第5章_对流换热的理论基础
第5章 对流传热理论与计算-5-实验关联式与自然对流
六 计算中需要注意的问题
3 注意的问题
(1)判断问题的性质
这是正确求解对流传热问题的关键。流体有无发生相 变?是自然对流还是强制对流?内部流动还是外部流动? 流态是层流还是湍流?
(2)选择正确的实验关联式
切忌张冠李戴,特别注意公式的适用范围,切不可随
意外推
40
六 计算中需要注意的问题
f w
0.14
2
33
(2) Hausen公式
若 Ref Prf
L /d
10时
Nuf
3.66
1
0.0668
0.04
Ref dL
Prf d L Ref Prf
2
3
可用于热入口段或混合段的层流对流传热
34
四 过渡区强迫对流传热的计算
过渡区:难以找到既简便又精确的计算公式
气体被加热时
气体被冷却时
c t
T T 0.55 fw
ct 1
对液体
m
c t
f w
m 0.11 液体受热时
m 0.25
液体被冷却时
24
引入修正系数ct来考虑不均匀物性场对换热的影响
Nu f
0.023
Ref0.8
Prfn
c t
气体被加热时
气体被冷却时
5.5 管内强迫对流传热的实验关联式
说明:
(1)管槽的含义:流动截面是圆形、椭圆形、正 方形、矩形、三角形等
(2)本节内容的重要性: ——指导工程计算的基础、给出的关联式是工程计算 的依据,必须掌握 ——考试的必考内容
传热学第五章_对流换热原理-6
2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f
和
dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情
传热学第5章
w
•t — 热边界层厚度 •与t 不一定相等
•边界层的传热特性: •在层流边界层内垂直于壁面方向上的热量传递主要依 靠导热。湍流边界层的主要热阻为层流底层的导热热阻 。
1对流换热
•层流:温度呈抛物线分 布•湍流:温度呈幂函数分 布
•湍流边界层贴壁处的温度 梯度明显大于层流
•故:湍流换热比层流换热强!
•边界层内:平均速度梯度很大;
•
y=0处的速度梯度最大
6对流换热
•由牛顿粘性定律:
•速度梯度大,粘滞应力大
•边界层外: u 在 y 方向不变化, u/y=0
•粘滞应力为零 — 主流区
•流场可以划分为两个区: •边界层区:N-S方程
•主流区: u/y=0,=0;无粘性理想流体;
•
欧拉方程
•——边界层概念的基本思想
•强迫对流换热 •自然对流换热
7对流换热
•
(2) 流动的状态 •层流 •:主要靠分子扩散(即导热)。
•湍流 •:湍流比层流对流换热强烈
•
(3) 流体有无相变
•沸腾换热 •凝结换热
8对流换热
• (4) 流体的物理性质
• 1)热导率,W/(mK), 愈大,对流换热愈强烈;
• 2)密度,kg/m3 • 3)比热容c,J/(kgK)。c反映单位体积流体热容
• 与 t 的关系:分别反映流体分子和流体微团的动量
•
和热量扩散的深度
•普朗特数
2对流换热
•综上所述,边界层具有以下特征:
•( • a) (b) 流场划分为边界层区和主流区。
•流动边界层:速度梯度较大,动量扩散主要区域。
•热边界层:温度梯度较大,热量扩散的主要区域
• (c) 流态:边界层分为层流边界层和湍流边界层 。湍流边界层分为层流底层、缓冲层与湍流核心。
传热学(第四版)第五章:对流传热的理论基础
温度边界层和速度边界层数值举例
空气,来流速度0.5 m/s 水,来流速度0.5 m/s
§5-2 对流传热与相似原理
1 问题的提出
能够得到理论解的对流传热问题非常少。试验是不可或缺 的手段,然而,经常遇到如下两个问题: h f (v, , c p , , , l ) (1) 变量太多 A 实验中应测哪些量(是否所有的物理量都测) B 实验数据如何整理(整理成什么样函数关系) (2) 实物试验很困难或太昂贵的情况,如何进行试验?
