高三模拟考试数学试卷(文科)精选
高三文科数学试卷电子版
![高三文科数学试卷电子版](https://img.taocdn.com/s3/m/022f095230b765ce0508763231126edb6f1a7638.png)
第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。
四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题
![四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题](https://img.taocdn.com/s3/m/e67fe4f229ea81c758f5f61fb7360b4c2f3f2a73.png)
成都石室中学2022—2023学年度上期高2023届一诊模拟考试数学试题(文科)(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共计60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,复数212i z i=+,则复数z 的虚部为( ) A. 25i B. 25 C. 15i − D. 15− 2.已知集合{}{}ln ,e 1x A xy x B y y ====−∣∣,则A B ⋃=( ) A.R B.[)0,∞+ C.()1,∞−+ D.∅3.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A. 6+B. 6+C. 12D. 12+4.已知(0,0)O ,(3,0)A ,动点(,)P x y 满足2PA PO=,则动点P 的轨迹与圆()2221x y −+=的位置关系是( ) A. 相交 B.外切C.内切D.相离 5.若tan 3α=,则sin2cos2αα−=( ) A.15− B.14 C.12 D.75 6.如图,在正方体1111ABCD A B C D −中,点,E F 分别是棱111,B B B C 的中点,点G 是棱1C C 的中点,则过线段AG 且平行于平面1A EF 的截面图形为( )A. 等腰梯形B. 三角形C. 正方形D. 矩形7.函数(ln ()x x x f x e e −+=+的图象大致是( )A .B .C .D .8.某化工企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为:0e kt M M −=(其中0M ,k 是正常数).已知经过1h ,设备可以过滤掉20%的污染物,则过滤60%的污染物需要的时间最接近( )(参考数据:lg 20.3010=)A.3hB.4hC.5hD.6h9.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( ) A.79B. 2332C. 932D.29 10.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()102mod 4=.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于( ).A.20B.21C.22D. 2311.已知双曲线22221(0,0)x y a b a b−=>>的左右焦点为12,F F ,过2F 的直线交双曲线右支于,A B ,若120BF BF ⋅=,且124cos 5F AF ∠=,则双曲线的离心率为( )B.2D. 3212.设2557log 15,log 21,2a b c ===,则( )A. b a c <<B.c a b <<C. c b a <<D. a c b <<二、填空题:本大题共4小题,每小题5分,共计20分.13.若sin 2x x =,则cos 2x =__________.14.若直线y kx b =+是曲线e 1x y =−和1e x y −=的公切线,则实数k 的值是___________.15. 已知抛物线C :22x y =上有两动点,P Q ,线段PQ 的中点E 到x 轴距离的是2,则线段PQ 长度的最大值为___________.16.半径为2的球的内接圆柱的侧面积的最大值是___________.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(Ⅰ)根据图中数据求的值;(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组各抽取多少名新生?(Ⅲ)在(Ⅱ)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且()*2n n S a n n =−∈N .(Ⅰ)求证;数列{}1n a +是等比数列; (Ⅱ)求证:1121k n k k k a a =+<∑.19. (本小题满分12分)如图,在四棱柱1111ABCD A B C D −中,底面ABCD 是边长为2的菱形,且60ADC ∠=︒,115AA CD ==,17AD =.(Ⅰ)证明:平面1CDD ⊥平面ABCD ;(Ⅱ)求棱锥111D AA C C −的体积.(0,10](10,20](20,30](30,40](40,50]a 频率/组距 时间(分钟)20. (本小题满分12分)已知椭圆C :)0,0(12222>>=+b a by a x 的离心率为23,)0,(1a A −,)0,(2a A ,),0(b B ,12A BA △的面积为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线B A 1与直线M A 2交于点P ,直线M A 1与直线B A 2交于点Q .求证:BPQ △为等腰三角形.21. (本小题满分12分)已知函数()()2ln 0f x x x a x a =−−>. (Ⅰ)求()f x 的单调区间;(Ⅱ)①若()0f x ≥,求实数a 的值;②设*n ∈N ,求证:()2111111ln 124n n n ⎛⎫⎛⎫++⋅⋅⋅++++⋅⋅⋅+>+ ⎪ ⎪⎝⎭⎝⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:极坐标与参数方程在直角坐标系xOy 中,已知曲线C 的参数方程为1cos tan x y αα⎧=⎪⎨⎪=⎩(α为参数).(Ⅰ)写出曲线C 的普通方程;(Ⅱ)设P 为曲线C 上的一点,将OP 绕原点O 逆时针旋转4π得到OQ .当P 运动时,求Q 的轨迹方程.23.选修4-5:不等式选讲 已知函数()124lg 3x x a f x ++=(a R ). (Ⅰ)若2a =−,求()f x 的定义域;(Ⅱ)若01a <<,求证:()()22f x f x >.。
高三文科数学模拟试题含答案
![高三文科数学模拟试题含答案](https://img.taocdn.com/s3/m/32e643dd541810a6f524ccbff121dd36a22dc44e.png)
高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。
在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。
A。
2.B。
-1.C。
2i。
D。
-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。
A。
{-3,-2,0}。
B。
{0,1,2}。
C。
{-2,0,1,2}。
D。
{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。
A。
2.B。
11/22.C。
-1.D。
-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。
A。
4π/3.B。
π。
C。
3π/2.D。
2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。
A。
(π/6,0)。
B。
(π/3,0)。
C。
(π/2,0)。
D。
(π,0)6.执行如图所示的程序框图,输出的s值为()。
开始是否输出结束A。
-10.B。
-3.C。
4.D。
57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。
A。
x-y+1=0.B。
x-y-1=0.C。
x+y-1=0.D。
x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。
A。
4.B。
6.C。
9.D。
369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。
A。
1.B。
2.C。
11.D。
3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。
江西省宜春市2023届高三高考模拟文科数学试题(含解析)
![江西省宜春市2023届高三高考模拟文科数学试题(含解析)](https://img.taocdn.com/s3/m/18ca642615791711cc7931b765ce050877327559.png)
江西省宜春市2023届高三高考模拟文科数学试题一、单选题1.(2023·江西宜春·统考模拟预测)设全集U =R ,{1A x x =<-或}2x ≥,{}2,1,0,1,2B =--,则()U B A ⋂=ð( )A .{}0,1B .{}1,0-C .{}0,1,2D .{}1,0,1-2.(2023·江西宜春·统考模拟预测)已知复数z 满足()1i 2z +=-,则z 等于( )A .1i--B .1i-C .1i+D .1i-+3.(2023·江西宜春·统考模拟预测)非零向量a r ,b r ,c r 满足()a cb ⊥-r r r ,a r 与b r 的夹角为π3,2b =r ,则c r 在a r 上的投影为( )A .-1B.C .1D4.(2023·江西宜春·统考模拟预测)已知实数,x y 满足约束条件0,30,1,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则23x yz -+=的最大值是( )A .3B .13CD .1275.(2023·江西宜春·统考模拟预测)从棱长为2的正方体内随机取一点,则取到的点到中心的距离不小于1的概率为( )A .π6B .π4C .π16-D .π14-6.(2023·江西宜春·统考模拟预测)若30.04,ln1.04,log 1.04a b c ===则( )A .c b a <<B .b a c <<C .c a b<<D .b<c<a7.(2023·江西宜春·统考模拟预测)在数学和许多分支中都能见到很多以瑞士数学家欧拉命名的常数,公式和定理,若正整数,m n 只有1为公约数,则称,m n 互质,对于正整数(),n n ϕ是小于或等于n 的正整数中与n 互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()()32,76ϕϕ==,()96ϕ=.记n S 为数列(){}3nϕ的前n 项和,则10S =( )A .9312-B .931-C .10312-D .1031-8.(2023·江西宜春·统考模拟预测)函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象(04)ω<<关于直线π6x =对称,将()f x 的图象向左平移π4个单位长度后与函数()y g x =图象重合,下列说法正确的是( )A .函数()g x 图象关于直线π6x =对称B .函数()g x 图象关于点π,06⎛⎫- ⎪⎝⎭对称C .函数()g x 在π0,3⎛⎫⎪⎝⎭单调递减D .函数()g x 最小正周期为π29.(2023·江西宜春·统考模拟预测)在Rt ABC V 中,1,2CA CB ==.以斜边AB 为旋转轴旋转一周得到一个几何体,则该几何体的内切球的体积为( )ABC .32π81D .4π8110.(2023·江西宜春·统考模拟预测)如图,设1F ,2F 是双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点,点A ,B 分别在两条渐近线上,且满足22133OA OF OB =+u u u r u u u u r u u u r ,20OA BF ⋅=u u u r u u u u r,则双曲线C 的离心率为( )A .B .2CD11.(2023·江西宜春·统考模拟预测)已知数列{}n a 满足1321223n n a a a a n+++++=L ,若数列()21n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和n S ,对任意*N n ∈不等式n S λ<恒成立,则实数λ的取值范围是( )A .1λ>B .1λ≥C .58λ≥D .58λ>12.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m =+-=+>+,且()()120f x g x ==,则()2111em xx -+的最大值为( )A .1B .eC .2eD .1e二、填空题13.(2023·江西宜春·统考模拟预测)已知)114d πa x x -=+⎰,则到点(),0M a 的距离为2的点的坐标可以是___________.(写出一个满足条件的点就可以)14.(2023·江西宜春·统考模拟预测)已知点()()1,1,1,1A B ---,若圆22()(24)1x a y a -+-+=上存在点M 满足3MA MB ⋅=u u u r u u u r,则实数a 的取值的范围是___________.15.(2023·江西宜春·统考模拟预测)已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30--7:00任意时刻随机到达,乙每天到起点站的时间是在6:45-7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是___________________16.(2023·江西宜春·统考模拟预测)如图,多面体ABCDEF 中,面ABCD 为正方形,DE ⊥平面,ABCD CF DE ∥,且2,1,AB DE CF G ===为棱BC 的中点,H 为棱DE 上的动点,有下列结论:①当H 为DE 的中点时,GH P 平面ABE ;②存在点H ,使得GH AC ⊥;③直线GH 与BE ④三棱锥A BCF -的外接球的表面积为9π.其中正确的结论序号为___________.(填写所有正确结论的序号)三、解答题17.(2023·江西宜春·统考模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且2cos a b c B +=.(1)求证:2C B =;(2)求3cos a bb B+的最小值.18.(2023·江西宜春·统考模拟预测)如图1,在直角梯形ABCD 中,//,90,224AB CD DAB CD AB AD ∠====o ,点E ,F 分别是边,BC CD 的中点,现将CEF △沿EF 边折起,使点C 到达点P 的位置(如图2所示),且2BP =.(1)求证:平面APE ⊥平面ABD ;(2)求点B 到平面ADP 的距离.19.(2023·江西宜春·统考模拟预测)为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加2023年5月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):月份2022.122023.12023.22023.32023.4月份编号t12345竞拍人数y (万人)1.72.12.52.83.4(1)由收集数据的散点图发现可用线性回归模型拟合竞拍人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆˆˆy bt a =+,并预测2023年5月份参与竞拍的人数.(2)某市场调研机构对200位拟参加2023年5月份车牌竞拍人员的报价进行抽样调查,得到如下一份频数表:报价区间(万元)[)1,2[)2,3[)3,4[)4,5[)5,6[]6,7频数206060302010(i )求这200位竞拍人员报价X 的平均数x 和样本方差2s (同一区间的报价可用该价格区间的中点值代替);(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,N μσ,且μ与2σ可分别由(i )中所求的样本平均数x 及方差2s 估值.若2023年5月份实际发放车牌数是5000,请你合理预测(需说明理由)竞拍的最低成交价.附:()()()121ˆ 1.3niii nii x x y y bx x ==--=≈-∑∑,若()0,1Y N :,则( 1.11)0.8660<=P Y ,( 1.12)0.8686P Y <=.20.(2023·江西宜春·统考模拟预测)已知函数()ln 2f x x x =--.(1)求函数的最小值;(2)若方程()f x a =有两个不同的实数根1x ,2x 且12x x <,证明:1223x x +>.21.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左、右焦点分别是12,F F ,以1F 为圆心,6为半径的圆与以2F 为圆心,2为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点2F 的直线12,l l 的斜率分别为12,k k ,且122k k =-,直线1l 交椭圆C 于,M N 两点,直线2l 交椭圆C 于,G H 两点,线段,MN GH 的中点分别为,R S ,直线RS 与椭圆C 交于,P Q 两点,,A B 是椭圆C 的左、右顶点,记PQA △与PQB △的面积分别为12,S S ,证明:12S S 为定值.22.(2023·江西宜春·统考模拟预测)在平面直角坐标系xoy 中,曲线C 的参数方程11222122t t t t x y ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=-⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程cos 2sin 10m ρθρθ+-=.(1)求曲线C 的普通方程;(2)若直线l 与曲线C 有两个不同公共点,求m 的取值范围.23.(2023·江西宜春·统考模拟预测)已知函数()244f x x x =++-.(1)求不等式24410x x ++-≥的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c c a m++≥+++.参考答案:1.D【分析】先计算得到U A ð,进而求出交集.【详解】{}12U A x x =-≤<ð,故(){}1,0,1U B A =-I ð故选:D 2.A【分析】利用复数的除法运算和共轭复数的定义求解.【详解】由题可得2(1i)1i 1iz -==--=-++,所以1i z =--,故选:A.3.C【分析】根据投影公式计算出正确答案.【详解】由于()a c b ⊥-r r r,所以()0,a c a b a c a a b b c ⋅-=⋅-⋅=⋅=⋅r r r r r r r r r r r ,由于a r 与b r 的夹角为π3,所以πcos 3a c a b a b a ⋅=⋅=⋅⋅=r r r r r r r,c r 在a r 上的投影为1a a c a a⋅==rr r r r .故选:C 4.B【分析】画出可行域,向上平移基准直线20x y -+=到可行域边界位置,由此求得23x y z -+=的最大值.【详解】画出可行域如下图所示,向上平移基准直线20x y -+=到可行域边界点()1,1B 的位置,此时z 取得最大值为1max 12111,3z z --⨯+=-==,.故选:B.5.C【分析】根据几何概型概率问题的计算公式求得正确答案.【详解】点到中心距离小于等于1的几何体是以中心为球心,1为半径的球体.所以,取到的点到中心的距离不小于1的概率为334π1π31126⨯-=-.故选:C 6.A【分析】构造函数()()ln 1f x x x =+-,利用导数判断函数单调性,再结合对数的性质即可判断大小关系.【详解】因为0.04a =,ln1.04b =,3log 1.04c =,当()0,1x ∈时,设()()ln 1f x x x =+-,则()11011xf x x x -'=-=<++,所以()f x 在()0,1上单调递减且()00f =,所以()()()0.04ln 10.040.0400f f =+-<=,即()0.04ln 10.04>+,所以a b >;又因为3e >,所以ln 3ln e 1>=,3ln1.04log 1.03ln1.04ln 3=<,即b c >,所以c b a <<.故选:A.7.D【分析】根据题意分析可得()1323nn ϕ-=⋅,结合等比数列求和公式运算求解.【详解】由题意可知:若正整数3nm ≤与3n不互质,则m 为3的倍数,共有1333n n -=个,故()1133332n n n n ϕ---=⋅=,∵()()113233233n n n n ϕϕ+-⋅==⋅,即数列(){}3n ϕ是以首项()32ϕ=,公比3q =的等比数列,故()1010102133113S -==--.故选:D.8.C【分析】由对称性求得ω,由图象平移变换求得()g x ,然后结合正弦函数的对称性,单调性,周期判断各选项.【详解】由已知ππππ662k ω+=+,62k ω=+,Z k ∈,又04ω<<,∴2ω=,ππ2π()sin[2()sin(2463g x x x =++=+,π2ππ2ππ,Z 632k k ⨯+=≠+∈,A 错;π2ππ2()π,Z 633k k ⨯-+=≠∈,B 错;π(0,3x ∈时,2π2π4ππ3π2(,)(,)33322x +∈⊆,C 正确;()g x 的最小正周期是2ππ2T ==,D 错.故选:C .9.C【分析】根据旋转体的概念得出该旋转体是两个共底面的圆锥的组合体,作出轴截面,得出内切球于心O 位于对称轴AB 上,由平行线性质求得球半径r 后可得球体积.【详解】由题意该几何体是两个共底面的圆锥的组合体,如图是其轴截面,由对称性知其内切球球心O 在AB 上,O 到,CA CB 的距离,OE OF 相等为球的半径,设其为r ,因为C 是直角,所以OECF 是正方形,即CF CE r ==,由//OF CA 得OF BF CA BC =,即212r r -=,解得23r =,球体积为3344232ππ(π33381V r ==⨯=.故选:C .10.C【分析】先求出AB 所在的直线方程,分别与两条渐近线联立方程组,求出,A B 两点的坐标,再根据22133OA OF OB =+u u u r u u u u r u u u r,求出,a c 之间的关系,从而可得双曲线的离心率【详解】由题意:OA b k a = ,20OA BF =u u u r u u u u r Q g ,2OA BF ∴⊥ ,2BF ak b ∴=-所以直线2BF 的方程为:()ay x c b=-- ①直线OA 的方程为:by x a =②直线OB 的方程为:by x a=-③联立①②可得:2a x cab y c⎧=⎪⎪⎨⎪=⎪⎩ ,即2(,)a ab A c c 联立①③可得22222a c x a babcy a b ⎧=⎪⎪-⎨-⎪=⎪-⎩,即22222(,a c abc B a b a b ---又22133OA OF OB =+u u u r u u u u r u u u r Q 22222221(,)(,0)(,)33a ab a c abcc c c a b a b-∴=+--可得222222233()3()a a c c c a b ab abcc a b ⎧=+⎪-⎪⎨-⎪=⎪-⎩ ,化简可得223a c = ,即2e 3=,e ∴= 故选:C 11.C【分析】根据1321223n n a a a a n+++++=L 求得 n a ,再因为对任意*N n ∈不等式n S λ<恒成立,()max n S λ>,求出实数λ的取值范围.【详解】1321223n n a a a a n+++++=L ①,31212231n n a a a a n -++++=-L ②,由①-②可得,当 2n ≥ 时,2n na n=,当211,2n a ==,当2n ≥,()()()122211222111n n n n n n n a n n n n +⎛⎫++==- ⎪ ⎪++⨯⨯+⨯⎝⎭,当1,n =()2318n n n a +=+,所以()()2312131111311228223221282212n n n n S n n n ++⎡⎤⎛⎫⎛⎫⎛⎫=+-++-=+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯+⨯⨯+⨯⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦L ,对任意*N n ∈不等式n S λ<恒成立,所以 ()max n S λ>,()21332528882221181n n S n +⎛⎫=+<+=⎪ ⎪-⨯+⎝⎭⨯.所以58λ≥.故选:C.12.A【分析】根据题意表示出()()21121ln 1e ,x x x x m ++==从而推导出21e 1,xx =+将问题转化为()21111e em m x x m--+=,利用导数求得函数的最值.【详解】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e e x m m m x x x m---+==,1(),0e m m t m m -=>,则11(),em mt m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.13.22(2)4x y -+=上的任意一点都可以【分析】根据定积分的几何意义先求出a ,再写出到点(),0M a 的距离为2的点表示一个圆.【详解】由于11d x -⎰表示以()0,0为圆心,1为半径且在第一、二象限的圆弧与坐标轴围成的面积,其面积是半径为1的圆的面积的一半,即为π2.所以)111144π4d d 202ππ2πa x x x x --==⨯+=+=⎰⎰,到点()2,0M 的距离为2的点是圆22(2)4x y -+=上的点.故答案为:22(2)4x y -+=上的任意一点.14.120,5⎡⎤⎢⎥⎣⎦【分析】设(,)M x y ,由数量积的坐标表示求得M 点轨迹是一个圆,然后由圆与圆的位置关系可得a 的范围.【详解】设(,)M x y ,则(1,1),(1,1)MA x y MB x y =----=---u u u r u u u r,2(1)(1)(1)3MA MB x x y ⋅=---+--=u u u r u u u r,即22(1)4x y ++=,M 在以(0,1)-为圆心,2为半径的圆上,由题意该圆与圆22()(24)1x a y a -+-+=有公共点,所以2121-≤≤+,解得1205a ≤≤.故答案为:12[0,]5.15.112【分析】由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,他们能搭乘同一班公交车,则4560x ……,4560y …….试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为A ,由此能求出结果.【详解】解:由题意知本题是一个几何概型,设甲和乙到达的分别为6时x +分、6时y +分,则3060x ……,4575y ……,则试验包含的所有区域是{(,)|3060x y x Ω=……,4575}y ……,他们能搭乘同一班公交车所表示的区域为4550{(,)|4550x A x y y ⎧=⎨⎩…………或50555055x y ⎧⎨⎩…………或5560}5560x y ⎧⎨⎩…………,则他们能搭乘同一班公交车的概率5531303012P ⨯⨯==⨯.故答案为:11216.