实验1__单调谐回路谐振放大器
实验1__单调谐回路谐振放大器
实验1 单调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
二、实验设备单调谐回路谐振放大器模块、双踪示波器、万用表、频率计三、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
第 1 页共 5 页1T P01图1-2 单调谐回路谐振放大器实验电路图第 2 页共 5 页2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
五、实验内容1.实验电路图的连接(1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。
(2)接通电源,此时电源指示灯亮。
2.单调谐回路谐振放大器幅频特性测量步骤如下:① 1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右(用三用表直流电压档测量1R1下端),这样放大器工作于放大状态。
高频信号源输出连接到单调谐放大器的输入端(1P01)。
示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰-峰值)为200mv(示波器CH1监测)。
调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。
实验1-单调谐回路谐振放大器
实验一单调谐回路谐振放大器仿真实验一、实验原理单调谐放大电路采用LC回路作为选频器的放大电路,它只有一个LC回路,调谐在一个频率上。
本实验用三极管作为放大器件,LC并联谐振回路作为选频网络,构成一个基本的调谐回路小信号谐振放大器。
电路谐振频率可通过CT进行调节。
由于仿真元器件数据库中没有自耦变压器,实际使用中可使用隔直流电容器耦合输出。
调谐放大器的增益与其动态范围成反比关系:放大器电压增益越高,其动态范围越小;电压增益越小,动态范围越宽。
实验电路中的Re为提高电路工作点的稳定而接入的射极负反馈电阻,对其电路特性有重要影响。
Re越大,负反馈越深,放大器增益越低,电路动态范围越大,通频带越宽,电路的选择性越差;Re越小,负反馈越浅,放大器增益越高,电路动态范围越小,通频带越小,电路的选择性越好。
共发电路的射极电阻Re具有电流负反馈作用,当Re两端不接电容Ce时,Re既有直流负反馈(起稳定直流工作点作用),又有交流负反馈作用(减小放大量,展宽频带)当Re 两端接入大容量电容Ce时,Re只有直流反馈,而没有交流负反馈的作用。
当Re两端接入一定容量的Ce时,由于容抗Xc=1/ωc,随着频率的增加而下降,因而对频率中因极间电容和分布电容而损失的高频成分的放大有一定的补偿作用,Ce可称为高频补偿电容。
谐振回路的负载电阻R在电路中不影响电路的谐振频率,但影响谐振回路的效率。
由于R的接入,回路的品质因数Q减小,谐振回路的效率降低,电路的通频带比无载时要宽,选择性变差。
负载电阻R与回路的品质因数Q成正比。
?二、实验内容使用仿真软件完成如下仿真实验,结合实验电路分别仿真结果进行分析和总结。
1.电路直流工作点分析测试电路中Re=1KΩ,使用“直流工作点分析”仿真测试晶体管的静态直流工作点。
根据实验结果分析判断电路是否工作在放大状态。
V BV CE所以电路工作在放大状态2.使用波特图仪对放大器动态频率特性进行测试…取Re=1K,分别选R=10K/2K/500Ω,信号源V1接电路输入端,取Vi=10mV,调节CT使回路谐振在,同时使用波特图仪进行测试确认,测量并记录电路增益、幅频特性曲线和3db 带宽。
单调谐回路谐振放大器
单调谐回路谐振放大器图6-3 单调谐回路谐振放大器实验电路【实验步骤】1)AS1637函数信号发生器用作扫频仪时的参数预置频率定标的目的是为频率特性设定频标。
每一频标实为某一单频正弦波的频谱图示。
(1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。
存储频率依次为:0单元—7.2 MHz,1单元—8.2 MHz,2单元—9.2 MHz,3单元—10.2 MHz,4单元—11.2 MHz,5单元—12.2 MHz,6单元—13.2 MHz,7单元—14.2 MHz。
(2)频率定标方法:A.准备工作:对频率范围、工作方式、函数波形作如下设置。
●频率范围:2~20MHz范围(按“频段手动递增/减”按键调整);●工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);●函数波形:正弦波;●输出幅度设置为80mV。
设置方法为:使-40dB衰减器工作,再调“输出幅度调节(AMPL)”旋钮,使输出显示为80mV(峰-峰值),并在定标过程中保持不变。
B.第0单元频率定标与存储●调“频率调谐”旋钮,使频率显示为7200(与此同时,kHz灯点亮,标明频率为7.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;●再单击STO键,相应指示灯变暗,表明已把7.2 MHz频率存入第0单元内。
C.第1单元频率定标与存储●调“频率调谐”旋钮,使频率显示为8200(与此同时,kHz灯点亮,标明频率为8.2MHz);●单击STO键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;●再单击STO键,相应指示灯变暗,表明已把8.2 MHz频率存入第1单元内。
