正弦信号发生器方案设计

合集下载

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器一.设计目的设计一个基于DSP的正弦信号发生器二.设计内容利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装置。

三.设计原理一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。

查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精度高,但需要的存储器容量很大。

泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。

本文采用了泰勒级数展开法。

一个角度为θ的正弦和余弦函数,可以展开成泰勒级数,取其前5项进行近似得:式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生的信号频率。

正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。

整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

三.总体方案设计本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。

通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如下:1.利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和余弦值2.利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔为1°)3.通过复制,获得0°~359°的正弦值4.将0°~359°的正弦值重复从PA口输出,便可得到正弦波四.软件操作DSP 集成开发环境 CCS是 Code Composer Studio 的缩写,即代码设计工作室。

它是 TI 公司推出的集成可视化 DSP 软件开发工具。

DSP CCS 内部集成了以下软件工具:◆ DSP 代码产生工具(包括 DSP 的 C 编译器、汇编优化器、汇编器和链接器)◆ CCS 集成开发环境(包括编辑、建立和调试 DSP 目标程序)◆ 实时基础软件 DSP/BIOS (必须具有硬件开发板)◆ RTDX、主机接口和 API(必须具有硬件开发板)在 CCS 下,用户可以对软件进行编辑、编译、调试、代码性能测试(profile)和项目管理等工作。

基于fpga的dds正弦信号发生器的设计和实现

基于fpga的dds正弦信号发生器的设计和实现

基于FPGA的DDS正弦信号发生器的设计和实现引言在电子领域中,正弦信号是一种重要的基础信号,被广泛应用于通信、音频、视频等各个领域。

而DDS(Direct Digital Synthesis)直接数字合成技术则是一种通过数字方式生成高精度、高稳定性的正弦波信号的方法。

本文将详细介绍基于FPGA的DDS正弦信号发生器的设计和实现。

设计目标本次设计旨在实现一个可配置频率范围广泛且精度高的DDS正弦信号发生器。

具体设计目标如下: 1. 实现频率范围可调节,覆盖从几Hz到数十MHz; 2. 提供高精度的频率控制,满足特定应用场景对频率稳定性和相位精度的要求; 3. 支持模数转换器(DAC)输出,并能够通过外部接口控制输出幅值; 4. 使用FPGA作为主要硬件平台,以满足高速计算和灵活配置需求。

系统架构基于FPGA的DDS正弦信号发生器主要由以下几个部分组成: 1. 数字控制模块(Digital Control Module):负责接收外部输入的频率、相位和幅值等参数,并将其转换为对DDS核心模块的控制信号; 2. DDS核心模块(DDS Core Module):根据接收到的控制信号,通过数学运算生成正弦波形的离散采样值; 3. 数字模拟转换模块(Digital-to-Analog Converter, DAC):将DDS核心模块输出的数字采样值转换为模拟电压信号; 4. 输出放大器(Amplifier):用于放大DAC输出的电压信号,并通过外部接口提供可调节幅值的正弦波输出。

DDS核心模块设计DDS核心模块是整个系统中最关键的部分,它负责根据输入参数生成正弦波的离散采样值。

下面是DDS核心模块设计中需要考虑的几个关键要素:相位累加器相位累加器是DDS核心模块中最基础且重要的组件之一。

它根据输入的频率和时钟信号,在每个时钟周期内累加相位增量,从而实现相位连续变化。

相位累加器可以使用一个定点数或浮点数寄存器来表示,并通过固定步长进行相位递增。

EDA正弦波信号发生器的设计

EDA正弦波信号发生器的设计

利用LPM 设计正弦信号发生器一、设计目的:进一步熟悉maxplu sII 及其LPM 设计的运用。

二、设计要求:1、利用原理图输入方式。

2、信号数据点值自行想法实现。

3、得出正确时序仿真文件。

三、设计原理:图1 正弦信号发生器结构框图图1所示的正弦波信号发生器的结构由三部分组成计数器或地址发生器(这里选择8位),正弦信号数据ROM (8位地址线,8位数据线),含有256个8位数据(一个周期)。

四、VHDL 顶层设计。

设计步骤:1、建立.mif 格式文件建立C 语言文件sin.cpp ,运行产生sin.exe 文件。

sin.cpp 程序代码:#include <iostream>#include <cmath>#include <iomanip>using namespace std;int main(){int i;float s;VHDL 顶层设计sin.vhd8位计数器 (地址发生器) 正弦波数据 存储ROM 产生波形数据cout<<"WIDTH=8;\nDEPTH=256;\n\nADDRESS_RADIX=HEX;\nDA TA_R ADIX=HEX;\n\nCONTENT\nBEGIN\n";for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);cout<<" "<<i<<" : "<<setbase(16)<<(int)((s+1)*255/2)<<";"<<endl;}cout<<"END"<<endl;return 0;}把上述程序编译后,在DOS命令行下执行命令:sin.exe > sin.mif;将生成的sin.mif 文件。

EDA实验-正弦波信号发生器设计

EDA实验-正弦波信号发生器设计

实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。

2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。

二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。

•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。

当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。

波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。

相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。

输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。

DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。

其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。

•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。

•XFER(PIN 17):数据传送控制信号,低电平有效。

•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。

正弦信号发生器的设计

正弦信号发生器的设计

实验四正弦信号发生器的设计1. 实验的目的和要求熟悉QuartusII 及其LPM_ROM 与FPGA 硬件资源的使用方法。

2.实践内容或原理正弦信号发生器的结构由3部分组成,数据计数器或地址发生器、数据ROM 和D/A 。

性能良好的正弦信号发生器的设计,要求此3部分具有高速性能,且数据ROM 在高速条件下,占用最少的逻辑资源,设计流程最便捷,波形数据获最方便。

图1所示是此信号发生器结构图,顶层文件SINGT.VHD 在FPGA 中实现,包含2个部分:ROM 的地址信号发生器由5位计数器担任,和正弦数据ROM ,其原理图如图2所示。

