程序框图与算法.知识框架

合集下载

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。

它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。

在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。

以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。

(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。

(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。

(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。

判断符号通常有两个或多个出口,分别表示不同的条件结果。

(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。

循环符号通常有一个判断条件和两个出口。

(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。

2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。

通过模块化可以提高算法的可读性和可维护性。

(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。

(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。

(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。

(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。

(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。

(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。

3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。

算法与程序框图知识整理

算法与程序框图知识整理

算法与程序框图知识整理算法初步、框图第一节算法与程序框图1.算法的概念(1)算法的定义:广义的算法是指完成某项工作的方法和步骤在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。

(2)算法的描述:自然语言、程序框图、程序语言。

2.程序框图(1)程序框图又称流程图,是一种用程序框,流程线,文字说明表示算法的图形;(2)构成程序框的图形符号3.几种重要的结构(1)顺序结构(2)条件结构(3)循环结构典例分析:例1.下列说法正确的是()A .算法就是某个问题的解题过程;B .算法执行后可以产生不同的结果;C .解决某一个具体问题算法不同结果不同;D .算法执行步骤的次数不可以为很大,否则无法实施。

例2.设计算法,求0=+b ax 的解,并画出流程图。

解析:对于方程0=+b ax 来讲,应该分情况讨论方程的解。

我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1)当a ≠0时,方程有唯一的实数解是ab -;(2)当a=0,b=0时,全体实数都是方程的解;(3)当a=0,b ≠0时,方程无解。

第一步:判断a 是否不为零。

若成立,输出结果“解为ab -”;第二步:判断a=0,b=0是否同时成立。

若成立,输出结果“解集为R ”;第三步:判断a=0,b ≠0是否同时成立。

若成立,输出结果“方程无解”,结束。

例3.设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图。

第一步:输入a ,b ,c 的值;第二步:判断a >b 是否成立,若成立,则执行第三步;否则执行第四步;第三步:判断a >c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束;第四步:判断b >c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束。

例4.设计一个算法,求123..........99++++的值,并画出程序框图。

程序框图与算法的基本逻辑结构课件

程序框图与算法的基本逻辑结构课件

b=4
图中输出S= ;
Page ▪ 12
输出S 结束
(2)写出下列算法的功能。 开始
输入a,b d=a2+b2
输出c 结束 上图算法的功能是求两数平方和的算术平方根
Page ▪ 13
2、已知一个三角形的三边分别为a,b,c,利用海伦-秦九韶公式 设计一个算法,求出它的面积,画出算法的程序框图.
分析:应该先搞清楚自然语言表示的算法,然后再画出程序 框图.先算出p的值,再将它代入公式,最后输出结果,只 用顺序结构就能够表达出算法. 算法步骤如下:
第一步,输入三角形三条边的边长a,b,c 第二步,计算
第三步,计算
第四步,输出S.
Page ▪ 14
算法步骤如下:
程序框图:
第一步,输入三角形三条边 的边长a,b,c
第二步,计算
开始 输入a,b,c
第三步,计算
第四步,输出S.
Page ▪ 15
输出S 结束
练习
1、设计一算法:输入圆的半径,输出圆的面积,并画出 流程图
i=i+2
i<=1000? 输出sum

sum=sum+i 是
Page ▪ 29
结束
小结
1、循环结构的特点 重复同一个处理过程 2、循环结构的框图表示 当型和直到型 3、循环结构该注意的问题
避免死循环的出现,设置好进入(结束) 循环体的条件。
Page ▪ 30
作业 课本P20 习题1.1 A组 2题
算法步骤如下:
第一步,输入三个正实数a,b,c.
第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存
在这样的三角形;否则,不存在这样的三角形.

知识讲解_高考总复习:算法与程序框图

知识讲解_高考总复习:算法与程序框图

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。

2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。

(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。

3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。

要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。

考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。

2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。

高中数学复习:算法与程序框图

高中数学复习:算法与程序框图

一般格式 ③ INPUT “提示内容”;变量 ④ PRINT “提示内容”;表达式 ⑤ 变量=表达式
教材研读 栏目索引
功能 输入信息 输出常量、变量的值和系统信息 将表达式的值赋给变量
(2)条件语句的格式及框图 a.IF-THEN格式
b.IF-THEN-ELSE格式
教材研读 栏目索引
(3)循环语句的格式及框图 a.UNTIL语句
教材研读 栏目索引
5.如图所示的程序框图的运行结果为
.
答案 2.5
6.执行如图所示的程序框图,则输出的A=
教材析 i=0,A=2;
A=2+ 1= 5,i=1;
22
2 12
A=2+ = ,i=2;
55
5 29
A=2+12=12 ,i=3;
A=2+
12 29
=
70 29
考点突破 栏目索引
规律方法 顺序结构和条件结构的运算方法 (1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按 从上到下的顺序进行的. (2)条件结构中条件的判断关键是明确条件结构的功能,然后根据 “是”的分支成立的条件进行判断.对于条件结构,无论判断框中的条 件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.
2.程序框图
(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示 算法的图形. (2)基本的程序框有终端框(起止框),输入、输出框,处理框(执行框),判断框.
3.三种基本逻辑结构
名称 顺序结构
条件结构
循环结构
教材研读 栏目索引
内 顺序结构是由若干个按 算法的流程根据条件 在一些算法中,会出现从某处开始,按照一
教材研读 栏目索引

程序框图与算法的基本逻辑结构 课件

程序框图与算法的基本逻辑结构 课件
顺序结构 条件结构
一.程序框图

起止框 输入输出框 判断框 处理框 流程线
1. 已知一个三角形三条边的边长分别 为a,b,c,利用海轮公式设计一个计算三 角形面积的算法,并画出程序框图。
解:算法步骤如下: 第一步:输入三边长a,b,c 第二步:计算 p a b c
2
第三步:计算 s p( p a)( p b)( p c)
第二步: 如果 50,那么c 0.53 ,
否则 c 500.53 ( 50)0.85;
第三步: 输出行李的重量 和运费 c .
2.条件结构
条件结构 是指在算法中需要作出判断, 判断后直接决定后面的执行步骤的一 种结构.
流程图如图
满足条件?

