电子衍射原理
电子衍射原理
三、结构因子
结构因子F(hkl)是描述晶胞类型和衍射强度之间关系的一个函数。结构因子的数学表达
式为
N
F(hkl) f j exp[2i(hx j kyj lz j )]
j 1
fj 是单胞中位于(x j , y j , z j )的第j个原子对电子的散射振幅(或叫散射因子),它的大小与原 子序数有关。
c
c*
a
c*
b
0
a*
a
b*
b
c*
c
1
2、在倒易空间中,任意矢量的大小和方向可以用倒易矢量g来表示。
g
ha
*
kb *
lc*
1)ghkl垂直于(hkl)晶面。平行与(hkl)晶面的 法线N(hkl)。 2)倒易点阵中的一个点代表的是正点阵中的一组晶面。
微束选区衍射 ----用微细的入射束直接在样品上 选择感兴趣部位获得该微区衍射像。电子束可聚焦 很细,所选微区可小于0.5m 。可用于研究微小析 出相和单个晶体缺陷等。目前已发展成为微束衍射 技术。
一、电子衍射原理 透射电镜 单晶体
ቤተ መጻሕፍቲ ባይዱ多晶体
非晶体
二、布拉格定律 样品对入射电子的散射
• 晶体物质是由原子、离子或原子团在三维空间按一定 规律周期性排列构成的。当具有一定波长的单色平面 电子波射入晶体时,这些规则排列的质点将对入射电 子束中与其靠近的电子产生散射,由于散射强度较大 ,于是各个质点作为新波源发射次级波.
• 计算结构因子时要把晶胞中的所有原子考虑在内。
电子衍射
(1)由于电子波波长很短,一般只有千分之几nm, 按布拉格方程2dsin=可知,电子衍射的2角很小(一 般为几度),即入射电子束和衍射电子束都近乎平行 于衍射晶面。
由衍射矢量方程(s-s0)/=r*,设K=s/、K=s0/、 g=r*,则有
K-K=g
(8-1)
此即为电子衍射分析时(一般文献中)常用的衍射矢 量方程表达式。
H3=H1+H2、K3=K1+K2和L3=L1+L3。
单晶电子衍射花样的标定
立方晶系多晶体电子衍射标定时应用的关 系式:R21:R22:…:R2n=N1:N2:…:Nn 在立方晶 系单晶电子衍射标定时仍适用,此时R=R。 单晶电子衍射花样标定的主要方法为: 尝试核算法 标准花样对照法
“180不唯一性”或“偶合不唯一性”现象的产生,根 源在于一幅衍射花样仅仅提供了样品的“二维信息”。
通过样品倾斜(绕衍射斑点某点列转动),可获得另一晶带 电子衍射花样。而两个衍射花样组合可提供样品三维信息。
通过对两个花样的指数标定及两晶带夹角计算值与实测 (倾斜角)值的比较,即可有效消除上述之“不唯一性”。
(8-7)
式中:N——衍射晶面干涉指数平方和,即 N=H2+K2+L2。
多晶电子衍射花样的标定
对于同一物相、同一衍射花样各圆环而言,(C2/a2) 为常数,故按式(8-7),有
R12:R22:…:Rn2=N1:N2:…:Nn
(8-8)
此即指各衍射圆环半径平方(由小到大)顺序比等于
各圆环对应衍射晶面N值顺序比。
一、电子衍射基本公式
电子衍射基本公式的导出
设样品至感光平面的距离为L(可称为 相机长度),O与P的距离为R,
由图可知
电子的衍射原理
电子的衍射原理电子的衍射原理是指当电子束通过一个尺寸与其波长接近的孔或经过晶体时,会发生衍射现象。
这个现象与光波的衍射原理非常相似,但是由于电子的特殊性质,使得电子的衍射具有一些独特的特点。
首先,我们知道根据德布罗意波动方程,物质粒子也具有波动性质。
对于电子来说,它的波长可以由德布罗意公式λ = h/p计算得出,其中h是普朗克常数,p为电子的动量。