据此,ROM 由LPM_ROM 模块构成能达到最优设计,LPM_ROM 底层是FPGA 中的EAB 或ESB 等。

地址发生器的时钟CLK 的输入频率f 0与每周期的波形数据点数(在此选择64点)以及D/A 输出的频率f 的关系是:640f f图1 正弦信号发生器结构图图2 正弦信号发生器原理图图3 正弦波的64个点的输入在Quartus II上完成正弦信号发生器设计,包括仿真和资源利用情况了解(假设利用Cyclone器件)。

最后在实验系统上实测,包括SignalTap II测试、FPGA中ROM的在系统数据读写测试和利用示波器测试。

最后完成EPCS1配置器件的编程。

3. 实验仪器(1)GW48系列SOPC/EDA实验开发系统(2)配套计算机及Quartus II 软件4.实践步骤或环节(1) 建立工程文件夹。

(2) 生成6位二进制计数器原理图。

(3)定制LPM_ROM元件。

(4)仿真。

(5)选择实验电路模式5,进行引脚下载配置。

(6)嵌入式逻辑分析仪的设置。

5. VHDL仿真实验(1)6位二进制计数器的仿真程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT6b ISPORT (CLK,RST,EN: IN STD_LOGIC;CQ: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);COUT:OUT STD_LOGIC);END CNT6b;ARCHITECTURE behav OF CNT6b ISBEGINPROCESS(CLK,RST,EN)VARIABLE CQI:STD_LOGIC_VECTOR(5 DOWNTO 0); BEGINIF RST='1'THEN CQI:=(OTHERS=>'0');ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENCQI:=CQI+1;END IF;END IF;IF CQI=63 THEN COUT<='1';ELSE COUT<='0';END IF;CQ<=CQI;END PROCESS;END behav;(2)RTL电路(3)时序仿真波形:(4)硬件验证选择试验箱的模式为模式5,时钟CLK选择为CLOCK0(PIN_28脚),频率f=65536Hz,EN对应的引脚编号PIN-233,RST对应的引脚编号PIN-234,COUT对应的引脚编号PIN-1,Q[7..0]对应的引脚编号PIN-20,19,18,17,16,15,14,13.(5)逻辑分析仪的测试波形6.实践教学报告要求(1)详细分析各模块的逻辑功能,及其他们工作原理,详细记录并分析实验内容和实验内容的过程和结果,完成实验报告。

正弦波信号发生器设计(课设)

正弦波信号发生器设计(课设)

课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。

本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。

以op07和555定时器构成正弦波和方波的发生系统。

Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。

正弦波方波可以通过示波器检验所产生的信号。

测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。

关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。

本文简单介绍正弦波和方波产生的一种方式。

在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。

1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。

1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。

2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。

/Xid; F=Xf/X。

;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。

基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。

反馈网络中两个反向二极管起到稳压的作用。

振荡电路的振荡频率f0是由相位平衡条件决定的。

一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。

实验九定制LPM_ROM设计简单的正弦信号发生器

实验九定制LPM_ROM设计简单的正弦信号发生器

定制LPM_ROM设计简单的正弦信号发生器
实验名称:利用定制好的LPM_ROM设计简单的正弦信号发生器。

实验过程:
1:LPM_ROM的定制
图1 调用LPM_ROM
图2 LPM_ROM的参数设置
图3 加入初始化文件配置
2:LPM_ROM的仿真测试
图4 LPM_ROM仿真测试
3:波形分析
由图4可以看出,随着CLK的上升沿的出现,对应地址A的数据输出与初始化文件的数据完全吻合,实验得证。

再利用次模块完成一个简单的正弦信号发生器设计,该模块可以用来作为地址信号发生器(7位输出)和数据存储器(7位地址线,8位数据线),含有128个8位波形数据(一个正弦波形周期)。

4:正弦信号发生器的VHDL顶层设计
包括了对定制LPM_ROM时文件模块ROM78的例化调用。

图5 正弦信号发生器的VHDL描述
图6正弦信号发生器的仿真波形输出
5:波形分析
随着每个时钟上升沿的到来,输出端口将正弦波数据依次输出。

输出的数据与初始化配置文件相符。

6:观察RTL图
图7 正弦信号发生器的RTL电路图
分析:其中左边三个元件:加法器,寄存器构成7位计数器:其输出接右边ROM的地址输入端。

输出可接FPGA外的DAC,完成正弦波形输出。

实验结论:作为数据和程序的存储单位,ROM还有很多其他用处,如数字信号发生器的波形数据存储器,正弦信号发生器等。

正弦信号发生器设计

正弦信号发生器设计

正弦信号发生器作者:程锟、晏婷婷、覃雄伟摘 要:本设计以凌阳SPCE061A 单片机为核心,基于直接数字频率合成(DDS )技术制作了一个频率值能任意调节的多功能信号源。