语句1
否 语句2
小结: 1.画流程图的步骤:
转化 先用自然语言描述
流程图;
2.解决分段函数,大小比较,正负判断 等问题时,需要用条件结构.
3.条件结构中,判断框内的条件表示不 唯一;遇多个判断时,可有多个判断框.
第四步:输出s的值
一.基本逻辑结构 1.顺序结构 顺序结构是指在一个算法中运算是按 照步骤依次执行的一种最简单的结构.
流程图如图
练习:
• 1.已知一个三角形三边边长分别为 2,3,4.设计一个算法求三角形的面 积.写出程序框图.
练习:
• 2.阅读下面的流程图, 输出的结果是
__________.

开始
X=2 Y=2x+1 b=3y-2
输出 b
结束
2. 某铁路客运部门规定甲、乙两地之间 旅客托运行李的费用为
c
0.53,
50 0.53
(
50)
0.85,

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图

高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。

程序框图与算法的基本逻辑结构课件

程序框图与算法的基本逻辑结构课件
(6)输入:一个算法有零个或多个输入(即算法可以没有输入)。 (7)输出:一个算法有一个或多个输出(即算法必须要有输出)。
-6-
(3)画出“求长方形面积”流程图
开始 A=5 b=5 s=a*b
输出S 结束
-7-
二、 [学生探索,揭示规律] 算法有几种基本逻辑结构? 顺序结构、条件结构、循环结构.
-10-
三、 [运用规律,解决问题] 例3 已知一个三角形的三边分别为 , ,利用海伦公式设计 一个算法,求出它的面积,并画出算法的程序框图。
-11-
程序框图如下:
-12-
例4:任意给定3个正实数,设计一个算法,判断分别以这3个 数为三边边长的三角形是否存在,画出这个算法的程序框图。
-13-
1.1.2程序框图与算法的基本 逻辑结构 (第一课时)
-2-
一、 [设计问题,创设情境] 提出问题:
(1)什么是程序框图?
程序框图又称流程图,是一种用程序框、 流程线及文字说明来表示算法的图形. 在程序框图中,一个或几个程序框的组 合表示算法中的一个步骤;带有方向箭 头的流程线将程序框连接起来,表示算 法步骤的执行顺序.
有一个入口和一个出口,它可用在算法中的任何需要输入、输出的
位置。
(3)处理框用“
”表示,用来表示计算,赋值等处理操作,有
一个入口和一个出口。
(4)判断框用“
”表示,用来判断给出的条件是否成立,根据
判断结果决定后面的操作。判断框有一个入口和两个出口,它是惟
一的具有两个出口的框图符号。在出口处要分别框图中不同符号所表示的含义与功能是什
么?
-4-
关于程序框的使用说明:
(1)起止框用“
”表示,是任何流程图都不可缺少的,它表明

程序框图与算法的基本逻辑结构

程序框图与算法的基本逻辑结构

图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯ 的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2c b a ++.这个公式被称为海伦—秦九韶公式)算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=2c b a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.顺序结构可以用程序框图表示为语句n语句n+1件是______________. 答案:i>10.构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:随堂练习1、设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图. 相应的程序框图如右:2、(1)设计算法,求ax+b=0的解,并画出流程图.程序框图如下:第3课时循环结构当型循环结构直到型循环结构直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.应用示例例1设计一个计算1+2+……+100的值的算法,并画出程序框图.第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.当型循环直到型循环变式训练例1 设计框图实现1+3+5+7+…+131的算法.第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图知能训练设计一个算法,求1+2+4+…+249的值,并画出程序框图.(2)算法步骤中的“第四步”可以用条件结构来表示(如下图).在这个条件结构中,“否”分支用“a=m”表示含零点的区间为[m,b],并把这个区间仍记成[a,b];“是”分支用“b=m ”表示含零点的区间为[a,m],同样把这个区间仍记成[a,b].(3)算法步骤中的“第五步”包含一个条件结构,这个条件结构与“第三步”“第四步”构成一个循环结构,循环体由“第三步”和“第四步”组成,终止循环的条件是“|a-b|<d或f(m)=0”.在“第五步”中,还包含由循环结构与“输出m”组成的顺序结构(如下图).(4)将各步骤的程序框图连接起来,并画出“开始”与“结束”两个终端框,就得到了表示整个算法的程序框图(如下图).解:将实际问题转化为数学模型,该问题就是要求1+2+4+……+263的和.程序框图如下:点评:对于开放式探究问题,我们可以建立数学模型(上面的题目可以与等比数列的定义、性质和公式联系起来)和过程模型来分析算法,通过设计算法以及语言的描述选择一些成熟的办法进行处理.例3 乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法是:行李质量不超过50 kg 时按0.25元/kg ;超过50 kg 而不超过100 kg 时,其超过部分按0.35元/kg ;超过100 kg 时,其超过部分按0.45元/kg .编写程序,输入行李质量,计算出托运的费用.分析:本题主要考查条件语句及其应用.先解决数学问题,列出托运的费用关于行李质量的函数关系式.设行李质量为x kg ,应付运费为y 元,则运费公式为:y=⎪⎩⎪⎨⎧>-+⨯+⨯≤<-+⨯≤<,100),100(45.05035.05025.0,10050),50(35.05025.0,500,25.0x x x x x x整理得y=⎪⎩⎪⎨⎧>-≤<-≤<.100,1545.0,10050,535.0,500,25.0x x x x x x要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.解:算法分析:第一步,输入行李质量x.第二步,当x≤50时,计算y=0.25x,否则,执行下一步.第三步,当x≤100,计算y=0.35x-5,否则,计算y=0.45x-15.第四步,输出y.程序框图如下:课堂小节(1)进一步熟悉三种逻辑结构的应用,理解算法与程序框图的关系.(2)根据算法步骤画出程序框图.作业习题1.1B组1、2.设计感想本节是前面内容的概括和总结,在回忆前面内容的基础上,选择经典的例题,进行了详尽的剖析,这样降低了学生学习的难度.另外,本节的练习难度适中,并且多为学生感兴趣的问题,这样为学生学好本节内容作好充分准备,希望大家喜欢这一节课.。