①④【分析】根据线面平行的判定定理,以及线线垂直的判定,结合异面直线所成角,以及棱锥外接球半径的求解,对每一项进行逐一求解和分析即可.【详解】对①:当H 为DE 的中点时,取EA 中点为M ,连接,MH MB ,因为,H M 分别为,ED EA 的中点,故可得MH //AD ,12MH AD =,根据已知条件可知:BG //1,2AD BG AD =,故MH //,BG MH BG =,故四边形HMBG 为平行四边形,则H G //MB ,又MB ⊂平面,ABE HG ⊄平面ABE ,故H G //面ABE ,故①正确;对②:因为ED ⊥平面ABCD ,,⊂DA DC 平面ABCD ,故,DE DA DE DC ⊥⊥,又四边形ABCD 为矩形,故DA DC ⊥,则,,DE DA DC 两两垂直,以D 为坐标原点,建立空间直角坐标系如图所示:则()()()()()2,0,0,0,2,0,2,2,0,0,0,2,1,2,0A C B E G ,设()0,0,H m ,[]0,2m ∈,若GH AC ⊥,则()()1,2,2,2,020GH AC m ⋅=--⋅-=-≠u u u r u u u r,不满足题意,故②错误;对③:()1,2,GH m =--u u u r,()2,2,2BE =--u u u r ,()()()()1222262GH BE m m ⋅=-⨯-+-⨯-+=+u u u r u u u r,GH ==u u u r,BE =u u u r []0,2m ∈,,cos GH =u u u r u=[]0,2m ∈,令2325m y m +=+,设32t m =+,[]2,4t ∈,23t m -=,则29492453ty t t t==-⎛⎫+-+ ⎪⎝⎭,当[]2,4t ∈时,根据对勾函数的性质得4949454,42t t ⎡⎤+-∈⎢⎥⎣⎦,则236,549y ⎡⎤∈⎢⎥⎣⎦,当25y =时,cos ,GH BE u u u r u u u r有最小值,最小值为,故③错误;对④:由题可得CF ⊥平面ABCD ,又面ABCD 为正方形,∴,,AB BC CF AB BC CF C ⊥⊥⋂=,∴AB ⊥平面BCF ,则AB ,BC ,CF 两两垂直,∴AF 为三棱锥A BCF -的外接球的直径,又22222212219AF AB BC CF =++=++=,∴三棱锥A BCF -的外接球表面积为9π,故④正确.故答案为:①④.17.(1)证明见解析(2)最小值为【分析】(1)根据正弦定理边角互化和两角和差正弦化简即可证明.(2)将问题转化32cos 2cos cos a b c B b b B b B++=24cos cos B B =+,根据第一问解得π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,然后结合不等式求解.【详解】(1)在ABC V 中,2cos a b c B +=,由正弦定理得sin sin 2sin cos A B C B +=,又()πA B C =-+,因为()sin sin 2sin cos B C B C B ++=⋅,所以sin cos sin cos sin C B B C B ⋅-⋅=,所以()sin sin C B B -=,又sin 0B >,所以0πC B C <-<<,且πB C B C +-=<,所以B C B =-,故2C B =.(2)由(1)2C B =得()30,πB C B +=∈,所以π10,,cos ,132B B ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因为2cos ,2a b c B C B +==,所以32cos 2cos cos a b c B b b B b B++=2sin cos 2sin 2sin2cos 2sin sin cos sin cos C B B B B BB B B B⋅+⋅+==⋅⋅24cos cos B B=+≥当且仅当24cos cos B B =即cos B =π0,3B ⎛⎫∈ ⎪⎝⎭,即当且仅当π4B =时等号成立,所以当π4B =时,3cos a bb B +的最小值为18.(1)证明见解析【分析】(1)连接,BD BF ,由等腰三角形的性质和勾股定理,证明PE EF ⊥,PE BE ⊥,可证得PE ⊥平面ABD ,即可证得平面APE ⊥平面ABD .(2)取AD 的中点O ,连接,,OE DE PO ,由勾股定理求,,PD PA PO ,又B PAD P ABD V V --=,利用体积法求点B 到平面ADP 的距离.【详解】(1)证明:由题意,连接,BD BF ,因为224CD AB AD ===,//AB CD ,90,DAB F ∠=o 是边CD 的中点,所以2BF CF ==,则BC =又E 是边BC 的中点,则EF BC ⊥,在折起中PE EF ⊥.又222224BE PE BP +=+==,所以PE BE ⊥,又BE EF E =I ,BE ⊂平面ABD ,EF ⊂平面ABD ,故PE ⊥平面ABD ,又PE ⊂平面APE ,所以平面APE ⊥平面ABD .(2)由(1)中取AD 的中点O ,连接,,OE DE PO ,由(1)可知,PE ⊥平面ABD ,所以,,PE DE PE AE PE OE ⊥⊥⊥,而()132OE AB DC =+=,112OD AD ==,所以DE =同理AE =所以PD PA PO ======所以PAD V 是等腰三角形,所以1122PAD S AD PO =⋅=⨯=V 又B PAD P ABD V V --=,即1133PAD ABD S h S PE ⋅=⋅V V ,所以ABD PADS PE h S ⋅==VV =,即点B 到平面ADP19.(1)0.41.7ˆ12=+yt ,预测2023年5月份参与竞拍的人数为3.73万人(2)(i ) 3.5x =,2 1.7s =;(ii )预测竞拍的最低成交价为4.943万元【分析】(1)由已知公式求得线性回归方程,6t =代入回归方程可得预测值;(2)(i )由均值与方差公式计算出均值与方差;(ii )由预测值求得报价在最低成交价以上人数占总人数比例,然后由正态分布的性质求得预测竞拍的最低成交价.【详解】(1)11(12345)3,(1.7 2.1 2.5 2.8 3.4) 2.555t y =++++==++++=,55211149162555, 1.7 4.27.511.21741.6,ii i i i tt y ===++++==++++=∑∑,241.653 2.5ˆˆ0.41, 2.50.413 1.275553ba -⨯⨯∴===-⨯=-⨯,y 关于t 的线性回归方程0.41.7ˆ12=+y t 2023年5月份对应6t =,所以0.416 1.27 3.73ˆ=⨯+=y所以预测2023年5月份参与竞拍的人数为3.73万人.(2)(i )由题意可得:1.50.12.50.33.50.34.50.155.50.16.50.05 3.5x =⨯+⨯+⨯+⨯+⨯+⨯=22222(1.5 3.5)0.1(2.5 3.5)0.3(3.5 3.5)0.3(4.5 3.5)0.15s =-⨯+-⨯+-⨯+-⨯22(5.5 3.5)0.1(6.5 3.5)0.05 1.7+-⨯+-⨯=(ii )2023年5月份实际发放车牌数是5000,设预测竞拍的最低成交价为a 万元,根据竞价规则,报价在最低成交价以上人数占总人数比例为5000100%13.40%37300⨯≈根据假设报价X 可视为服从正态分布()22,, 3.5, 1.7, 1.3===≈N μσμσσ,令 3.51.3--==X X Y μσ,由于( 1.11)0.8660<=P Y ,1( 1.11)0.1340P Y ∴-<=,3.5() 1.110.86601.3a P Y a P Y -⎛⎫∴<=<== ⎪⎝⎭,所以 3.5 1.111.3a -=得 4.943=a ,所以预测竞拍的最低成交价为4.943万元.20.(1)1-(2)证明见解析【分析】(1)利用导数法求函数最值的步骤解求解;(2)根据题意构造函数()()()2F x f x f x =--,()0,1x ∈.对函数求导,利用导函数的正负判断函数的单调性,进而利用函数的最值得出()()212f x f x >-,再结合(1)中函数的单调性即可得证.【详解】(1)由题意可知:函数()ln 2f x x x =--的定义域为:()0,∞+.则()11f x x'=-,令()0f x '=,解得1x =.当()0,1x ∈,()0f x '<,函数()f x 单调递减;当()1,x ∈+∞,()0f x ¢>,函数()f x 单调递增.所以1x =为极小值点,且()()min 11f x f ==-.所以函数()f x 的最小值为1-.(2)根据题意可知:()()12f x f x =,根据(1)设101x <<,21x >,构造函数()()()2F x f x f x =--,()0,1x ∈.()()()()()221202x F x f x f x x x -'''=+-=<-,所以()F x 在()0,1上单调递减.则有()()10F x F <=,也即()()1120f x f x -->.因为()()12f x f x =,所以()()2120f x f x -->,也即()()212f x f x >-因为121x ->,21x >,由(1)可知()f x 在()1,+∞上单调递增,所以212x x >-,也即122x x +>.由已知21x >,所以1223x x +>.21.(1)2211612x y +=;(2)证明见解析.【分析】(1)根据离心率的定义和椭圆定义求得,a c ,再计算出b 后得椭圆方程;(2)设()()1122,,,M x y N x y ,直线方程代入椭圆方程,利用韦达定理求得中点,R S 的坐标,当直线PQ 斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,代入整理得12,k k 是一个一元二次方程的根,由韦达定理得12k k ,从而得出,m n 关系,得出直线PQ 过定点E ,再确定直线PQ 斜率不存在时也过这个定点E ,然后结合该定点得出三角形面积比.【详解】(1)依题意得12622c a a⎧=⎪⎨⎪+=⎩,则4,2,a c =⎧⎨=⎩则22212b a c =-=,所以椭圆C 的方程为2211612x y +=;(2)直线()11:2l y k x =-,设()()1122,,,M x y N x y ,由122(2)11612y k x x y =-⎧⎪⎨+=⎪⎩得()2222111341616480k x k x k +-+-=,所以2112211634k x x k +=+,211221164834k x x k -=+,且0∆>,则中点211221186,3434k k R k k ⎛⎫- ⎪++⎝⎭,同理可算222222286,3434k k S k k ⎛⎫- ⎪++⎝⎭①当直线斜率存在时,设直线:PQ y mx n =+,点,R S 在直线PQ 上,点,R S 坐标代入整理得()()21122284630,84630,m n k k n m n k k n ⎧+++=⎪⎨+++=⎪⎩易知12,k k 为方程()284630m n k k n +++=的两个根,则123284n k k m n==-+,所以1611n m =-,所以直线16:11PQ y mx m =-,则直线恒过点16,011E ⎛⎫⎪⎝⎭②当直线的斜率不存在时,由对称性可知12k k =-,由122k k =-,不妨设12k k ==,所以221222128816343411k k k k ==++,直线16:11PQ x =过16,011⎛⎫⎪⎝⎭,根据①②可知,直线PQ 恒过点16,011E ⎛⎫⎪⎝⎭,因为PQA △的面积11212S AE y y =⋅-,PQB △的面积21212S BE y y =⋅-,所以121641511167411AE S S BE +===-.【点睛】方法点睛:椭圆中的直线过定点问题的解决方法:斜率存在时,设出直线方程为y mx n =+,根据已知条件确定,m n 的关系后,由直线方程得出定点坐标.本题中,动直线PQ 是由点,R S 确定的,因此可由已知直线12,l l 确定,R S 的坐标,再把坐标代入所设直线方程,发现12,k k 是一个一元二次的两根,这样可由韦达定理求得,m n 的关系,得出结论.22.(1)()22441x y x -=≥(2)4m <<【分析】(1)在曲线C 的参数方程中消去参数t ,可得出曲线C 的普通方程,利用基本不等式求出x 的取值范围,即可得解;(2)求出直线l 的普通方程,分析可知直线l 与双曲线2214y x -=的右支有两个交点,将直线l 与双曲线2214y x -=方程联立,利用直线与双曲线的位置关系可得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】(1)因为112122t t x ⎛⎫=+≥ ⎪⎝⎭()222222221422,2441122,2t t t t x x y x y ⎧=++⎪⎪-=≥⎨⎪=+-⎪⎩则则曲线的普通方程为()22441x y x -=≥(2)cos 2sin 10m ρθρθ+-=则210mx y +-=由得()22210,1,14mx y y x x +-=⎧⎪⎨-=≥⎪⎩得()22162170m x mx -+-=有两个不等正根()22222160,Δ468160,20,1617016m m m m m m ⎧-≠⎪=+->⎪⎪⎨->⎪-⎪⎪->-⎩则4m <<23.(1)[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦(2)证明见解析【分析】(1)利用零点分段法分类讨论,分别求出不等式的解集,即可得解;(2)利用绝对值三角不等式求出()f x 的最小值,即m 的值,再利用柯西不等式证明即可.【详解】(1)不等式24410x x ++-≥,所以224410x x x ≤-⎧⎨---+≥⎩,解得103x ≤-,或2424410x x x -<<⎧⎨+-+≥⎩,解得24x ≤<,或424410x x x ≥⎧⎨++-≥⎩,解得4x ≥,所以原不等式解集为[)10,2,3∞∞⎛⎤--⋃+ ⎥⎝⎦.(2)()244242f x x x x x x =++-=++-++()2406x x ≥+--+=,当且仅当2x =-时取得,即min ()6f x =,所以6a b c m ++==,因为()1112a b c a b b c a c ⎛⎫++⨯++ ⎪+++⎝⎭()111a b b c c a a b b c c a ⎛⎫=+++++++ ⎪+++⎝⎭()()()111a b b c c a a b b c c a ⎛⎫=+++++++⎡⎤ ⎪⎣⎦+++⎝⎭222222⎡⎤⎡⎤⎢⎥=++++⎢⎥⎣⎦⎢⎥⎣⎦2≥()21119=++=,当且仅当12a b c ===时取等号,所以()1119922a b b c c a a b c m ++≥=+++++成立.。
福州高级中学高三数学(文科)模拟试卷
![福州高级中学高三数学(文科)模拟试卷](https://img.taocdn.com/s3/m/8671a14b2b160b4e767fcf31.png)
高三数学(文科)模拟试卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:样本数据12,,,n x x x 的标准差为s =其中x 为样本平均数第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,=+ii1 A .i 2121+ B .i 2121+- C .i 2121- D .i 2121-- 2.已知全集U=R ,集合A={|01x x x <-},B={x|o<x<3),那么(U C A )∩B 等于A .{x|l ≤x ≤3}B .{x|l ≤z<3}C .{x|l<x<3}D .{x|l<x<3}3.甲、乙两名同学在5次体育测试中的成绩统计如下左图的茎叶图所示,若甲、乙两人的平均成绩分别是X 甲、X 乙,则下列结论正确的是A.X 甲<X 乙;乙比甲成绩稳定B.X 甲>X 乙;甲比乙成绩稳定C.X 甲>X 乙;乙比甲成绩稳定D.X 甲<X 乙;甲比乙成绩稳定4是直线4(1)90x a y -++=与直线2(1)60a x ay --+=垂直的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.已知0>>b a ,则3,3,4a b a的大小关系是A .334aba>> B .343baa<< C . 334b a a << D . 343a a b <<6.已知x 、y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩, 则24z x y =+的最小值为A. -15B. -20C. -25D. -30 7.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x A.332-B. 332±C. 1-D.1±8.已知椭圆2222:1(0)x y C a b a b +=>>,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =9图所示,则()x f 的解析式是ABC D 10.以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程是A.22(2)(1)3x y -++= B.22(2)(1)3x y ++-=C.22(2)(1)9x y -++=D.22(2)(1)9x y -++=11.若点M 是ABC ∆所在平面内的一点,且满足53AMAB AC =+,则ABM ∆与ABC ∆的面积比为A .15B .25C .35D .4512.已知数列{}n a 满足ABCD第Ⅱ卷 (非选择题 共90分)二.填空题(本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置上.)13.双曲线3322=-y x 的渐近线方程是 ★ ★★ . 14.某程序框图如图所示,该程序运行后输出的n 值是8,则从集合{}3,2,1,0中所有满足条件的S 0值为★★★ .15.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。
四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)
![四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)](https://img.taocdn.com/s3/m/c5e37b4fb42acfc789eb172ded630b1c59ee9b25.png)
一、单选题二、多选题1. 命题“,函数是偶函数”的否定是( )A .,函数不是偶函数B .,函数不是偶函数C .,函数是奇函数D .,函数是奇函数2. 定义在上的函数满足,当时,,则不等式的解集为( )A.B.C.D.3. 某圆锥高为1,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )A .2B.C.D .14. 已知数列的通项公式为,前n项和为,则( )A .48B .63C .80D .995.已知平面向量满足,,,则向量与向量的夹角为( )A.B.C.D.6. 椭圆的左、右焦点为,,过垂直于x 轴的直线交C 于A ,B 两点,若为等边三角形,则椭圆C 的离心率为( )A.B.C.D.7.已知抛物线:与点,过的焦点且斜率为的直线与交于,两点,若,则( )A.B.C.D.8. 已知偶函数满足:对任意的,都有成立,则满足的取值范围是A.B.C.D.9. 已知函数,若函数的部分图象如图所示,则关于函数,下列结论正确的是()A .函数的图象关于直线对称B .函数的图象关于点对称C .函数在区间上的减区间为D .函数的图象可由函数的图象向左平移个单位长度得到10. 利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A 为“是一等品”,B 为“是合格品”,C 为“是不合格品”,则下列结果正确的是( ).A.B.C.D.四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)三、填空题四、解答题11. 下列说法正确的是( )A .若,则B.若,,且,则的最大值是1C .若,,则D .函数的最小值为912. 已知点P 为双曲线上任意一点,为其左、右焦点,O 为坐标原点.过点P 向双曲线两渐近线作垂线,设垂足分别为M 、N ,则下列所述正确的是( )A.为定值B .O 、P 、M 、N 四点一定共圆C.的最小值为D .存在点P 满足P 、M 、三点共线时,P 、N 、三点也共线13. 对实数、定义一个运算:,设函数(),若函数的图象与轴恰有两个公共点,则实数的取值范围是__________.14. 如图,正四面体的棱长为3,,,分别是,,上的点,,,,截去三棱锥,同理,分别以,,为顶点,各截去一个棱长为1的小三棱锥,截后所得的多面体的外接球的表面积为_____.15. 图,在梯形,,,,,且,则的值为______.16.在中,内角A 、B 、C 的对边分别为a 、b 、c ,,(1)求角A ;(2)若,求a 的最小值.17.已知函数是上的偶函数,其图象关于点对称,且在区间上是单调函数.求和的值.18. 已知函数.(1)求的值;(2)求的最小正周期和单调递增区间.19. 电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.20. 如图所示的几何体中,四边形ABCD为矩形,平面ABCD,,,,点P为棱DF的中点.(1)求证:平面APC;(2)求直线DE与平面BCF所成角的正弦值;(3)求平面ACP与平面BCF的夹角的余弦值.21. 已知函数.(1)若函数的图象与轴存在交点,求的最小值;(2)若函数的图象在点处的切线斜率为,且函数的最大值为,求证:.。
高三上学期期末统考模拟真题试卷(数学文科)
![高三上学期期末统考模拟真题试卷(数学文科)](https://img.taocdn.com/s3/m/d04d61c30508763230121202.png)
第一学期期末统考 高三年级数学(文科)试题(注意:请将选择题和填空题答案写在答题卷上)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合}80|{≤<∈=x N x U ,}5,4,2,1{=S ,}7,5,3{=T ,则)(T C S U ( )A .}4,2,1{B .}7,5,4,3,2,1{C .}2,1{D .}8,6,5,4,2,1{2.若函数)(x f 的反函数)0(1)(21<+=-x x x f,则)2(f 的值为( )A .1B .1-C .11-或D .53.在等差数列}{n a 中,39741=++a a a ,27963=++a a a ,则数列}{n a 的前9项之和9S 等于( )A .66B .99C .144D .297 4.若0tan sin <x x ,则⎪⎭⎫⎝⎛++x 225sin 1π等于( ) A .x cos 2 B .x sin 2 C .x cos 2- D .x sin 2-5.对于实数a 、b ,“0)(≤-a b b ”是“1≥ba”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知样本容量为30,在样本频率分布直方图中, 各小长方形的高的比从左到右依次为1:3:4:2,则第2组的频率和频数分别是( )A .12,4.0B .16,6.0C .16,4.0D .12,6.07.某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有 ( )A .120种B .48种C .36种D .18种8.在821⎪⎭⎫ ⎝⎛-x x 的展开式中,含x 的项的系数是( )A .55B .55-C .56D .56-9.函数)22(cos ln ππ<<-=x x y 的图像( )10.一个n 棱锥的所有侧面与底面所成二面角都为30°,若此棱锥的底面积为S ,则它的侧面积为( )A .nS 23 B .S 23 C .S 332 D .nS 332 11.双曲线12222=-by a x )0,0(>>b a 的两个焦点为1F 、2F ,若P 为其上一点,且||2||21PF PF =,则双曲线离心率的取值范围为( )A .(]3,1B .()3,1C .()+∞,3D .[)+∞,312.已知A ,B ,C 是平面上不共线的三点,O 为平面ABC 内任一点,动点P 满足等式[])21()1()1(31λλλ++-+-=)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的( )A .内心B .垂心C .重心D .AB 边的中点二、填空题(本大题共4小题,每小题4分,共16分)13.函数)12(log 31-=x y 的定义域是14.若x 、y 满足⎪⎩⎪⎨⎧∈≤+≥N y x y x x y ,16||22,则y x z +=2的最大值为 。
河南省安阳市2023届高三三模文科数学试题(含答案)
![河南省安阳市2023届高三三模文科数学试题(含答案)](https://img.taocdn.com/s3/m/bb72bc7bff4733687e21af45b307e87101f6f8f0.png)
河南省安阳市2023届高三三模文科数学试题学校:___________姓名:___________班级:___________考号:___________A .83B .8.已知0,0a b >>,则下列命题错误的是(A .若1ab ≤,则112a b +≥B .若4a b +=,则19a b+的最小值为C .若224a b +=,则ab 的最大值为三、解答题(1)求直方图中t 的值;(2)根据频率分布直方图估计该市60%的居民年用水量不超过(3)已知该市有100万户居民,规定:每户居民年用水量不超过过50吨,则超出的部分每吨收1元水资源改善基金,请估计该市居民每年缴纳的水资源改善基金总数约为多少.(每组数据以所在区间的中点值为代表)18.已知数列{}n a 满足111,12nn n a a a a +==+.(1)证明:BC ME ⊥;(2)求点M 到平面PBE 的距离.20.已知函数()()()ln 1f x x x a a =-+∈R .(1)证明:曲线()y f x =在点()()1,1f 处的切线经过坐标原点;参考答案:故选:C.5.D【分析】根据一组数据同乘以一个数后的平均数以及方差的性质计算,即可得答案【详解】由题意知这些商品的价格如果按人民币计算,价格是按美元计算的价格的故按人民币计,则平均数和方差分别为易知该正方体的棱长为50故选:D. 11.B【分析】由椭圆离心率为6 3可得22233bm n+=,由AF⊥【详解】由椭圆离心率为612.A【分析】由12T f A ⎛⎫= ⎪⎝⎭求出ϕ,再根据ππ42f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 的几何意义求出ω【详解】因为0ω>,【详解】2y +,得322z y x =-+,作出不等式组对应的可行域(阴影部分)322z y x =-+,由平移可知当直线y =时,直线322z y x =-+的截距最大,此时,解得(1,1)A ,)ABC 中,因为//,DE BC -DBCE 中,,DE PD DE ⊥平面PDB ,从而BC ⊥平面上取一点F ,使得2CF =(2)设00(,)P x y ,因为PF 又点P 在抛物线上,所以根据对称性,不妨设点P 设直线AB 的方程为x my =。
陕西省咸阳市2023届高三三模文科数学试题
![陕西省咸阳市2023届高三三模文科数学试题](https://img.taocdn.com/s3/m/044d51ca951ea76e58fafab069dc5022aaea46b6.png)
陕西省咸阳市2023届高三三模文科数学试题
学校:___________姓名:___________班级:___________考号:___________
二、填空题
13.若一数列为2,7,14,23,×××,则该数列的第8个数是________.