该信号源在1KHZ~10MHZ 范围能输出稳定可调的正弦波,并具有AM 、ASK 和PSK 等调制功能。

信号输出部分采用电流放大型宽带运放做电流放大,再用宽带电压运放做电压放大,很好地解决了带宽和带负载能力的要求。

系统采用液晶显示模组CPCL501显示和键盘控制功能,在Ω50负载电阻下输出的电压峰-峰值p p V -≥1V 可调。

一、方案论证与选择1.题目分析:本设计要求可以输出较宽频带且频率稳定度足够高的正弦信号,并且具有一定的负载能力,同时可输出指标满足要求的AM 、ASK 、PSK 信号。

综合题目指标要求及相关分析,得到该设计的功能框架图如图一所示。

本设计可分为以下几个部分:频率合成模块、AGC (自动增益控制)模块、幅度控制模块、功率放大模块、调制模块及人机交流模块。

图一 功能模块框图2.方案比较(1)正弦信号发生模块方案一:采用反馈型LC 振荡原理。

选择合适的电容、电感就能产生相应的正弦信号。

其中电容采用变容二极管,通过控制二极管的电压来改变电容, 最终控制输出信号频率。

此方案器件比较简单,但是难以达到高精度的程控调节,而且稳定度不高。

方案二:采用FPGA 器件。

将某一标准正弦信号经过高速采样后送到外部存储器中储存好,然后用一个计数器产生地址读出存储器中的数据后送到D/A 转换器件中输出,可以通过改变计数器的参数,改变地址信号,实现,也可以通过处理数据改变信号的幅度。

但是此方案的输出波形受时钟影响较大,且不易于控制步进和进行功能扩展。

方案三:采用直接频率合成集成芯片AD9851。

AD9851是AD 公司生产的DDS 芯片,带并行和串行加载方式,AD9851 内含可编程DDS 系统和高速比较器,能实现全数字编程控制的频率合成。

DDS正弦信号发生器的设计

DDS正弦信号发生器的设计

高级数字系统设计实验——DDS正弦信号发生器设计姓名学号专业:通信与信息系统指导老师实验三 DDS 正弦信号发生器一、实验要求:利用LPM_ROM 设计一个DDS 正弦信号发生器,要求ROM 表长度为8位,频率控制字为8位,输出频率分辨率优于1Hz 。

二、设计方案 1、 方案流程图:由频率控制字提供,累加器在系统时钟控制下,来一个上升沿就累加一次频率控制字的值,累加器的位数高于8位,所以用其高8位作为正弦查表的地址,根据地址就能寻址到表内的值,该值通过DAC 转换再通过示波器就能显示波形。

累加器溢出一次就相当于正弦表寻址一圈,正弦信号经历一个周期。

2、参数设定系统时钟fclk :设定为50KHz ,频率控制字M :8位,取值范围:1~28-1, 分辨率:f=nfclk2 n 为累加器的位数,当系统时钟的频率越低,相位累加器的位数越高,所得到的频率分辨率就越高,累加器:为了使输出频率的分辨率能达到1Hz ,选定为16位, 输出频率:fout=n M fclk 2*=16250000M *=6553650000M*, 当M=1时,输出频率最小,fout=0.7629Hz ,当M=255时,输出频率最大,fout=0.7629*255=194.5496Hz 。

3、模块建立 1)累加器LIBRARY IEEE;USE IEEE.std_logic_1164.all;USE IEEE.std_logic_ARITH.ALL;USE IEEE.std_logic_unsigned.ALL;ENTITY add ISPORT(fclk : IN STD_LOGIC; --接入系统时钟rst : IN STD_LOGIC; --复位端fcontrol:IN STD_LOGIC_VECTOR(7 DOWNTO 0);--频率控制字8位asum:OUT STD_LOGIC_VECTOR(15 DOWNTO 0));--输出累加和END ENTITY;ARCHITECTURE behav OF add ISSIGNAL a:STD_LOGIC_VECTOR(15 DOWNTO 0);--累加器的暂存值SIGNAL fc:STD_LOGIC_VECTOR(7 DOWNTO 0);--频率控制字的寄存器BEGINfc<=fcontrol;PROCESS(fc,a,fclk,rst)BEGINIF(rst = '1' ) THENa <=(others=>'0');--复位端高电平有效ELSIF( fclk'event AND fclk = '1') THENa<=a+fc; --系统时钟来一个上升沿就累加一次频率控制字的值ELSENULL;END IF;asum<=a;--寄存器的值赋值给输出端END PROCESS;END behav;2)ROM表ROM表可以通过LPM宏功能模块来实现,通过MegaWizard管理器可以构建我们所需的存储单元,因为频率控制字为8位,DAC 采用实验箱上的THS5651为10位并行高速DAC,所以需要256个存储单元,每个单元为10bits。

信号发生器设计(正弦,方波,三角,多用信号发生器)

信号发生器设计(正弦,方波,三角,多用信号发生器)

模拟电路课程设计报告设计课题:信号发生器设计班级:10通信工程三班学生姓名:陶冬波学号:2010550921指导教师:设计时间:目录一、信号发生器摘要--------------------3二、设计目的---------------------3三、设计内容和要求四、设计方案------------------------------------------34.1 RC桥式正弦波产生电路--------------------------------------3 4.2方波产生电路----------------------------------------------------6 4.3三角波产生电路-------------------------------------------------84.4多用信号发生器-------------------------------------------------9五、组装调试及元件清单---------------------------105.1 测试仪器---------------------------------------------------------10 5.2信号发生器元件清单-----------------------------------------------115.3调试中出现的故障、原因及排除方法----------------------11六、总结设计电路,改进措施----------------------116.1 正弦波产生电路改进措施--------------------------------------116.2多用信号发生器改进措施---------------------------------------11七、收获和体会-----------------------------------------12八、参考文献--------------------------------------------12信号发生器设计一、信号发生器设计摘要:本设计介绍了波形发生器的制作和设计过程,并根据输出波形特性研究该电路的可行性。