u
x
v
y
D D x x y y
(5)运动流体的能量守恒方程中引入了流场变量
第五章 对流换热
u和v 。
6
Navier-Stokes方程(1820年~1850年)
无因次化处理
预期解的形式
3 指导实验 • • 同名的已定特征数相等 单值性条件相似:初始条件、边界条件、几何条件、物理条件 实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
厚度t 范围 — 热边界层 或温度边界层
t — 热边界层厚度
与t 不一定相等
第五章 对流换热 19
根据边界层理论,u v,
u v 0 x y u u u x v x v v u y v y
y x 简化对流传热问题如下:
Nusselt 1910年发表”管内换热理论解” Fourier 1822年发表“热的解析理论”
注册设备工程师辅导-传热学-对流换热部分
注册公用设备工程师执业资格考试基础课辅导传热学讲授:许淑惠教授北京建筑大学1对流换热部分2¾确定h的3 种基本方法1、分析法(理论分析方法)(1) 微分方程分析解(2) 积分方程分析解2、类比法(雷诺类比)(半经验方法)(经验方法)3、试验法(经验方法45一、影响对流换热的一般因素1)流动的起因和流动状态2)流体的热物理性质3)流体的相变4)换热表面几何因素(),,,,,,,,W f p h f u t t c l λραμ=¾流动边界层的几个重要特性:1)边界层很薄,其厚度与壁的定型尺寸相比是极小的;2)在边界层内存在较大的速度梯度;3)边界层流态分为层流与紊流,紊流边界层紧靠壁面处将是层流,称层流底层;4)流场可划分为主流区和边界层区,只有在边界层内才显示流体粘性的影响。
819•速度场相似:对应速度成比例,为速度场相似倍数•稳态温度场相似:空间对应点上过余温度成比例,为温度场相似倍数第六节相似理论基础一、几何相似二、物理现象相似6-1 基本概念1)几何相似:存在为几何相似倍数l C 物理量相似:Cu C θ20(1)为温度场相似倍数;(2)为时间相似倍数。
C θC τ表示物理量相似。
,,,,,l u C C C C C C τθλν•非稳态温度场相似:空间对应点上过余温度成比例:因此当等物理量相似是物理现象相似的前提条件。
•物理相似(物理现象相似)影响物理现象的所有物理量场分别相似的综合,就构成了物理现象相似。
注意三点:(1)必须是同类现象才能谈相似;(2)物理量场的相似倍数间有特定的制约关系,体现这种制约关系,是相似原理的核心;(3)注意物理量的时间性和空间性。
216-2 相似原理•相似原理的三点表述:A.相似性质;B.相似准则间的关系;C.判断相似的条件。
一、相似性质相似性质:彼此相似的现象,它们的同名相似准则必定相等。
=Nu Nu'''=Re'Re''Pr'=Pr'''=''Gr Gr2627二、相似准则间的关系(Re,Pr,)Nu f Gr =(Re,Pr)Nu f =(Re)Nu f =(,Pr)Nu f Gr =4. 自然对流换热,其准则关联式:1、无相变受迫稳态对流换热,且当自然对流不可忽略时,准则关联式:2、无相变受迫稳态对流换热,若自然对流可以忽略不计时,准则关联式:3、对于空气,Pr 可以作为常数,无相变受迫稳态对流换热,准则关联式:Re nNu C =()Pr n Nu C Gr =Re Pr n m Nu C =三、判断相似的条件•判断现象是否相似的条件,满足:A.凡同类现象;B.单值性条件相似;C.同名的相似准则相等。
传热学第五章对流换热
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
传热学 第五章 对流原理.