电子的衍射主要是通过电子与晶体或孔的相互作用来产生的。
当电子束遇到晶格的时候,晶格的周期性结构会对电子束产生散射,这种散射就是电子的衍射。
晶格常数决定了衍射的微细结构,而晶体的平面则决定了衍射的方向性。
衍射的过程可以通过惠更斯-菲涅尔原理来描述。
根据该原理,每个点上的波前都可以看作是一系列波源发出的次级波的叠加,这些次级波形成了新的波前。
在电子的衍射过程中,散射的电子波可以视为次级波,而晶体或孔则形成了作为波前的电子波传播的界面。
电子的衍射表现出了一些有趣的现象。
首先是衍射图样的特点,类似于光的衍射,电子的衍射图样也会出现干涉条纹。
这些条纹的形状和分布可以提供关于晶体结构的有用信息,因此电子衍射技术在材料科学中有着重要的应用。
另一个有趣的现象是衍射的相对强度。
电子的散射过程中,不同方向的电子波会相互干涉,形成强度不均匀的衍射图样。
这些强度的变化可以通过使用衍射模型和计算方法来解释。
电子衍射原理在很多领域都有重要的应用,特别是在材料科学、凝聚态物理和电子显微镜技术中。
使用电子衍射技术,科学家们可以研究材料的晶体结构、晶格常数、晶格缺陷等重要的性质。
此外,电子衍射还可用于表征纳米材料、薄膜以及生物分子的结构,为相关研究提供了强有力的工具。
总之,电子的衍射原理是基于电子的波动性而实现的一种衍射现象。
通过电子与晶体或孔的相互作用,电子束会发生散射,形成干涉和衍射的图样。
电子衍射原理的理解和应用对于探索材料的微观结构、研究纳米领域以及发展电子显微镜技术都具有重要的意义。
《电子衍射原理》课件
透射电子显微镜技术
透射电子显微镜技术是一种利用透射 电镜观察物质内部微细结构的方法, 具有高分辨率和高放大倍数的特点。 随着科技的不断进步,透射电子显微 镜技术的应用范围越来越广泛,在材 料科学、生物学、医学等领域得到广 泛应用。
VS
例如,在材料科学领域,透射电子显 微镜技术可用于研究材料的晶体结构 和相变行为,为新材料的开发和优化 提供有力支持。在生物学领域,透射 电子显微镜技术可用于研究细胞器和 生物大分子的结构和功能,为生命科 学和医学研究提供新的视角。
电子显微镜的放大倍数较高,能够观察到非常细微的结构细节,是研究物质结构和 形貌的重要工具之一。
电子源
电子源是电子显微镜中的核心部件之一,它能够产生用于观察和成像的 电子束。
电子源通常由加热阴极、栅极和加速电极等部分组成,通过加热阴极使 得电子逸出并经过栅极和加速电极的调制和加速,形成用于成像的电子
电子衍射可以揭示细胞内部的超微 结构,有助于理解细胞的生理和病 理过程。
在表面科学中的应用
表面晶体结构
电子衍射可以用于研究固体表面 的晶体结构和化学组成,对表面 改性和催化等应用具有指导意义
。
表面应力分析
通过电子衍射可以分析表面应力 状态,有助于理解表面行为的物
理机制。
表面吸附和反应
电子衍射可以研究表面吸附分子 的结构和反应活性,对表面化学 和工业催化等领域有重要意义。
05
电子衍射的发展前景
高能电子衍射技术
高能电子衍射技术是一种利用高能电子束进行物质结构分析的方法,具有高分辨 率和高灵敏度的特点。随着科技的不断进步,高能电子衍射技术的应用范围越来 越广泛,在材料科学、生物学、医学等领域发挥着重要作用。
例如,在材料科学领域,高能电子衍射技术可用于研究材料的微观结构和晶体取 向,为新材料的开发和优化提供有力支持。在生物学领域,高能电子衍射技术可 用于研究生物大分子的结构和功能,为药物设计和疾病治疗提供新的思路。
理解电子衍射原理及其在材料分析中的应用