正弦波信号发生器的设计及电路图

正弦波信号发生器的设计及电路图

正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。

分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。

很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。

电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。

1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。

在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。

2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。

图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。

由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。

基于DSP的正弦信号发生器设计(参考)

基于DSP的正弦信号发生器设计(参考)

正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

引言引言正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC 值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,价格较贵,价格较贵,而本而本文借助DSP 运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

号发生器具有速度更快,且实现更加简便。

系统原理系统原理一般的采样型SPWM 法分自然采样法和规则采样法,自然采样法是将基准正弦波与一个载波三角波相比较,由两者的交点决定开关模式的方法。

由于自然采样法得到的数学模型需要解超越方程,因而并不适合微控制器进行实时控制,又因为实践检验对称波形比非对称波形在三相电的相电流中引起的谐波失真小,所以我们使用对称规则采样法作为本系统的数学模型。

学模型。

这里说明一下使用TI 公司的DSP 芯片TMS320LF2407(以下简称2407)来产生PWM 信号的原理:由于产生一个PWM 信号需要有一个适合的定时器来重复产生一个与PWM 周期相同的计数周期,并用一个比较寄存器来保持调制值,并用一个比较寄存器来保持调制值,因此,因此,比较寄存器的值应不断与定时寄存器的值相比较,这样,当两个值相匹配时,时寄存器的值相比较,这样,当两个值相匹配时,就会在响应的输出上产生一个转换(从低就会在响应的输出上产生一个转换(从低到高或从高到低),从而产生输出脉冲,输出的开启,从而产生输出脉冲,输出的开启(或关闭)(或关闭)(或关闭)时间与被调制的数值成正比,时间与被调制的数值成正比,因此,改变调制数值,相关引脚上输出的脉冲信号的宽度也将随之改变。

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。

正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。

它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。

(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。

(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。

(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。

(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。

(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。

(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。

(2)数字电路
采用数字电路设计的正弦信号发生器。

制作一个正弦信号发生器的设计

制作一个正弦信号发生器的设计

★项目2:数字信号源
项目简述:设计制作一个正弦信号发生器。

(1)正弦波输出频率范围:1kHz~10MHz;
(2)具有频率设置功能,频率步进:100Hz;
(3)输出信号频率稳定度:优于10-2;
(4)输出电压幅度:1V到5V这间;
(5)失真度:用示波器观察时无明显失真。

(6)输出电压幅度:在频率范围内
50负载电阻上正弦信号输出电压的峰-峰值V opp=6V±1V;
(7)产生模拟幅度调制(AM)信号:在1MHz~10MHz范围内调制度m a可在30%~100%之间程控调节,步进量50%,正弦调制信号频率为1kHz,调制信号自行产生;
(8)产生模拟频率调制(FM)信号:在100kHz~10MHz频率范围内产生20kHz最大频偏,正弦调制信号频率为1kHz,调制信号自行产生;
(9)产生二进制PSK、ASK信号:在100kHz固定频率载波进行二进制键控,二进制基带序列码速率固定为10kbps,二进制基带序列信号自行产生;
开发时间:2007 开发人数:1
运行环境:windows xp、Quartus II
相关内容:(还未整体综合)
下面是调幅原理图:
下面是调频原理图:
下面是正弦信号发生器设计原理图:
下面是PSK设计原理图:。

基于DDS的正弦波信号发生器的设计

基于DDS的正弦波信号发生器的设计

基于DDS的正弦波信号发生器的设计DDS(Direct Digital Synthesis,直接数字合成)技术是一种通过数字计算得到各种波形信号的合成技术。

正弦波信号发生器是一种用于产生正弦波信号的电子设备,通常用于各种测量、实验和测试中。

本文将介绍基于DDS的正弦波信号发生器的设计。

1.设计目标我们的设计目标是开发一个基于DDS的正弦波信号发生器,具有以下特点:-可以生成多种频率的正弦波信号;-可以通过数字控制方式调整频率;-可以输出稳定的、低失真的正弦波信号。

2.设计思路-选择一个固定的时钟频率作为DDS系统的时钟频率;-使用一个相位累加器来产生一个递增的相位值,该相位值与输出的正弦波信号频率相关;-使用一个查表ROM存储正弦波的采样值,根据相位值从查表ROM中读取相应的采样值;-使用一个数字到模拟转换器(DAC)将采样值转换成模拟信号输出。

3.系统设计基于上述思路,我们可以设计一个基于DDS的正弦波信号发生器,具体步骤如下:-设计一个用于控制频率的数字控制模块。

该模块可以接收一个控制信号,根据控制信号计算应当输出的频率,并将频率值传递给相位累加器。

-设计一个相位累加器模块。

该模块可以接收一个时钟信号和一个频率值,并根据时钟信号和频率值递增相位值,并将相位值传递给查表ROM模块。

-设计一个查表ROM模块。

该模块可以接收一个相位值,并根据相位值从查表ROM中读取相应的采样值。

-设计一个数字到模拟转换器(DAC)模块。

该模块可以接收一个采样值,并将采样值转换成模拟信号输出。

4.系统性能考虑在设计基于DDS的正弦波信号发生器时,需要考虑一些性能指标以确保输出的信号质量,如下所示:-频率范围:选择合适的时钟频率和相位累加器实现合理的频率范围。

