主要考察行列式的计算,而且单独考察的情况较少见,主要是结合方程组解的问题去考察,因此,在学习第一章是重点去学习如何计算特殊类型的行列式的计算方法,比如:爪型、对角线型;三阶行列式(主要为计算特征值做准备;行列式展开定理;行列式的性质等。

第二章矩阵主要掌握矩阵运算性质、逆矩阵(包括逆矩阵的判定、求逆矩阵、初等矩阵(左行右列原则、初等矩阵的逆矩阵。其中最重要的方法——初等变换——必须很好很熟练地掌握,这决定了后续章节的学习是否能顺利算出正确的结果,是得分的关键。这一部分还有一个线性代数的核心概念:秩。矩阵的秩是一个“结”,是一个“扣”,打开这个“结”,解开这个“扣”,矩阵,甚至线代就学透彻一大半了。

第三章向量及线性方程组是通过研究向量组之间的关系研究方程组解的问题,向量是手段是工具。这一部分内容普遍反映比较难掌握,难掌握的原因主要是比较抽象,而且定理又非常多。这一部分定理要求全部会证明,意义不在于证明这些定理本身,主要是通过这些定理的证明体会线性代数这门学科常用的证明思路和方法,和

高等数学相比,线性代数这门学科的证明思路是相对固定的,变化很少,完全可以掌握。

第四章特征值特征向量开始,进入矩阵对角化的讨论,主要由以下几个问题构成:一是什么样的矩阵可以相似对角化?(相似对角化的充要条件二是如果矩阵可以相似对角化,那么通过什么样的相似变换可以达到对角化的目的?对角化后的对角阵又是什么形式呢?于是涉及到可逆矩阵P的求法,对角阵的构成。由此可以看出,这一部分的编写是一个倒叙的形式,先去求特征值特征向量,其实是为求P和做准备而已。

第五章二次型理论主要探讨实对称矩阵的对角化问题,实对称矩阵和普通方阵相比有自己特殊之处,在对实对称矩阵进行对角化的过程中,可以对可逆矩阵P提出更高的要求,可以要求矩阵是一个正交矩阵Q,正交矩阵具有良好的运算性质,列向量之间正交且均为单位向量,因此可保证,由此可进一步深入讨论如何将二次型化为标准型的问题。

总之,线性代数的学习是要求连成片,结成网的,不能是知识点的单独学习,各个点要相互渗透,理清楚结构才能学好这门课。

2016考研数学复习资料——导数部分复习建议

1.狠抓基础概念

强调狠抓基础概念是出于两个方面的考虑。第一:导数这章内容相对比较简单。比如求导公式,大家在高中就接触过。第二:考研中考得最多的就是对导数概念的理解以及对导数使用中极值概念的理解。从这些概念本身来看,相对来说比较简单,但是考法却是比

较深入。假如很多同学仅仅是知其然而不知其所以然,那么做题是很容易出错的。所以,希望同学们要加深对本章概念的理解,千万不要一知半解就开始盲目的做题。

2.明晰考查的重点

在大家对概念有了比较深入的了解之后。接着,就需要了解测试重点了。本章相对比较简单,而且重难点分明。具体来说,分为三个模块。第一个模块:可导和可微。其中导数定义是重点。导数的定义几乎是每年必考,而且考察的往往都是变形的形式,但实质上都是在考察你对极限理解。第二个模块:导数计算。复合函数求导是重点,并在此基础上掌握幂指函数求导,隐函数求导及参数方程求导。高阶导数部分,大家要掌握常见函数高阶导数的一些公式。第三个模块:导数的使用。其中极值本身的概念也是一个很大的考点,包括极值的必要的条件以及极值的第一和第二充分条件。每年考研都会有一些相关的选择题。同理,题目考察拐点的时候,同时也考察了凹凸性,导函数的单调性等概念。因此,拐点的概念是考察的一个方向,同时拐点的必要条件及第一和第二充分条件也是重要考点。请大家注意:只要学好极值,拐点自然也就学好了。因为拐点的相关知识点可以在某种程度上看做是极值点的平移。

3.精炼习题

在大家理解了重点知识以及明确了测试重点之,接下来就需要做题巩固了。大家先针对我说的重点知识进行做题巩固,关键是每做一个题就要理解,要反思,要多想想考察了知识点那些方面。然后对次重点知识辅助做一些题了解就够了。

2016考研数学复习资料——极限复习建议

极限是整个高等数学学习的工具,高数中很多重要概念例如导数、定积分、二重积分等都是由极限定义出来的。就考研数学考查的计算题来说,极限的计算占据很大一部分,能否快速准确地判定出类型采取正确的方法来进行计算影响到整张试卷的成败。那么准备

2016年考研的同学,在基础阶段(到6月底止如何去复习极限部分的内容呢?应该掌握到何种程度呢?以下是跨考邵伟如老师为大家做的精心讲解,希望对同学们有所帮助。

基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。极限的定义在测

相关文档
最新文档