层流边界层 紊流核心区
过渡区 紊流边界层 层流底层 主流区 速度边界层厚度 临界距离
层流
过渡流
湍流
u
y
x
xc
层流底层 缓冲层
根据流体力学知识,层流边界层厚度 xv 5x 5x 5 vf vf x Re x
在层流边界层内的速度分布线为抛物线型; 在紊流边界层内,层流底层部分的速度 分布较陡,接近于直线,而在底层以外 的区域,由于流体微团的紊流运动,动 量传递被强化了,速度变化趋于平缓。
如果流体的流动是由于流体冷热部分的密度不同 引起的浮升力造成的,则称为自然对流。暖气 片的散热,蒸汽或其他热流体输送管道的热量 损失,都与这类换热有关。 一般来讲:强迫对流 换热优于自然对流。
二、 在分析对流换热时,还应分清流体的流态。 流体力学告诉我们,流体受迫在流道内流 动时可以有两种不同性质的流态。流体分 层地平行于流道的壁面流动,呈现层流状 态。但当流动状态到超过某一临界值时, 流体的流动出现了旋涡,而且在不断地发 展和扩散,引起不规则的脉动,使流动呈 现紊流状态。
α =q/(tf-tw) W
对流换热系数 α表征着对流换热的强弱 。
在数值上,它等于流体和壁面之间的温度 差为 1℃时,通过对流换热交换的热流密 度。单位为W/(m2·℃)。 对流换热量以及相应的换热系数的大小,将 更多地取决于流体的运动性质和情况。
一、速度边界层
流体力学指出,具有粘性且能湿润固 体壁面的流体,流过壁面会产生粘性力。 根据牛顿粘性(内摩擦)定律,流体粘性 力 τ 与垂直于运动方程速度梯度 (dv/dy ) 成正比,即: τ=μ(dv/dy) N/m2 (5-2) 式中,μ 称为流体的动力粘度,单位为Pa· s 或kg/(m· s)。
传热学第五章_对流换热原理-1
Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。
传热学5
分析 解法
采用数学分析求解的方法。
传热学 Heat Transfer
2.如何从获得的温度场来计算h 无论是分析解法还是数值法首先获得都是温度场, 如何由T→h? t q 由傅里叶定律 w y
y 0
牛顿冷却公式
q w qc
qc h t w t
y
主流区
u∞
d 5 .0 离开前缘x处的边界层厚度 x Re x
局部表面传热系数
1/ 2 1/ 3 hx 0.332 Re x Pr x hx x 0.332 Re x1/ 2 Pr 1/ 3 Nu x 努塞尔数
(特征数方程,关联式)
u x 雷诺数: Re x 5 Re Re 5 10 关联式适用范围: c
25/42
传热学 Heat Transfer
1.数量级分析方法的基本思想 分析比较方程中等号两侧各项的数量级大小,在 同一侧内保留数量级大的项而舍去数量级小的项 2.实施方法 ①列出所研究问题中几何变量及物理变量的数量 级的大小,一般以1表示数量级大的物理量的量级。 以Δ表示小的数量级 ②导数中导数的数量级由自变量及因变量的数量 级代入获得
2t t t 2t c p u x v y x 2 y 2
28/42
传热学 Heat Transfer
5.4流体外掠平板传热层流 分析解及比拟理论
29/42
传热学 Heat Transfer
一、外掠等温平板层流流动下对流换热问 题的分析解
u v 0 x y
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y
第五章对流换热
第五章对流换热思考题1、在对流换热过程中,紧靠壁面处总存在一个不动的流体层,利用该层就可以计算出交换的热量,这完全是一个导热问题,但为什么又说对流换热是导热与对流综合作用的结果。
答:流体流过静止的壁面时,由于流体的粘性作用,在紧贴壁面处流体的流速等于零,壁面与流体之间的热量传递必然穿过这层静止的流体层。
在静止流体中热量的传递只有导热机理,因此对流换热量就等于贴壁流体的导热量,其大小取决于热边界层的厚薄,而它却受到壁面流体流动状态,即流动边界层的强烈影响,故层流底层受流动影响,层流底层越薄,导热热阻越小,对流换热系数h也就增加。
所以说对流换热是导热与对流综合作用的结果。
2、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
3、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。
试判断这种说法的正确性?答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。
因此表面传热系数必与流体速度场有关。
4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。
答:依据对流换热热阻主要集中在热边界层区域的导热热阻。
层流边界层的热阻为整个边界层的导热热阻。
紊流边界层的热阻为层流底层的导热热阻。
导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。
5、对管内强制对流换热,为何采用短管和弯管可以强化流体的换热?答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。
上海交通大学传热学传热学第5章
Nu x
2 13 0.332 Re1 Pr x
12 x 13
特征数方程
Nul 0.664Re Pr
或准则方程
一定要注意上面准则方程的适用条件:
外掠等温平板、层流、无内热源
式中: Nu x
Re x Pr
hx x
努塞尔(Nusselt)数 雷诺(Reynolds)数
路德维希·普朗特 (Ludwig Prandtl, 1876--1953)德国 力学家,现代流体力 学之父,近代力学奠 基人之一。
5
第五章 对流传热的理论基础
§ 5-3 边界层型对流传热问题的数学描写
二、速度边界层——结构和特点
结构:边界层 = 层流边界层+过渡区+湍流边界层
临界雷诺数Rec
粘性底层(层流底层)
1
Quick Review:
t hx t w t y w, x
1 L h hx dx L 0
W (m C)
2
第五章 对流传热的理论基础
2
第五章 对流传热问题的数学描写
5-1 对流传热概说 5-2 对流换热问题的数学描写 5-3 边界层型对流传热问题的数学描写 5-4 流体外掠平板传热层流分析解及比拟 理论
而
类似地:
y *
y* 0
t (t w t ) y
l
y 0
hxl
Nu x l
Nu x
cf 2
Re x
t hx t w t y w, x
(Rex 107 )
传热学考研题库【章节题库】(对流传热的理论基础)【圣才出品】
越大,粘性的影响传递的越远,速度边界层越厚,分母则表征了热扩散的能力。因此,两者
相比,基本上可以反映边界层的相对厚度。
2.温度同为 20℃的空气和水,假设流动速度相同,当你把两只手分别放到水和空气中, 为什么感觉却不一样?