D.依此类推,直到把14.2 MHz频率存入第7单元内为止。
除了频率定标,还包括其他参数设置。
(1)扫描时间设置为20ms,即示波器上显示的横坐标(频率)的扫描时间为20ms。
设置方法为按“工作方式”键,使TIME灯点亮;再调“频率调谐(扫描时间)”旋钮,使扫描时。
1-实验一 单调谐放大器
谐放大器的频率特性如图 1-1 所示。
图 1-1 调谐放大器的频率特性
调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而 且还有选频作用。本实验讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做 高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳 定等。
表 1-1 单调谐回路谐振放大器幅频特性测量
输入信号频 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1
率f(MHz) 输出电压幅
值U(mV)
放大器输入(mV)
表 1-2 放大器动态范围测量
100 200 300 400 500 600 700 800 900 1000
放大器输出(V)
放大器电压放大倍数
4
1. 以横轴为频率,纵轴为电压幅值,按照表 1-1,画出单调谐放大器的幅频特性曲线。 2. 画出接通 2R3 与不接通 2R3 的幅频特性曲线。 3. 画出单调谐幅频特性,计算幅值从最大值下降到 0.707 时的带宽,并由此说明其优缺点。 4. 画出放大器电压放大倍数与输入电压幅度之间的关系曲线。
5
八、实验心得 九、思考题
当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?
6
1. 单调谐放大器的基本工作原理; 2. 测量放大器幅频特性的方法; 3. 放大器集电极负载对单调谐放大器幅频特性的影响; 4. 放大器动态范围的概念和测量方法。 五、实验内容 1. 采用点测法测量单调谐放大器的幅频特性; 2. 用示波器测量输入、输出信号幅度,并计算放大器的放大倍数; 3. 用示波器观察放大器的动态范围; 4. 观察集电极负载对放大器幅频特性的影响。 六、实验方法 1. 单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调 谐放大特性曲线,但需要扫频仪。点测法采用示波器进行测试,即保持输入信号幅度不变,改 变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频 率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。 (1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。用扫频仪测出的单调谐放大 器幅频特性曲线。 (2)点测法,其步骤如下:
202X年高频实验报告(一)单调谐回路谐振放大器
202X年高频实验报告(一)单调谐回路谐振放大器一、实验目的1. 掌握单调谐回路的工作原理和谐振放大器的特点。
2. 能够熟练测量单调谐回路的谐振频率和带宽,并能够计算回路品质因数。
3. 能够使用单调谐回路组装谐振放大器,并观察其输出波形和增益特性。
二、实验原理1. 单调谐回路单调谐回路由电感L、电容C和电阻R串联而成,如下图所示:当串联谐振回路中的电感L、电容C和电阻R的数值满足以下条件时,回路将在某一频率处产生谐振现象,电压幅度将增大。
其中,L为电感,单位为亨,C为电容,单位为法拉,R为电阻,单位为欧姆。
谐振频率f0为:谐振频率f0与电感L和电容C有关,当L或C的数值改变时,谐振频率f0会相应改变。
谐振频率f0与电阻R有关,当电阻R变化时,谐振频率f0也会发生变化。
带宽BW为:品质因数Q为:品质因数Q与电阻R、电感L、电容C有关,当电阻R、电感L或电容C的数值改变时,品质因数Q也会发生变化。
2. 谐振放大器谐振放大器是一种利用谐振回路进行放大的电子电路,其基本原理为,将输入信号加到谐振回路的输入端,由于回路在谐振频率处有较大的放大,因此放大后的信号输出到输出端将比输入信号增加一个较大的幅度。
三、实验内容四、实验器材与设备1. 示波器2. 汽笛发生器3. 电感L4. 电容C5. 变阻器8. 喇叭9. 电源10. 万用表五、实验步骤1. 使用汽笛发生器产生一个频率为500Hz的信号。
2. 将信号输入到单调谐回路中,同时使用万用表测量回路的电压。
3. 调节变阻器的电阻,找到回路谐振频率。
4. 测量谐振频率f0,并记录下数值。
5. 测量谐振频率两侧的电压幅值,计算出回路的带宽BW,并记录下数值。
6. 计算回路品质因数Q,并记录下数值。
9. 使用示波器观察输出波形,并记录下输出幅度。
10. 测量谐振放大器的增益特性,即输入信号与输出信号之比的对数值,记录下数值。
11. 连接喇叭到谐振放大器输出端,观察喇叭的声音变化。
单调谐回路谐振放大器 - 北京交通大学电气工程学院
实验内容
1.测量谐振放大器的谐振频率f0 Ui= 300mV左右,f=2—11MHz
2.测量放大器在谐振点的动态范围:
f=8MHz,调节C2使u0最大且波形不失真。 Ui=300mV-1V , 使 谐 振 放 大 器 的 输 出 经 历 由 不 失真到失真的过程,记录下最大不失真的u0值