理解电子衍射原理及其在材料分析中的应用引言:材料科学与工程领域中,电子衍射技术是一种重要的分析手段。
通过电子衍射,我们可以了解材料的晶体结构、晶格常数、晶体缺陷等信息。
本文将从电子衍射的原理入手,探讨其在材料分析中的应用。
一、电子衍射原理电子衍射原理是基于波粒二象性理论的,即电子既具有粒子性又具有波动性。
当高速电子束通过物质时,会与物质中的原子发生相互作用,进而发生衍射现象。
电子衍射的原理与光学衍射类似,但由于电子的波长远小于光波长,电子衍射可以提供更高的分辨率。
二、电子衍射技术的应用1. 晶体结构分析电子衍射可以通过测量衍射斑图来确定材料的晶体结构。
在电子衍射中,衍射斑图是由电子束与晶体中的原子相互作用形成的。
通过解析衍射斑图,我们可以得到晶体的晶格常数、晶体的对称性、晶体的晶体缺陷等信息。
2. 相变研究相变是材料研究中一个重要的课题。
电子衍射可以用来研究材料的相变过程。
通过观察相变过程中电子衍射斑图的变化,我们可以了解材料的相变机制、相变温度等信息。
3. 晶体缺陷分析晶体缺陷是晶体中存在的一些非理想性质,如晶格缺陷、晶体畸变等。
电子衍射技术可以用来分析晶体的缺陷结构。
通过观察电子衍射斑图中的强度变化和衍射斑的形状,我们可以推断晶体中的缺陷类型和缺陷密度。
4. 薄膜分析薄膜是材料科学中常见的一种材料形态。
电子衍射可以用来分析薄膜的晶体结构和晶格常数。
通过测量电子衍射斑图的形状和强度分布,我们可以了解薄膜的晶体有序性和晶格畸变情况。
5. 纳米材料分析纳米材料是近年来材料科学中的研究热点。
电子衍射技术可以用来研究纳米材料的晶体结构和晶格畸变。
由于纳米材料的尺寸较小,传统的X射线衍射技术难以应用,而电子衍射技术可以提供更高的分辨率。
结论:电子衍射是一种重要的材料分析技术,可以用来研究材料的晶体结构、晶体缺陷、相变过程等。
通过电子衍射技术,我们可以了解材料的微观结构和性质,为材料的设计和应用提供重要的理论依据。
电子衍射原理.
二、布拉格定律 布拉格方程一般形式
A B
λ θ d
S R Q
A ’ B’
θ
T
SR RT n
SR RT 2d sin
2d sin n
二、布拉格定律 衍射角θ的解释
2d sin
sin
2d
通常透射电镜的加速电压为100-200KV, 电子波的波长λ在10-2-10-3nm左右 常见晶体的晶面间距d 在1nm左右 •所以Sinθ很小,也就是入射角θ很小.
f {1 exp[ i(h k )] exp[ i(h l )] exp[ i(k l )]}
当h, k, l 为全偶, 全奇时 F= 4 f
I 16 f 2
I=0
当h, k, l为奇,偶混合时 F = 0
面心晶胞 h k l 为全偶,全奇时,衍射强度不为零 h k l为奇偶混合时,消光.
h1u k1v l1w 0 h2u k 2 v l2 w 0
得
u=k1l2-k2l1
v=l1h2-l2h1 w=h1k2-h2k1
简单易记法 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2
u
v
w
l2
五、结构因子
晶体中的任何一组晶面要产生衍射束,该晶面组与入射电子束相互作用 就要满足布拉格方程,或者说该晶面的倒易点要正好落在埃瓦尔德球面 上。实验证明, 满足布拉格方程只是产生衍射束的必要条件,而不是充 分条件。 衍射束的强度I(hkl) 和结构因子F(hkl)有关, 即 I (hkl) ∝∣F (hkl)∣2 束方向上的振幅之和。
•入射束与衍射晶面稍有角度就能产生衍射.