答:把手放在相同温度的水和空气中感觉不一样的原因: (1)尽管水和空气的流速和温度相同,由于水的密度越为空气的 1000 倍,而动力粘 度则相差不多,在相同的特征尺度下,所当将手放入水中的以雷诺数要远大于放入空气中的 雷诺数,因此,放入水中的努赛尔数大; (2)另一方面,又由于水的导热系数大于空气的导热系数,所以,当将手放入水中时 的对流换热系数远远大于放入空气中的对流换热系数,因此,感觉却不一样。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 5 章 对流传热的理论基础
一、判断题 1.对流换热系数只与流体掠过固体壁面的速度有关。 【答案】错
2.对于对流换热,如果流体的温度高于壁面温度,流体总是被冷却。 【答案】错
3.在对流换热问题中,流体的温度高于壁面温度时,流体不一定被冷却。 【答案】错
3.对于流体外掠平板的流动,试利用数量级分析的方法,说明边界层内垂直于平板的 速度与平行于平板的速度相比是个小量。
答:边界层内垂直于平板的速度与平行于平板的速度相比是个小量的原因:
设流体的来流速度为 u ,平板的长度为 L,边界层厚度为 ,由边界层理论知 L 。
2 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7.冬天,在相同的室外温度条件下,为什么骑摩托车比步行时感到更冷些,一般要戴 皮手套和护膝?
答:在相同的室外温度条件下骑摩托车比步行时感到更冷些的原因: (1)因为强制对流换热强度与流体壁面之间的相对速度有关,相对速度越大,对流换 热越强。与步行相比,骑摩托车时相对速度较大,对流换热强度大些,因此人体会散失较多 的热量从而感到更冷些; (2)皮手套和护膝,由于透气性差、导热系数小,增加了传热热阻,降低了散热量, 从而起到保护作用。
第五章对流传热分析
第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。
5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。
在对流换热过程中,流体内部的导热与对流同时起作用。
牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。
研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。
2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。
(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。
(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。
(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。
(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。
综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。
3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。
同时,分析求解的前提是给出正确地描述问题的数学模型。
在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。
传热学第五章
h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x
第5章对流换热
相同原理研究支配相同系统旳性质以及怎样用模型 试验处理实际问题旳一门科学,是进行模型试验旳 根据。但不是一种独立旳科学措施,只是试验和分 析研究旳辅助措施。
相同原理应用举例:汽车、飞机风洞试验
风洞试验旳基本原理是相对性原理和相同性原理。 根据相对性原理,汽车、飞机在静止空气中飞行所
8)量纲分析法——π定理
π定理旳内容:任一物理过程涉及有n个有量纲旳 物理量,如果选择其中旳r个作为基本物理量 ,则这一物理过程可由n个物理量构成旳n-r个 无量纲量所构成旳关系式描述。因这些无量纲 数是用π表示旳,故称为π定理。以数学形式可 表示如下。