3.测量放大器的通频带:
f=8MHz,ui=300mV BW=fH-fL
实验原理图
单调谐回路谐振放大器
实验目的
1. 熟悉高频电路实验箱的组成及其电 路中各元件的作用;
2. 熟悉并联谐振回路的通频带与选择性 等相关知识;
3. 熟悉负载对谐振回路的影响,从而了 解频带扩展;
4. 熟悉和了解单调谐回路谐振放大器的 性能指标和测量方法。
实验仪器
1.双踪示波器 2.实验箱及单、双调谐放大模块 3.信号发生器
单调谐回路谐振放大器及通频带展宽试验课件
目录
• 单调谐回路谐振放大器的基本原理 • 通频带展宽技术 • 单调谐回路谐振放大器的应用 • 单调谐回路谐振放大器的实验研究 • 通频带展宽技术的实验研究 • 结论与展望
01
单调谐回路谐振放大器的 基本原理
定义与工作原理
定义
单调谐回路谐振放大器是一种电 子放大器,利用调谐回路作为负 载,实现信号的放大。
实验步骤与过程
1. 搭建实验装置
2. 调整参数
根据实验需求,搭建单调谐回路谐振放大 器,并连接信号源、示波器、频谱分析仪 等设备。
根据实验要求,调整可调电阻、电容、电 感等元件的参数,以实现通频带展宽的目 的。
3. 测试与记录数据
4. 重复实验
在调整参数后,对放大器进行测试,记录 输入信号、输出信号的波形和频谱,并使 用示波器和频谱分析仪进行测量和记录。
工作原理
通过改变调谐回路的频率,使其 与输入信号的频率相匹配,从而 实现信号的放大。
电路组成与元件作用
电路组成
单调谐回路谐振放大器主要由输入级 、调谐回路和输出级组成。
元件作用
输入级负责接收信号,调谐回路作为 负载实现信号的放大和选择,输出级 则将放大的信号输出。
性能指标与特点
性能指标
主要包括增益、通频带、选择性、噪声系数等。
避免信号失真
通频带较窄的放大器在处理高频信号时,容易产生失真,影响信号 质量。
通频带展宽的方法
采用多级放大器串联
通过多级放大器的串联,可以逐级放 大信号,实现通频带的展宽。
采用集成运算放大器
采用有源滤波器
通过在放大器中加入有源滤波器,可 以对信号进行滤波处理,实现通频带 的展宽。
线路 单调谐回路谐振放大器
实验一单调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.熟悉谐振回路的幅频特性—通频带与选择性。
3.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带的扩展方法。
4.熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、实验仪器1.双踪示波器2.扫频仪3.高频信号发生器4.数字频率计5.万用表6.实验板G1三、预习要求1.复习谐振回路的工作原理。
2.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间的关系。
3.实验电路中,若电感量L=1μh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。
四、实验内容及步骤1.实验电路见图1-l(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1.1。
表1.1原因:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
*V B,V E是三极管的基极和发射极对地直流电压。
3. 动态研究(l)测量放大器(谐振时)V O的动态范围(Vi的数值见表中所示)选R=10K,R e=IK。
把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大。
此时调节Vi由峰峰值10毫伏变到210毫伏,逐点记录入V O电压,并填入表1.2。
Vi的各点测量值可根据(各自)实测情况来确定。
(2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。
在同一坐标纸上画出R不同时V0的动态范围曲线,并进行比较和分析。
(3)用扫频仪调回路谐振曲线。
《高频电子线路》实验指导书
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE
是
否
原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷
实验报告
实验1 单调谐回路谐振放大器实验步骤1.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右,这样放大器工作于放大状态。
高频信号源输出连接到单调谐放大器的输入端(1P01)。
示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为200mv (示波器CH1监测)。
调整单调谐放大器的电容1C2,使放大器的输出为最大值(示波器CH2监测)。
此时回路谐振于6.3MHZ。
比较此时输入输出幅度大小,并算出放大倍数。
(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。
表1-2(3)以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。
3.观察静态工作点对单调谐放大器幅频特性的影响。