算法及框图知识点总结

算法及框图知识点总结

算法及框图知识点总结一、算法概述算法是一种解决问题的方法或者规则,它可以用来描述问题的解决步骤。

在计算机科学中,算法是一种在计算机程序中实现的特定过程或者方法。

对于每一个问题,都可以有多种算法来解决,而这些算法可以有不同的时间复杂度和空间复杂度。

因此,选择恰当的算法对于提高程序的执行效率和降低资源消耗至关重要。

算法的设计可以分为以下几个阶段:1. 理解问题:对于需要解决的问题进行详细的分析和理解,明确问题的输入和输出,以及问题的约束条件。

2. 设计算法:根据理解的问题,设计一种解决问题的方法或规则。

3. 分析算法:对设计的算法进行分析,评估算法的时间复杂度、空间复杂度和正确性。

4. 实现算法:利用计算机编程语言将算法实现成一个可执行的程序。

5. 测试算法:测试实现的算法对于不同输入数据的处理能力,验证算法的正确性和性能。

算法分为以下几个常见的分类:1. 穷举法:由于问题空间很小,可穷举所有可能解决方案的一种算法。

2. 贪心法:在遇到问题时,总是做出当前看来最优的选择。

3. 分治法:将一个大的问题分成若干个小的问题,然后分别解决这些小问题。

4. 动态规划:将原问题分解为若干子问题,先求解子问题的最优解,然后逐步递推得到原问题的最优解。

5. 回溯法:也称为试探法,它是一种通过递归和剪枝的方法来解决问题的算法。

算法的时间复杂度和空间复杂度是评价算法性能的重要指标。

时间复杂度衡量了算法的执行时间,而空间复杂度则衡量了算法的内存消耗。

通常情况下,我们希望选择具有较低时间复杂度和空间复杂度的算法,以提高程序的执行效率。

二、框图概述框图是一种用来描述系统或者流程的图形化表示方法,它可以帮助人们理解复杂的系统或者流程结构。

在计算机科学中,框图通常用来描述程序的逻辑结构和流程控制。

框图通常包括以下几种类型:1. 流程图:用来表示系统或者程序的逻辑流程,通常包括开始和结束节点、流程节点和判断节点。

2. 数据流程图:用来表示系统的数据流动和处理流程,通常包括数据流、处理过程和数据存储。

程序框图与算法.知识框架

程序框图与算法.知识框架

算法 初步要求层次重难点算法及其程序框图算法的含义A (1)算法的含义、程序框图① 了解算法的含义,了解算法的思想.② 理解程序框图的三种基本逻辑结构:顺序、条件分支、循环. (2)基本算法语句理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.程序框图的三种基本逻辑结构B 基本算法语句A一、算法的概念与描述1.算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则解决某一类问题的明确的和有限的步骤,称为算法(algorithm ). 通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征:⑴有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度; ⑵确定性:算法的每一个步骤必须有确定的含义;⑶可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的; ⑷输入:有零个或多个输入: ⑸输出:有一个或多个输出.知识内容高考要求模块框架程序框图与算法3.算法的描述:⑴用自然语言;⑵用数学语言;⑶用算法语言(程序设计语言);⑷用程序框图(流程图).4.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构.⑴顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,只有在执行完A框指定的操作后,才能接着执行B框指定的操作;⑵条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:⑶循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:<教师备案>1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到达结束框,流程线必须加箭头表示顺序.2.对于循环结构有如下需要注意的情况:⑴循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确;⑵循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如i n≤就是中止循环的条件;⑶循环结构的关键是,要理解“累加变量”和“用1i 代替i”,S是一个累加变量,i是计数变量,每循环一次,S和i都要发生变化,这两步要重复计算若干次;⑷一种循环结构是先判断i n≤是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了当型循环外,常用的循环结构还有直到型循环.5.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).常用图形符号:<教师备案>1.画程序框图的规则:⑴ 使用标准的框图的符号;⑵ 框图一般按从上到下、从左到右的方向画;⑶ 除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号;⑷ 一种判断框是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;⑸ 在图形符号内描述的语言要非常简练清楚.2.画程序框图要注意的几点:⑴起、止框是任何流程不可少的,表示程序的开始和结束; ⑵输入、输出框可以用在算法中任何需要输入、输出的位置; ⑶算法中间要处理数据或计算,可分别写在不同的处理框内;⑷当算法要求你对两个不同的结果进行判断时,要写在判断框内; ⑸一个算法步骤到另一个算法步骤用流程线连结;⑹如果一个框图需要分开来画,要在断开处画上连结点,并标出连结的号码.如:用海伦公式求任意三角形的面积的程序框图,其中断开处画上连结点,并标出连结的号码.(1)(1)二.基本算法语句Basic语言(A版)1.将算法转变成计算机能够理解和能在计算机上实现的程序,这就需要程序语言,每一种程序语言都包含一些基本的语句,程序语言的基本语句结构:输入语句、输出语句、赋值语句、条件语句、循环语句.2.赋值语句:表明赋给某一个变量一个具体的确定值的语句.一般格式:变量=表达式.其中,“=”叫做赋值号.作用:先计算出赋值号右边表达式的值,然后将它赋给左边的变量,使该变量的值等于表达式的值.3.输入语句:在每次程序运行时,用于输入相应的初始数据的语句,我们主要介绍键盘输入语句.