设个物理量为x1、x2…… xn,则这一物理 过程可表达为一般函数关系式
0.034 0.0276
64.19W (m2 K )
准数 准数旳形式 准数旳物理涵义
Nu 努 赛 尔 特Nusselt
Nu=h·lc/λf
反应对流传热旳强弱 程度
Re 雷 诺 Reynolds
Re
lu
lu
流体流动形态和湍动 程度
Pr 普 兰 德 Prandtl
Pr cp
流体旳物理性质对对 流传热旳影响
热边界层厚度δt由流体中垂直于壁面上 旳温度 分布决定旳,与热扩散率α有关。
如果tW t 则热边界层不存在
5.1.2 相同原理
1、基本概念 1)同一类物理现象:用相同形式和相同内容旳微分
方程所描述旳物理量。 2)物理相同现象:同一类物理现象中,但凡相同旳
现象,在空间相应旳点上和时间相应旳瞬间,其 各相应旳物理量分别成一定旳百分比。
式中 h —平均对流传热系数,W/(m2K); u —流体旳特征流速,m/s; d —管道直径,m; λ—导热系数 ρ —流体密度 cp —定压比热容 η — 动力粘度系数
第五章 对 流 换 热
第五章 对 流 换 热本章内容要求:1 、重点内容: 对流换热及其影响因素;牛顿冷却公式;用分析方法求解对流换热问题的实质边界层概念及其应用相似原理无相变换热的表面传热系数及换热量的计算2 、掌握内容:对流换热及其影响因素;用分析方法求解对流换热问题的实质3 、讲述基本的内容:对流换热概述; 对流换热的数学描写; 对流换热的边界层微分方程组; 边界层积分方程组的求解及比拟理论; 相似原理及量纲分析; 相似原理的应用; 内部流动强制对流换热实验关联式; 外部流动强制对流换热实验关联式; 自然对流换热实验关联式在绪论中已经指出, 对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程, 是发生在流体中的热量传递过程的特例。
由于流体系统中流体的运动,热量将主要以热传导和热对流的方式进行,这必然使热量传递过程比单纯的导热过程要复杂得多。
本章将在对换热过程进行一般性讨论的基础上,将质量守恒、动量守恒和能量守恒的基本定律应用于流体系统,导出支配流体速度场和温度场的场方程-对流换热微分方程组。
由于该方程组的复杂性,除少数简单的对流换热问题可以通过分析求解微分方程而得出相应的速度分布和温度分布之外,大多数对流换热问题的分析求解是十分困难的。
因此,在对流换热的研究中常常采用实验研究的方法来解决复杂的对流换热问题。
在这一章,我们将 通过方程的无量纲化和实验研究方法的介绍而得到常用的准则及准则关系式。
讨论的重点放在工程上常用的管内流动、平行流过平板以及绕流圆管的受迫对流换热,大空间和受限空间的自然对流换热,以及蒸汽凝结与液体沸腾换热。
§5-1 对流换热概述本节要求:1。
对流换热的概念:流体−−→−温差固体壁面; 2.对流换热中,导热核对流通式汽作用;3.对流换热的影响因素:)(f w t t hA -=Φ,h ——过程量;4.对流换热系数如何确定:0=∂∂∆-=y y tt h λ1 对流换热过程对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程 ,( 直接接触是与辐射换热的区别),是宏观的热对流与微观的热传导的综合传热过程。
工程传热学第五章对流换热计算
大温差情况下计算换热时准则式右边要 乘以物性修正项 。 对于液体乘以 f w n
液 体 被 加 热 n=0.11 , 液 体 被 冷 却 n=0.25( 物性量的下标表示取值的定性温 度) 对于气体则乘以: T f Tw
n
气 体 被 加 热 n=0.55 , 气 体 被 冷 却 n=0.0 (此处温度用大写字符是表示取绝对温 标下的数值)。
qw w LT L 层流: t 0.055 Re Pr; t 0.07 Re Pr 热进口段长度: d d
L 紊流 : 50 d
热边界条件有均匀壁温和均匀热流两种。 对于管壁热流为常数时,流体温度随流动方 向线性变化,且与管壁之间的温差保持不变, 有
t f ( x) t 'f 4qw x cpumd
n m
准则的特征流速为流体最小截面处的最大流 速 umax ;特征尺寸为圆柱体外直径 d ;定性温 度除 Prw 按壁面温 tw 取值之外,皆用流体的主 流温度tf ;
Pr f Pr w
0.25