三、解答题
17.从某市统考的学生数学考试卷中随机抽查100份,分别统计出这些试卷总分,由总分得到如图所示的频率分布直方图.
(1)求这100份数学试卷的样本平均分(同一组中的数据用该组区间的中点值作代表);(2)在样本中,按照分层抽样从数学成绩不低于125分的试卷中抽取6份,再从抽取的试卷中随机抽取出2份试卷进行答卷分析,求至少有一份试卷成绩不低于135分的概率.
18.如图,三棱柱111ABC A B C -的侧面11BB C C 是边长为1的正方形,侧面11BB C C ^侧
17.(1)100。
四川省绵阳2023-2024学年高三一诊模拟考试文科数学试题含解析
![四川省绵阳2023-2024学年高三一诊模拟考试文科数学试题含解析](https://img.taocdn.com/s3/m/c01be7cca1116c175f0e7cd184254b35effd1a53.png)
绵阳南山高2021级高三(上)一诊模拟考试文科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,本试卷收回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|20}P x x x =-<,{N |1}Q x x =∈≥,则P Q = ()A.{1,2}B.{1}C.{2,3}D.{1,2,3}【答案】B 【解析】【分析】化简集合A ,再根据交集的定义可求得结果.【详解】220x x -<,02x ∴<<,{}02A x x ∴=<<,又{}N 1B x x =∈≥,{}1A B ∴⋂=.故选:B.2.已知向量()()1,,,2a m b m == ,若4a b =,则实数m 等于()A. B.0C.1D.43【答案】D 【解析】【分析】根据平面向量数量积的计算规则求解.【详解】由题意:41234,3a b m m m m =⨯+⨯==∴= ;故选:D.3.下列函数中,既是奇函数,又在[0,1]上单调递减的是()A.sin y x =-B.3y x =C.1y x x=+D.||e x y =【答案】A 【解析】【分析】由正弦函数、幂函数、对勾函数性质判断各函数的奇偶性、区间单调性即可.【详解】由sin y x =-定义域为R 且sin()sin x x --=,易知sin y x =-为奇函数,又π[0,1][0,]2⊆,故sin y x =-在[0,1]上递减,A 符合.由3y x =在[0,1]上递增,B 不符合;由1y x x=+定义域为{|0}x x ≠,显然区间[0,1]不满足定义域,C 不符合;由||e x y =定义域为R 且||||e e x x -=,即||e x y =为偶函数,D 不符合;故选:A4.设n S 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A.15B.30C.45D.60【答案】C 【解析】【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.5.“0a b <<”是“11a b>”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性定义,结合不等式的推出关系判断题设条件间的关系.【详解】由0a b <<,则11a b>成立,充分性成立;由11a b>,若1,1a b ==-,显然0a b <<不成立,必要性不成立;所以“0a b <<”是“11a b>”的充分不必要条件.故选:A6.已知β是第三象限角,则点()cos ,sin 2Q ββ位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据角所在象限结合二倍角正弦公式即可判断答案.【详解】因为β是第三象限角,故sin 0,cos 0ββ<<,则sin 22sin cos 0βββ=>,故()cos ,sin 2Q ββ在第二象限,故选:B7.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A.9B.12C.14D.16【答案】A 【解析】【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A8.已知命题p :在ABC 中,若sin sin A B >,则A B >;q :若0a >,则1(1)(1a a++4≥,则下列命题为真命题的是()A.p q ∧B.p q∧⌝ C.p q⌝∧ D.p q⌝∧⌝【答案】A 【解析】【分析】根据条件分别判断命题p ,命题q 的真假,然后结合复合命题的真假关系进行判断即可.【详解】命题p :在ABC 中,若sin sin A B >,由正弦定理得a b >,所以A B >,为真命题,当0a >,对于()111122a a a a ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当1a =时等号成立,所以命题q :若0a >,则1(1)(1)a a++4≥,为真命题,所以p q ∧为真命题,p q ∧⌝假命题,p q ⌝∧假命题,p q ⌝∧⌝假命题,故选:A.9.函数y=2x x e(其中e 为自然对数的底数)的大致图像是()A. B.C. D.【答案】B 【解析】【分析】方法一:排除法,根据函数值的特点,排除即可;方法二:根据导数和函数的单调性即可判断.【详解】方法一:排除法:当0x =时,0y =,排除C ,当0x ≠时,0y >恒成立,排除A 、D ,故选B.方法二:222(2)'x x x xx e x e x x y e e⋅-⋅-==,由'0y > ,可得02x <<,令'0y <,可得0x <或2x >,所以函数在(,0),(2,)-∞+∞上单调递减,在(0,2)上单调递增,所以只有B 符合条件,故选B.【点睛】该题考查的是有关函数图象的识别问题,注意在识别函数图象的过程中,可以从函数的定义域,函数的单调性,函数图象的对称性,函数图象所过的特殊点以及函数值的符号等方面来确定.10.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该蓄电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A.0.82B.1.15C.3.87D.5.5【答案】B 【解析】【分析】根据题意可得31104λ⎪⎝⎭=⎛⎫,再结合对数式与指数式的互化及对数运算即可求解.【详解】根据题意可得1530507.5C C λλ⎧=⨯⎨=⨯⎩,两式相除可得31104λ⎪⎝⎭=⎛⎫,所以31lg lg 104λ=,可得1lg2lg 220.3014 1.153lg 310.4771lg 10λ--⨯==≈=--⎛⎫ ⎪⎝⎭.故选:B.11.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是()A.15[,24B.13[,]24C.1(0,]2D.(0,2]【答案】A 【解析】【详解】由题意可得,322,22442k k k Z ππππππωπωπ+≤+<+≤+∈,∴1542,24k k k Z ω+≤≤+∈,0ω> ,1524ω∴≤≤.故A 正确.考点:三角函数单调性.12.设函数()e x f x x -=-,直线y ax b =+是曲线()y f x =的切线,则2a b +的最小值为()A.12e- B.211e-C.212e -D.212e +【答案】C 【解析】【分析】先设切点写出切线方程,再求2a b +的解析式,最后通过求导判断单调性求出最小值.【详解】令()f x 的切点为()000,e xx x --,因为()1e x f x -'=+,所以过切点的切线方程为()()()0000e 1e x xy x x x ----=+-,即()()0001e e 1x xy x x --=+-+,所以()001e e 1xx a b x --⎧=+⎪⎨=-+⎪⎩,所以0002e e 2x x a b x --+=-++,令()e e 2x x g x x --=-++,则()()e e e e 2x x x xg x x x ----'=-+-=-,所以当(),2x ∈-∞时()0g x '<恒成立,此时()g x 单调递减,当()2,x ∈+∞时()0g x '>恒成立,此时()g x 单调递增,所以()()2min 22e g x g -==-,所以()22min 122e 2e a b -+=-=-,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.已知π4cos sin 65αα⎛⎫--= ⎪⎝⎭,则2πsin 3α⎛⎫+= ⎪⎝⎭__________.【答案】45##0.8【解析】【分析】对已知式子利用三角函数恒等变换公式化简变形可得答案.【详解】由π4cos sin 65αα⎛⎫--= ⎪⎝⎭,得ππ4cos cossin sin sin 665ααα+-=,14cos sin 225αα-=,所以2π2π4sincos cos 335αα+=,所以2π4sin 35α⎛⎫+= ⎪⎝⎭,故答案为:4514.等比数列{}n a 中,144a a +=,3612a a +=,则710a a +=___________.【答案】108【解析】【分析】根据等比数列的性质可得23614a a q a a +=+,求得2q ,继而根据471036()a a q a a +=+求得答案.【详解】由题意等比数列{}n a 中,144a a +=,3612a a +=,设等比数列{}n a 的公比为q ,则236141234a a q a a +===+,故471036()912108a a q a a +=+=⨯=,故答案为:10815.如图,在ABC 中,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ()m R ∈,则m 的值为___________.【答案】14【解析】【分析】12AP mAC AB =+改为向量的终点在同一直线上,再利用共线定理的推论即可得到参数m 的方程,解之即可.【详解】因为12AP mAC AB =+ ,2AD DB =即,32AB AD= 所以1324AP mAC AB mAC AD =+=+ ,又,,C P D 三点共线,所以314m +=,解得14m =.故答案为:14.16.已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x -=成立,当12,,1[]0x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-,有下列命题:①(1)(2)(3)(2019)0f f f f ++++= ;②函数()y f x =图象关于直线5x =-对称;③函数()y f x =在[7,7]-上有5个零点;④函数()y f x =在[5,3]--上为减函数.则以上结论正确的是___________.【答案】①②【解析】【分析】由题意分析()f x 的对称性、单调性、周期性,对结论逐一判断.【详解】根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;由(2)()f x f x -=得()()(11)(11)f x f x --=+-,即(1)(1)f x f x -=+所以1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()()f x f x f x -==--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数,当[]12,0,1x x ∈,且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[]0,1上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1,1]-上单调递增;据此分析选项:对于①,(2)()f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,()()()()12320195040(1)(2)(3)0f f f f f f f ++++=⨯+++= ,故①正确;对于②,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x =是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,故②正确;对于③,函数()y f x =在[]7,7-上有7个零点:分别为6-,4-,2-,0,2,4,6,故③错误;对于④,()f x 在区间[1,1]-上为增函数且其周期为4,函数()y f x =在[5,3]--上为增函数,故④错误;故答案为:①②.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设{}n a 是公差不为0的等差数列,38a =,1311,,a a a 成等比数列.(1)求{}n a 的通项公式:(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .【答案】(1)31n a n =-(2)364n nS n =+【解析】【分析】(1)设{}n a 的公差为d ,然后根据已知条件列方程可求出1,a d ,从而可求出通项公式,(2)由(1)得13113132n n n b a a n n +==--+,再利用裂项相消法可求得结果.【小问1详解】设{}n a 的公差为d ,因为1311,,a a a 成等比数列,所以23111a a a =⋅又因为38a =,所以()()288288d d =-+,所以230d d -=.因为0d ≠,所以3d =,所以11268a d a +=+=,得12a =,故()23131n a n n =+-=-.【小问2详解】因为()()1331131323132n n n b a a n n n n +===--+-+,所以11111125573132n S n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ -+⎝⎭⎝⎭⎝⎭ 11323264n n n =-=++.18.已知函数()sin()f x A x ωϕ=+π0,0,||2A ωϕ⎛⎫>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移π3个单位长度,得到()g x 的图象,求函数()y g x =在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递减区间.【答案】(1)π()23f x x ⎛⎫=+ ⎪⎝⎭(2)5ππ,122⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据函数图象求出A =πT =,进而得出ω.根据“五点法”,即可求出ϕ的值;(2)先求出π()23g x x ⎛⎫=- ⎪⎝⎭,根据已知得出22333x πππ-≤-≤.结合正弦函数的单调性,解ππ2π2233x ≤-≤,即可得出答案.【小问1详解】由图易知A =,5π262π3πT =-=,所以πT =,2π2π2πT ω===.易知π44T =,故函数()f x 的图象经过点π12M ⎛ ⎝,π212ϕ⎛⎫⨯+= ⎪⎝⎭.又π2ϕ<,∴π3ϕ=.∴π()23f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】由题意,易知πππ()22333g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为02x π≤≤时,所以22333x πππ-≤-≤.解ππ2π2233x ≤-≤可得,5ππ122x ≤≤,此时π()23g x x ⎛⎫=- ⎪⎝⎭单调递减,故函数()y g x =的单调递减区间为5ππ,122⎡⎤⎢⎥⎣⎦.19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin()sin2B C a A B c ++=.(1)求A ;(2)已知3c =,1b =,边BC 上有一点D 满足3ABD ADC S S = ,求AD .【答案】(1)π3A =(2)334AD =【分析】(1)根据三角形内角和定理、诱导公式,结合正弦定理、正弦的二倍角公式进行求解即可;(2)根据三角形面积公式,结合余弦定理进行求解即可.【小问1详解】∵sin()sin2B C a A B c ++=,即sin sin()sin sin 2B C A A B C ++=由正弦定理,有sin sin sin cos 2A A C C =又sin 0C ≠,即有sin cos 2A A =,2sin cos cos 222A A A =,π(0,22A ∈ ,cos 02A ≠,所以1sin 22A =,π26A =,故π3A =.【小问2详解】设BDA α∠=,πADC α∠=-,由(1)知π3A =,在△ABC 中,由余弦定理2222cos a b c bc A =+-,可知21912312BC =+-⨯⨯⨯,∴BC =又3ABD ADC S S = ,可知34BD DC ==,在△ABD 中,2222cos AB BD AD BD AD α=+-⋅⋅,即2639cos 16AD α=+-⋅,在△ACD 中,271cos()16AD πα=+-⋅-,即271cos 162AD AD α=+-⋅,联立解得334AD =.20.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调区间(2)若对[]x 1,2∈-,不等式()2c f x <恒成立,求c 的取值范围.【答案】(1)1,22a b =-=-,单调递增区间为2,3⎛⎫-∞- ⎪⎝⎭和(1,)+∞,单调递减区间为2,13⎛⎫- ⎪⎝⎭;(2)1c <-或2>c【分析】(1)求出函数导数,由题可得203(1)0f f ⎧⎛⎫-=⎪ ⎪⎝⎭⎨⎪='⎩'即可求出,a b ;(2)求出()f x 在[1,2]x ∈-的最大值即可建立关系求解.【详解】(1)32()f x x ax bx c =+++ ,∴()232f x x ax b '=++,()f x 在23x =-与1x =时都取得极值,21240393(1)320f a b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝⎭⎨⎪=++=''⎩∴,解得122a b ⎧=-⎪⎨⎪=-⎩,2()32(32)(1)f x x x x x '∴=--=+-,令()0f x '>可解得23x <-或x 1>;令()0f x '<可解得213x -<<,()f x ∴的单调递增区间为2,3⎛⎫-∞- ⎪⎝⎭和(1,)+∞,单调递减区间为2,13⎛⎫- ⎪⎝⎭;(2)[]321()2,1,22f x x x x c x =--+∈-,由(1)可得当23x =-时,22()27f x c =+为极大值,而(2)2f c =+,所以()()max 22f x f c ==+,要使2()f x c <对[1,2]x ∈-恒成立,则22c c >+,解得1c <-或2>c .21.已知函数()1ln f x x a x x=-+,R a ∈.(1)若()f x 在区间()3,+∞上单调递减,求实数a 的取值范围;(2)若0a >,()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【答案】(1)10,3⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)由题意可得221()0x ax f x x-+'=-≤在()3,+∞上恒成立,转化为1a x x ≤+在()3,+∞上恒成立,构造函数()1h x x x=+,利用导数可求出其最小值,(2)由(1)知:1x ,2x 满足210x ax -+=,121=x x ,不妨设120x x <<,则21x >,则()()12212222ln 21f x f x x a x x x x --=-+--,所以只需证22212ln 0x x x -+<成立,构造函数()12ln g x x x x =-+,利用求出其出其最大值小于零即可.【小问1详解】∵()222111a x ax f x x x x-+'=--+=-,又()f x 在区间()3,+∞上单调递减,∴221()0x ax f x x-+'=-≤在()3,+∞上恒成立,即210x ax -+≥在()3,+∞上恒成立,∴1a x x ≤+在()3,+∞上恒成立;设()1h x x x =+,则()211h x x '=-,当3x >时,()0h x '>,∴()h x 单调递增,∴()()1033h x h >=,∴103a ≤,即实数a 的取值范围是10,3⎛⎤-∞ ⎥⎝⎦.【小问2详解】由(1)知:1x ,2x 满足210x ax -+=.∴121=x x ,不妨设120x x <<,则21x >.∴()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=--=-+----,则要证()()12122f x f x a x x -<--,即证2222ln 1x a a x x -<-,即证22212ln x x x <-,也即证22212ln 0x x x -+<成立.设函数()12ln g x x x x =-+,则()()22211210x g x x x x-'=--+=-<,∴()g x 在()0,∞+单调递减,又()10g =.∴当()1,x ∈+∞时,()0g x <,∴22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的单调性,考查利用导数证明不等式,解(2)问解题的关键是根据题意将问题转化为证22212ln 0x x x -+<成立,构造函数()12ln g x x x x=-+,利用导数求出其最值即可,考查数学转化思想,属于较难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标.【答案】(1)1C :2213x y +=,2C :40x y +-=;(2)min PQ =,此时31(,)22P .【解析】【详解】试题分析:(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(2)由题意,可设点P 的直角坐标为,sin )αα⇒P 到2C 的距离π()sin()2|3d αα==+-⇒当且仅当π2π()6k k α=+∈Z 时,()d α,此时P 的直角坐标为31(,22.试题解析:(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(2)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α,此时P 的直角坐标为31(,)22.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线C 的普通方程0(),F x y =化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.[选修4-5:不等式选讲]23.已知函数()212f x x x =--+.(1)求不等式()3f x ≥的解集;(2)若关于x 的不等式()23f x t t ≥-在[]0,1上无解,求实数t 的取值范围.【答案】(1)[)4,6,3⎛⎤-∞-⋃+∞ ⎥⎝⎦;(2)3535,22⎛⎛⎫-+-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【解析】【详解】试题分析:(1)将()f x 的表达式以分段函数的形式写出,将原题转化为求不等式组的问题,最后对各个解集求并集得出原不等式的解集;(2)()23f x t t ≥-在[]0,1上无解相当于()2max 3f x t t <-,从而得到关于的一元二次不等式,解得t 的范围.试题解析:(1)由题意得()13,21{31,223,2x x f x x x x x -≥=---≤≤-<-.则原不等式转化为1{233x x ≥-≥或12{2313x x -≤<--≥或2{33x x <--≥.∴原不等式的解集为][4,6,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.(2)由题得()2max 3f x t t <-,由(1)知,()f x 在[]0,1上的最大值为1-,即()2max 13f x t t =-<-,。
高三数学文科模拟考试 (含答案)
![高三数学文科模拟考试 (含答案)](https://img.taocdn.com/s3/m/4769992b53d380eb6294dd88d0d233d4b14e3f6c.png)
高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。
考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。
考试结束后,请将答题卡交回。
第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。
第Ⅰ卷共12小题。
1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。
B.{2,3}。
C.{3}。
D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。
某职工某月缴水费55元,则该职工这个月实际用水为()立方米。
A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。
B.非q。
C.p或q。
D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。
若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。
B.(4,6)。
C.{5}。
D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。
湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析
![湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析](https://img.taocdn.com/s3/m/67ec5ecf0342a8956bec0975f46527d3240ca6a9.png)
湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}{}1,0,1,|1A B x N x =-=∈<,则A B ⋃=( ) A .{}0B .{}1,0-C .{1,-0,1}D .(),1-∞2.设m 、n 是两条不同的直线,α和β是两个不同的平面,则下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β且m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β3.已知角α的终边经过点()sin150,cos30A ,则tan α=( )A B .C D .4.在中国传统佳节元宵节中赏花灯是常见的活动.某单位拟举办庆祝元宵的活动,购买了A ,B ,C 三种类型的花灯,其中A 种花灯4个,B 种花灯5个,C 种花灯1个,现从中随机抽取4个花灯,则A ,B ,C 三种花灯各至少被抽取一个的情况种数为( ) A .30B .70C .40D .845.已知函数()32233f x x ax x =-++是定义在R 上的奇函数,则函数()f x 的图像在点()()2,2f --处的切线的斜率为( ) A .27-B .25-C .23-D .21-6.如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.222:1(0)y C x b b-=>的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若P 为C 右支上的一点,F 为C 的左焦点,则PF 与P 到C 的一条渐近线的距离之和的最小值为( )A .2B .3C .4D .57.已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( )A .3B .4C .5D .68.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩(0a >且1a ≠).若函数()f x 的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A .10,4⎛⎫⎪⎝⎭B .()10,1,4⎛⎫⋃+∞ ⎪⎝⎭C .()1,11,4⎛⎫⋃+∞ ⎪⎝⎭D .()()0,11,4⋃二、多选题9.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照分成9组,制成了如图所示的频率分布直方图.由直方图推断,下列选项正确的是( ) A .直方图中a 的值为0.38B .由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C .由直方图估计本校高三男生100米体能测试成绩不大于13秒的人数为54D .由直方图估计本校高三男生100米体能测试成绩的中位数为13.7秒10.已知狄利克雷函数()1,0,x f x x ⎧=⎨⎩是有理数是无理数,则下列结论正确的是( )A .()f x 的值域为[]0,1B .()f x 定义域为RC .()()1f x f x +=D .()f x 是奇函数11.已知拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2,过点F 的动直线l 与抛物线C 交于,A B 两点,以,A B 为切点的抛物线的两条切线的交点为P ,则下列结论正确的是( ) A .2p =B .当l 与M 相切时,则l 的斜率是C .点P 在定直线上D .以AB 为直径的圆与直线1y =-相切12.已知正方体1111ABCD A B C D -的棱长为1,,M N 分别为1,BB AB 的中点.下列说法正确的是( )A .点M 到平面1ANDB .正方体1111ABCD A BCD - C .面1AND 截正方体1111ABCD A B C D -外接球所得圆的面积为34πD .以顶点A三、填空题13.已知角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,则化简()()()()sin 3sin sin 2cos 4παπααπαπ+---+--得___________. 14.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式的常数项为________.15.若函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增,则4a b +的最小值是__________. 16.定义x 是与实数x 的距离最近的整数(当x 为两相邻整数的算术平均值时,则x 取较大整数),如451,2,22,2.5333====‖‖‖‖,令函数()K x x =,数列{}n a 的通项公式为n a =其前n 项和为n S ,则4S =__________;2023S =__________.四、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若CD =,ABC的面积为c 的值. 18.记n S 为数列{}n a 的前n 项和,已知11,(1)n S a n n ⎧⎫=⎨⎬+⎩⎭的公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a ++⋅⋅⋅+< 19.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD 是斜边PA的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点(1)求证:平面DFM ⊥平面PBC ;(2)若直线MF 与平面ABCD EDM 与平面DMF 夹角的余弦值. 20.国家发改委和住建部等六部门发布通知提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()niix x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,nii i nii xx y y bay bx xx ==--==--∑∑ 参考数据:88882211112292,204,730348,12041i iii i i i i i y x y x y ========∑∑∑∑257385.84=≈ 21.已知函数()f x ax =(1)当1a =-时,则证明:当1x ≥x .(2)当0a =时,则对任意的1x ≥都有()22x m mf x x -≥-成立,求m 的取值范围.22.已知函数()()ln 1f x x ax =+-在12x =-处的切线的斜率为1.(1)求a 的值及()f x 的最大值. (2)证明:()1111ln 123n n++++>+()*N n ∈ (3)若()()e xg x b x =-,若()()f x g x ≤恒成立,求实数b 的取值范围.参考答案与解析1.C【分析】首先简化集合B ,然后根据并集的定义得结果. 【详解】B={x ∈N|x <1}={0}A ∪B={-1,0,1}∪{0}={-1,0,1}. 故选C .【点睛】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键. 2.B【分析】A. 利用空间直线的位置关系判断;B.利用线面垂直的性质定理判断;C.利用平面与平面的位置关系判断;D.利用平面与平面的位置关系判断.故选:B 3.C【分析】根据三角函数的定义直接求得答案.【详解】由题意可知12A ⎛ ⎝⎭则tan 2α=故选:C. 4.B【解析】由题可得,,A B C 三种花灯各至少被抽取一个的情况共有两种,列式计算即可. 【详解】由题意可知,,A B C 三种花灯各至少被抽取一个的情况共有两种:A 种花灯选2个,B 种花灯选1个,C 种花灯选1个; A 种花灯选1个,B 种花灯选2个,C 种花灯选1个.故不同的抽取方法有211121451451304070C C C C C C +=+=(种).故选:B. 5.D【分析】先由奇函数的性质求a ,再由导数的几何意义求切线的斜率.【详解】因为函数()32233f x x ax x =-++是定义在R 上的奇函数所以()()f x f x -=-,即()()()3232233233x a x x x ax x -+-+=----所以3232233233x ax x x ax x -+--= 所以0a =所以()323f x x x =-+,故()263f x x '=-+所以()221f '=-所以函数()f x 的图像在点()()2,2f --处的切线的斜率为21-. 故选:D. 6.C【分析】根据双曲线的离心率求得双曲线C 的方程,求得双曲线右焦点到渐近线的距离,结合双曲线的定义求得所求的最小值.【详解】由题意可知1,ca e c a====2224,2b c a b =-=∴= 双曲线方程为22:14y C x -=,一条渐近线方程为20x y -=焦点)2F 到渐近线20x y -=的距离为2==d 22PF a PF =+,2PF 与P 到C 的一条渐近线的距离之和的最小值为2d =所以PF 与P 到C 的一条渐近线的距离之和的最小值为224a +=. 故选:C 7.C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴根据三角函数的图象可知零点与对称轴之间距离为:()1214T k ⨯-,k ∈N *.要求ω最大,则周期最小,∴()12142k T π-⨯=,则T 221k π=-;∴ω=2k ﹣1;当9ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,则由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C . 8.C【分析】根据原点对称的性质,求出当40x -≤<时函数关于原点对称的函数,条件转化为函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象,利用数形结合的方法,再结合对数函数的性质进行求解即可【详解】当40x -≤<时,则函数|3|y x =+关于原点对称的函数为|3|y x -=-+,即|3|,(04)y x x =--+≤≤ 若函数()f x 的图象上有且只有两个点关于原点对称,则等价于函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象如图:若1a >时,则()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点,满足条件; 当4x =时,则|43|1y =--+=-若01a <<时,则要使()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点则要满足(4)1f <-,即1log 41log a a a -<-=解得故114a <<; 综上a 的取值范围是()1,11,4⎛⎫⋃+∞ ⎪⎝⎭故选:C 9.BC【分析】A :根据频率直方图中,所有小矩形的面积之和为1,进行求解判断即可; B :根据众数的定义,结合频率直方图进行判断即可; C :根据直方图,结合题意进行判断即可;D :根据中位数的定义,结合结合频率直方图进行判断即可. 【详解】A :因为频率直方图中,所有小矩形的面积之和为1所以(0.080.160.30.520.30.120.080.04)0.510.4a a ++++++++⨯=⇒= 因此本选项说法不正确;B :分布在[)13.5,14小组的矩形面积最大,因此众数出现在这个小组内,因此估计众数为13.51413.752+=,因此本选项说法正确; C :高三男生100米体能测试成绩不大于13秒的小组有:频率之和为:(0.080.160.3)0.50.27++⨯=因此估计估计本校高三男生100米体能测试成绩不大于13秒的人数为0.2720054⨯=,所以本选项说法正确;D :设中位数为b ,因此有(0.080.160.30.4)0.50.52(13.5)0.513.56b b +++⨯+-=⇒≈ 所以本选项说法不正确 故选:BC 10.BC【分析】根据函数的解析式逐个判定即可. 【详解】对A, ()f x 的值域为{}0,1,故A 错误. 对B, ()f x 定义域为R .故B 正确.对C,当x 是有理数时1x +也为有理数,当x 是无理数时1x +也为无理数故()()1f x f x +=成立.故C 正确. 对D, 因为()01f =,故D 错误. 故选:BC【点睛】本题主要考查了新定义函数性质的判定,属于基础题. 11.ACD【分析】根据题意求出p 的值,判断A ;根据直线和圆相切求出直线的斜率,判断B ;设直线方程,联立抛物线方程,可得根与系数的关系,求出以,A B 为切点的抛物线的两条切线的方程,结合根与系数的关系求得点P 坐标,判断C ;求出弦AB 的长以及弦AB 的中点到抛物线准线的距离,即可判断D.【详解】对于A ,由题意拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2 即F 与圆上的点(0,1)-的距离为2,则||1,2OF p =∴=,A 正确;对于B ,过点(0,1)F 的动直线l 与M 相切时,则斜率必存在,设l 的方程为1y kx =+1=,解得k =B 错误;对于C ,设1122,,(()A x y B x y ),,由24x y =可得12y x '=联立214y kx x y =+⎧⎨=⎩ 消掉x 得2440x kx --= 216(1)0k ∆=+>所以12124,4x x k x x +==-设在点,A B 的切线斜率分别为12,k k ,则1212,22x x k k == 所以抛物线在点A 点的切线方程为111()2x y y x x -=-,即21124x x y x =-①同理可得在点B 的切线方程为 22224x x y x =-②由①②可得1222P x x x k +==,将122P x x x +=代入①得1214p x xy ==-所以P 点坐标为(21)k -,,即点P 在定直线1y =-上,C 正确;对于D ,由题意知12||42AB x x p k =++=+ AB 的中点的横坐标为124222x x kk +== 可得AB 的中点到抛物线准线1y =-的距离为121||2k AB +=则以线段AB 为直径的圆与抛物线C 的准线相切,故D 正确 故选:ACD 12.BCD【分析】A 选项由等体积法11M AND D AMN V V --=求得点M 到平面1AND 的距离即可;B 选项由外接球的直径为体对角线即可判断;C 选项由面1AND 经过外接球球心求得其外接圆圆心,即可求解;D 选项将球面与正方体的表面相交所得的曲线分为两类,按照弧长公式计算即可.【详解】1111211112,2242228AND ANM AD S S =⨯⨯==⨯⨯=,设M 到平面1AND 的距离为d ,由11M AND D AMN V V --=,即1111133AND ANM d S D A S ⨯⨯=⨯⨯,解得4d =,故A 错误;正方体1111ABCD A B C D -=外接球的体积为343π⨯=⎝⎭故B 正确;易得面1AND 经过正方体1111ABCD A B C D -其圆的面积为34π,故C 正确; 如图球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上,即面11AA B B 、面ABCD 和面11AA D D 上;另一类在不过顶点A 的三个面上,即面11BB C C 、面11CC D D 和面1111D C B A 上.在面11AA B B 上,交线为弧EF 且在过球心A 的大圆上因为1A E ==,则16A AE π∠=,同理6BAF π∠=,所以6EAF π∠=,故弧EF 的长为6π=,而这样的弧共有三条. 在面11BB C C 上,交线为弧FG 且在距球心为1的平面与球面相交所得的小圆上,此时,则小圆的圆心为B ,半径为1BF A E ==所以弧FG 2π=,这样的弧也有三条.于是,所得的曲线长33=D 正确. 故选:BCD. 13.34-##0.75-【分析】根据任意角三角函数的概念,可得3tan 4α=-,再利用诱导公式对原式化简,可得原式等于tan α,由此即可求出结果.【详解】因为角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,所以3tan 4α=-又()()()()()()()()sin 2sin sin 3sin sin 2cos 4sin 2cos 4ππαπαπαπααπαπαπαπ⎡⎤⎡⎤++-++--⎣⎦⎣⎦=-+---++()()sin sin sin sin tan sin cos sin cos πααααααααα+-===--所以()()()()sin 3sin 3sin 2cos 44παπααπαπ+--=--+--.故答案为:34-14.40【分析】由1()(2)n a x x x x +-的展开式中的各项系数的和为2,令x =1,求得1a =,写出51(2)x x-的展开式的通项,分别乘以x ,1x再令x 的指数为0求得r 值,则展开式中的常数项可求. 【详解】解:由1()(2)n a x x xx+-的展开式中的各项系数的和为2 令1x =,得5(1)12a +=,得1a =. ∴5111()(2)()(2)n a x x x x xxxx+-=+-51(2)x x-的通项55521551(2)()(1)2,0,1,2,3,4,5r r r r r r r r T C x C x x r ---+=-=-⋅⋅⋅=.∴511()(2)x x x x+-的展开式中的通项有5625(1)2r r r r C x ---⋅⋅⋅和5425(1)2r r r r C x ---⋅⋅⋅.令420r -=,得2r =,则展开式中的常数项为2325(1)280C -⋅⋅=; 令620r -=,得3r =,则展开式中的常数项为3235(1)240C -⋅⋅=- 所以该展开式的常数项为80-40=40. 故答案为:40. 15.-4【分析】对函数求导可得:22()x bx af x x++'=,函数()f x 在区间[1,2]上单调递增等价于()f x '在区间[1,2]上大于等于零恒成立,即220x bx a ++≥在区间[1,2]上恒成立,利用二次函数的图像讨论出a ,b 的关系,再结合线性规划即可得到4a b +的最小值. 【详解】 函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增 ∴22()20a x bx af x x b x x ++'=++=≥在区间[1,2]上恒成立,即220x bx a ++≥在区间[1,2]上恒成立,令2()2h x x bx a =++,其对称轴:x b =-当1b -≤,即1b ≥-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:1(1)210b h a b ≥-⎧⎨=++≥⎩ 由线性规划可得:min (4)14(1)3a b +=+⨯-=-当2b -≥,即2b ≤-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:2(2)440b h a b ≤-⎧⎨=++≥⎩ 由线性规划可得:min (4)44(2)4a b +=+⨯-=-当12b <-<,即21b -<<-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:221()0b h b a b -<<-⎧⎨-=-≥⎩ 则244a b b b +≥+,由于24b b +在21b -<<-上的范围为(4,3)--,则443a b -<+<-综上所述4a b +的最小值是-4.【点睛】本题考查导数与函数单调性、线性规划、函数与不等式等知识,考查学生综合运用数学知识的能力,运算能力以及逻辑思维能力,属于难题. 16. 3400345【分析】根据数列新定义可知数列n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn,且满足第n 组有2n 个数,且每组中所有数之和为122n n⨯=,即可求解. 【详解】因为()()123411111,1,,,2122a a a a K K ======== 所以41111322S =+++=;根据()K x x =以此类推,将n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn第n 组有2n 个数,且每组中所有数之和为122n n⨯=设2023a =1n +组中则(22)20232n n+≤,可得(1)2023n n +≤解得44n ≤ 所以(20231140032444345452023S K=+=⨯+⨯=故答案为:3 40034517.(1)3C π=;(2)c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a=,结合平面向量得a bCD CA CB a b a b =+++,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++ 化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 22ab C ab ==,解得8ab =,又CD 是ACB ∠的角平分线,则1sin261sin 26ACD BCDCA CD SCA AD SCB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ 即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b=+=+=+-=+++++ 所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++ 整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-= 由(1)知22220812c a b ab =+-=-=,则c =.18.(1)2n a n =;(2)证明见解析.【分析】(1)利用题意建立等式求出n S ,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出通项即可;(2)先将2221111123n+++⋅⋅⋅+放大为11111223(1)n n +++⋅⋅⋅+⨯⨯-,然后裂项求和即可. 【详解】(1)因为11a =,所以11122S =⨯ 又因为(1)n S n n ⎧⎫⎨⎬+⎩⎭是公差为13的等差数列,所以11(1)(1)23n S n n n =+-+ 所以1(1)(21)6n S n n n =++.当2n ≥时,则21,1n n n a S S n n -=-==时,则11a =也满足上式.所以{}n a 的通项公式是2n a n =;(2)当1n =时,则1112a =<,不等式成立; 当2n ≥时,则22212111111111111231223(1)n a a a n n n++⋅⋅⋅+=+++⋅⋅⋅+<+++⋅⋅⋅+⨯⨯- 11111111222231n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.19.(1)证明见解析【分析】(1)根据面面垂直的性质定理可得PD ⊥平面ABCD ,从而PD BC ⊥,又BC CD ⊥,由线面垂直的判定定理得BC ⊥平面PCD ,则BC DF ⊥,又DF ⊥PC ,得DF ⊥平面PBC ,根据面面垂直的判定定理即可证得结论;(2)取CD 的中点N ,则//NF PD ,112NF PD ==结合(1)得NF ⊥平面ABCD ,结合线面角的定义得FMN ∠是直线MF 与平面ABCD 所成角,求得MN ,MC ,建立空间直角坐标系,分别求出平面EDM 、DMF 的法向量,利用空间向量夹角公式进行求解即可.【详解】(1)因为PAD 是斜边PA的长为PD DA ⊥ 2PD DA == 又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD DA =,PD ⊂平面PAD ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD BC ⊥又BC CD ⊥,PD CD D ⋂=和,PD CD ⊂平面PCD ,∴BC ⊥平面PCD 因为DF ⊂平面PCD ,∴BC DF ⊥∵PD DC =,F 是棱PC 的中点,∴DF ⊥PC又⋂=PC CB C ,,PC CB ⊂平面PBC ,∴DF ⊥平面PBC . 又DF ⊂平面DFM ,∴平面DFM ⊥平面PBC . (2)如图,取CD 的中点N ,连接MN ,NF则//NF PD 112NF PD == 由(1)知PD ⊥平面ABCD ,∴NF ⊥平面ABCD ∴FMN ∠是直线MF 与平面ABCD 所成角 ∴1tan FMN MN ∠==∴MN 23MC =以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系设平面EDM 的法向量为(),,m a b c =,平面DMF 的法向量为(),,n x y z = 则02023DE m a cDM m a b⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3a =-,则()3,1,3m =- 有02023DF n y zDM n x y ⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3x =-,则()3,1,1n =--∴cos 19m n m n m n⋅⋅===⋅∴平面EDM 与平面DMF . 20.(1)答案见解析(2)ˆ41.12101.46yx =+ 513 (3)答案见解析【分析】(1)根据相关系数的公式,即可代入求值,根据相关系数的大小即可作出判断 (2)利用最小二乘法即可计算求解(3)根据相关关系不是确定的函数关系,而受多因素影响,即可求解. 