三、倒易点阵与爱瓦尔德球图解法 倒易点阵
电子衍射原理
电子衍射原理
电子衍射原理是一种利用电子束进行衍射的物理现象。
当电子束通过一系列定向的晶体或经过一定的物质时,会产生衍射效应,形成衍射图案。
这种图案可以用来研究物质的晶体结构和晶格常数,从而揭示物质的微观性质。
电子衍射原理的核心是电子波的波动性。
根据物质的粒子-波
二象性,电子也具有波动性。
当电子束通过晶体时,入射电子波会与晶体中的原子相互作用,发生散射。
这些散射的电子波会互相干涉形成衍射图案,通过测量衍射图案的特征,可以推导出晶体的结构信息。
根据布拉格衍射定律,电子束在晶格中的衍射图样由晶格常数、入射电子波长、衍射角等参数决定。
通过调节电子束的入射角度和晶体的取向,可以获得不同的衍射图案。
这些图案通常以点阵或环状的形式出现,其中点的位置和分布反映了晶体的结构参数。
电子衍射原理在材料科学、凝聚态物理、纳米科技等领域具有广泛的应用。
通过电子衍射技术,科学家可以研究材料的晶体结构、晶界和缺陷等微观性质,进一步揭示物质的物理化学特性。
同时,电子衍射还可以用于研究纳米材料、纳米颗粒和薄膜等微结构的形貌和晶态特征,对于材料设计和纳米器件的制备具有重要意义。
总之,电子衍射原理是一种基于电子束的衍射现象,可以用来研究物质的微观结构和性质。
它在材料科学和纳米技术等领域
的应用非常广泛,对于推动材料科学的发展和纳米技术的应用具有重要意义。
电子衍射原理与分析课件
05
电子衍射在生物学中的 应用
大分子结构分析
蛋白质晶体学
电子衍射技术在大分子结构分析中发挥 着重要作用,尤其在蛋白质晶体学领域 。通过电子衍射,可以解析蛋白质晶体 的空间结构,为理解蛋白质功能和设计 新药物提供关键信息。
当电子束以一定能量和方向入射 到晶体或非晶体材料上时,会发 生衍射,即电子的运动轨迹发生
弯曲。
衍射现象可以通过布拉格方程( nλ=2dsinθ)进行描述,其中λ 为入射电子波长,d为晶面间距
,θ为衍射角。
电子衍射与X射线衍射的区别
电子衍射的波长比X射线短, 因此具有更高的分辨率和灵敏 度,能够更准确地测定晶格常 数和晶体结构。
膜蛋白分析
电子衍射还可以用于分析生物膜上的 膜蛋白,如通道蛋白和转运蛋白。这 些蛋白在物质跨膜运输和信号转导过 程中发挥关键作用。
病毒形态与结构分析
病毒形态描述
通过电子衍射技术,可以详细描述病毒的形 态和大小,这对于病毒分类、鉴定和疫苗设 计具有重要意义。
病毒结构解析
病毒的结构通常由蛋白质外壳和内部的核酸 组成。电子衍射技术可以解析病毒的精细结 构,揭示其组装机制和感染机制,为抗病毒 药物的设计提供理论支持。
THANKS FOR WATCHING
感谢您的观看
扫描电子显微镜(SEM)
总结词
扫描电子显微镜是利用电子束扫描样品表面,通过收集和分析二次电子、反射电子等信号来观察样品 表面形貌和特征的实验方法。
详细描述
扫描电子显微镜具有较高的空间分辨率和放大倍数,能够观察样品表面的细微结构和形貌变化。在实 验过程中,需要对样品进行镀金或碳涂覆等处理,以增加导电性和二次电子信号的收集效率。
电子显微分析3-电子衍射
目 录
• 电子衍射原理 • 电子衍射的应用 • 电子衍射实验技术 • 电子衍射在材料科学中的应用 • 电子衍射在纳米科技中的应用 • 电子衍射在考古学和文物鉴定中的应用
01
电子衍射原理
电子衍射与X射线衍射的异同
01
02
03
相同点
电子衍射和X射线衍射都 是通过测量衍射方向来分 析物质结构的方法。
05
电子衍射在纳米科技中 的应用
纳米颗粒的形貌和结构分析
形貌分析
电子衍射可以用于研究纳米颗粒的表 面形貌,通过分析衍射花样可以推断 出颗粒的形状、大小以及表面粗糙度 等信息。
结构分析
电子衍射可以揭示纳米颗粒的内部结 构,包括晶格常数、晶体取向、晶体 缺陷等,有助于理解材料的物理和化 学性质。