是在选用 tf 为定性温度时考虑热流方 向不同对换热性能产生影响的一个修 正系数。
如果流体流动方向与圆 柱体轴线的夹角(亦称 冲击角)在 30°- 90° 的范围内时,平均表面 传热系数可按下式计算
如果边界层在管中心处 汇合时流体已经从层流 流动完全转变为紊流流 动,那么进入充分发展 区后就会维持紊流流动 状态,从而构成流体管 内紊流流动过程。
如果出现紊流,紊流的扰动与混合作用又会 使表面传热系数有所提高,再逐渐趋向一个 定值。
Re
um04) — — 过渡区 Re 10
层流流动
紊流流动
0
第五章对流传热理论基础
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 影响流态,速度分布,温度分布。
热热面面朝朝上上
d 管内流动
热热面面朝朝下下
外 外部 部绕绕流流
影响对流换热的因素:
h f (u, tw , t f , , , c p , , , l, )
➢ 对强迫对流换热:
h f (u, tw , t f , , , cp , 浮, l,升力) 项包含的因子
✓ 首先确定:u ~ 0(1), t ~ 0(1), l ~ 0(1), ~ 0(1)
✓ 从而: ~ 0( ), t ~ 0( ), x ~ 0(1), y ~ 0( )
✓ 且:u ~ 0(1), t ~ 0(1), v ~ 0(1), v ~ 0( ), t ~ 0( 1 )
x
x
y
y
p ~ 0(1), p ~ 0( ), ~ 0( 2 ), a ~ 0( 2 )
5.2 对流传热问题的数学描述
对流传热问题完整的数学描述:
对流传热微分方程组 + 定解条件
质量守恒方程 动量守恒方程 能量守恒方程
假设: • 二维对流换热;
• 流体为不可压缩,牛顿流体; • 物性参数为常数,无内热源;
• 忽略粘性耗散产生的耗散热。
u
y
5.2.1 对流传热的微分方程组
1. 连续性方程
2. 对流换热: 流体流过另一个物体表面时,
流动方向 u∞
tf
对流和导热联合起作用的热量传递现象。
u
t
tw
Φ
wall
平平壁壁表上面的的对传流热换机理热
3. 牛顿冷却公式
式中:
Ah(t w t f ) q h(tw t f ) ht
✓ h —固体表面的平均表面换热系数。
✓ tw — 固体表面的平均温度。
x
y
连续性方程:
u v 0 x y
数量级分析
11
动量微分方程:
u u v u 1 p ( 2u 2u )
x y
x
x 2 y 2
11 1
11
2(1
1
2)
u v v v 1 p ( 2v 2v )
x y
y
x2 y 2
1 1 1 2 ( 1 )
能量微分方程:
✓ tf — 流体温度。
• 外部绕流(外掠平板,圆 管)tf 为流体的主流温度。
• 内部流动 (各种形状槽道内 的流动)tf 为流体的平均温度。
tf
d
外部外 绕部 流绕流
管内流动
4. 局部表面传热系数与平均表面传热系数 局部对流换热时局部热流密度:
qx hx (tw t f )x 整个换热物体表面的总对流换热量:
Fy
p y
(
2v x 2
2v y 2 )
c
p
(
t
u t x
v t ) ( 2t
y
x 2
2t ) y 2
含有未知量: u , v , p , t ,
适用条件:自然对流,强迫对流换热; 层流,湍流换热。
5.2.1 对流传热的定解条件
1. 几何条件:
对流换热表面的几何形状,尺寸,壁面与 流体的相对位置,壁面粗糙度。
➢ 对自然对流换热:
h f (, , c p , , l,,t)
定性 用来确定物性参数数值的温度。 温度 例如:流体的平均温度;
流体与壁面温度的算术平均值等。
代表几何因素对换热的影响。
特征 长度
例如:管内换热以内径为特征长度;
沿平板流动以流动方向的尺寸为特征长度等。
5.1.3 对流传热的研究方法
➢ 缓冲层 ➢ 湍流核心区
转戾点
外掠平板: Re c 5105
5.3.2 热边界层 (Thermal boundary layer)
1921年,波尔豪森提出。
热边界层厚度δt :
y u∞
t tw 0.99(t tw ) t∞
主流区
u∞
t∞
t
δ
u δt
温度场分区:
热边界层区:
0
热边界层
tw
x
v t ) ( 2t
y
x 2
2t ) y 2
对稳态,忽略重力场,二维强迫对流换热:
u v 0 x y
u
u x
v
u y
1
p x
(