-分辨率:根据需要的输出信号精度选择合适的查表ROM大小和DAC分辨率。

-失真度:选择合适的查表ROM分辨率和DAC精度,以及合适的滤波器设计,以保证输出信号的低失真度。

毕业设计正弦信号发生器

毕业设计正弦信号发生器

正弦信号发生器摘要本系统以单片机和FPGA为控制和处理核心,基于直接数字频率合成原理,利用DDS集成芯片AD9851实现了300Hz~13MHz、步进为0.1Hz的正弦信号发生器和高频偏的DDS调频(FM)信号发生器;通过模拟乘法器MC1496实现调幅功能,其低频调制信号由FPGA和DAC0800构成DDS低频发生器产生;利用可变增益宽带放大器AD600实现幅度程控,通过检波和ADC反馈给单片机,检测和调整输出电压,实现精确的幅度控制。

使用了多种抗干扰措施以减少噪声并抑制高频自激;后级功放采用两片宽带运放AD811组成桥式功率放大器来实现。

本系统硬件设计应用了EDA工具,软件采用模块化的编程思想。

关键字:正弦信号发生器 DDS 调幅幅度控制桥式功率放大器AbstractBased on the principle of DDS, the system uses the A T89C51 and FPGA as the control and processing unit ,and uses the DDS chip AD9851 to realize the Sine and FM signal generator .The signal generator can output Sine signal of 300 Hz ~13M Hz with 0. 1 Hz frequency step, the MC 1496 is used to realize AM performance, the Amplitude control of signals are realized by using chip AD600,the low frequency modulation signal is produced by DDS made of FPGA and DAC 0800..Many methods are employed to diminish noises and restrain high frequency self-excitation. The test results show that the system achieves the requirements of design.正弦信号发生器一、方案论证与选择本系统难点有:1.产生稳定性高、频率步进较低、频带范围较广且具有一定带负载能力的正弦信号源;2.以1kHz为调制信号,在较大动态范围(100kHz~10MHz)内产生频偏为10kHz的调频信号;3.产生AM、ASK、PSK等调制信号。

基于DDS的移相正弦信号发生器设计

基于DDS的移相正弦信号发生器设计

基于DDS 的移相正弦信号发生器设计一. 设计原理1.1 利用DDS 产生正弦波信号的工作原理由DDS 产生频率、相位可控制的正弦波。

频率累加器对输入信号进行累加运算, 产生频率控制数据M( 或相位步进量)。

读出的数据送入D/A 转换器和低通滤波器以恢复实际波形。

频率控制字M 和相位控制字分别控制DDS 输出正(余)弦的频率和相位。

DDS 系统的核心是相位累加器, 它由一个累加器和一个N 位相位寄存器组成。

每来一个时钟脉冲, 相位寄存器以步长M 增加。

相位寄存器的输出与相位控制字相加, 其结果作为正(余)弦查找表的地址。

ROM 查找表中储存着一个完整周期的正弦波数字幅度信息, , 每个查找表的地址对应正弦波中O 一360度范围中的一个相位点。

ROM 查找表把输入的地址信息映射成正(余)弦幅度信号, 同时输出数模转换器(DAC)的输入端, DAC 输出的模拟信号经过低通滤波器(LPF), 可得到一个频谱纯净的正(余)弦波。

从而实现正弦波信号的产生。

直接数字合成DDS 的可移相数字信号发生器原理图:1.2 DDS 的数字移相原理DDS 技术的核心是相位累加器, 它类似一个计数器.每来一个时钟信号, 相位累加器的输出就增加一个步长的相位增量, 相位增量的大小由频率控制字确定.经DDS 输出的信号可描述为)2sin()sin(t f A wt A S out out π== (1)其中, Sout 为经DDS 输出的信号, fout 为对应的输出频率, 时间t 是连续的。

为便于数字逻辑描述该表达式, 需进行离散化处理, 用基准时钟信号clk 进行抽样, 设正弦信号的相位φ= 2πfout t , 而在一个时钟周期Tclk 相位φ变化量为clkout clk out f f T f ππφ22==∆ (2) 式(2)中, fclk 是clk 的频率, 对于2π可以看成是满相位的1为了对输出的相位进行控制, 通过一个常数P 来实现, 而每个clk 周期的相位增量Δθ用P 来表示, 即Δθ= P ·Δφ式1 与式(2) 联立可得clkout f f P πθ2⋅=∆ (3) 显然, 信号发生器的输出可描述为)sin().sin(θφφφ∆+=∆+=A p A S out上式中, φ代表正弦信号发生器原始相位值, 可看出, 对相位值进行简单的累加运算, 就可以得到正弦信号当前相位值, 也就得到了DDS 输出的正弦信号。