纳米薄膜的晶体结构和相组成
晶体结构分析
电子衍射可以用于研究纳米薄膜的晶体结构,包括晶格常数、晶面间距等,有助于了解材料的力学、电学和热学 等性能。
相组成分析
通过电子衍射可以确定纳米薄膜中存在的不同相的成分和分布,有助于优化材料性能和开发新材料。
纳米材料的应力分析
应变分析
电子衍射可以用于研究纳米材料在受力作用下的应变分布,有助于了解材料的力学行为 和稳定性。
花样性
通过电子衍射可以观察到晶体的 对称性,从而确定晶体的空间群。
测定晶格常数
电子衍射可以精确测定晶体的晶格 常数,了解晶体结构的基本单元。
观察晶体缺陷
电子衍射可以观察晶体中的缺陷和 错位,研究晶体缺陷对材料性能的 影响。
非晶体和准晶体的分析
确定非晶态结构
无机非金属材料
晶体结构和晶体缺
陷
电子衍射可以用于研究无机非金 属材料的晶体结构和晶体缺陷, 有助于了解材料的物理和化学性 质。
电子衍射原理
第一节电子衍射的原理1.1电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
电子衍射原理
。倒易原点是入射电子束通过埃瓦尔德球心
和球面相交的那一点。
( )表示平面,*表示倒易, 0表示零 层倒易面。
这个倒易平面的法线即正空间晶带轴 [uvw]的方向,倒易平面上各个倒易点分别 0 代表着正空间的相应晶面。
四、晶带定律与零层倒易截面
r
g
r g 0
g
ha
*
kb *
1c
*
r ua vb wc
b* O*
a*
某一倒易基矢垂直于正点阵中和自 己异名的二基矢所成平面。
三、倒易点阵与爱瓦尔德球图解法 倒易点阵的性质
1、正倒点阵异名基矢点乘为零,同名基矢点乘为一。
a
*
b
a*
c
b*
a
b*
c
c*
a
c*
b
0
a*
a
b*
b
c*
c
1
2、在倒易空间中,任意g 矢h量a*的大kb小* 和l方c*向可以用倒易矢量g来表示。
G
2d hk l
透
衍
射
射衍射是把实际 晶体点阵转换为倒易点阵记 录下来,得到的图像叫做电 子衍射花样或叫电子衍射图。
1
:
L
1 d
:
R
Rd L
照相底板
七、电子衍射基本公式 电子衍射基本公式推导
电子衍射基本公式为
Rd L
单位: mm Å 或者 mm nm
mm Å mm nm
R:照相底板上中心斑点到衍射斑点的距离。 d:衍射晶面间距。 L:样品到底板的距离,通常叫相机长度。 λ: 入射电子波长 。
E mc2 h p mv
E mc2
hh
h h
电子衍射及衍射花样标定
q
d
q L
q
G’ r
O
G’’
立方晶体[001]晶带
晶体中,与某一晶向[uvw]平行的 所有晶面(hkl)属于同一晶带, 称为[uvw]晶带,该晶向[uvw]称 为此晶带的晶带轴. 如 [001] 晶 带 中 包 括 ( 100 ) , (010)、(110)、(210)等 晶面。
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
相机常数未知、晶体结构已知时衍射花样的标定
以立方晶系为例来讨论电子衍射花样的标定 电子衍射基本公式
同一物相,同一衍射花样而言, 为常数,有 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
立方晶系点阵消光规律 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
衍射 线序 号n 1 2 3 4 简单立方 体心立方
H、K、L全奇或全偶
4.单晶电子衍射花样标定
例:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。 RA=7.1mm, RB=10.0mm, RC=12.3mm, (RARB)90o, (rArC)55o.