顺时针调整1W 01(此时1W 01阻值增大),使1Q 01基极直流电压为1.5V ,从而改变静态工作点。
按照上述幅频特性的测量方法,测出幅频特性曲线。
逆时针调整1W 01(此时1W 01阻值减小),使1Q 01基极直流电压为5V ,重新测出幅频特性曲线。
可以发现:当1W 01加大时,由于I CQ 减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W 01减小时,由于I CQ 加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。
高频实验报告(一)单调谐回路谐振放大器
深圳大学实验报告课程名称:高频电路实验项目名称:实验一单调谐回路谐振放大器学院:信息工程学院专业:电子信息指导教师:陈田明报告人:学号:班级:电子1班实验时间:2016.3.23 实验报告提交时间:2016.4.20二、方法、步骤:1.AS1637函数信号发生器用作扫频仪时的参数予置⑴频率定标频率定标的目的是为频率特性设定频标。
每一频标实为某一单频正弦波的频谱图示。
1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。
若把中心频率10.7MHz置于第3单元内,且频率间隔取为1MHz,则相应地有:0单元—7.7 MHz,1单元—8.7 MHz,…,7单元—14.7图1-2 单调谐回路谐振放大器实验电路MHz。
2)频率定标方法①准备工作:对频率范围、工作方式、函数波形作如下设置。
(ⅰ) 频率范围:2MHz~16MHz范围(按“频段手动递增/减”按键调整);(ⅱ)工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);(ⅲ)函数波形:正弦波。
②第0单元频率定标与存储(ⅰ) 调“频率调谐”旋钮,使频率显示为7700(与此同时,“kHz”灯点亮,标明频率为7.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;(ⅲ)再按“STO”键,相应指示灯变暗,表明已把7.7 MHz频率存入第0单元内。
③第1单元频率定标与存储(ⅰ) 调“频率调谐”旋钮,使频率显示为8700(与此同时,“kHz”灯点亮,标明频率为8.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;(ⅲ)再按“STO”键,相应指示灯变暗,表明已把8.7 MHz频率存入第1单元内。
④依此类推,直到把14.7 MHz频率存入第7单元内为止。
三、实验过程及内容:1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点。
高频电子线路实验指导书(精)
高频电子线路实验指导书(精)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高频电子线路实验指导书(精))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高频电子线路实验指导书(精)的全部内容。
《高频电子线路》实验指导书吴琼编沈阳大学信息学院目录实验一:高频电子仪器使用练习 2 实验二:单调谐回路谐振放大器及通频带展宽实验实验三:幅度调制器实验9 实验四:小功率功率调频发射、接收实验13课程编号:11271141 课程类别:学科必修适用层次:本科适用专业:电子信息科学与技术课程总学时:64 适用学期:第5学期实验学时:16 开设实验项目数:4撰写人:吴琼审核人:张明教学院长:范立南实验一:高频电子仪器使用练习一、实验目的与要求了解高频信号发生器基本结构及用途,学习该仪器的使用方法。
二、实验原理及说明本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。
实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单元。
实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。
高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内.高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验.三、实验内容和步骤1、电源接口测试实验箱提供的五组电源(-8V、+5V、—5V、-12V、+12V输出。
当电源正常时,各组电源对应的指示灯均被点亮。
用万用表测量各输出点的电压值,与电源标准值相对照,填表1—12、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为0Hz—120KHz连续可调。
经典:单调谐回路谐振放大器
a L T2 L2
YL
+
C
NL11 Gp
V·iC2 i2
N2 gi2 -
b
Y’L三极管的等效负载 本继页续完
二、电压增益A·v
3.3单调谐回路 谐振放大器
2、Y’L的推导
(1) 首先把Ci2和gi2折算至
yoe2Ci2 gi2’=p22gi2
其中两p端再2=间把N2。C/N’和yfegIV··o’1i折1 +-V算·o1至gC1o1、o1 2
1、电压增益的一般表达式
A·v= —VV··o—i11 =- —yfe—V·i1—V/·(iy1—oe+—Y—’L) =- —yoe—y+feY—’L