一般格式:INPUT “提示内容”;变量例:INPUT “Maths=”;a,INPUT “Chinese=”;bc=(a+b)/2END表示输入数学与语文的成绩,其中c表示它们的平均数.4.输出语句:以某种形式把求解结果输出的语句.一般格式:PRINT “提示内容”;表达式如上例中输出平均成绩可以用:PRINT “The average=”;(a+b)/25.条件语句:处理条件结构的算法语句.有以下两种基本格式:一般格式1:IF 条件THEN语句体END IF计算机执行语句时,先对IF后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END IF之后的语句.一般格式2:IF 条件THEN语句体1ELSE语句体2END IF计算机执行语句时,先对IF后条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2.6.循环语句:处理算法中的循环结构的语句;有两种基本语句:UNTIL语句和WHILE语句,前者称为直到型循环语句,后者称为当型循环语句.UNTIL语句:DO循环体LOOP UNTIL 条件WHILE语句的一般格式:WHILE 条件循环体WENDScilab程序语言(B版)1.将算法转变成计算机能够理解和能在计算机上实现的程序,这就需要程序语言,每一种程序语言都包含一些基本语句,程序语言的基本语句结构:输入语句、输出语句、赋值语句、条件语句、循环语句.2.赋值语句:表明赋给某一个变量一个具体的确定值的语句.一般格式:变量名=表达式;其中“=”叫做赋值号.作用:先计算出赋值号右边表达式的值,然后将它赋给左边的变量,使该变量的值等于表达式的值.3.输入语句:在每次程序运行时,用于输入相应的初始数据的语句,我们主要介绍键盘输入语句. Scilab 中的输入语句常用的是:“input”; 一般格式:变量名=input (“提示内容”) 例:a=input (“x1”);b=input (“x2”);aver=(a+b )/2表示输入1x ,2x 的值,求它们的算术平均数, 在Scilab 界面内运行结果如下: -->a=input ("x1");b=input ("x2");aver=(a+b )/2 x1-->此时通过键盘输入x1的值,如4,再按“Enter”键,界面出现: x2-->输入x2的值,如6,再按“Enter”键,这时界面出现: aver = 5.4.输出语句:以某种形式把求解结果输出的语句.Scilab 中有:print ,write ,format ,printf ,disp 等输出语句,主要介绍print 语句: 一般格式:print (%io (2),表达式);其中参数%io (2)表示在屏幕上输出. 5.条件语句:处理条件分支结构的算法语句. Scilab 程序语言中常用的条件语句为if 语句. 一般格式:if 表达式语句序列1; else语句序列2; end最简格式:if 表达式语句序列1; end6.循环语句:处理算法中的循环结构的语句; Scilab 有两种循环语句:for 循环和while 循环. for 循环的格式:for 循环变量=初值:步长:终值循环体; endwhile 语句的一般格式:while 表达式(即条件)循环体; end<教师备案>1.计算机能够直接或间接理解的程序语言有很多种,比如C 语言,Basic 语言,以及一些应用数学软件:Matlab ,Mathsmatics ,Scilab 对应的计算机语言.这里的基本语句结构在这些语言中都是存在的,但是对应不同的程序语言,都会有自己的输入指令与方法.这里是以一种语言为例,让大家理解程序语句的含义,为以后深入学习程序设计打下基础. 2.赋值语句:⑴赋值号左边只能是变量名,而不是表达式;如3m =是错误的; ⑵赋值号左右不能对换,是将赋值号右边的表达式的值赋给左边的变量;如x y =表示用y 的值替代变量x 原先的值,与y x =不同;⑶不能利用赋值语句进行代数式(或符号)的演算;如21(1)(1)y x x x =-=+-是不能实现的;并且在一个赋值语句中,只能给一个变量赋值;⑷赋值号与数学中的等号的意义不同,执行赋值语句后,右面表达式的值会赋给左边,如果左边变量原来有一个值,会自动被冲掉,如1N N =+表示将N 的原值加1再赋给N ,即N 的值加1.3.输入语句:在某些算法中,变量的初值要根据情况经常地改变,一般我们把程序与初始数据分开,每次算题时,即使初始数据改变,也不必改变程序部分,只要程序运行时,输入相应的数据即可,这个过程在程序语言中,用“输入语句”来控制.输入语句中还有read输入语句等.输入语句要求输入的一般都是具体的常数,也可输入单个或多个字符,格式为:变量名=input(“提示内容”,“string”),string表示输入字符型变量.4.循环语句:for语句:先把初值赋给循环变量,记下终值和步长,循环变量增值到超过终值时,执行end后面的语句,不超过时,执行for后面的语句;循环变量起计数作用,控制算法中循环次数,有初值与终值,步长是指循环变量每次增加的值,步长为1时,可以省略;while语句:先判断条件是否成立,并在符合条件时,执行循环体;直到某次不符合时,跳到end后面的语句.对应的基本框图是:5.在程序语言中,乘、除、乘方、求平方根、绝对值,分别用下列符号表示:*、/、^、sqrt()、abs ().程序语言中,一般“=”为赋值号,“==”表示等号.≥、≤、≠分别写成:>=、<=、<>.在程序中,如果赋值语句后面用分号隔开,则被赋值的变量不会输出,一般不随便使用逗号或句号,而是直接使用回车或空格.在Scilab语句中,变量名一般用一个字母表示,不可以用几个字母表示.如可以用s表示变量名,但不能用sum表示变量名,但在有些程序语言中,可以用多个字母表示变量名.三.算法案例1.更相减损术——求两个整数的最大公约数的算法如何找到一种算法,对任意两个正整数都能快速地求出它们的最大公约数呢?更相减损术的步骤:以两个数中较大的数减去较小的数,以差数和较小的数构成一对新的数,对这一对数再用大数减小数,以同样的操作一直做下去,直到产生一对相等的数,此数就是这两个数的最大公约数.等值算法:用“更相减损术”设计出来的算法求最大公约数的算法称为“等值算法”,用等值算法可以求任意两个正整数的最大公约数.<教师备案>《九章算法》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数.以具体的例子来说明更相减损术求最大公约数的原理:以求117和182的最大公约数为例:,,,,,,,,(117182)(11765)(6552)(5213)(1339)(1326)(1313)→→→→→→每次操作后得到的两个数与前两个数的最大公约数相同,而且逐渐减少,故总能得到相等的两个数,即为所求的最大公约数.2.辗转相除法又称欧几里得算法,是由欧几里得在公元前300年左右首先提出来的求两个数的最大公约数的算法。