A
C
B 000
4.单晶电子衍射花样标定
解2:
2 2 2 1)由 RA : RB : RC N1 : N2 : N3 2 : 4 : 6
晶面间距
立方晶系的晶面间距公式为:
d
四方晶系的晶面间距公式为:
a h2 k 2 l 2
1 h2 k 2 l 2 2 2 a c
d
六方晶系的晶面间距公式为:
d
a 4 2 a (h hk k 2 ) ( ) 2 l 2 3 c
电子衍射和中子衍射110315
众所周知,电子的波长可以用改变其速度的办法 来调节。当电子波长和晶体 dhkl 相当时,这样的电子 流照射晶体时也能发生衍射,所得的图像和 X 光衍射 是十分相似的。和 X 光衍射相比,电子衍射有如下不 同之处:
1)由于晶体强烈吸收电子波,它只能深 入到 20~25 个平面点阵,这也是电子衍射多数 用于表面结构分析的原因。
与X射线衍射相似,电子衍射也遵循布拉格方程,即 波长为λ的入射电子束与间距为d的点阵面之间的夹角θ满 足布拉格方程时,就会在与入射线成2θ角的方向上产生衍 射。晶体的各组衍射面产生的衍射斑构成了有一定规律的 衍射花样。单晶试样产生的衍射图样是按一定周期规则排 布的斑点,多晶试样则产生若干半径不等但同心的衍射环, 而非晶体物质的衍射花样只有一个漫散的中心斑点。
一、电子衍射基本原理
1、德布罗意波
1924年德布罗意提出:运动的实物粒子(如电子、质子等) 都有一种波与之对应,并认为粒子的特征波长与动量(p) 之间的关系应当与光子的相同,联系这种波的关系式是:
h h
(1)
p mv
式中是物质波的波长,h是普朗克常数,p是粒子的动量, m是运动粒子的质量,v是它的速度。(1)式称为德布罗意 波的关系式。
电子衍射有许多重要应用。通常将电子衍射分 为高能电子衍射和低能电子衍射。前者所需的电压 高达几十万、甚至几百万伏,后者所需加速电压则 低于1000 V。
单晶薄片的高能电子衍射图呈点状分布,分析 衍射图,可获得晶体的对称性、晶胞大小和形状、 单晶缺陷及相变等信息。多晶样品的高能电子衍射 图是一系列同心圆,根据实验条件&衍射图给出的 数据,利用有关公式,即可求得晶体的面间距。
• 2、将dEi与卡片上或d值表中查得的dTi比较,如吻合记下相应 的{hkl}i
第六章 电子衍射分析
2不同点:
1)电子衍射的衍射角小得多,其衍射谱可视为倒易点
阵的二维截面,晶体几何关系的研究变得简单方便。 2)物质对电子的散射作用很强,在物质中的穿透深度 有限,适于研究微晶、表面、薄膜的晶体结构。 3)电子衍射使在透射电镜下对同一试样的形貌观察和 结构分析同时研究成为可能。 4)电子衍射谱强度正比于原子序数,X射线衍射强度正 比于原子序数的平方,故电子衍射有助于寻找轻原子 的位置。 5)电子衍射束强度几乎与透射束相当,两者相互作用使 衍射花样特别是强度分析变得复杂,不能象X射线那样 通过强度来测定结构。 6)电子波长短,衍射角小,测定衍射斑点位置精度远 低于X射线。
电子衍射花样主要用于:
确定物相和物相与基体的取向关系
材料中的沉淀惯习面、滑移面 形变、辐射等引起的晶体缺陷状态(有序电子衍射原理
按入射电子能量的大小,电子衍射分为高能 电子衍射,低能电子衍射和反射式高能电子衍 射。 电子衍射的特点(与X射线衍射的比较): 1)相同点 2)不同点 参见P53和P121