正弦信号发生器的设计

正弦信号发生器的设计

正弦信号发生器的设计正弦信号是电子工程中非常常见的一种波形信号。

在很多应用场合中,为了满足一些特殊的输出要求,设计一个合适的正弦信号发生器是非常必要的。

本文将介绍如何设计一个简单的正弦信号发生器。

一、介绍正弦信号正弦信号是一种基本的周期信号,在数学和工程领域都有广泛的应用。

正弦信号的数学表达式为:y(t) = A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为相位差。

正弦信号具有周期性和连续性,可以描述很多物理和电子现象,如机械振动、电磁波等。

在电子工程领域中,正弦信号可以用于通讯系统、音频系统、数码系统等各个方面。

如果需要设计一个正弦波信号发生器,一些基本要素必须要考虑。

这些要素包括输出幅度、输出频率、工作电源和电路稳定性。

以下是正弦信号发生器的设计方案:1.输出幅度要设计一个正弦信号发生器,首先要确定所需要的输出幅度范围。

对于数字信号处理器(DSP)的输出,其输出幅度通常在±1.0之间。

如果需要更大的输出幅度,可以通过放大引脚信号或者使用外部放大器实现。

2.输出频率输出频率可以由外部时钟或者基准晶振决定。

如果想要实现可调节的输出频率,可以在电路中使用像50-100MHz这样的精准低噪声晶振。

可以根据应用需求选择不同的晶振和滤波器电路。

3.工作电源正弦波信号发生器的工作电源应该保证稳定性和可靠性。

在低频和中频应用中,标准稳压器可以提供足够的电源稳定性;在高频应用中,需要使用低噪声电源或者瞬态响应较好的电源来保证信号质量。

4.电路稳定性正弦波信号发生器的电路必须要保证稳定性。

这可以通过使用负反馈电路、保持简单电路结构和使用稳定的输出功率等方法来实现。

此外,振荡器的端部是一个有驱动能力的阻抗,因此需要使用与振荡器相匹配的驱动设计。

下面是一个简单的正弦波信号发生器电路图:在图中,U1是一个晶体管振荡器,C4和L2是功率扩大电路,R1和R2是反馈电路,C1和C2是用于稳定电路的滤波电容,C3则被用来过滤高频噪声。

正弦波信号发生器的设计与实现

正弦波信号发生器的设计与实现

正弦波信号发生器的设计与实现中文摘要正弦波信号发生器广泛地应用于电子电路、自动控制系统和教学实验等领域,是工业与实验领域重要的信号激励源。

系统是以STC89C52单片机,AD9850集成电路为核心器件,设计并实现了频率、幅值连续可调的正弦波发生器。

通过按键控制可实现正弦波频率的预置和幅度调节,步进精度为1Hz和10Hz,同时通过LCD12864液晶屏显示其对应频率。

经测试:系统输出正弦波连续可调,频率范围100Hz ~1MHz,分辨率1Hz;幅值范围1v~10v。

关键词:信号发生器;正弦波;STC89C52;AD9850Design and implementation of sine wave signal generatorABSTRACTSine wave signal generator is widely used in electronic circuits, automatic control system and teaching experiment etc., is an important signal source of industrial and experimental field.STC89C52 microcontroller, AD9850 integrated circuit are the core device of this system.The design and implementation of a sine wave generator frequency, amplitude adjustable. we can achieve the preset of sine wave frequency and adjust of the amplitude through the button control .The stepping accuracy of this design is 1Hz and 10Hz.The system can achieve the function of displaying the corresponding frequency through the LCD12864.After testing:the system output sine wave is continuous and adjustable, the frequency range of 100Hz to 1MHz, the resolution of 1Hz; range 1V ~ 10V.KEYWORD:Sine wave generator; sine wave; STC89C52 ; AD9850目录第一章绪论 01.1论文设计背景和意义 01.2波形发生器的发展 01.3信号发生器的实现方法 (1)本章小结 (2)第二章系统总体方案设计 (3)2.1设计的要求及系统功能 (3)2.2DDS的基本原理 (3)2.3功能分析 (4)2.3.1主控模块功能分析 (4)2.3.2 信号发生模块功能分析 (5)2.3.3液晶显示模块功能分析 (5)2.3.4放大模块功能分析 (5)本章小结 (5)第三章系统硬件设计 (6)3.1单片机控制模块设计 (6)3.1.1 STC89C52单片机 (6)3.1.2时钟电路 (7)3.1.3复位电路 (7)3.2信号产生模块设计 (7)3.2.1 DDS结构 (7)3.2.2累加器 (8)3.2.3 控制相位的加法器 (8)3.2.4 控制波形的加法器 (8)3.2.5 D/A转换器 (8)3.2.6 AD9850集成模块 (8)3.3显示模块设计 (10)3.4.1 LCD12864基本特性 (10)3.4.2 LCD12864的设计使用 (11)3.4键盘输入控制模块设计 (11)3.5放大模块设计 (12)3.5.1 反相比例放大电路 (12)3.5.2 运算放大器OP37 (12)3.5.3 直流稳压模块 (12)3.5.4 lm7815/lm7915系列 (13)本章小结 (13)第四章系统软件设计 (15)4.1系统主程序设计 (15)4.2键盘扫描程序设计 (15)4.3显示程序设计 (16)4.4频率设定程序设计 (17)本章小结 (17)第五章系统调试 (18)5.1软件调试 (18)5.1.1 编程语言的选择 (18)5.1.2 系统开发环境 (18)5.2测试仪器 (19)5.3电源测试数据记录 (19)5.4系统测试 (19)5.5测试分析 (20)本章小结 (20)第六章总结 (21)参考文献 (22)致谢................................................................................................................................... 错误!未定义书签。

正弦信号发生器(幅值频率可调)

正弦信号发生器(幅值频率可调)