《程序框图与算法的基本逻辑结构》 讲义

《程序框图与算法的基本逻辑结构》 讲义

《程序框图与算法的基本逻辑结构》讲义一、什么是程序框图程序框图,也叫流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

它就像是一张地图,指引着计算机按照特定的步骤去解决问题。

程序框图由一些图形符号和连接这些符号的线组成。

这些图形符号都有着特定的含义,比如矩形表示处理框,用于赋值、计算;菱形表示判断框,用于判断条件是否成立;箭头线则表示流程的走向。

通过程序框图,我们可以清晰地看到算法的执行过程,发现其中可能存在的问题,并且方便与他人交流和理解算法的思路。

二、算法的基本逻辑结构算法的基本逻辑结构主要有三种:顺序结构、条件结构和循环结构。

1、顺序结构顺序结构是最简单的逻辑结构,就像我们按照先后顺序做事情一样,依次执行各个步骤。

在程序框图中,顺序结构表现为各个步骤按照从上到下的顺序依次执行,没有分支和跳转。

例如,要计算两个数的和,先输入两个数 a 和 b,然后进行相加计算 c = a + b,最后输出结果 c。

这就是一个典型的顺序结构。

2、条件结构条件结构是根据条件是否成立来选择不同的执行路径。

就好比我们在岔路口,根据不同的情况选择不同的道路。

条件结构分为两种:单分支结构和双分支结构。

单分支结构只有一个分支,如果条件成立,就执行某个操作;如果条件不成立,则直接跳过该操作,继续执行后续的步骤。

双分支结构有两个分支,如果条件成立,执行一个操作;如果条件不成立,执行另一个操作。

比如,判断一个数是否为正数,如果是正数就输出“该数为正数”,否则输出“该数不是正数”,这就是一个双分支的条件结构。

3、循环结构循环结构是指在一定条件下,反复执行某段程序。

它就像我们不断重复做一件事情,直到满足某个条件才停止。

循环结构分为两种:当型循环和直到型循环。

当型循环是当条件成立时,反复执行循环体;直到型循环是先执行一次循环体,然后判断条件是否成立,如果不成立则继续执行循环体,直到条件成立为止。

例如,计算 1 到 100 的整数和,我们可以使用循环结构,从 1 开始,每次累加一个数,直到加到 100 为止。

程序框图和算法的基本逻辑结构

程序框图和算法的基本逻辑结构

(1)算法步骤中的“第一步”“第二步”和“第 三步”可用顺序结构来表示。
f (x) x2 2
输入精确度d 和初始值a,b
m ab 2
(2)算法步骤中的“第四步”可以用条件 构来表示。
❖否
a=m
❖f(a)f(m)<0?
❖是
b=m
(3)算法步骤中的“第五步”包含一个条件结构, 这个条件结构与“第三步”“第四步”构成一 个循环结构。
你能说出这三种基本逻辑构造 旳特点吗?
• 顺序构造是出现最多旳基本构造,它能够 单独出现,也能够出目前条件构造和循环 构造中。没有判断框。
• 条件构造旳主要作用就是表达分类。有判 断框。
• 循环构造中一定包括着条件构造,用以控 制循环旳进程,防止出现“死循环”。有 判断框。
顺序构造 1、含义:顺序构造是由若干个依次执行旳 环节构成,是最简朴旳算法构造,框与框之 间从上到下进行。任何算法都离不开顺序构 造。 2、框图表达
算法环节:
第一步: 投票; 第二步:统第一步计票数,假如有一种城市得 票超出总票数旳二分之一,那么该城市就取 得主办权,执行第三步,不然淘汰得票数至少 旳城市,返回第一步; 第三步: 宣告主办城市.
开始
投票
有一种城市 得票数超出总票
数旳二分之一
Y
输出该城市
结束
淘汰得票数 至少旳城市 N
在许多算法中,需要对 问题旳条件作出逻辑判断 ,判断后根据条件是否成 立而进行不同旳处理方式 ,这就需要用条件构造来 实现算法.
1.1.2《程序框图与算 法旳基本逻辑构造》
一、复习回忆
1、算法旳概念是什么? 在数学中,算法一般是按照一定规则处理某
一类问题旳明确和有限旳环节。目前,算法一般 能够编成计算机程序,让计算机执行并处理问题。 2、自然语言表述一种算法有什么缺陷?