相同点: 1)电子衍射几何学与X射线衍射相同,遵从衍 射产生的必要条件和系统消光规律。 2) 产生的电子衍射花样类似X射线衍射花样。
电子衍射仪的原理
电子衍射仪的原理电子衍射仪(Electron Diffraction)是一种利用电子的波粒二象性进行物质结构研究的重要工具。
其原理是基于量子力学中的德布罗意假设,即任何粒子都具有波动性。
首先,根据电子的波粒二象性,我们可以将电子看作是具有特定波长和频率的波动现象。
电子的波长可以由德布罗意方程计算得到:λ= h / p其中,λ表示电子的波长,h为普朗克常数,p为电子的动量。
根据这个方程,我们可以看到,当电子的动量较小时,即质量较大、速度较慢时,其波长较长;反之,当电子的动量较大时,即质量较小、速度较快时,其波长较短。
在电子衍射仪中,首先需要产生一束具有特定波长的电子。
通常使用热发射电子束或电子枪发射电子,经过漂移管延长距离后,通过一系列的准直和聚焦装置,将电子束聚焦成尽可能细且平行的束。
然后,将这束电子束照射到待研究的样品上。
样品的表面由于微观结构的存在,使得入射的电子波遭受到散射,形成衍射图样。
这些散射波按照特定的角度和强度被电子衍射仪中的检测器所接收。
接收到的散射波经过光学系统的调制和增强处理后,转换成图像,进而通过计算机对衍射图样进行处理和分析。
通过分析衍射图样的结构和特征,可以获得样品的结晶度、晶面间距、晶格常数、晶体的取向以及晶体内部的缺陷等信息。
电子衍射仪的原理可以进一步解释为以下几个关键点:1. 电子波的特性:通过电子的波动性,电子衍射仪可以观察到物质的微观结构信息。
与传统的光学显微镜相比,电子波的波长远远小于可见光的波长,因此电子衍射仪可以获得更高的分辨率。
2. 样品的散射特性:在电子束照射下,样品内部的原子、分子或晶体产生散射现象。
样品的结构和晶体学参数会决定电子束的散射角度和强度。
通过测量散射波的角度和强度,可以得到样品的结构信息。
3. 光学系统的调制和增强:在电子波通过样品后,通过一系列光学系统的调制和增强处理,可以将弱的散射波转换成图像。
这些光学系统包括铅隔板、干涉滤波器、聚焦器等,通过调节这些系统的参数和性能,可以改善图像的质量。
电子衍射的原理
第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g 是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h1u k1v l1 w 0 h2 u k 2 v l 2 w 0
得
u=k1l2-k2l1
v=l1h2-l2h1
w=h1k2-h2k1
简单易记法 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2
u
v
w
l2
六、电子衍射基本公式
电子衍射基本公式推导 TEM的电子衍射是把实际 晶体点阵转换为倒易点阵记 录下来,得到的图像叫做电 子衍射花样或叫电子衍射图。
电子束