yoe—晶体管的输出导纳 yoe=go1+jωCo1
1 + L T2 L2
+-压求V·i1显增出然益Y’V·L,的-oC。要表V·-写达o+1L出式1 V+-·本,i2 电关YL路键电是
本页引言完 返回
单 调 谐 回 路 谐 振 放 大 主页 器
本
1、单调谐谐振放大器y参数电路
节
学
2、单调谐谐振放大器电压增益Av
习
要
3、单调谐谐振放大器功率增益Ap
点
和
4、单调谐谐振放大器通频带2Δf0.7
要
求
5、单调谐谐振放大器的选择性Kr0.1
结束 返回
一、单调谐谐振放大器y参数等效电路
3.3单调谐回路 谐振放大器
T2 的 初 级 线 圈 L1 与 C 组 成 LC 并
作用,增大电路的电压放大 联谐振回路,作为共射放大电路
倍数;Cb使T1次级线圈一端 (即信号源的一端接地)交流
单调谐回路谐振放大器
➢在回路本身损耗G0与 p12goe 相比可以忽略时, 由匹配条件 p12 goe p22gie2 ,可得最大功率增益:
2
Gp0 max Pomax Pi y fe
4goe gie1
➢在实际情况下G0不能忽略,可得最大功率增 益为:
Gp0
max
y fe 4goe
2
gie1
1
一般都假设两个回路参数相同,即L1=L2=L;
; ;回路谐 C1 p12Coe C2 p22Cie C
p12 goe p22 gie g
振角频率 1 2 0 1 LC ; 有载品质因数
。 QL1
QL2
QL
1
g0 L
0C
g
(1) 电压增益
设Vim是放大器输入电压振幅, kQL是耦
Am Am0
1 QL
1
(2f0.7 )m f0
2
m
/
2
1 2
1
2f0.7
m
2m 1 f0 QL
(3) 选择性(矩形系数)
( K r 0.1 )m
(2f 0.1 ) m (2f0.7 )m
令 Am/Am0=0.1,得: (Kr0.1)m
1
100 m 1
1
2 m 1
m越大,级数越多时,矩形系数越小,选择性
二、多级单调谐回路谐振放大器 当单级放大器不能满足性能要求时(主要是增益
要求),常采用多级放大器级联的方式。级联 之后的增益、通频带和选频性等指标都会发 生相应的变化。
(1) 设 Av2放,大Av器m,有则m总级的,电各压级增电益压为增:益分别为Av1,
Am Av1 Av2 Avm
(2) 通频带:当m级相同的放大器级联时,总的 通频带为:
高频电子线路实验指导书
实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。
二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。
三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。
图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。
根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。
提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。
3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。
将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。
(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。
(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。
(4)根据测试结果分析Re变化对放大性能的影响。
4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。
调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。
高频电子线路实验指导书
⾼频电⼦线路实验指导书第⼀部分实验内容实验⼀调谐放⼤器⼀、实验⽬的1.熟悉电⼦元器件和⾼频电路实验箱;2. 通过实验进⼀步熟悉⾼频⼩信号调谐放⼤器的⼯作原理;3. 掌握调谐放⼤器的电压放⼤倍数、动态范围、通频带及选择性的测试⽅法;4. 掌握使⽤频率特性测试仪调整调谐放⼤器谐振特性的⽅法。
⼆、实验仪器1.双踪⽰波器(TDS2012)2.扫频仪(BT-3GⅡ)3.⾼频信号发⽣器(QF1055A)4.毫伏表(DA36A)5.万⽤表6.实验板1三、预习要求1.复习谐振回路的⼯作原理;2.了解谐振放⼤器的电压放⼤倍数、动态范围、通频带及选择性相互之间的关系;3.频率特性测试仪调整调谐放⼤器谐振特性的⽅法;4.实验⽤电⼦仪器的基本原理和使⽤⽅法。
四、实验原理(⼀)实验电路⼩信号调谐放⼤器的主要特点是晶体管的集电极负载不是纯电阻,⽽是由LC组成的并联谐振回路。
由于LC并联谐振回路的阻抗是随频率⽽变的,在谐振频率处其阻抗是纯电阻,达到最- 1 -- 2 -⼤值。
因此,⽤并联谐振回路作集电极负载的调谐放⼤器在回路的谐振频率上具有最⼤的放⼤电压增益。
稍离开此频率,电压增益迅速减⼩。
我们⽤这种放⼤器可以放⼤所需要的某⼀频率范围的信号,⽽抑制不需要的信号或外界⼲扰信号。
因此,调谐放⼤器在⽆线电通信系统中被⼴泛⽤作⾼频和中频放⼤器。