学号:**********西北农林科技大学电子技术课程设计报告题目:正弦信号发生器(幅值频率可调)学院(系):机械与电子工程学院专业年级:学生姓名:指导教师:完成日期: 2013年7月3日目录1. 设计的任务与要求............................................................. - 2 -1.1 课题要求................................................................ - 2 -1.2具体要求................................................................. - 2 -1.3课题摘要:............................................................... - 2 -1.4设计步骤:............................................................... - 2 -2. 设计方案确定................................................................. - 3 -3. 硬件电路设计................................................................. - 4 -3.1整体电路框图............................................................. - 4 -3.2 主要元器件介绍.......................................................... - 4 -3.2.1 NE555芯片......................................................... - 4 -3.2.2 555定时器接成多谐振荡器.......................................... - 6 -3.2.3 NE5532P芯片....................................................... - 6 -3.3 整体电路设计............................................................ - 7 -3.4分立电路的设计及元件参数的选取及计算..................................... - 8 -3.4.1 555多谐振荡电路.................................................. - 8 -3.4.2带通滤波电路....................................................... - 8 -3.4.3反向比例运算放大器................................................. - 9 -4.调试与仿真................................................................... - 10 -4.1使用的主要仪器和仪表.................................................... - 10 -4.2分立电路的仿真(仿真图、操作的步骤、方法和结果)........................ - 10 -4.2.1 仿真图........................................................... - 10 -4.2.2仿真结果.......................................................... - 10 -4.3调试电路的方法和技巧:.................................................. - 12 -5. 总结........................................................................ - 13 -6. 参考文献.................................................................... - 15 - 附录一......................................................................... - 16 -1.元器件清单............................................................... - 16 -2.电路原理图............................................................... - 17 -3.PCB封装图................................................................ - 18 -4.3D效果图................................................................. - 21 -1. 设计的任务与要求1.1 课题要求:设计一个频率幅值可调的正弦信号发生器1.2具体要求:1.利用振荡电路产生正弦信号,要求有可调参数用以修改频率2.利用放大电路控制输出信号振幅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦信号发生器设计方案
一、方案比较论证
所有方案可按模拟式和数字式分为两大类
模拟式:
①利用电阻、电容、运放等传统器件搭建LC或RC正弦信号发生器。