【详解】(1)1234567892292573,8282x y +++++++====相关系数()()88niii ix x y y x y x yr ---⋅==∑∑957312041817270.9820.585.84-⨯⨯=≈≈⨯因为y 与x 的相关系数0.98r =,接近1,所以y 与x 的线性相关程度很高,可用线性回归模型拟合y 与x 的关系.(2)()()()8118222118ˆ8n iii ii i niii i x x y y x y x ybx x xx====---⋅==--∑∑∑∑957312041817272241.12814220484-⨯⨯==≈-⨯ 5739ˆˆ41.12101.4622ay bx =-≈-⨯= 所以y 与x 的线性回归方程为ˆ41.12101.46yx =+ 又2022年对应的年份代码10x =,当10x =时,则41.1210101.46512.6513ˆ6y=⨯+=≈ 所以预测2022年全国生活垃圾焚烧无害化处理厂的个数为513.(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,不能由(2)所求的线性回归方程预测,理由如下(说出一点即可):①线性回归方程具有时效性,不能预测较远情况;②全国生活垃圾焚烧无害化处理厂的个数有可能达到上限,一段时间内不再新建; ③受国家政策的影响,可能产生新的生活垃圾无害化处理方式. 21.(1)证明见解析. (2)[2,1]-【分析】(1)方法1:由分析法可证得结果. 方法2:换元法求()f x 的最大值即可证得结果.(2)设出不等号两边的函数,转化为对任意的1x ≥都有()()g x h x ≥成立,对参数分类讨论,分别研究两个函数的单调性、最值即可. 【详解】(1)方法1:∵1x ≥ ∴2(1)0x -≥ ∴原命题得证. 方法2:对称轴1t =,()h t 在[1,)+∞上单调递减 ∴max ()(1)0h t h ==∴()0h t ≤,即:当1x ≥时,则()0f x ≤恒成立即:当1x ≥x .(2)当0a =时,则()f x =即:对任意的1x ≥都有22x m x -≥成立令22()g x x m =-, ()h x x = 即:对任意的1x ≥都有()()g x h x ≥成立 当1x =时,则211m m -≥-,故21m -≤≤. ①当20m -≤≤时,则()g x 在[1,)+∞上单调递增∴2min ()(1)1g x g m ==-,∴2()1g x m ≥-()h x 在[1,)+∞上单调递减,∴max ()(1)1h x h m ==-,∴()1h x m ≤-此时2min max ()()20g x h x m m -=--≥∴min max ()()g x h x ≥即()()g x h x ≥,故20m -≤≤符合.②当01m <≤时,则由(1)知1x ∀≥x ≤恒成立∴1x ∀≥ mx x ≤∴1x ∀≥,0x ≤ 即:1x ∀≥ ()0≤h x又∵()g x 在[1,)+∞上单调递增,∴2min ()(1)1g x g m ==-,∴2()10g x m ≥-≥∴1x ∀≥ ()()g x h x ≥ ∴01m <≤符合. 综述:21m -≤≤【点睛】对于x D ∀∈,()()f x g x ≥恒成立求参数,可以先取特殊值确定参数的初步范围,再利用下面的两种方法.方法1:当x D ∈时,则min [()()]0f x g x -≥; 方法2:当x D ∈时,则min max ()()f x g x ≥. 求最值的方法:方法1:分离参数求最值;方法2:分类讨论研究函数的最值.22.(1)1a = max (0)f x =;(2)证明见解析;(3)[)0,∞+【分析】(1)由题意可得112f ⎛⎫'-= ⎪⎝⎭,可求出a 的值,然后利用导数求出函数的单调区间,从而可求出函数的最大值;(2)由(1)得()ln 1x x +≤,令()1N x k k *=∈,则有11ln 1k k ⎛⎫>+ ⎪⎝⎭,然后利用累加法可证得结论; (3)由于()()00,0f g b ==,所以()()f x g x ≤恒成立,则0b ≥,然后分0b =和0b >两种情况讨论即可.【详解】(1)函数的定义域为()()11,,1f x a x'-+∞=-+. 由已知得112f ⎛⎫'-= ⎪⎝⎭,得11112a -=⎛⎫+- ⎪⎝⎭,解得1a =. 此时()()()1ln 1,111x f x x x f x x x-'=+-=-=++. 当10x -<<时,则()0f x '>,当0x <时,则()0f x '<所以()f x 在(1,0)-上单调递增,()f x 在(0,)+∞单调递减所以()max ()00f x f ==;(2)由(1)得()ln 1x x +≤,当且仅当0x =时,则等号成立 令()1N x k k *=∈,则11ln 1k k ⎛⎫>+ ⎪⎝⎭ 所以()()1ln 1ln 1,2,3,,k k k n k >+-=将上述n 个不等式依次相加,得()1111ln 123n n++++>+; (3)因为()()00,0f g b ==,若()()f x g x ≤恒成立,则0b ≥①0b =时,则显然成立②0b >时,则由()()e x g x b x =-,得()()e 1x g x b '=-.当()1,0-时,则()()0,g x g x '<单减,当()0,x ∈+∞时,则()()0,g x g x '>单增所以()g x 在0x =处取得极小值,即最小值()()min ()00g x g b f x ==>≥,即()()f x g x ≤恒成立综合①②可知实数b 的取值范围为[)0,∞+.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的最值,考查利用导数证明不等式,考查利用导数解决不等式恒成立问题,第(3)问解题的关键是先由()()00,0f g b ==,从而可得0b ≥,然后分情况讨论即可得答案,考查数转化思想,属于较难题.。
内蒙古赤峰市2022-2023学年高三上学期期末模拟考试 数学(文)含答案
![内蒙古赤峰市2022-2023学年高三上学期期末模拟考试 数学(文)含答案](https://img.taocdn.com/s3/m/82a925a6a1116c175f0e7cd184254b35eefd1acf.png)
赤峰市高三年级期末模拟考试试题文科数学(答案在最后)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3A x x =∈≤N ,{}(3)(3)0B x x x =∈-+<R ,则A B ⋂=( ) A .{0,1,2}B .{}33x x ∈-<<RC .{}13x x ∈≤<RD .{1,2}2.已知a ∈R ,(5i)i 15i a +=+,(i 为虚数单位),则a =( ) A .1-B .1C .3-D .33.5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济价值.如图1所示的统计图是某单位结合近几年的数据,对今后几年的5G 直接经济产出做出的预测.则以下结论错误的是( )A .运营商的5G 直接经济产出逐年增加B .设备制造商的5G 直接经济产出前期增长较快,后期放缓C .设备制造商在各年的5G 直接经济产出中一直处于领先地位D .信息服务商与运营商的5G 直接经济产出的差距有逐步拉大的趋势 4.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α⊥,n α∥,则m n ⊥ ②若m n ∥,m α⊄,n α⊂,则m α∥ ③若αβ⊥,m α∥,则m β⊥ ④若m α⊥,m β⊂,则αβ⊥其中正确的命题个数为( ) A .0个B .1个C .2个D .3个5.已知向量a ,b 的夹角为120︒,||4a =,||2b =,则向量b 在向量a 方向上的投影为( )A .4B .2-C D .1-6.设0.732a ⎛⎫= ⎪⎝⎭,0.723b ⎛⎫= ⎪⎝⎭,()334log log 4c =,则( )A .c b a <<B .a b c <<C .c a b <<D .a c b <<7.函数()y f x =是定义在R 上奇函数,且(4)()f x f x -=,(3)1f -=-,则(15)f =( ) A .0B .1-C .2D .18.已知函数1()sin()f x x ωϕ=-(其中0ω>,||ϕπ<)的部分图象如图所示,则ω与ϕ分别等于( )A .1,3π-B .1,23π-C .2,23π D .2,3π9.已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .ABC △的面积为且cos cos cos c a bC A B+=+,BC 的中点为D ,则AD 的最小值为( )A .B .4C .D .10.双曲线2222:1(0,0)x y C a b a b -=>>的左顶点为A ,点M ,N 均在C 上,且关于y 轴对称.若直线AM ,AN 的斜率之积为2-,则C 的离心率为( )A B .2C .2D 11.已知三棱锥P ABC -的所有顶点都在球O 的球面上,PC 为球O 的直径,且PC OA ⊥,PC OB ⊥,AOB △为等边三角形,三棱锥P ABC -O 的表面积为( ) A .4πB .8πC .12πD .16π12.已知函数2()2ln xe f x a x ax x=+-存在唯一的极值点,则实数a 的取值范围为( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎤-∞ ⎥⎝⎦C .22,44e e ⎛⎫- ⎪⎝⎭D .22,44e e ⎡⎤-⎢⎥⎣⎦二、填空题:全科试题免费下载公众号《高中僧课堂》本大题共4小题,每小题5分,共20分. 13.已知tan 3α=,则cos2α=______.14.在[1,1]-上随机取一个数a ,则事件“直线y ax =与圆22(5)9x y -+=相离”发生的概率为______.15.抛物线2:2C y x =的焦点为F ,过C 上一点P 作C 的准线l 的垂线,垂足为A ,若直线AF 的斜率为a -,则PAF △的面积为______. 16.设有下列四个命题:①1p :x ∃∈R ,x e m ≤为假命题,则(,0]m ∈-∞;②2p :函数212115y x x x ⎛⎫=+<< ⎪-⎝⎭的最小值为1+ ③3p :关于x 的不等式220x ax a -+>对x ∈R 恒成立的一个必要不充分条件是102a <<;④4p :设函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,如果n m >,且()()f n f m =,令t n m =-,那么t 1;则上述命题为真命题的序号是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.(12分)已知单调递增的等差数列{}n a ,且12a =,2a ,32a +,64a +成等比数列. (1)求{}n a 的通项公式;(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k +=⋅⋅⋅之间插入2k,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.18.(12分)为了调查高中生文理科偏向情况是否与性别有关,设计了“更擅长理科,理科文科无差异,更擅长文科三个选项的调查问卷”,并从我校随机选择了55名男生,45名女生进行问卷调查.问卷调查的统计情况为:男生选择更擅长理科的人数占25,选择文科理科无显著差异的人数占15,选择更擅长文科的人数占25:女生选择更擅长理科的人数占15,选择文科理科无显著差异的人数占35,选择更擅长文科的人数占15.据调查结果制作了如下22⨯列联表.(1)请将22⨯的列联表补充完整,并判断能否有95%的把握认为文理科偏向与性别有关;(2)从55名男生中,根据问卷答题结果为标准,采取分层抽样的方法随机抽取5人,再从这5人中随机选取2人,若所选的2人中更擅长理科的人数恰为1人的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(12分)在四棱锥P ABCD -中,90ABC ACD ∠=∠=︒,60BAC CAD ∠=∠=︒,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ; (2)求点D 到平面ACE 的距离.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,离心率为12.(1)求椭圆C 的方程;(2)已知点(,0)A a ,(0,)B b ,直线l 过坐标原点O 交椭圆C 于P ,Q 两点(点A ,B 位于直线l 的两侧).设直线AP ,AQ ,BP ,BQ 的斜率分别为1k ,2k ,3k ,4k ,求证:1234k k k k +为定值. 21.(12分)已知函数()ln (1),f x x a x a =-+∈R .(1)讨论函数的单调性;(2)对任意0x >,求证:22(1)()xe a xf x xe-+>.(二)选考题:共10分.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为244,x t y t⎧=⎨=⎩(t 为参数),以O 为极点,x 轴正半拍为极轴建立极坐标系,曲线2C sin 104πθ⎛⎫+-= ⎪⎝⎭,且两曲线1C 与2C 交于M ,N 两点. (1)求曲线1C ,2C 的直角坐标方程; (2)设(2,1)P -,求PM PN -. 23.(10分)【选修4-5:不等式选讲】 已知函数()|1|2|1|f x x x =++-. (1)解不等式()22f x x ≤+;(2)设函数()f x 的最小值为t ,若0a >,0b >,且a b t +=,证明:22111a b a b +≥++. 赤峰市高三1·30模拟考试试题文科数学参考答案一、选择题:本大题共12小题,每小题5分,共60分二、填空题:本大题共4小题,每小题5分,共20分. 13.45-14.14 15.15216.①④ 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(1)解:设递增等差数列{}n a 的公差为(0)d d >,由22a d =+,322a d =+,625a d =+,有2(222)(2)(254)d d d ++=+++,化简得24d =.则2d =,1(1)2n a a n d n =+-=,所以{}n a 的通项公式为2n a n =.(2)解:因为k a 与1(1,2,)k a k +=⋅⋅⋅之间插入2k ,所以在数列{}n b 中有10项来自{}n a ,10项来自{}2n,所以()102021210(220)2156212T -+=+=-.18.(12分)(1)解:补充的列联表如下:所以22100(2236933)100334.628 3.841554531693123K ⨯⨯-⨯⨯==≈>⨯⨯⨯⨯, 所以有95%的把握认为文理科偏向与性别有关.(2)由题意可知,选取的5人中,有2人更擅长理科,3人不更擅长理科, 用1A ,2A 表示更擅长理科的两人,用1B ,2B ,3B 表示其他三人, 则从这5人中,任取两人共有以下10种情况:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()21,B B ,()31,B B ,()23,B B ,满足条件的有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B 共6种情况,所以概率为35.19.(12分)(1)证明:因为PC 中点F ,在Rt ABC △中,2AB =,60BAC ∠=︒,则BC =4AC =. 而4PA =,则在等腰三角形APC 中,PC AF ⊥①.又在PCD △中,PE ED =,PF FC =,则EF CD ∥,因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 则PA CD ⊥,又90ACD ∠=︒,即AC CD ⊥,AC PA A ⋂=,则CD ⊥平面P AC ,因为PC ⊂平面P AC ,所以PC CD ⊥,因此EF PC ⊥②. 又EF AFF ⋂=,由①②知PC ⊥平面AEF ;(2)在Rt ACD △中,CD =4AC =,∴ACD S =△,又EM PA ∥,PA ⊥平面ABCD ,∴EM⊥平面ABCD ,即EM 为三棱锥E ACD -的高,∴112333E ACD ACD V S EM -=⋅=⋅=△,在ACE △中,AE CE ==4AC =,∴8ACE S =△,设点D 到平面ACE 的距离为h ,则133D ACE E ACD ACE V V S h --==⋅⋅=△,∴h =D 到平面ACE 的距离为20.(12分)(1)解:由题意得24,1,2a =⎧=解得24a =,23b =.所以椭圆C 的方程为22143x y +=. (2)点A ,B 的坐标分别为(2,0),.设点P 的坐标为(,)m n ,由对称性知点Q 的坐标为(,)m n --.所以12n k m =-,22n k m =+.所以2122224n n n k k m m m =⋅=-+-. 又因为点P 在椭圆22:143x y C +=上,所以22143m n +=,即22443m n -=-,所以21223443n k k n ==--. 同理3434k k =-.所以2234333442k k k k ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭为定值.21.(12分)(1)解:由题意得()f x 的定义域是(0,)+∞,11()axf x a x x-=-=', 当0a ≤时,令()0f x '>恒成立,∴()f x 在(0,)+∞单调递增, 当0a >时,令()0f x '>,解得10x a <<,令()0f x '<,解得:1x a>, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减; 综上:当0a ≤时,()f x 在(0,)+∞单调递增, 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)证明:要证22(1)()x e a x f x xe -+>,即证22ln 0xe x e x ⋅->, 令22()ln x e g x x e x =⋅-,则2222(1)()x x e e x g x e x--=', 令2()2(1)xr x x e e x =--,则2()2x r x xe e '=-,由()r x '在(0,)+∞单调递增,且2(1)20r e e ='-<,2(2)30r e ='>,∴存在唯一的实数0(1,2)x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增, ∵(0)0r <,(2)0r =,∴当()0r x >时,2x >,当()0r x <时,02x <<,∴()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,∴()(2)1ln20g x g ≥=->,综上,22ln 0x e x e x ⋅->,即22(1)()xe a xf x xe-+>. 22.(10分)选修4- 4:坐标系与参数方程(1)解:由曲线1C 的参数方程消去参数t ,得24y x =,即曲线1C 的直角坐标方程为24y x =. 由曲线2C 的极坐标方程,得sin cos 10ρθρθ+-=,则10x y +-= 即2C 的直角坐标方程为10x y +-=.(2)解:因为(2,1)P -在曲线2C 上,所以曲线2C的参数方程为2,21x t y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),代入1C的直角坐标方程,得21702t +-=. 设M ,N 对应的参数分别为1t ,2t,则12t t +=-,1214t t =-,所以12||||||PM PN t t -=+= 23.(10分)选修4-5:不等式选讲(1)解:不等式等价于13122x x x ≤-⎧⎨-+≤+⎩或11322x x x -<<⎧⎨-+≤+⎩或13122x x x ≥⎧⎨-≤+⎩,解得x ∈∅或113x ≤<或13x ≤≤.所以不等式()22f x x ≤+的解集为133x x ⎧⎫≤≤⎨⎬⎩⎭. (2)解:法一:由31,1()3,1131,1x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩知,当1x =时,min ()(1)2f x f ==,即2a b +=.法二:()|1|2|1|(|1||1|)|1||11||11|2f x x x x x x x x =++-=++-+-≥+-++-=, 当且仅当1x =时,取得等号,则()f x 的最小值为2,即2a b +=.法一:22222222(1)(1)()()44111(1)(1)()13332a b a b b a ab a b a b a b a b a b ab a b ab ab a b ++++++++====≥=++++++++++⎛⎫+ ⎪⎝⎭, 当且仅当1a b ==,不等式取得等号,所以22111a b a b +≥++.法二:由柯西不等式可得:22222111()1114114a b a b a b a b a b a b ⎛⎫++++=+≥+= ⎪++++⎝⎭.当且仅当1a b ==,不等式取得等号,所以22111a b a b +≥++.。
江西高三模拟考试(文科)数学试卷附答案解析
![江西高三模拟考试(文科)数学试卷附答案解析](https://img.taocdn.com/s3/m/c69eb47168eae009581b6bd97f1922791688be98.png)
江西高三模拟考试(文科)数学试卷附答案解析班级:___________姓名:___________考号:__________一、单选题1.设集合{}2560A x x x =--<和{}4,2,0,2,4B =--,则A B =( )A .{}0,2B .{}2,0-C .2,0,2D .{}0,2,42.复数1z 在复平面内对应的点为()1,3,22z i =-+(i 为虚数单位),则复数12z z 的虚部为( ). A .75B .75-C .7i 5D .7i 5-3.在ABC ∆中AB =AC=1,B=30°,和ABC S ∆=,则C = A .60或120B .30C .60D .454.已知x 与y 的数据如表所示,根据表中数据,利用最小二乘法求得y 关于x 的线性回归方程为0.7 1.05y x =+,则m 的值是( )A .3.8B .3.85C .3.9D .4.05.已知tan 2x =,则sin cos 1x x +=( ) A .25B .75C .2D .36.已知直线:210l x y k +++=被圆22:4C x y +=所截得的弦长为4,则k 为( ) A .1-B .2-C .0D .27.若0a >,0b >且24a b +=,则4ab的最小值为( ) A .2B .12C .4D .148.已知命题:p 已知实数,a b ,则0ab >是0a >且0b >的必要不充分条件,命题:q 在曲线cos y x =上存在 ( ) A .p 是假命题 B .q 是真命题 C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题9.执行如图所示的程序框图,若输出i 的值为7,则框图中①处可以填入( )A .7S >?B .15S >?C .21S >?D .28S >?10.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F 椭圆C 在第一象限存在点M ,使得112=MF F F ,直线1F M 与y 轴交于点A ,且2F A 是21MF F ∠的角平分线,则椭圆C 的离心率为( )A B C .12D 11.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是( )A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )12.在棱长为2的正方体ABCD —A 1B 1C 1D 1中E 是正方形BB 1C 1C 的中心,M 为C 1D 1的中点,过A 1M 的平面α与直线DE 垂直,则平面α截正方体ABCD —A 1B 1C 1D 1所得的截面面积为( )A .B .CD .3二、填空题13.已知向量(),2AB m =,()1,3AC =和()4,2BD =--,若B ,C ,D 三点共线,则m =______.14.双曲线2219x y -=的渐近线方程为__________.15.已知f (x )=sin 6x πω⎛⎫+ ⎪⎝⎭(ω>0),f (6π)=f (3π),且f (x )在区间63ππ⎛⎫ ⎪⎝⎭,上有最小值,无最大值,则ω=_____.16.已知过点(0,1)M 的直线与抛物线22(0)x py p =>交于不同的A ,B 两点,以A ,B 为切点的两条切线交于点N ,若0NA NB ⋅=,则p 的值为__________.三、解答题17.已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式;(2)设13log n n b a =,n C ={}n C 的前n 项和n T18.如图,三棱柱111ABC A B C 各棱长均为2,且13C CA π∠=.(1)求证1AC BC ⊥;(2)若1BC 与平面ABC 所成的角为6π,求三棱柱111ABC A B C 的体积. 19.某工厂生产的产品是经过三道工序加工而成的,这三道工序互不影响,已知生产该产品三道工序的次品率分别为(1)求该产品的次品率;(2)从该工厂生产的大量产品中随机抽取三件,记次品的件数为X ,求随机变量X 的分布列与期望()E X . 20.已知椭圆()2222:10x y C a b a b +=>>,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.21.