图1-1所⽰电路为实验电路,它是由共发射极组态的晶体管和并联谐和振回路组成的单级单调谐放⼤器。
本实验电路要求完成单级调谐放⼤器的技术指标:中⼼频率MHz f o 7.10=,通频带MHz f 127.0=?,增益dB A uo 20≥。
电路主要元件参数:晶体管C DG 63,查⼿册知在MHz f o 30=,mA I EQ 2=,V V ce 9=条件下测得Y 参数为mS g ie 2=,pF C ie 12=,S g oe µ250=,pF C oe 4=,mS y fe 40=,S y re µ350=。
单调谐回路谐振放大器幅频特性曲线
(ⅲ)函数波形:正弦波。
单调谐回路谐振放大器实验步骤 1
第0单元频率定标与存储
(ⅰ) 调“频率调谐”旋钮,使频率显示为7700 (与此同时,“kHz”灯点亮,标明频率为7.7 MHz);
(ⅱ)按“STO”键,相应指示灯点亮,再调“频 率调谐”旋钮,使存储单元编号显示为0; (ⅲ)再按“STO”键,相应指示灯变暗,表明
实验内容
实验一 单调谐回路谐振放大器 实验二 双调谐回路谐振放大器 实验三 高频谐振功率放大器 实验四 电容三点式LC振荡器 实验五 石英晶体振荡器 实验六 振幅调制器 实验七 振幅解调器 实验八 变容二极管调频器 实验九 电容耦合回路相位鉴频器 实验十 LM566组成的频率调制器 实验十一 LM565组成的频率解调器 实验十二 正弦波振荡电路设计
(实验一)单调谐回路谐振放大器实验
实验目的
1.熟悉电子元器件和高频电子线路实验系统。 2.熟悉放大器静态工作点的测量方法。 3.熟悉放大器静态工作点和集电极负载对单 调谐放大器幅频特性(包括电压增益、通频带、 Q值)的影响。 4.掌握用扫频仪测量放大器幅频特性的方法。
(实验一)单调谐回路谐振放大器实验步骤 1
单调谐回路谐振放大器
幅频特性曲线
10.7 MHz
8.7 MHz
12.7 MHz
本文件应用的照片系ASGP-1实验系统操作时实拍
单调谐回路谐振放大器实验步骤 4
4.幅频特性测量
仍取R3=10k、R4=1k,观测放大器幅频特性 并作如下调试:
1.实验板6上的“频标幅度”旋钮,可调节频 标高度; 2.实验板1上的单调谐放大器的电容C3,可调节 谐振频率点; 3.AS1634的输出幅度(AMPL)旋钮,可调节频 率特性幅度为80mVpp。 4.把谐振频率调节到10.7MHz,记下此时的频 率特性,
单调谐回路谐振放大器及通频带展宽实验
课程名称:高频电子线路题目:单调谐回路谐振放大器及通频带展宽实验学生姓名:专业:电子信息科学与技术班级:学号:指导教师:日期: 2021 年 6 月 28 日实验三单调谐回路谐振放大器及通频带展宽实验一、实验目的:1. 熟悉高频电路实验箱的组成及其电路中各元件的作用;2. 熟悉并联谐振回路的通频带与选择性等相关知识;3. 熟悉负载对谐振回路的影响,从而了解频带扩展;4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、预习要求:1. 复习选频网络的特性分析方法;2. 复习谐振回路的工作原理;3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验电路说明:本实验电路如图7-3所示。
图7-3W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。
C2、L1构成谐振回路,R3为回路电阻,RL为负载电阻。
四、实验仪器:1.双踪示波器2.数字频率计3.万用表4.实验箱及单、双调谐放大模块5.高频信号发生器五、实验内容和步骤:1.测量谐振放大器的谐振频率:1〕拨动开关K3至“RL〞档;2〕拨动开关K1至“OFF〞档,断开R3 ;3〕拨动开关K2,选中Re2;4〕检查无误后接通电源;5〕调整谐振放大器的动态工作点;6〕高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;7〕使高频信号发生器的正弦信号输出幅度为300mV左右〔本实验指导书中所说幅度都是指峰峰值〕,其频率在2—11MHz之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;〔注意:如找不到不失真的波形,应同时调节W来配合;幅度最大不失真的输出频率在8.3MHZ左右。
〕2.测量放大器在谐振点的动态范围:1〕拨动开关K1,接通R3;2〕拨动开关K2,选中Re1;3〕高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;4〕调节高频信号发生器的正弦信号输出频率为8MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—、实验准备
1.做本实验时应具备的知识点:(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性
2.做本实验时所用到的仪器:单调谐回路谐振放大器模块、双踪示波器、万用表、频率计、高频信号源
二、实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握单调谐回路谐振放大器的基本工作原理;
3. 熟悉放大器静态工作点的测量方法;
4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;