《程序框图与算法的基本逻辑结构》 讲义

《程序框图与算法的基本逻辑结构》 讲义

《程序框图与算法的基本逻辑结构》讲义一、引言在当今数字化的时代,计算机程序已经深入到我们生活的方方面面。

从智能手机中的各种应用,到工业生产中的自动化控制,无一不是通过程序来实现的。

而程序的核心就是算法,算法的设计和表达则离不开程序框图。

程序框图是一种直观、清晰地展示算法流程的工具,它能够帮助我们更好地理解和设计算法。

在这篇讲义中,我们将深入探讨程序框图与算法的基本逻辑结构。

二、程序框图的基本概念程序框图,又称为流程图,是用一些规定的图形、流程线及文字说明来准确、直观地表示算法的图形。

它由一些图形符号和连接这些符号的流程线组成。

常见的图形符号包括:1、起止框:表示算法的开始和结束,通常是一个圆角矩形。

2、输入输出框:用于表示数据的输入或输出,一般是一个平行四边形。

3、处理框:用于表示对数据的处理操作,如计算、赋值等,是一个矩形。

4、判断框:用于根据条件决定程序的流向,是一个菱形。

5、流程线:用于连接各个图形符号,表示算法的执行顺序。

通过这些图形符号的组合和连接,我们可以清晰地展示算法的步骤和逻辑。

三、算法的基本逻辑结构算法的基本逻辑结构主要有三种:顺序结构、选择结构和循环结构。

1、顺序结构顺序结构是最简单的算法结构,也是最基本的结构。

在顺序结构中,算法的执行按照从上到下的顺序依次进行,每一个步骤都必须在前一个步骤完成后才能执行。

例如,要计算两个数的和,首先输入两个数 a 和 b,然后进行相加运算 c = a + b,最后输出结果 c。

这个过程就是按照顺序结构进行的。

2、选择结构选择结构也称为条件结构,是根据给定的条件进行判断,然后根据判断的结果决定执行不同的分支。

例如,判断一个数是否为正数,如果是正数则输出“该数为正数”,否则输出“该数为非正数”。

这里就用到了选择结构,通过判断条件来决定输出不同的结果。

3、循环结构循环结构是指在一定条件下,重复执行一段算法。

循环结构分为当型循环和直到型循环。

当型循环是在满足条件时执行循环体,直到条件不满足时退出循环。

算法与程序框图

算法与程序框图

算法与程序框图一、程序框图与算法基本逻辑结构: 1.程序框图符号及作用:例:解一元二次方程:20(0)ax bx c a ++=≠2。

画程序框图的规则:为了使大家彼此之间能够读懂各自画出的框图,必须遵守一些共同的规则,下面对一些常用的规则做一简要介绍.(1)实用标准的框图符号.(2)框图一般按从上到下、从左到右的方向画。

(3)一个完整的程序框图必须有终端框,用于表示程序的开始和结束.(4)除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号,另外,一种判断框是“是"与“不是”两分支的判断,而且有且仅有两个结果;还有一种是多分支判断,有几个不同的结果。

(5)在图形符号内用于描述的语言要非常简练清楚。

3.算法的三种基本逻辑结构: (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一 个算法离不开的基本结构.如图,只有在执行完步 骤n 后,才能接着执行步骤n+1。

例:。

已知梯形的上底、下底和高分别为5、8、9,写出求梯形的面积的算法,画出流程图.解:算法如下: S1 a ←5;S2 b ←8;S3 h ←9; S4 S ←(a +b )×h /2;S5 输出S .流程图如下:(2)条件结构一些简单的算法可以用顺序结构来实现,顺序结构中所表达的逻辑关系是自然串行,线性排列的。

但这种结构无法描述逻辑判断,并根据判断结果进行不同的处理的操作,(例如遇到十字路口看信号灯过马路的问题)因此,需要另一种逻辑结构来处理这类问题。

条件结构的结构形式如图,在此结构中含有一个判断框,算法执行到此判断框给定的条件P 时,根据条件P 是否成立,选择不同的执行框(步骤A ,步骤B ),无论条件P 是否成立,只能执行步骤A 或步骤B 之一,不可以两者都执行或都不执行.步骤A 和步骤B 中可以有一个是空的。

112程序框图与算法的基本逻辑结构(1)

112程序框图与算法的基本逻辑结构(1)
第二步,计算p a b c . 2
第三步,计算S p( p a)(p b)(p c).
第四步,输出S.
程序框图:
开始 输入a,b,c
p 1 (a b c) 2
S p( p a)(p b)(p c)
输出S 结束
课堂练习
就(1)、(2)两种逻辑结构,说出各自的算法功能
(1)
开始
开始 输入n i=2
用程序框图来表示算法,有三种不同 的基本逻辑结构:
顺序结构
求n除以i的余数r
i=i+1
i≥n或r=0?

r=0?

n不是质数
否 否
n是质数
循环结构 条件结构
结束
(1) 顺序结构-----是由若干个依次执行的处理步骤组 成的.这是任何一个算法都离不开的基本结构.
用程序框图可以表示为:
新课引入
算法是由一系列明确和有限的计算步骤组成的, 我们可以用自然语言表述一个算法,但往往过程复 杂,缺乏简洁性,因此,我们有必要探究使算法表 达得更加直观、准确的方法,这个想法可以通过程 序框图来实现.
一.程序框图: 1.程序框图定义:又称流程图,是一种用规定的图形、 指向线及文字说明来准确、直观地表示算法的图形.
我们将上述算法用下面 的图形表示:
开始 输入n
i=2
求n除以i的余数r
i的值增加i=1i+仍1用i表示ຫໍສະໝຸດ i≥n或r=0?是
r=0?

n不是质数
否 否
n是质数
结束
诱思探究2
通过上述算法的两种不同表达方式的比较,你觉得 用程序框图来表达算法有哪些特点?
用程序框图表示的算法更加简练,直观,流向清楚.