2u x 2
2u y 2 )
u v v v 1 p ( 2v 2v )
x y
y
x2 y 2
u
t x
v
t y
2t a( x2
2t y 2 )
边界层内简化对流换热方程组介绍:
2u x 2
2u y 2 )
➢ y方向:
( v
u
v x
v
v ) y
Fy
p y
(
2v x 2
2v y 2 )
说明:只有重力场作用时
•强迫对流换热:忽略重力项; •自然对流换热:浮升力起重要作用。
3. 能量微分方程
根据微元体的能量守恒导出。
c
p
(
t
u t x
v
t y
)
(
2t x 2
2t y 2
液态金属0.05 气体0.6-0.8
油102-103
对常见流体,Pr范围 0.6—4000 之间。
边界层特点:
边界层厚度:δ<<l, x; δt<<l,x; 流场划分为边界层区和主流区; 边界层有层流边界层和湍流边界层, 湍流边界
层分为层流底层, 缓冲层和湍流核心区三层。 层流边界层和层流底层,热量传递主要靠导热。湍流 边界层的主要热阻在层流底层。
2. 物理条件:
流体的物理性质(ρсλα), 有无内热源。
3. 时间条件: 对流换热过程进行的时间上的特点。
➢ 稳态换热:无初始条件
➢ 非稳态换热:初始时刻的速度场和温度场。
4. 边界条件:
说明对流换热边界上的状态(边界上速度分布,温度分布及与 周围环境之间的相互作用)。
第一类边界条件: 恒壁温边界条件
t w f ( x, y , z , )
t w const
第二类边界条件: 恒热流边界条件
q
w
(
t n
)
w
q w const
5.3 边界层对流传热问题的数学描写
5.3.1 流动边界层 1904年,德国科学家普朗特提出著名的边界层概念。
举例:流体平行外掠平板的强迫对流换热。
y u∞ tf
主流区 u∞
u∞ tf
u∞ uq
导热
0 层层流流边边界界层层
x
u∞
u
导热
q
管管内内层层流流流流动动
湍流 :
➢ 流体内部存在强烈脉动和旋涡运动;
➢ 各部分流体之间迅速混合; ➢ 热量传递:主要靠对流 。
湍流边界层
层流底层:导热 湍流核心区:对流
u∞ tf
主流区 u∞
δ
u
u∞
u 层流底层 q
0 层流边界层 过渡区 湍流边界层
导 热
hx
导热 热阻0 增大
扰动 表面传热系数
热阻 增大
x
普朗特准数Pr
定义: Pr
a
物理意义:
u∞y
u∞
t∞
δ
t∞
δt
u
t
0 层流边界层
tw
x
流体的动量扩散能力与热量扩散能力之比。
对层流边界层,若热边界层和流动边界层 从平板前缘点同时发展:
✓ 当 a, Pr 1 时, t ✓ 当 a, Pr 1 时, t ✓ 当 a, Pr 1 时, t
主流区:
➢ 速度梯度趋于零,粘性力忽略不计; ➢ 流体可近似为理想流体; ➢ 用理想流体的欧拉方程描述。
掠过平板时边界层的形成和发展:
➢层流边界层 ➢过渡区 ➢湍流边界层
y u∞ tf
主流区 u∞
δ
u
u∞
u 层流底层 q
0 层流边界层xc 过渡区 湍流边界层 l x
湍流边界层的三层结构模型:
➢ 层流底层
1. 分析法: 指对描写某一类对流传热问题的偏微分方程及定解
条件进行数学求解,从而获得速度场和温度场的分析解。 可得出精确解或近似解。适用简单问题。 2. 数值法:
对对流换热过程的特征和主要参数变化趋势作出预测。 3. 实验法;
相似原理和量纲分析理论。 4. 比拟法:
利用流体动量传递和热量传递的相似机理,建立 表面传热系数和阻力系数之间的相互关系。
根据微元体的质量守恒导出。
设速度分布:
➢ 二维流动:
V ui v j
u v 0 x y
2. 动量微分方程(Navier-Stokes方程)
根据微元体的动量守恒导出。
DV F grad p 2V D
惯性力 体积力 压力梯度 粘性力
➢ x方向:
( u
u
u x
v
u ) y
Fx
p x
(
u∞ u
δ
u
层流底层 q
0 层流边界层xc 过渡区 湍流边界层 l x
边界层特点 δ<< l
流场分区: 边界层区:
y u∞ tf
主流区 u∞
u∞ u
δ
u
层流底层 q
0 层流边界层xc 过渡区 湍流边界层 l x
➢ 速度梯度大,粘性力不能忽略;
➢ 粘性力与惯性力处同一数量级; ➢ 动量交换的主要区域,用动量微分方程描述。
常温下:水 cp 4186 kJ /(m3 C) 空气 cp 1.21kJ /(m3 C)