已知函数()f x 对任意实数x 、y 恒有()()()f x y f x f y +=+,当x>0时f (x )<0,且(1)2f =-. (1)判断()f x 的奇偶性;(2)求()f x 在区间[-3,3]上的最大值;(3)若2()22f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立,求实数m 的取值范围.22.数学上有很多美丽的曲线令人赏心悦目,例如,极坐标方程()1cos a ρθ=+(0a >)表示的曲线为心形线,它对称优美,形状接近心目中的爱心图形.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系,直线l的参数方程为1,2x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 的极坐标方程和心形线的直角坐标方程;(2)已知点P 的极坐标为()2,0,若P 为心形线上的点,直线l 与心形线交于A ,B 两点(异于O 点),求ABP 的面积.23.已知函数()2|1|||(R)f x x x a a =-+-∈. (1)若()f x 的最小值为1,求a 的值;(2)若()||6f x a x <+恒成立,求a 的取值范围.参考答案与解析1.D【分析】求出集合A 中元素范围,然后求A B ⋂即可.【详解】{}{}256016A x x x x x =--<=-<<,又{}4,2,0,2,4B =--{}0,2,4A B ∴=.故选:D. 2.B【解析】根据题意,先得到113z i =+,再由复数的除法运算求出12z z ,即可得出其虚部. 【详解】因为复数1z 在复平面内对应的点为()1,3,所以113z i =+ 又22z i =-+所以()()()()1213213263171722241555i i z i i i i i z i i i +--+++--+===-=-=--+-+--+因此其虚部为75-.故选:B.【点睛】本题主要考查求复数的虚部,考查复数的除法运算,涉及复数的几何意义,属于基础题型. 3.C【分析】由三角形面积公式可得A ,进而可得解.【详解】在ABC ∆中AB 1AC =与30B =12ABC S AB ACsinA ∆=⋅=,可得1sinA =,所以90A = 所以18060C A B =--=【点睛】本题主要考查了三角形的面积公式,属于基础题. 4.D【分析】计算样本中心,将样本中心 710,24m +⎛⎫⎪⎝⎭代入线性回归方程中即可求解. 【详解】因为()17234542x =⨯+++= ()1102.5 3.0 4.544m y m +=⨯+++=.所以样本中心为710,24m +⎛⎫⎪⎝⎭,将其代入回归方程0.7 1.05y x =+得1070.7 1.0542m +=⨯+,解得4m =. 故选:D . 5.B【分析】利用同角三角函数的平方关系、商数关系,将目标式化为2tan 1tan 1xx ++,结合已知即可求值.【详解】222sin cos tan 27sin cos 1111sin cos tan 155x x x x x x x x +=+=+=+=++. 故选:B . 6.A【分析】利用点线距离公式求弦心距,再由弦长与半径、弦心距的几何关系列方程求参数k . 【详解】设圆心()0,0到直线:210l x y k +++=的距离为d ,则由点到直线的距离公式得|1|d k ==+由题意得:42==1k =-.故选:A 7.A【分析】利用基本不等式可求出2ab ≤,即可得出所求. 【详解】0a > 0b >42a b ∴=+≥2a b =,即1,2a b ==时等号成立所以2ab ≤,则42ab≥,即4ab 的最小值为2.故选:A. 8.C【分析】首先判断命题,p q 的真假,再判断选项.【详解】00ab a >⇒> 且0b >,反过来0a >且00b ab >⇒>,所以0ab >是0a > 且0b >的必要不充分条件,所以命题p 是真命题cos y x =,[]sin 1,1y x '=-∈-根据导数的几何意义可知曲线cos y x =所以命题q是假命题根据复合命题的真假判断可知()p q ∧⌝是真命题. 故选:C 9.C故选:C. 10.B【分析】根据题意和椭圆定义可得到2MF ,AM 和a ,c 的关系式,再根据122MF F MF A ∽△△,可得到关于a ,c 的齐次式,进而可求得椭圆C 的离心率e . 【详解】由题意得1122F M F F c == 又由椭圆定义得222MF a c =- 记12MF F θ∠=则212AF F MF A θ∠=∠= 121222F F M F MF MAF θ∠=∠=∠= 则2122AF AF a c ==- 所以42AM c a =- 故122MF F MF A ∽△△则2122MF AMF F MF = 则2a c c a c a c --=-,即222010c ac a e e e +-=⇔+-=⇒=(负值已舍). 故选:B . 11.A【分析】令()()()22ee 0=--=xxf x x x a ,得到22e 0-=x x或e 0x x a -=,令()22e =-xg x x ,易知有一个零点,转化为则e 0x x a -=有两个根求解.【详解】令()()()22ee 0=--=xxf x x x a所以22e 0-=x x 或e 0x x a -=令()22e =-xg x x ,则()()2e '=-x g x x令()2(e )=-x h x x ,则()2(1)e '=-xh x当(,0)x ∈-∞时()0h x '>,h (x )在(-∞,0)上单调递增; 当,()0x ∈+∞时()0h x '<,h (x )在(0,+∞)上单调递减 所以()(0)20h x h ≤=-<,即()0g x '< 所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-< 所以存在0(1,0)x ∈-使得()00g x =所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e = 令()x x k x e =,则()1xx e xk -=' 当(,1)x ∞∈-时()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e≤= 所以()xxk x e =与y a =的部分图象大致如图所示由图知10a e<< 故选:A . 12.B【解析】确定平面1A MCN 即为平面α,四边形1A MCN 是菱形,计算面积得到答案.【详解】如图,在正方体1111ABCD A B C D -中记AB 的中点为N ,连接1,,MC CN NA 则平面1A MCN 即为平面α.证明如下: 由正方体的性质可知1A MNC ,则1A ,,,M C N 四点共面记1CC 的中点为F ,连接DF ,易证DF MC ⊥. 连接EF ,则EF MC ⊥EFDF F =,EF DF ⊂,平面DEF所以MC ⊥平面DEF又DE ⊂平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥ NC MC C =则DE ⊥平面1A MCN 所以平面1A MCN 即平面α四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形其对角线1AC = MN =所以其面积12S =⨯=故选:B【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力. 13.1-【分析】根据给定条件,求出向量BC 坐标,再利用共线向量的坐标表示计算作答. 【详解】因为向量(),2AB m =,()1,3AC =则(1,1)BC AC AB m =-=-,而()4,2BD =-- 又B ,C ,D 三点共线,则有//BC BD ,因此2(1)4m --=-,解得1m =- 所以1m =-. 故答案为:-1 14.30x y ±-=【分析】根据焦点在横轴上双曲线的渐近线方程的形式直接求出双曲线2219x y -=的渐近线方程.【详解】通过双曲线方程可知双曲线的焦点在横轴上,3,1a b ==,所以双曲线2219x y -=的渐近线方程为:1303b y x y x x y a =±⇒=±⇒±-=. 故答案为30x y ±-=【点睛】本题考查了求双曲线的渐近线方程,通过双曲线方程判断双曲线的焦点的位置是解题的关键. 15.163【分析】由题意可得函数的图象关于直线4x π=对称,再根据()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,可得3462πππω+=,由此求得ω的值. 【详解】对于函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,由63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭得函数图象关于6324x πππ+==对称 又()f x 在区间,63ππ⎛⎫⎪⎝⎭有最小值,无最大值可得()32462k k Z πππωπ+=+∈,即()1683k k Z ω=+∈,又342Tππ-≤,即12ω≤ 所以163ω=. 故答案为163. 【点睛】本题主要考查正弦函数的图象的对称性,正弦函数的最值,属于中档题. 16.2【分析】设()()1122,,,A x y B x y ,设直线AB 的方程为1y kx =+,利用“设而不求法”得到122x x p =-.利用导数求出两条切线斜率为1x p 和2x p,得到121x x p p ⋅=-,即可求出p =2.【详解】设()()1122,,,A x y B x y ,且设直线AB 的方程为1y kx =+,代入抛物线的方程得2220x pkx p --=,则122x x p =-.又22x py =,得22x y p=,则x y p '=,所以两条切线斜率分别为1x p 和2x p .由0NA NB ⋅=,知NA NB ⊥,则121x x p p ⋅=-,所以221pp -=-,即p =2. 故答案为:2 17.(1)13n n a =(2)1n T =【分析】(1)由n a 与n S 关系可推导证得数列{}n a 为等比数列,由等比数列通项公式可得n a ; (2)由(1)可推导得到,n n b C ,采用裂项相消法可求得n T . (1)当1n =时111221a S a =-=,解得:113a =;当2n ≥时1122211n n n n n a S S a a --=-=--+,即113n n a a -=∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. (2)由(1)得:131log 3n n b n ⎛⎫== ⎪⎝⎭n C ∴==11n T ∴=⋅⋅⋅=18.(1)证明见解析【分析】(1)通过线面垂直的性质定理证明线线垂直;(2)由(1)知AC ⊥平面1BDC ,则进一步知平面1BDC ⊥平面ABC ,故过1C 作平面ABC 的垂线,垂足为E ,则1C E ⊥平面ABC ,求出1C E 的大小即可求解.【详解】(1)证明:取AC 的中点D ,连接BD ,1C D 和1C A ,则BD AC ⊥因为12CC CA ==,13C CA π∠=所以1ACC △为等边三角形又D 为AC 的中点,所以1C D AC ⊥ 因为1C D BD D =,1,C D BD ⊂平面1BDC ,所以AC ⊥平面1BDC ,.又1BC ⊂平面1BDC ,所以1AC BC ⊥.(2)由(1)知AC ⊥平面1BDC ,又AC ⊂平面ABC ,所以平面1BDC ⊥平面ABC平面1BDC 平面ABC BD =,故过1C 作平面ABC 的垂线,垂足为E ,则E 一定在直线BD 上,因为1BC 与平面ABC 所成的角为6π,所以16C BD π∠= 由题意知1C D BD =,所以123C DB π∠=所以13BC == 所以113sin 62C E BC π==.(或:由题意知1C D BD =13C DE π∠=,所以113sin 32C E CD π===)所以11322sin 232ABC V S C E π=⋅=⨯⨯⨯⨯=△19.(1)14(2)分布列见解析,()34E X =【分析】(1)利用相互独立事件的乘法概率计算公式能求出产品为正品的概率,即可由对立事件求次品概率(2)由题意得X 0=,1,2,3,分别求出其相对应的概率,能求出X 的分布列和数学期望.【详解】(1)产品正品的概率为:11131111011124P ⎛⎫⎛⎫⎛⎫=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以为次品的概率为31144-= (2)由题意得X 0=,1,2,3,且13,4X B ⎛⎫~ ⎪⎝⎭3327(0)464P X ⎛⎫=== ⎪⎝⎭ 2133127(1)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 223319(2)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ 311(3)464P X ⎛⎫=== ⎪⎝⎭ X ∴的分布列如下:∴()27279130123646464644E X =⨯+⨯+⨯+⨯=. 20.(1)221124x y += (2)证明详见解析,定点坐标3122⎛⎫ ⎪⎝⎭,-【分析】(1)根据已知条件列方程组,由此求得222,,a b c ,从而求得椭圆C 的方程.(2)根据直线MN 的斜率进行分类讨论,结合根与系数关系以及·0AM AN =求得定点坐标.【详解】(1)由题意可得:22222911c aab a bc ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2221248a b c ===,, 故椭圆方程为221124x y +=. (2)设点()()1122,,,M x y N x y若直线MN 斜率存在时设直线MN 的方程为:y kx m =+代入椭圆方程消去y 并整理得:()2221363120k x kmx m +++-= 可得122613km x x k +=-+ 212231213m x x k -=+ 因为AM AN ⊥,所以·0AM AN =,即()()()()121233110x x y y --+--=根据1122,kx m y kx m y =+=+有()()()()221212121239110x x x x k x x k m x x m -++++-++-=整理可得: ()()()()22121213190k x x km k x x m ++--++-+= 所以()()()222223126131901313m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭ 整理化简得2299210k km m m ++--=则有()()321310k m k m +++-=得3210k m ++=或310k m +-=若3210k m ++=,则直线MN 的方程为:3122y k x ⎛⎫=-- ⎪⎝⎭,恒过3122⎛⎫- ⎪⎝⎭, 若310k m +-=,则直线MN 的方程为:()31y k x =-+,过A 点,舍去.所以直线MN 过定点P 3122⎛⎫- ⎪⎝⎭, 当直线MN 的斜率不存在时可得()11,N x y -由·0AM AN =得:()()()()121233110x x y y --+--=得()1221210x y -+-=()2211310x y -+-=,结合22111124x y += 解得:132x = 或23x =(舍去),此时直线MN 方程为32x =,过点P 3122⎛⎫- ⎪⎝⎭,. 综上,直线MN 过定点P 3122⎛⎫- ⎪⎝⎭,. 21.(1)奇函数(2)6(3){2,m m 或者2}m <-【分析】(1)令x =y =0⇒f (0)=0,再令y =﹣x ,⇒f (﹣x )=﹣f (x );(2)设x 1,x 2∈R ,且x 1<x 2,结合条件用单调性的定义证明函数f (x )为R 上的增函数,从而得到()f x 在区间[-3,3]上的最大值;(3)根据函数f (x )≤m 2﹣2am ﹣2对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,说明f (x )的最大值2小于右边,因此先将右边看作a 的函数,m 为参数系数,解不等式组,即可得出m 的取值范围.【详解】(1)取x=y=0,则f (0+0)=f (0)+f (0);则f (0)=0;取y =﹣x ,则f (x ﹣x )=f (x )+f (﹣x )∴f (﹣x )=﹣f (x )对任意x ∈R 恒成立∴f (x )为奇函数;(2)任取x 1,x 2∈(﹣∞,+∞)且x 1<x 2,则x 2﹣x 1>0;∴f (x2)+f (﹣x1)=f (x2﹣x1)<0; ∴f (x2)<﹣f (﹣x1)又∵f (x )为奇函数∴f (x 1)>f (x 2);∴f (x )在(﹣∞,+∞)上是减函数;∴对任意x ∈[﹣3,3],恒有f (x )≤f (﹣3)而f (3)=f (2+1)=f (2)+f (1)=3f (1)=﹣2×3=﹣6; ∴f (﹣3)=﹣f (3)=6;∴f (x )在[﹣3,3]上的最大值为6;(3)由(2)可知函数()f x 在[]1,1-的最大值为()12f -=所以要使()222f x m am <-+对所有的[][]1,1,1,1x a ∈-∈-恒成立只需要()()2max 2212m am f x f -+>=-=即220m am ->对所有[]1,1a ∈-恒成立令()[]22,1,1g a m am a =-∈-,则()()1010g g ⎧->⎪⎨>⎪⎩即222020m m m m ⎧+>⎨->⎩解得22m m ><-,或者 所以实数m 的取值范围是{}2,2m m m <-或者【点睛】本题考查了抽象函数的奇偶性、单调性与函数的值域、不等式恒成立等知识点,属于中档题,解题时应该注意题中的主元与次元的处理.22.(1)极坐标方程为π3θ=或4π3θ=;()()222222x y ax a x y +-=+【分析】(1)先消去参数t 得到直线l 的普通方程,进而得到极坐标方程,由()1cos a ρθ=+,得到2cos a a ρρρθ=+,即22x y ax +=求解.(2)将()2,0代入方程()1cos a ρθ=+得到1a =,进而得到1cos ρθ=+,分别与直线l 的极坐标方程联立,求得A ,B 坐标求解.【详解】(1)解:消去参数t 得到直线l 的普通方程为y = 所以极坐标方程为π3θ=或4π3θ=; (π3θ=(ρ∈R 也正确)由()1cos a ρθ=+,得2cos a a ρρρθ=+,即22x y ax +=化简得心形线的直角坐标方程为()()222222x y ax a x y +-=+. (2)将()2,0代入方程()1cos a ρθ=+,得1a =∴1cos ρθ=+.由π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得3π,23A ⎛⎫ ⎪⎝⎭ 由4π,31cos ,θρθ⎧=⎪⎨⎪=+⎩得14π,23B ⎛⎫ ⎪⎝⎭∴13π112π2sin 2sin 223223ABP AOP BOP S S S =+=⨯⨯+⨯⨯=△△△23.(1)0或2(2)[)3,4【分析】(1)根据1()(1)1x a x x a x a -+-≥---=-结合取等条件即可得解;(2)把()||6f x a x <+恒成立,转化为()2160g x x x a a x =-+---<恒成立,分情况讨论去绝对值符号,从而可得出答案.【详解】(1)因为1()(1)1x a x x a x a -+-≥---=-,当且仅当()(1)0x a x --≤时取等号()2|1||||1||1||1|f x x x a x a a =-+-≥-+-≥-,当且仅当1x =时取等号 所以11a -=,解得0a =或2a =故a 的值为0或2;(2)令g()2|1|||6x x x a a x =-+---,由题意知()0g x <恒成立 当{1x x x ∈≥且}x a ≥时 ()()()g()21638x x x a ax a x a =-+---=---,要使得()0g x <恒成立则30,a -≤可得3,a ≥当3a ≥时()()()()()34,034,0118,138,a x a x a x a x g x a x a x a a x a x a ⎧-+-<⎪-++-≤<⎪=⎨-+-≤<⎪⎪---≥⎩因为()0g x <恒成立, 则max ()0g x <,由图像可知()max ()0g x g = 所以()g()g 040x a ≤=-<,所以4a < 综上可知实数a 的取值范围为[)3,4.。
2023届河南省开封市高三第一次模拟考试文科数学试题【含答案】
![2023届河南省开封市高三第一次模拟考试文科数学试题【含答案】](https://img.taocdn.com/s3/m/8838742ba7c30c22590102020740be1e650ecc01.png)
开封市2023届高三年级第一次模拟考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}13A x x =-<<{}1,0,1,2B =-A B = A.B.C.D.{}2{}1,0-{}0,1,2{}1,0,1,2-2. 设命题,,则是():p x ∀∈R e 1xx ≥+p ⌝A. , B. ,x ∀∈R e 1≤+xx x ∀∈R e 1xx <+C , D. ,x ∃∈R e 1≤+xx x ∃∈R e 1x x <+3. 若是纯虚数,则实数( )4i43i a +-=a A. B. C. D. 2-23-34. 已知中,为边上一点,且,则( )ABC D BC 13BD BC =AD =A. B. C. D.1233AC AB+ 2133AC AB+1344AC AB+3144AC AB+5. 已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()D.π36. 如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A. 4B. 27. 已知则x +2y 的最大值为()30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩A. 2B. 3C. 5D. 68. 设是定义域为的偶函数,且在上单调递减,则满足()f x R [)0,∞+的的取值范围是( )()()2f x f x <-x A.B.C. D.(),2-∞-()2,-+∞(),1-∞()1,+∞9. 已知数列的前项和,若,则( ){}n a n 2n S n =()*5,p q p q +=∈N p q a a +=A. B. C. D. 7891010. 已知,是椭圆的两个焦点,点M 在C 上,则(1F 2F 22:14x C y +=12MF MF ⋅)A. 有最大值4B. 有最大值3C. 有最小值4D. 有最小值311. 如图,在正方体中,点M ,N 分别是,的中点,则下述1111ABCD A B C D -1A D 1D B 结论中正确的个数为()①∥平面;②平面平面;MN ABCD 1A ND ⊥1D MB ③直线与所成的角为; ④直线与平面所成的角为.MN 11B D 45︒1D B 1A ND 45︒A. 1B. 2C. 3D. 412. 在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数a 的取值范围是()()e x f x a x=-A.B.C.D.1,e ⎛⎤-∞ ⎥⎝⎦2,e ⎛⎤-∞ ⎥⎝⎦(],1-∞(],e -∞二、填空题:本题共4小题,每小题5分,共20分.13. 已知点、、,则______.()1,0A ()2,2B ()0,3C ⋅=AB AC 14 已知函数,则______.()cos f x x x=-512f π⎛⎫= ⎪⎝⎭15. 3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为打印3D得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm .16. 在数列中,,.记是数列的前项和,{}n a 11a =()()*212nn n a a n ++-=∈N n S {}n a n 则______.20S =三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 同时从甲、乙、丙三个不同地区进口某种商品的数量分别为、、(单位:240160160件),工作人员用分层抽样的方法从这些商品中共抽取件样品进行检测.7(1)求抽取的件商品中,来自甲、乙、丙各地区的数量;7(2)设抽取的件商品分别用、、、、、、表示,现从中再随机抽取7A B C D E F G 件做进一步检测.2(i )试用所给字母列举出所有可能的抽取结果;(ii )设为事件“抽取的件商品来自不同地区”,求事件发生的概率.M 2M 18. 在中,角A ,B ,C ,所对的边分别为a ,b ,c ,已知,ABC cossin 2B Ca b A +=.23a b =(1)求的值;cos B (2)若,求.3a =c 19. 如图,△ABC 是正三角形,在等腰梯形ABEF 中,,AB EF ∥.平面ABC ⊥平面ABEF ,M ,N 分别是AF ,CE 的中点,.12AF EF BE AB ===4CE=(1)证明:平面ABC ;//MN (2)求三棱锥N -ABC 的体积.20. 已知函数,.()2sin f x x ax=-a ∈R (1)若是R 上的单调递增函数,求实数a 的取值范围;()f x (2)当时,求在上的最小值.1a =()()ln g x f x x =-0,2π⎛⎤⎥⎝⎦21. 图1所示的椭圆规是画椭圆的一种工具,在十字形滑槽上各有一个活动滑标M ,N ,有一根旋杆将两个滑标连成一体,,D 为旋杆上的一点且在M ,N 两点之间,且3MN =.当滑标M 在滑槽EF 内做往复运动,滑标N 在滑槽GH 内随之运动时,将2ND DM=笔尖放置于D 处可画出椭圆,记该椭圆为.如图2所示,设EF 与GH 交于点O ,以EF1C所在的直线为x 轴,以GH 所在的直线为y 轴,建立平面直角坐标系.