5.掌握测量放大器幅频特性的方法。
三、实验内容
1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;
3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;
4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理
1.单调谐回路谐振放大器原理
小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
BG
Cb
C Ce
Cc
Re OUT
Rb 2Rb 1Rc
L
IN
图1-1 单调谐回路放大器原理电路
1R1
1R21Q01
9018
1R3
1C25-20p F
1C04
1R41C03
1R5
1C05
1C06
1R6
1Q029018
1R8
1C07
+12V1
1
GND1
X
1Y
2
1V01X
1
Y
2
1VO21W 01
1W 02
1D01
L E D
1R9
VCC
GND
+12V
12V
VCC GND
+12V
-12V
1K01
+12V1
+12V
C O M M O N
2
N C
1
N O
31K02
1C01
4
466
33
22
11
1T 01T RANS6
1L 01
1C02
1C08
IN
OUT
1
1T P01
1
1T P02
输入
输出
图1-2 单调谐回路谐振放大器实验电路图
2.单调谐回路谐振放大器实验电路
单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C 2用来调谐,1K 02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q 值)的影响。
1W 01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q 值)的影响。
1Q 02为射极跟随器,主要用于提高带负载能力,1W 02用来改变1Q 02的基极偏置。
五、实验步骤 1.实验准备
⑴ 插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K 01 接通电源,此时电源指示灯亮。
2.单调谐回路谐振放大器静态工作点测量
调整1W 01,使放大器工作于饱和状态、截止状态、放大状态。
用万用表测量各点(对地)电压V B 、V E 、V C ,并填入表1.1内(发射极电阻1R4=1K Ω)。
表1.1 调整
1W01 实测(V) 计算(V,mA) V B V E V C V BE V CE I e 饱和状态 截止状态 放大状态
3.单调谐回路谐振放大器幅频特性测量
测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
步骤如下:
(1)1K 02置“off “位,即断开集电极电阻1R3,调整1W 01,使放大器工作于放大状态。
高频信号源输出连接到单调谐放大器的输入端(1V01)。
示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为100mv (示波器CH1监测)。
调整单调谐放大器的电容IC 2,使放大器的输出为最大值(示波器CH2监测)。
此时回路谐振于6.3MHZ 。
(2)按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为100mv(示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,
并把数据填入表1-2。
表1-2
5.4 5.5 5.6 5.7 5.8 5.9
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
7.0 7.1 输入信号频率
f(MHZ)
输出电压幅值
U(mv)
(3)以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。
4.观察静态工作点对单调谐放大器幅频特性的影响。
调整1W01,从而改变静态工作点。
按照上述幅频特性的测量方法,测出幅频特性曲线。
可以发现:当1W01加大时,由于I CQ减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);
而当1W01减小时,由于I CQ加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。
5.观察集电极负载对单调谐放大器幅频特性的影响
当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R3的幅频特性曲线。
可以发现:当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。
而当接通1R3时,接通幅频特性幅值减小,曲线变“胖”,Q值降低,
带宽加大。
六、实验报告要求
1.画出图1-2电路的直流通路,计算放大器直流工作点,并与实测结果作比较。
2.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。
3.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。
4.总结由本实验所获得的体会。