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图高二数学上册算法框图的基本结构及设计知识点1、顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它由若干个依次执行的处理步骤组成,它也是任何一个算法都离不开的一种算法结构,可以用图1-1-3-1所示的虚线框表示顺序结构的示意图,其中A和B两个框是依次执行的,只有在执行完A框所指定的操作后,才能接着执行B框所指定的操作。

2、条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,这种先根据条件作出判断,再决定执行哪一种操作的结构称为条件结构。

图1-1-3-2甲所示的虚线框内是一种条件结构,此结构中包含一个判断框,根据给定的条件P是否成立而选择A框或B框,请注意无论条件P是否成立,只能执行A框或B框之一,不可能既执行A 框又执行B框,也不可能A框、B框都不执行,无论走哪一条路径,在执行完A或B之后,脱离本条件结构。

当然A或B两个框中可以有一个是空的,即不执行任何操作,如图1-1-3-2乙所示也是条件结构的一种。

3、循环结构需要重复执行同一操作的结构称为循环结构,即从处开始,按照一定的条件反复执行其中一处理步骤,反复执行的处理步骤称为循环体。

图1-1-3-3甲所示是一种常见的循环结构,它的功能是先执行A框,然后判断给定的P条件是否成立,如果P条件不成立,则再执行A,然后再对P条件做判断,如果P条件仍然不成立,又执行A如此反复执行A,直到给定的P条件成立为止,此时不再执行A,脱离本循环结构,另外,图1-1-3-3乙所示的框图也是常见的一种循环结构,请读者自己分析其执行情况。

常见的循环结构有三种:计数型循环、当型循环和直到型循环。

(1)计数型循环结构。

一般用于预先知道重复的次数。

(2)当型(While型)循环结构。

当型循环一般用于预先难以知道循环次数,通过设置一些条件,当条件满足时就重复操作,当条件不满足时就退出循环,如图1-1-3-4所示,它的功能是当给定的条件P,成立时,执行A框操作,执行完A后,再判断条件P1是否成立,如果仍然成立,再执行A 框,如此反复执行A框,直到其中一次条件不成立为止,此时不执行A框,而从b点脱离循环结构。

算法与程序框图知识讲解

算法与程序框图知识讲解

算法与程序框图【学习目标】1。

初步建立算法的概念;2。

让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6。

掌握画程序框图的基本规则,能正确画出程序框图。

【要点梳理】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等。

在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。

2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏".“不重"是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步"之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续。