(1)求椭圆的方程;1C (2)以椭圆的短轴为直径作圆,已知直线l 与圆相切,且与椭圆交于A ,B 两1C 2C 2C 1C 点,记△OAB 的面积为S ,若,求直线l 的斜率.S =(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(为参数),为曲线xOy C 222x pt y pt =⎧⎨=⎩t ()2,4上一点的坐标.C (1)将曲线的参数方程化为普通方程;C (2)过点任意作两条相互垂直的射线分别与曲线交于点A ,B ,以直线的斜率O C OA 为参数,求线段的中点的轨迹的参数方程,并化为普通方程.k AB M [选修4-5:不等式选讲]23. 已知函数.()21f x x a x =++-(1)当时,求的最小值;1a =()f x (2)若,时,对任意使得不等式恒成立,证明:0a >0b >[]1,2x ∈()21f x x b >-+.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭开封市2023届高三年级第一次模拟考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}13A x x =-<<{}1,0,1,2B =-A B = A.B.C.D.{}2{}1,0-{}0,1,2{}1,0,1,2-【答案】C 【解析】【分析】根据交集的定义计算即可.【详解】由题知,,{}13A x x =-<<{}1,0,1,2B =-由交集的定义得,,A B = {}0,1,2故选:C.2. 设命题,,则是():p x ∀∈R e 1xx ≥+p ⌝A. , B. ,x ∀∈R e 1≤+xx x ∀∈R e 1xx <+C. , D. ,x ∃∈R e 1≤+xx x ∃∈R e 1x x <+【答案】D 【解析】【分析】先仔细审题,抓住题目中的关键信息之后再动,原题让我们选择一个全称命题的否定,任意和存在是一对,要注意互相变化,大于等于的否定是小于.【详解】,的否定是,.x ∀∈R e 1xx ≥+x ∃∈R e 1xx <+故选:D3. 若是纯虚数,则实数( )4i43i a +-=aA. B. C. D. 2-23-3【答案】D 【解析】【分析】利用复数的除法化简复数,根据纯虚数的概念可得出关于实数的等式与4i43i a +-a 不等式,即可得解.【详解】为纯虚数,则,解得()()()()4i 43i 4i 412316i 43i 43i 43i 2525a a a a +++-+==+--+41203160a a -=⎧⎨+≠⎩.3a =故选:D.4. 已知中,为边上一点,且,则( )ABC D BC 13BD BC =AD =A. B. C. D.1233AC AB+ 2133AC AB+1344AC AB+3144AC AB +【答案】A 【解析】【分析】利用向量的线性运算即可求得.【详解】在中,.ABC BC AC AB=-因为,所以.13BD BC =()1133B AC ABD BC ==- 所以.()112333AD AB BD AB A A C AB C AB=++-==+故选:A5. 已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()D. π3【答案】B 【解析】【分析】由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.【详解】设圆锥母线长为,高为,底面半径为,l h 1r =则由得,所以,2π1πl ⨯=2l=h ==所以.2211ππ133V r h ==⨯=故选:B .6. 如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A. 4B. 2【答案】B 【解析】【分析】由平均数相等求出,再求方差.m 【详解】由可得,80290392180290329189055m ⨯+⨯++++⨯+⨯++++==,即甲同学成绩的方差为8m =()22221211225+++=故选:B7. 已知则x +2y 的最大值为()30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩A 2B. 3C. 5D. 6【答案】C 【解析】【分析】作出可行域,根据简单线性规划求解即可.【详解】作出可行域如图:由可得:,2z x y =+122z y x =-+平移直线经过点时,有最大值,12y x=-A z 由解得,3010x y x y +-=⎧⎨-+=⎩(1,2)A .max 145z =+=故选:C 8. 设是定义域为的偶函数,且在上单调递减,则满足()f x R [)0,∞+的的取值范围是( )()()2f x f x <-x A.B.C. D.(),2-∞-()2,-+∞(),1-∞()1,+∞【答案】D 【解析】【分析】利用的奇偶性、单调性可得,再解不等式可得答案.()f x 2x x-<【详解】因为是定义域为的偶函数,所以,()f x R ()()f x f x -=又在上单调递减,所以在上单调递增,()f x [)0,∞+(),0∞-若,则,解得.()()2f x f x <-2x x-<1x >故选:D.9. 已知数列的前项和,若,则( ){}n a n 2n S n =()*5,p q p q +=∈N p q a a +=A. B. C. D. 78910【答案】B 【解析】【分析】利用与的关系可求得的通项公式,进而可求得的值.n a n S {}n a p q a a +【详解】当时,;1n =21111a S ===当时,.2n ≥()221121n n n a S S n n n -=-=--=-也满足,故对任意的,,11a =21n a n =-N n *∈21n a n =-因此,.()222528p q a a p q +=+-=⨯-=故选:B.10. 已知,是椭圆的两个焦点,点M 在C 上,则(1F 2F 22:14x C y +=12MF MF ⋅)A. 有最大值4B. 有最大值3C. 有最小值4D.有最小值3【答案】A 【解析】【分析】根据椭圆方程求得,,2a =1b =c =,设,所以,利用对应函数单124MF MF +=1MF t=()21244MF MF t t t t⋅=-=-+调性即可求解.【详解】由椭圆可得,,,所以,,2214x y +=24a =21b =23c =2a =1b =c =因为点在上,所以,M C 1224MF MF a +==设,,即,则1MF t=[],t a c a c ∈-+22t ⎡∈⎣24MF t =-所以,()21244MF MF t t t t⋅=-=-+由对应函数单调性可知,2124MF MF t t⋅=-+当时,有最大值,最大值为2t =2124MF MF t t ⋅=-+4即时,最大值为,122MF MF ==12MF MF ⋅4当时,有最小值,最小值为2t =2124MF MF t t⋅=-+((22421-+=即,时,最小值为,12MF =22MF =+12MF MF ⋅1综上所述:最小值为,最大值为12MF MF ⋅14故选:A .11. 如图,在正方体中,点M ,N 分别是,的中点,则下述1111ABCD A B C D -1A D 1D B 结论中正确的个数为()①∥平面;②平面平面;MN ABCD 1A ND ⊥1D MB ③直线与所成的角为; ④直线与平面所成的角为.MN 11B D 45︒1D B 1A ND 45︒A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】建立空间直角坐标系,利用法向量的性质,结合空间向量夹角公式逐一判断即可.【详解】建立如下图所示的空间直角坐标系,设该正方体的棱长为,2,111(0,0,0),(2,0,2),(2,2,0),(0,0,2),(2,2,2),(1,0,1),(1,1,1)D A B D B M N 由正方体的性质可知:平面,则平面的法向量为,1D D ⊥ABCD ABCD 1(0,0,2)DD =,因为,所以,而平面,(0,1,0)MN =10D D MN ⋅= 1D D MN ⊥ MN ⊄ABCD 因此∥平面,故①对;MN ABCD 设平面的法向量为,,,1A ND (,,)m x y z = (1,1,1)DN =1(2,0,2)DA = 所以有,1100(1,0,1)2200m DN m DN x y z m x z m DA m DA ⎧⎧⊥⋅=++=⎧⎪⎪⇒⇒⇒=-⎨⎨⎨+=⊥⋅=⎩⎪⎪⎩⎩ 同理可求出平面的法向量,1D MB (1,0,1)n =因为,所以,因此平面平面,故②正确;110m n ⋅=-= m n ⊥1A ND ⊥1D MB 因为,,(0,1,0)MN =11(2,2,0)B D =-- 所以,111111cos ,MN B D MN B D MN B D ⋅〈〉===⋅因为异面直线所成的角范围为,所以直线与所成的角为,故③正确;(0,90]MN 11B D 45︒设直线与平面所成的角为,1D B 1A ND θ因为,平面的法向量为,1(2,2,2)D B =- 1A ND (1,0,1)m =-所以,111sin cos ,D B m D B m D B mθ⋅=〈〉===≠⋅所以直线与平面所成的角不是,因此④错误,1D B 1A ND 45︒一共有个结论正确,3故选:C12. 在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数a 的取值范围是()()e x f x a x=-A.B.C.D.1,e ⎛⎤-∞ ⎥⎝⎦2,e ⎛⎤-∞ ⎥⎝⎦(],1-∞(],e -∞【答案】B 【解析】【分析】根据题意列出关于和的等式,然后分离参数,转化为两个函数有交点.0x a 【详解】题意得若函数为不动点函数,则满足()e x f x a x=-,即,即()0000e xf x a x x -==00e 2x a x =02e x x a =设,()2e xx g x =()()22e 2e 22e e x xxx x xg x --'==令,解得()0g x '=1x =当时,,所以在上为增函数(),1x ∈-∞()0g x '>()g x (),1-∞当时,,所以在上为减函数()1,x ∈+∞()0g x '<()g x ()1,+∞所以()max 2(1)eg x g ==当时,(),0x ∞∈-()0g x <当时,()0,x ∞∈+()0g x >所以的图象为:()g x要想成立,则与有交点,所以,002e x x a =y a =()g x ()max2e a g x ≤=对应区间为2,e ⎛⎤-∞ ⎥⎝⎦故选:B.二、填空题:本题共4小题,每小题5分,共20分.13. 已知点、、,则______.()1,0A ()2,2B ()0,3C ⋅=AB AC 【答案】5【解析】【分析】计算出向量、的坐标,利用平面向量数量积的坐标运算可求得AB AC的值.AB AC ⋅【详解】由题意可得,,因此,.()1,2AB =()1,3AC =-1235AB AC ⋅=-+⨯=故答案为:.514. 已知函数,则______.()cos f x x x=-512f π⎛⎫= ⎪⎝⎭【解析】【分析】利用辅助角公式将函数化简,再代入计算可得.【详解】∵函数,()1πcos 2cos 2sin 26f x x x x x x ⎫⎛⎫=-=-=-⎪ ⎪⎪⎝⎭⎭即,()2sin()6f x x π=-∴.5π5πππ()2sin()2sin 121264f =-==.15. 3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为打印3D得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm.【答案】【解析】【分析】由已知,根据题意,以最细处所在的直线为轴,其垂直平分线为轴建立平面x y 直角坐标系,设出双曲线方程,并根据离心率表示出之间的关系,由题意底直径为,a b 6cm ,所以双曲线过点,下底直径为9cm ,高为9cm ,所以双曲线过点,()3,m 9,92m ⎛⎫- ⎪⎝⎭代入双曲线方程即可求解方程从而得到喉部(最细处)的直径.【详解】由已知,以最细处所在的直线为轴,其垂直平分线为轴建立平面直角坐标系,x y 设双曲线方程为,()222210,0x y a b a b -=>>由已知可得,,且,ce a ==222c a b =+所以,所以双曲线方程为,224a b =222214x y a a -=底直径为6cm ,所以双曲线过点,()3,m 下底直径为9cm ,高为9cm ,所以双曲线过点,代入双曲线方程得:9,92m ⎛⎫- ⎪⎝⎭,解得:,()222222914819414m a a m a a ⎧-=⎪⎪⎨⎪--=⎪⎩2m a =⎧⎪⎨=⎪⎩所以喉部(最细处)的直径为故答案为:16. 在数列中,,.记是数列的前项和,{}n a 11a =()()*212nn n a a n ++-=∈N n S {}n a n 则______.20S =【答案】110【解析】【分析】对为奇数、为偶数两种情况讨论,求出数列前项中奇数项和偶数项n n {}n a 20的和,相加可得出的值.20S【详解】当为奇数时,,所以,数列的奇数项成以为首项,公差为n 22n n a a +-={}n a 1的等差数列,2所以,;132010921011002a a a ⨯⨯+++=⨯+= 当为偶数时,,n 22n n a a ++=所以,.()()()2420246818202510a a a a a a a a a +++=++++++=⨯= 因此,.2010010110S =+=故答案为:.110三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 同时从甲、乙、丙三个不同地区进口某种商品的数量分别为、、(单位:240160160件),工作人员用分层抽样的方法从这些商品中共抽取件样品进行检测.7(1)求抽取的件商品中,来自甲、乙、丙各地区的数量;7(2)设抽取的件商品分别用、、、、、、表示,现从中再随机抽取7A B C D E F G 件做进一步检测.2(i )试用所给字母列举出所有可能的抽取结果;(ii )设为事件“抽取的件商品来自不同地区”,求事件发生的概率.M 2M 【答案】(1)分别为件、件、件322(2)(i )答案见解析;(ii )1621【解析】【分析】(1)利用分层抽样可计算得出所抽取的件商品中,来自甲、乙、丙各地区的数7量;(2)(i )利用列举法可列举出所有的基本事件;(ii )列举出事件所包含的基本事件,利用古典概型的概率公式可求得的值.M ()P M【小问1详解】解:由已知,从甲、乙、丙三个不同地区进口某种商品的数量之比为,3:2:2由于采用分层抽样的方法从中抽取件商品,7因此应从甲、乙、丙三个不同地区进口的某种商品中分别抽取件、件、3737⨯=2727⨯=件.2727⨯=【小问2详解】解:(i )从抽取的件商品中随机抽取件商品的所有可能结果为:、、、72AB AC AD 、、、、、、、、、、、、、AE AF AG BC BD BE BF BG CD CE CF CG DE 、、、、;DF DG EF EG FG (ii )不妨设抽取的件商品中,来自甲地区的是、、,来自乙地区的是、,7A B C D E 来自丙地区的是、,F G 则从抽取的件商品中随机抽取的件商品来自相同地区的所有可能结果为:、72AD 、、、、、、、、、、、、、AE AF AG BD BE BF BG CD CE CF CG DF DG 、,共种,EF EG 16所有的基本事件共种,故.21()1621P M =18. 在中,角A ,B ,C ,所对的边分别为a ,b ,c ,已知,ABC cossin 2B Ca b A +=.23a b =(1)求的值;cos B (2)若,求.3a =c 【答案】(1)3cos 4B =(2)52c =【解析】【分析】(1)先由三角形内角和的关系将代换,再由正弦定理将边化角,求得cos2B C+角A ,B 的关系,解出的值;cos B (2)由第一问求得的的值,根据余弦定理公式展开列方程求解即可.cos B c 【小问1详解】因为,A B C π++=所以,222B C Aπ+=-得,cossin 22B C A+=因为,cossin 2B Ca b A +=由正弦定理,可得,sin sinsin sin 2AA B A ⋅=⋅又,所以,sin 0A ≠sinsin 2AB =又因为A ,B 均为三角形内角,所以,即,2AB =2A B =又因为,即,23a b =2sin 3sin A B =即,4sin cos 3sin B B B =又,得;sin 0B ≠3cos 4B =【小问2详解】若,则,3a =2b =由(1)知,3cos 4B =由余弦定理可得2222cos b a c ac B =+-,即,29502c c -+=()5202c c ⎛⎫--= ⎪⎝⎭所以或,2c =52当时,,则,即为等腰直角三角形,2c =b c =22A B C ==ABC 又因为,此时不满足题意,所以.a ≠52c =19. 如图,△ABC 是正三角形,在等腰梯形ABEF 中,,AB EF ∥.平面ABC ⊥平面ABEF ,M ,N 分别是AF ,CE 的中点,.12AF EF BE AB===4CE =(1)证明:平面ABC ;//MN (2)求三棱锥N -ABC 的体积.【答案】(1)证明见解析 (2)2【解析】【分析】(1)取的中点,连接,,证明平面平面,原题即CF D DM DN //MND ABC 得证;(2)取AB 的中点O ,连接OC ,OE ,设,由勾股定理即可12AF EF EB AB a ====求出,进而可求解三棱锥N -ABC 的体积.a 【小问1详解】取CF 的中点D ,连接DM ,DN ,∵M ,N 分别是AF ,CE 的中点,∴,,DM AC ∥DN EF ∥又∵平面ABC ,平面ABC ,∴平面ABC .DM ⊄AC ⊂DM ∥又,∴,同理可得, 平面ABC .EF AB ∥DN AB ∥DN ∥∵平面MND ,平面MND ,,DM⊂DN ⊂DM DN D = ∴平面平面ABC .MND ∥∵平面MND ,∴平面ABC .MN ⊂//MN 【小问2详解】取AB 的中点O ,连接OC ,OE .由已知得OA EF 且OA =EF ,∴OAFE 是平行四边形,∴OE AF 且OE =AF ∥∥∵△ABC 是正三角形,∴OC ⊥AB ,∵平面ABC ⊥平面ABEF ,平面平面ABEF =AB ,∴OC ⊥平面ABEF ,ABC ⋂又平面ABEF ,∴OC ⊥OE .OE ⊂设,,12AF EF EB AB a ====OC =在Rt △COE 中,由,解得,即.222OC OE CE +=2a =122AF EF EB AB ====由题意∠FAB =60°,M 到AB 的距离即为M 到平面ABC的距离sin 60h AM =︒=又平面ABC ,∴.//MN 11142332N ABC M ABC ABC V V S h --==⋅⋅=⨯⨯⨯=△20. 已知函数,.()2sin f x x ax=-a ∈R (1)若是R 上的单调递增函数,求实数a 的取值范围;()f x(2)当时,求在上的最小值.1a =()()ln g x f x x =-0,2π⎛⎤ ⎥⎝⎦【答案】(1)(],2-∞-(2)2ln 22ππ⎛⎫-- ⎪⎝⎭【解析】【分析】(1)由已知可得:即可求解.()2cos 0f x x a '=-≥(2)结合导数和隐零点替换即可求解最值.【小问1详解】由已知可得:恒成立,()2cos 0f x x a '=-≥即恒成立,又的最小值为-2,所以,2cos a x ≤2cos y x =2a ≤-则有.(],2a ∈-∞-【小问2详解】当时,,1a =()()ln 2sin ln g x f x x x x x=-=--()0,x ∈+∞所以,()12cos 1g x x x '=--令,在上单调递减,()()h x g x '=()212sin h x x x '=-+0,2π⎛⎤⎥⎝⎦又因为,,26106h ππ⎛⎫⎛⎫'=-+> ⎪ ⎪⎝⎭⎝⎭()12sin112sin 106h π'=-+<-+=所以存在使得,即,从而0,16x π⎛⎫∈ ⎪⎝⎭()0h x '=02012sin x x =0cos x =则有x()00,x 0,2x π⎛⎫ ⎪⎝⎭()h x '正负()g x '递增递减则有最大值为:()g x ',()00000011112cos 11110g x x x x x x '=--=--<-=-<所以,()0g x '<则在上单调递减,所以最小值为.()g x 0,2π⎛⎤ ⎥⎝⎦2ln 222g πππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭21. 图1所示的椭圆规是画椭圆的一种工具,在十字形滑槽上各有一个活动滑标M ,N ,有一根旋杆将两个滑标连成一体,,D 为旋杆上的一点且在M ,N 两点之间,且3MN =.当滑标M 在滑槽EF 内做往复运动,滑标N 在滑槽GH 内随之运动时,将2ND DM=笔尖放置于D 处可画出椭圆,记该椭圆为.如图2所示,设EF 与GH交于点O ,以EF 1C 所在的直线为x 轴,以GH 所在的直线为y 轴,建立平面直角坐标系.(1)求椭圆的方程;1C (2)以椭圆的短轴为直径作圆,已知直线l 与圆相切,且与椭圆交于A ,B 两1C 2C 2C 1C点,记△OAB 的面积为S ,若,求直线l 的斜率.S =【答案】(1)2214x y +=(2)k =k =【解析】【分析】(1)由,,即可得到椭圆的长半轴长和短半轴长,进而可求解.2ND =1DM =(2)分类讨论直线的斜率是否存在,当斜率不存在时不满足题意,故设,l :l y kx m =+联立方程,表达出即可求解.S =【小问1详解】由题意可得,,2ND =1DM =所以椭圆的长半轴长为2,短半轴长为1,所以椭圆的方程为:.1C 1C 2214x y +=【小问2详解】若直线l 的斜率不存在,依题意,,带入方程可得,:1lx =±1C AB=此时,所以直线l 的斜率一定存在,设,S =≠:l y kx m =+l 与圆,即,2C 1=221m k =+联立可得,221,4,x y y kx m ⎧+=⎪⎨⎪=+⎩()222148440k x kmx m +++-=由得,()()222264161410k m k m ∆=-+->0k ≠,,122814kmx x k -+=+()21224114mx x k -=+2AB x =-===,由得,即,解得S =AB ==4251120k k -+=k =k =(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(为参数),为曲线xOy C 222x pt y pt =⎧⎨=⎩t ()2,4上一点的坐标.C (1)将曲线的参数方程化为普通方程;C (2)过点任意作两条相互垂直的射线分别与曲线交于点A ,B ,以直线的斜率O C OA 为参数,求线段的中点的轨迹的参数方程,并化为普通方程.k AB M 【答案】(1)2x y =(2)221x y =-【解析】【分析】(1)根据曲线的参数方程为(为参数),消去参数求解;C 222x pty pt =⎧⎨=⎩t t (2)设的斜率为,方程为,则的方程为:,分别与抛物线方OA k y kx =OB 1=-y xk 程联立,求得A ,B 的坐标,再利用中点坐标求解.【小问1详解】解:因为曲线的参数方程为(为参数),C 222x pt y pt =⎧⎨=⎩t 消去参数可得:,将点代入可得,t 22x py =()2,412p =所以曲线的普通方程为:;C 2x y =【小问2详解】由已知得:,的斜率存在且不为0,OA OB设的斜率为,方程为,则的方程为:,OA k y kx =OB 1=-y x k 联立方程可得:,2,,y kx x y =⎧⎨=⎩()2,A k k 同理可得:,211,B k k ⎛⎫- ⎪⎝⎭设,所以(),M x y 2211,211,2x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩所以,22214222x k y k =+-=-所以即为点轨迹的普通方程.221x y =-M [选修4-5:不等式选讲]23. 已知函数.()21f x x a x =++-(1)当时,求的最小值;1a =()f x (2)若,时,对任意使得不等式恒成立,证明:0a >0b >[]1,2x ∈()21f x x b >-+.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭【答案】(1)2; (2)证明见解析.【解析】【分析】(1)分段求解的最小值和范围,即可求得结果;()f x (2)转化为,结合二次函数在区间上的最值,利用()21f x x b >-+233a b x x +>-+不等式,即可证明.【小问1详解】当时,,1a =()121f x x x =++-当,,;1x ≤-()31f x x =-+()min ()14f x f =-=当,,;11x -<<()3f x x =-+()()2,4f x ∈当,,;1x ≥()31f x x =-()min ()12f x f ==∴当时,的最小值为2.1a =()f x 【小问2详解】,,当时,0a >0b >12x ≤≤可化为,2211x a x x b ++->-+233a b x x +>-+令,,,∴()233h x x x =-+[]1,2x ∈()()()max 121h x h h ===1a b +>∴,22222111()122222a b a b a b a b a b +⎛⎫⎛⎫+++=++++≥+++ ⎪ ⎪⎝⎭⎝⎭当且仅当时取得等号;a b =又当时,,1a b +>2()122a b a b ++++2>故.2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭。
河南省濮阳市第一高级中学2023届高三模拟质量检测文科数学试题
![河南省濮阳市第一高级中学2023届高三模拟质量检测文科数学试题](https://img.taocdn.com/s3/m/fcfec3ca900ef12d2af90242a8956bec0975a5e0.png)
河南省濮阳市第一高级中学2023届高三模拟质量检测文
科数学试题
学校:___________姓名:___________班级:___________考号:___________
总下载量y(万次)的数据,如下表:
.D
【分析】依题意可得()
f x的周期式,从而得到函数()
f x的图象
(]
Î-上的交点个数,数形
2,6
【详解】解:因为()
f x是定义在
则由图象可知两个函数的图象的交点个数为4个,即方程()()2
log 20f x x -+=的零点个数为4
个.故选:D.