通过改变电路中的
元件的参数值来调节输出频率。

这种方式成本低廉,但由于采用大量分立器件,受其工作原理的限制频率稳定度较低(只有10-3量级)。

另外实现扩展功能中的各种调制等也比较麻烦,电路复杂,调试困难,精度差。

②采用专用信号发生芯片MAX038来实现正弦信号波形的输出。

是美信公司的低失真单片
信号发生集成电路,内部电路完善,使用该器件能够产生精确的高频三角、锯齿、正弦及方波。

使用该芯片设计简单,但扩展功能电路部分实现起来和采用分立器件同样复杂,而且频率精度和稳度均难以达到要求。

③采用基于锁相环(PLL)技术或者非线性器件频率变换技术的频率合成器。

由晶体振荡
器和锁相环组成的系统中,前者保证工作频率稳定度,后者完成输出频率的调整,但是这时输出频率只能是晶体谐振频率的整数倍。

故虽然频率稳定能达到要求却很难做到频率输出范围1KHZ—10MHZ和100HZ步进的要求。

数字式:
①采用AD公司专用的DDS芯片AD9851合成FM和AM的载波,采用传统的模拟调制
方式来实现AM调制和FM调制。

但该方案需要额外的模拟调制FM和AM的调制电路,且制作和调制电路都比较麻烦,还难免引入一定的干扰,而且此方案中的PSK调制也不容易实现。

②采用AD公司的AD9856作为调制芯片,是内含DDS的正交调制芯片,可以实现多进
制的数字幅度调制,多进制的数字相位调制和多进制的数字幅度相位联合调制。

故AM 调制,PSK调、ASK调制都可以通过它实现但是AD9856不便于调频且控制复杂。

③利用微处理器和DAC实现DDS信号产生器。

微处理器能够实现DDS的电路结构,即
实现相位累加器、波形的数据表、同时实现数字/模拟转换器的控制时序。

利用微处理器完成加法运算需要读取的数据进行运算,再把运算结果送到目标单元。

由于微处理器工作的顺序性,这时的相位累加频率将比微处理器的时钟频率低得多。

同时微处理器还要完成人机交互的相关任务,故这种方案输出频率受到很大限制。

④利用微处理器和可编程逻辑器件实现DDS信号产生器。

微处理器程序执行的顺序性限
制了它的工作速度,可编程逻辑器件的并行运行能力使它适用于高速工作的场合。

同时FM、AM、PSK、ASK调制均由FPGA在数字域内完成,大大简化了电路,同时具有良好的精度和可控性。

微处理器完成键盘输入,液晶显示等人机交换任务。

综上所述:数字类的第四方案为最优选择。

二、总体设计
(1)总体框图如下所示
(2)考虑到单片机只是完成接收用户输入信息及显示的任务,故采用廉价的51单片机AT89S51,编程容易,使用方便。

键盘使用4x4的矩阵键盘方便用户直接键入所需要的频率和参数。

显示电路采用带字库的通用LCD12864,具有使用简单,单屏显示信息多的特点,能够提供良好的人机界面。

(3)DDS及调制电路模块
其由FPGA和DAC构成。

本设计采用Altera公司的Cyclone系列FPGA—EPIC3T144C8,此芯片有LE约3000个,片内RAM有52Kbit。

FPGA负责在数字域实现正弦波、FM、AM的合成,产生ASK和PSK调制信号并完成ASK、PSK、AM和FM的调制,然后输出波形。

(4)滤波电路及放大电路
滤波电路是采用美信的高速运放MAX4108设计的一个有源二阶低通滤波器,用以去除DDS合成信号固有的高次谐波,同时有两倍放大的功能。

(5)电源设计
高速DAC对模拟数字地之间的串扰敏感,模拟数字地之间的串扰对DAC输出信号的波形影响很大。

故本系统采用一个线性电源对模拟电路供电,采用一个开关电源对数字电路供电,模拟地和数字地之间通过一个磁珠相连。

这种设计实现了模拟数字电路尽可能大的隔离。

三、理论分析和参数设计
(1)载频参数设计
根据要求信号波形无明显失真,故一个信号周期内至少需插入16个点,而合成频率最高达10MHz,那么需要的FPGA和DAC接口数据传输速率为:
10M×16=160Mword/s
如此之高的频率传输可能很不稳定,为了解决波形失真和传输速率的矛盾,选用MAX5858A它是双路十位300M的DAC,内部含有4x/2x/1x插值滤波电路。

若采用4x插值则数据传输速率为
300Mwordps/4=75Mwordps
DDS输出的正弦波信号每秒钟有75M个插值点,并在DAC内部完成4阶插值和数字低通滤波,最后转化为实际电压输出。

这样既抑制了高频段输出正弦信号可能的失真,又降低了数据接口的传输速度,提高了系统的可靠性。

系统频率调整的步进是100Hz,DDS逻辑电路的工作时钟是75M,所以
75M/100=750000<219
所以,DDS的频率字只要多于20bit,频率调整步进就能小于100Hz。

(2)AM/FM调制参数设计
AM要求:产生1KHz的正弦调制信号;调制度在10%-100%之间程控调节,步进为10%。

本系统采用一个10bit的控制寄存器来保存调制度,其离散间隔为1/1024,高于步进10%的要求,调制度可以由用户自行设置,也可以用按键以1%或10%步进调整。

FM要求:产生1KHz的正弦调制信号;调制产生最大频偏为5KHz/10KHz两级程控调节。

AM和FM的调制信号均由另一个独立的DDS产生,在FPGA内部对信号完成数字调制。

(3)ASK/PSK调制参数设计
题目要求:产生码速率为10Kb/s的二进制基带序列信号,载波频率为100KHz。

ASK/PSK调制和AM/FM调制共用一套本振(即合成正弦信号的DDS模块)所以通过设定频率字可设置载波频率为需要100KHz.而码率为10Kb/s二进制基带序列信号则可以通过设置好的移位寄存器循环移位获得。

(4)滤波电路参数设计
由于最终方案采用DAC输出,而DAC的转换频率为75MHz,故需要一个截止频率在10MHz和75MHz之间的低通滤波器。

然而DAC的转换并不是理想的,输出信号的谐波干扰主要集中在二次谐波,所以选取截止频率为18MHz的有源二阶巴特沃斯低通滤波器,来保证达到题目的要求。

四、软件设计
(1)单片机接收用户由键盘输入的数据和控制指令,控制LCD的显示,向FPGA发送控制字。

整个软件流程如下所示:
(2)为了提供友好的提示界面,本系统设计了多级菜单界面,用户可通过选择菜单项设置输出信号的参数(频率,调制度,偏频等)。

用户确认输入后,单片机将设置的参数送至FPGA,使FPGA输出相应的信号。

(3)FPGA的数字逻辑电路负责在数字域实现FM和AM调制信号(经过离散化的)频率合成的主域ASK和PSK的调制信号,正弦波(载波)的频率组成,完成ASK、PSK、FM、AM 在数字域的调制,然后控制DAC形成正确的波形信号。

PSK调制的实现:本系统中PSK调制是通过调制信号延时作异或运算,然后经过DPSK 调制来间接实现,而DPSK的调制是通过降DDS相位累加器的相位步进瞬时设置为2π来实现反相.
FM调制通过给正弦波(载频)的频率字叠加一个偏移频率字来实现频率的转移;AM调制直接在FPGA内用数字乘法器实现;ASK调制直接用开关选通载频信号或截断载频信号实现.
整个逻辑设计框图如下图(2)所示:
五、硬件电路设计
根据总体设计方案,整个系统的硬件模块有:单片机控制模块、信号产生模块(FPGA)、DAC模块、滤波和放大。

(1)控制模块主要由单片机AT89851和LCD12864和4×4矩阵键盘组成,连接图如下图所示:
(2)整个系统的信号生成采用数字方式FPGA中实现,因此信号产生模块是整个系统的核心,可采用成品的EPIC3T144开发板。

(3)DAC采用MAX5858A,电路图如下图所示,其中OPA681是一片高带宽增益运放,MAX5858A的差分电流输出的电流范围可由R2设定,输出最大值为32×V refo/Rset。

当它取Ω有约10mA的最大电流输出,结合后取Rf为50Ω的电流-电压变换,输出范围为-500~500mV。

DAC电路
电源地的处理
(4)滤波部分采用一个二阶巴沃斯特低通滤波器电路,采用MAX4108运放完成。

同时作两倍电压放大。

滤波器实际如下图(4)所示:
滤波器电路
参考资料:《数字电路EDA技术入门与实战》,罗朝霞赫建国,人民邮电出版社,2009 《全国大学生电子设计竞赛试题精解选》,陈永真宁武等,电子工业出版社,2007。

相关文档
最新文档