(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行。

(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等。

用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

值.
3.输入语句:在每次程序运行时,用于输入相应的初始数据的语句,我们主要介绍键盘输入语句. Scilab 中的输入语句常用的是:“input”; 一般格式:变量名=input(“提示内容”) 例:a=input(“x1”);b=input(“x2”);aver=(a+b)/2 表示输入 x1 , x2 的值,求它们的算术平均数, 在 Scilab 界面内运行结果如下: -->a=input("x1");b=input("x2");aver=(a+b)/2 x1--> 此时通过键盘输入 x1 的值,如 4 ,再按“Enter”键,界面出现: x2--> 输入 x2 的值,如 6 ,再按“Enter”键,这时界面出现: aver = 5.
个过程在程序语言中,用“输入语句”来控制.输入语句中还有 read 输入语句等.
5
输入语句要求输入的一般都是具体的常数,也可输入单个或多个字符,格式为: 变量名=input(“提示内容”,“string”),string 表示输入字符型变量. 4.循环语句: for 语句:先把初值赋给循环变量,记下终值和步长,循环变量增值到超过终值时,执行 end 后面的 语句,不超过时,执行 for 后面的语句;循环变量起计数作用,控制算法中循环次数,有初值与终值, 步长是指循环变量每次增加的值,步长为 1 时,可以省略; while 语句:先判断条件是否成立,并在符合条件时,执行循环体;直到某次不符合时,跳到 end 后 面的语句. 对应的基本框图是:
5.程序框图的概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图). 常用图形符号:
2
图形符号
名称 起、止框
符号表示的意义 框图的开始或结束
输入、输出框
数据的输入或者结果的输出
处理框
赋值、执行计算语句、结果的传送
判断框
根据给定条件判断
流程线
流程进行的方向
连结点
连结另一页或另一部分的框图
常见的条件结构的程序框图有下面两种形式:
⑶循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行 的步骤称为循环体.
常见的循环结构的框图对应为:
<教师备案> 1.在画程序框图时,从开始框沿箭头必须能到达结束框,特别是条件分支结构应沿每条支路都能到 达结束框,流程线必须加箭头表示顺序. 2.对于循环结构有如下需要注意的情况: ⑴循环结构非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不 过是一瞬间的事,且能保证每次的结果都正确; ⑵循环结构要有中止循环体的条件,不能无休止的运算下去,循环结构中一定包含条件结构,如 i ≤ n 就是中止循环的条件; ⑶循环结构的关键是,要理解“累加变量”和“用 i 1 代替 i ”,S 是一个累加变量,i 是计数变量,每循 环一次, S 和 i 都要发生变化,这两步要重复计算若干次; ⑷一种循环结构是先判断 i ≤ n 是否成立,若是,执行循环体;若否,则中止循环,像这样,每次执 行循环体前对控制循环条件进行判断,条件满足时执行循环体,不满足则停止,称为当型循环.除了 当型循环外,常用的循环结构还有直到型循环.
等值算法:用“更相减损术”设计出来的算法求最大公约数的算法称为“等值算法”,用等值算法可以求 任意两个正整数的最大公约数.
<教师备案> 《九章算法》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数.以具体 的例子来说明更相减损术求最大公约数的原理: 以求117 和182 的最大公约数为例: (117 ,182) (117 ,65) (65 ,52) (52 ,13) (13 ,39) (13 ,26) ( 13,13) , 每次操作后得到的两个数与前两个数的最大公约数相同,而且逐渐减少,故总能得到相等的两个数, 即为所求的最大公约数.
三.算法案例
1.更相减损术——求两个整数的最大公约数的算法 如何找到一种算法,对任意两个正整数都能快速地求出它们的最大公约数呢? 更相减损术的步骤: 以两个数中较大的数减去较小的数,以差数和较小的数构成一对新的数,对这一对数再用大数减小数, 以同样的操作一直做下去,直到产生一对相等的数,此数就是这两个数的最大公约数.
都包含一些基本语句,程序语言的基本语句结构:输入语句、输出语句、赋值语句、条件语句、 循环语句. 2.赋值语句:表明赋给某一个变量一个具体的确定值的语句. 一般格式:变量名 表达式;其中“ ”叫做赋值号. 作用:先计算出赋值号右边表达式的值,然后将它赋给左边的变量,使该变量的值等于表达式的
4
一个赋值语句中,只能给一个变量赋值;
⑷赋值号与数学中的等号的意义不同,执行赋值语句后,右面表达式的值会赋给左边,如果左边变量 原来有一个值,会自动被冲掉,如 N N 1 表示将 N 的原值加1再赋给 N ,即 N 的值加1. 3.输入语句:在某些算法中,变量的初值要根据情况经常地改变,一般我们把程序与初始数据分开, 每次算题时,即使初始数据改变,也不必改变程序部分,只要程序运行时,输入相应的数据即可,这
1
3.算法的描述: ⑴用自然语言;⑵用数学语言;⑶用算法语言(程序设计语言);⑷用程序框图(流程图). 4.算法的三种基本逻辑结构:顺序结构、条件(分支)结构和循环结构. ⑴顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下图,
只有在执行完 A 框指定的操作后,才能接着执行 B 框指定的操作; ⑵条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.
程序框图与算法 模块框架
高考要求
算法 初步
算法及其程 序框图
算法的含义
程序框图的 三种基本逻 辑结构
基本算法语)算法的含义、程序框图 ① 了解算法的含义,了解算法的思想. ② 理解程序框图的三种基本逻辑结构:顺序、 条件分支、循环.
(2)基本算法语句 理解几种基本算法语句――输入语句、输出语 句、赋值语句、条件语句、循环语句的含义.
语句的含义,为以后深入学习程序设计打下基础.
2.赋值语句: ⑴赋值号左边只能是变量名,而不是表达式;如 3 m 是错误的; ⑵赋值号左右不能对换,是将赋值号右边的表达式的值赋给左边的变量;如 x y 表示用 y 的值替代变
量 x 原先的值,与 y x 不同;
⑶不能利用赋值语句进行代数式(或符号)的演算;如 y x2 1 (x 1)(x 1) 是不能实现的;并且在
3.输入语句:在每次程序运行时,用于输入相应的初始数据的语句,我们主要介绍键盘输入语句. 一般格式:INPUT “提示内容”;变量 例:INPUT “Maths=”; a, INPUT “Chinese=”;b c=(a+b)/2 END 表示输入数学与语文的成绩,其中 c 表示它们的平均数.
4.输出语句:以某种形式把求解结果输出的语句. 一般格式:PRINT “提示内容”;表达式 如上例中输出平均成绩可以用:PRINT “The average=”;(a+b)/2
6.循环语句:处理算法中的循环结构的语句; Scilab 有两种循环语句:for 循环和 while 循环. for 循环的格式:for 循环变量=初值:步长:终值 循环体; end while 语句的一般格式:while 表达式(即条件) 循环体; end
<教师备案> 1.计算机能够直接或间接理解的程序语言有很多种,比如 C 语言,Basic 语言,以及一些应用数学软 件:Matlab,Mathsmatics,Scilab 对应的计算机语言.这里的基本语句结构在这些语言中都是存在的, 但是对应不同的程序语言,都会有自己的输入指令与方法.这里是以一种语言为例,让大家理解程序
二.基本算法语句
Basic 语言(A 版)
3
1.将算法转变成计算机能够理解和能在计算机上实现的程序,这就需要程序语言,每一种程序语言 都包含一些基本的语句,程序语言的基本语句结构:输入语句、输出语句、赋值语句、条件语句、 循环语句.
2.赋值语句:表明赋给某一个变量一个具体的确定值的语句. 一般格式:变量=表达式.其中, “=”叫做赋值号. 作用:先计算出赋值号右边表达式的值,然后将它赋给左边的变量,使该变量的值等于表达式的 值.
5.在程序语言中,乘、除、乘方、求平方根、绝对值,分别用下列符号表示:*、/、^、sqrt()、abs ().程序语言中,一般“=”为赋值号,“==”表示等号. ≥、≤ 、 分别写成: 、 、 . 在程序中,如果赋值语句后面用分号隔开,则被赋值的变量不会输出,一般不随便使用逗号或句号, 而是直接使用回车或空格. 在 Scilab 语句中,变量名一般用一个字母表示,不可以用几个字母表示.如可以用 s 表示变量名,但 不能用 sum 表示变量名,但在有些程序语言中,可以用多个字母表示变量名.
知识内容
一、算法的概念与描述
1.算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则解 决某一类问题的明确的和有限的步骤,称为算法(algorithm). 通常可以编成计算机程序,让计算机执行并解决问题.
2.算法的特征: ⑴有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度; ⑵确定性:算法的每一个步骤必须有确定的含义; ⑶可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的; ⑷输入:有零个或多个输入: ⑸输出:有一个或多个输出.
4.输出语句:以某种形式把求解结果输出的语句. Scilab 中有:print,write,format,printf,disp 等输出语句,主要介绍 print 语句: 一般格式:print(%io(2),表达式);其中参数%io(2)表示在屏幕上输出.
5.条件语句:处理条件分支结构的算法语句. Scilab 程序语言中常用的条件语句为 if 语句. 一般格式:if 表达式 语句序列 1; else 语句序列 2; end 最简格式:if 表达式 语句序列 1; end
相关文档
最新文档