8.B
【分析】先根据条件画出可行域,设z ax by =+,再利用几何意义求最值,将最大值转化为y 轴上的截距,只需求出直线z ax by =+,过可行域内的点(4,6)时取得最大值,从而得到一个关于a ,b 的等式,最后利用基本不等式求最小值即可.
【详解】解:不等式表示的平面区域如图所示阴影部分,
当直线0,0()ax by z a b +=>>过直线20x y -+=与直线360x y --=的交点(4,6)时,目标函数(0,0)z ax by a b =+>>取得最大2,
即231a b +=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三模拟考试数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=的定义域为( )A.(﹣∞,0] B.(﹣∞,0)C.(0,)D.(﹣∞,)2.复数的共轭复数是( )A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i3.已知向量=(λ, 1),=(λ+2,1),若|+|=|﹣|,则实数λ的值为( )A.1 B.2 C.﹣1 D.﹣24.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于( )A.180 B.90 C.72 D.105.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( )A.y=±2x B.y=±x C.y=±x D.y=±x6.下列命题正确的个数是( )A.“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;B.命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件;C.“∀x∈R,x3﹣x2+1≤0”的否定是“∀x∈R,x3﹣x2+1>0”;D.“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”.A.1 B.2 C.3 D.47.已知某几何体的三视图如图所示,则这个几何体的外接球的表面积等于( )A.B.16πC.8πD.8.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是( )A.5 B.6 C.7 D.89.已知函数f(x)=+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣10=0垂直,则实数m的取值范围是(三分之一前有一个负号)( )A.C.D.10.若直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,则的最小值( ) A.B.C.2 D.411.设不等式组表示的区域为Ω1,不等式x2+y2≤1表示的平面区域为Ω2.若Ω1与Ω2有且只有一个公共点,则m等于( )A.﹣B.C.±D.12.已知函数f(x)=sin(x+)﹣在上有两个零点,则实数m的取值范围为( )A.B.D.二、填空题:本大题共4小题,每小题5分.13.设函数f(x)=,则方程f(x)=的解集为__________.14.现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是__________.15.若点P(cosα,sinα)在直线y=﹣2x上,则的值等于__________.16.16、如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:①直线AM与直线CC1相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为__________.(注:把你认为正确的结论序号都填上)三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.在△ABC中,角A,B,C的对应边分别是a,b,c满足b2+c2=bc+a2.(Ⅰ)求角A的大小;(Ⅱ)已知等差数列{a n}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和S n.18.如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=,E为BC中点.(1)求证:平面PBC⊥平面PDE;(2)线段PC上是否存在一点F,使PA∥平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校2014-2015学年高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从2014-2015学年高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生等级优秀合格尚待改进频数15 x 5表2:女生等级优秀合格尚待改进频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.10 0.05 0.01k0 2.706 3.841 6.63520.已知椭圆C:(a>b>0)的右焦点F1与抛物线y2=4x的焦点重合,原点到过点A(a,0),B(0,﹣b)的直线的距离是.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l=kx+m与椭圆C有且只有一个公共点P,过F1作PF1的垂线与直线l交于点Q,求证:点Q在定直线上,并求出定直线的方程.21.已知函数f(x)=x2﹣ax﹣alnx(a∈R).(1)若函数f(x)在x=1处取得极值,求a的值.(2)在(1)的条件下,求证:f(x)≥﹣+﹣4x+;(3)当x∈B.(﹣∞,0)C.(0,)D.(﹣∞,)1.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数f(x)的解析式,列出不等式,求出解集即可.解答:解:∵函数f(x)=,∴lg(1﹣2x)≥0,即1﹣2x≥1,解得x≤0;∴f(x)的定义域为(﹣∞,0].故选:A.点评:本题考查了根据函数的解析式,求函数定义域的问题,是基础题目.2.复数的共轭复数是( )A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,得到a+bi的形式,根据复数的共轭复数的特点得到结果.解答:解:因为,所以其共轭复数为1+2i.故选B点评:本题主要考查复数的除法运算以及共轭复数知识,本题解题的关键是先做出复数的除法运算,得到复数的代数形式的标准形式,本题是一个基础题.3.已知向量=(λ,1),=(λ+2,1),若|+|=|﹣|,则实数λ的值为( )A.1 B.2 C.﹣1 D.﹣2考点:平面向量数量积的运算.专题:平面向量及应用.分析:先根据已知条件得到,带入向量的坐标,然后根据向量坐标求其长度并带入即可.解答:解:由得:;带入向量的坐标便得到:|(2λ+2,2)|2=|(﹣2,0)|2;∴(2λ+2)2+4=4;∴解得λ=﹣1.故选C.点评:考查向量坐标的加法与减法运算,根据向量的坐标能求其长度.4.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于( )A.180 B.90 C.72 D.10考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.解答:解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B点评:本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.5.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( )A.y=±2x B.y=±x C.y=±x D.y=±x考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用离心率公式,再由双曲线的a,b,c的关系,可得a,b的关系,再由渐近线方程即可得到.解答:解:由双曲线的离心率为,则e==,即c=a,b===a,由双曲线的渐近线方程为y=x,即有y=x.故选D.点评:本题考查双曲线的方程和性质,考查离心率公式和渐近线方程的求法,属于基础题.6.下列命题正确的个数是( )A.“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;B.命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件;C.“∀x∈R,x3﹣x2+1≤0”的否定是“∀x∈R,x3﹣x2+1>0”;D.“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”.A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:A项根据正弦定理以及四种命题之间的关系即可判断;B项根据必要不充分条件的概念即可判断该命题是否正确;C项根据全称命题和存在性命题的否定的判断;D项写出一个命题的否命题的关键是正确找出原命题的条件和结论.解答:解:对于A项“在△ABC中,若sinA>sinB,则A>B”的逆命题为“在△ABC中,若A>B,则sinA>sinB”,若A>B,则a>b,根据正弦定理可知sinA>sinB,∴逆命题是真命题,∴A正确;对于B项,由x≠2,或y≠3,得不到x+y≠5,比如x=1,y=4,x+y=5,∴p不是q的充分条件;若x+y≠5,则一定有x≠2且y≠3,即能得到x≠2,或y≠3,∴p是q的必要条件;∴p是q的必要不充分条件,所以B正确;对于C项,“∀x∈R,x3﹣x2+1≤0”的否定是“∃x∈R,x3﹣x2+1>0”;所以C不对.对于D项,“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”.所以D正确.故选:C.点评:本题主要考查各种命题的真假判断,涉及的知识点较多,综合性较强.7.已知某几何体的三视图如图所示,则这个几何体的外接球的表面积等于( )A.B.16πC.8πD.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图知,几何体是一个正三棱柱,三棱柱的底面是一边长为2的正三角形,侧棱长是2,先求出其外接球的半径,再根据球的表面公式即可做出结果.解答:解:由三视图知,几何体是一个正三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,如图,设O是外接球的球心,O在底面上的射影是D,且D是底面三角形的重心,AD的长是底面三角形高的三分之二∴AD=×=,在直角三角形OAD中,AD=,OD==1∴OA==则这个几何体的外接球的表面积4π×O A2=4π×=故选:D.点评:本题考查由三视图求几何体的表面积,本题是一个基础题,题目中包含的三视图比较简单,几何体的外接球的表面积做起来也非常容易,这是一个易得分题目.8.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是( )A.5 B.6 C.7 D.8考点:程序框图.专题:算法和程序框图.分析:根据题意,模拟程序框图的运行过程,得出S计算了5次,从而得出整数M的值.解答:解:根据题意,模拟程序框图运行过程,计算S=2×1+1,2×3+1,2×7+1,2×15+1,2×31+1,…;当输出的S是63时,程序运行了5次,∴判断框中的整数M=6.故选:B.点评:本题考查了程序框图的运行结果的问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.9.已知函数f(x)=+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣10=0垂直,则实数m的取值范围是(三分之一前有一个负号)( )A.C.D.考点:利用导数研究曲线上某点切线方程;直线的一般式方程与直线的垂直关系.专题:导数的概念及应用;直线与圆.分析:求出函数的导数,求出切线的斜率,再由两直线垂直斜率之积为﹣1,得到4x0﹣x02+2=m,再由二次函数求出最值即可.解答:解:函数f(x)=﹣+2x的导数为f′(x)=﹣x2+4x+2.曲线f(x)在点(x0,f(x0))处的切线斜率为4x0﹣x02+2,由于切线垂直于直线x+my﹣10=0,则有4x0﹣x02+2=m,由于0≤x0≤3,由4x0﹣x02+2=﹣(x0﹣2)2+6,对称轴为x0=2,当且仅当x0=2,取得最大值6;当x0=0时,取得最小值2.故m的取值范围是.故选:C.点评:本题考查导数的几何意义:曲线在某点处的切线的斜率,考查两直线垂直的条件和二次函数最值的求法,属于中档题.10.若直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,则的最小值( )A.B.C.2 D.4考点:直线与圆的位置关系;基本不等式.专题:计算题;直线与圆.分析:根据题意,直线2ax﹣by+2=0经过已知圆的圆心,可得a+b=1,由此代换得:=(a+b)()=2+(+),再结合基本不等式求最值,可得的最小值.解答:解:∵直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,∴圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2)在直线上,可得﹣2a﹣2b+2=0,即a+b=1因此,=(a+b)()=2+(+)∵a>0,b>0,∴+≥2=2,当且仅当a=b时等号成立由此可得的最小值为2+2=4故答案为:D点评:本题给出直线平分圆面积,求与之有关的一个最小值.着重考查了利用基本不等式求最值和直线与圆位置关系等知识,属于中档题.11.设不等式组表示的区域为Ω1,不等式x2+y2≤1表示的平面区域为Ω2.若Ω1与Ω2有且只有一个公共点,则m等于( )A.﹣B.C.±D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用Ω1与Ω2有且只有一个公共点,确定直线的位置即可得到结论解答:解:(1)作出不等式组对应的平面区域,若Ω1与Ω2有且只有一个公共点,则圆心O到直线mx+y+2=0的距离d=1,即d==1,即m2=3,解得m=.故选:C.点评:本题主要考查线性规划的应用,利用直线和圆的位置关系是解决本题的关键,利用数形结合是解决本题的基本数学思想.12.已知函数f(x)=sin(x+)﹣在上有两个零点,则实数m的取值范围为( )A.B.D.考点:函数零点的判定定理.专题:函数的性质及应用.分析:由f(x)=0得sin(x+)=,然后求出函数y=sin(x+)在上的图象,利用数形结合即可得到结论.解答:解:由f(x)=0得sin(x+)=,作出函数y=g(x)=sin(x+)在上的图象,如图:由图象可知当x=0时,g(0)=sin=,函数g(x)的最大值为1,∴要使f(x)在上有两个零点,则,即,故选:B点评:本题主要考查函数零点个数的应用,利用三角函数的图象是解决本题的关键.二、填空题:本大题共4小题,每小题5分.13.设函数f(x)=,则方程f(x)=的解集为{﹣1,}.考点:函数的零点.专题:函数的性质及应用.分析:结合指数函数和对数函数的性质,解方程即可.解答:解:若x≤0,由f(x)=得f(x)=2x==2﹣1,解得x=﹣1.若x>0,由f(x)=得f(x)=|log2x|=,即log2x=±,由log2x=,解得x=.由log2x=﹣,解得x==.故方程的解集为{﹣1,}.故答案为:{﹣1,}.点评:本题主要考查分段函数的应用,利用指数函数和对数函数的性质及运算是解决本题的关键.14.现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题15.若点P(cosα,sinα)在直线y=﹣2x上,则的值等于﹣.考点:二倍角的余弦;运用诱导公式化简求值.专题:三角函数的求值.分析:把点P代入直线方程求得tanα的值,原式利用诱导公式化简后,再利用万能公式化简,把tanα的值代入即可.解答:解:∵点P(cosα,sinα)在直线y=﹣2x上,∴sinα=﹣2cosα,即tanα=﹣2,则cos(2α+)=sin2α===﹣.故答案为:﹣点评:此题考查了二倍角的余弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.16.16、如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:①直线AM与直线CC1相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为③④.(注:把你认为正确的结论序号都填上)考点:棱柱的结构特征;异面直线的判定.专题:计算题;压轴题.分析:利用两条直线是异面直线的判断方法来验证①③④的正误,②要证明两条直线平行,从图形上发现这两条直线也是异面关系,得到结论.解答:解:∵直线CC1在平面CC1D1D上,而M∈平面CC1D1D,A∉平面CC1D1D,∴直线AM与直线CC1异面,故①不正确,∵直线AM与直线BN异面,故②不正确,∵直线AM与直线DD1既不相交又不平行,∴直线AM与直线DD1异面,故③正确,利用①的方法验证直线BN与直线MB1异面,故④正确,总上可知有两个命题是正确的,故答案为:③④点评:本题考查异面直线的判定方法,考查两条直线的位置关系,两条直线有三种位置关系,异面,相交或平行,注意判断经常出错的一个说法,两条直线没有交点,则这两条直线平行,这种说法是错误的.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.在△ABC中,角A,B,C的对应边分别是a,b,c满足b2+c2=bc+a2.(Ⅰ)求角A的大小;(Ⅱ)已知等差数列{a n}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和S n.考点:数列的求和;等比数列的性质;余弦定理.专题:等差数列与等比数列.分析:(Ⅰ)由已知条件推导出=,所以cosA=,由此能求出A=.(Ⅱ)由已知条件推导出(a1+3d)2=(a1+d)(a1+7d),且d≠0,由此能求出a n=2n,从而得以= =,进而能求出{}的前n项和S n.解答:解:(Ⅰ)∵b2+c2﹣a2=bc,∴=,∴cosA=,∵A∈(0,π),∴A=.(Ⅱ)设{a n}的公差为d,∵a1cosA=1,且a2,a4,a8成等比数列,∴a1==2,且=a2•a8,∴(a1+3d)2=(a1+d)(a1+7d),且d≠0,解得d=2,∴a n=2n,∴==,∴S n=(1﹣)+()+()+…+()=1﹣=.点评:本题考查角的大小的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.18.如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=,E为BC中点.(1)求证:平面PBC⊥平面PDE;(2)线段PC上是否存在一点F,使PA∥平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连接BD,便可得到BD=DC,而E又是BC中点,从而得到BC⊥DE,而由PD⊥平面ABCD便可得到BC⊥PD,从而得出BC⊥平面PDE,根据面面垂直的判定定理即可得出平面PBC⊥平面PDE;(2)连接AC,交BD于O,根据相似三角形的比例关系即可得到AO=,从而在PC上找F,使得PF=,连接OF,从而可说明PA∥平面BDF,这样即找到了满足条件的F点.解答:解:(1)证明:连结BD,∠BAD=90°,;∴BD=DC=2a,E为BC中点,∴BC⊥DE;又PD⊥平面ABCD,BC⊂平面ABCD;∴BC⊥PD,DE∩PD=D;∴BC⊥平面PDE;∵BC⊂平面PBC;∴平面PBC⊥平面PDE;(2)如上图,连结AC,交BD于O点,则:△AOB∽△COD;∵DC=2AB;∴;∴;∴在PC上取F,使;连接OF,则OF∥PA,而OF⊂平面BDF,PA⊄平面BDF;∴PA∥平面BDF.点评:考查直角三角形边的关系,等腰三角形中线也是高线,以及线面垂直的性质,线面垂直的判定定理,相似三角形边的比例关系,线面平行的判定定理.19.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校2014-2015学年高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从2014-2015学年高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生等级优秀合格尚待改进频数15 x 5表2:女生等级优秀合格尚待改进频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)从表二中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.10 0.05 0.01k0 2.706 3.841 6.635考点:独立性检验.专题:概率与统计.分析:(1)根据分层抽样,求出x与y,得到表2中非优秀学生共5人,从这5人中任选2人的所有可能结果共10种,其中恰有1人测评等级为合格的情况共6种,所以概率为;(2)根据1﹣0.9=0.1,P(K2≥2.706)===1.125<2.706,判断出没有90%的把握认为“测评结果优秀与性别有关”.解答:解:(1)设从2014-2015学年高一年级男生中抽出m人,则=,m=25∴x=25﹣15﹣5=5,y=20﹣18=2表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)共10种,记事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”则C的结果为:(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),共6种,∴P(C)==,故所求概率为;(2)男生女生总计优秀15 15 30非优秀10 5 15总计25 20 45∵1﹣0.9=0.1,P(K2≥2.706)===1.125<2.706∴没有90%的把握认为“测评结果优秀与性别有关”.点评:本题考查了古典概率模型的概率公式,独立性检验,属于中档题.20.已知椭圆C:(a>b>0)的右焦点F1与抛物线y2=4x的焦点重合,原点到过点A(a,0),B(0,﹣b)的直线的距离是.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l=kx+m与椭圆C有且只有一个公共点P,过F1作PF1的垂线与直线l交于点Q,求证:点Q在定直线上,并求出定直线的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由抛物线的焦点坐标求得c=1,结合隐含条件得到a2=b2+1,再由点到直线的距离公式得到关于a,b的另一关系式,联立方程组求得a,b的值,则椭圆方程可求;(Ⅱ)联立直线方程和椭圆方程,消去y得到(4k2+3)x2+8kmx+4m2﹣12=0,由判别式等于0整理得到4k2﹣m2+3=0,代入(4k2+3)x2+8kmx+4m2﹣12=0求得P的坐标,然后写出直线F1Q方程为,联立方程组,求得x=4,即说明点Q在定直线x=4上.解答:(Ⅰ)解:由抛物线的焦点坐标为(1,0),得c=1,因此a2=b2+1 ①,直线AB:,即bx﹣ay﹣ab=0.∴原点O到直线AB的距离为②,联立①②,解得:a2=4,b2=3,∴椭圆C的方程为;(Ⅱ)由,得方程(4k2+3)x2+8kmx+4m2﹣12=0,(*)由直线与椭圆相切,得m≠0且△=64k2m2﹣4(4k2+3)(4m2﹣12)=0,整理得:4k2﹣m2+3=0,将4k2+3=m2,即m2﹣3=4k2代入(*)式,得m2x2+8kmx+16k2=0,即(mx+4k)2=0,解得,∴,又F1(1,0),∴,则,∴直线F1Q方程为,联立方程组,得x=4,∴点Q在定直线x=4上.点评:本题考查了椭圆方程的求法,考查了点到直线距离公式的应用,考查了直线和圆锥曲线的关系,训练了两直线交点坐标的求法,是中档题.21.已知函数f(x)=x2﹣ax﹣alnx(a∈R).(1)若函数f(x)在x=1处取得极值,求a的值.(2)在(1)的条件下,求证:f(x)≥﹣+﹣4x+;(3)当x∈解答:(1)解:,由题意可得f′(1)=0,解得a=1;经检验,a=1时f(x)在x=1处取得极值,所以a=1.(2)证明:由(1)知,f(x)=x2﹣x﹣lnx.令,由,可知g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以g(x)≥g(1)=0,所以成立;(3)解:由x∈=8×=4.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,两角和差的余弦公式,属于基础题.24.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.考点:带绝对值的函数;绝对值不等式.专题:计算题;压轴题.分析:(1)由|2x﹣a|+a≤6得|2x﹣a|≤6﹣a,再利用绝对值不等式的解法去掉绝对值,结合条件得出a值;(2)由(1)知f(x)=|2x﹣1|+1,令φ(n)=f(n)+f(﹣n),化简φ(n)的解析式,若存在实数n使f(n)≤m﹣f(﹣n)成立,只须m大于等于φ(n)的最大值即可,从而求出实数m的取值范围.解答:解:(1)由|2x﹣a|+a≤6得|2x﹣a|≤6﹣a,∴a﹣6≤2x﹣a≤6﹣a,即a﹣3≤x≤3,∴a﹣3=﹣2,∴a=1.(2)由(1)知f(x)=|2x﹣1|+1,令φ(n)=f(n)+f(﹣n),则φ(n)=|2n﹣1|+|2n+1|+2=∴φ(n)的最小值为4,故实数m的取值范围是[4,+∞).点评:本题考查绝对值不等式的解法,体现了等价转化的数学思想,利用分段函数化简函数表达式是解题的关键.。