光阑选区衍射(Le Pool方式)----用位于物镜象 平面上的选区光阑限制微区大小。先在明场象上找 到感兴趣的微区,将其移到荧光屏中心,再用选区 光阑套住微区而将其余部分挡掉。理论上,这种选 区的极限0.5m。 微束选区衍射 ----用微细的入射束直接在样品上 选择感兴趣部位获得该微区衍射像。电子束可聚焦 很细,所选微区可小于0.5m 。可用于研究微小析 出相和单个晶体缺陷等。目前已发展成为微束衍射 技术。
七、单晶电子衍射花样的标定
基本任务 确定花样中斑点的指数及其晶带轴方向[uvw]; 确定样品的点阵类型、物相和位向。 一般分析任务可分为两大类: 鉴定旧结构,这种结构的参数前人已作过测定,要求在这些
已知结构中找出符合的结构来。
测定新结构,这种结构的参数是完全未知的,在ASTM卡片中 和其它文献中都找不到;
OO*透射束,OG衍 射束,θ衍射角, G O*G=1/d
Θ
1/λ
o
O
1/λ
O*
**
五、晶带定律与零层倒易截面
1.晶带:晶体内同时平行于某一 方向[uvw] 的所有晶面组(hkl )构成一个晶带, [uvw]称为晶 带轴。
r
五、晶带定律与零层倒易截面
r
零层倒易面:通过倒易原点且垂直于某 一晶带轴的二维倒易平面。用(uvw)0* 表示 。倒易原点是入射电子束通过埃瓦尔德球心 和球面相交的那一点。 ( )表示平面,*表示倒易, 0表示零 层倒易面。
一、电子衍射原理 透射电镜
透射电镜的最大特点是 试样 既可以得到电子显微像 又可以得到电子衍射花 样。晶体样品的微观组 织特征和微区晶体学性 物镜 质可以在同一台仪器中 得到反映。 电镜中的电子衍射,其衍 物镜后焦面 射几何与X射线完全相同 ,都遵循布拉格方程所规 定的衍射条件和几何关 系. 衍射方向可以由爱 瓦尔德球作图求出.因此 ,许多问题可用与X射线 衍射相类似的方法处理.
六、电子衍射基本公式
相机常数K
电子衍射基本公式
Rd L
当工作条件一定时,式中L,λ是常数
令 K=Lλ,则
d=K/R
K 为相机常数,单位:mm. Å。 相机常数不是一
个常数,要在透镜电流固定的情况下进行标定
已知相机常数K,就可根据底板上测得的R值算出 衍射晶面d值,同时根据R的方位,可知道衍射晶 面的位置(R 垂直与衍射晶面)。
四、倒易点阵与爱瓦尔德球图解法 倒易空间单位矢量
倒易空间的三个基本矢量记为a*, b*, c*。为了与倒易空 间相区别,把晶体实际所在的点阵叫做正点阵,它所在的空 间叫正空间,正空间的三个基本矢量为a, b,c。
c a a b b c b* c* a* V V V
常见晶体结构的衍射消光条件表
晶体结构
简单立方 面心立方 fcc 体心立方 bcc 体心四方 bct 密排六方 hcp 底心正交 金刚石立方
消光条件(F=0)
无消光现象 h, k, l 奇偶混合 h+k+l =奇数 h+k+l =奇数 h+2k=3n 且 l=奇数 h, k 奇偶混合 h,k, l 全偶且 h+k+l ≠4n 或h,k, l 奇偶混合
子序数有关。
xj , yj , zj 为单胞内原子的座标。 N 为单胞中的原子数。
h k l 为衍射晶面指数。 • 若F (hkl) =0,即使满足布拉格方程也不可能在衍射方向上得到衍射束的强度。此时
每个晶胞内原子散射波的合成振幅为零,这叫做结构消光。 • 只有当F (hkl) ≠ 0时,才能保证得到衍射束。 • 所以 F (hkl) ≠ 0是产生衍射束的充分条件。 • 计算结构因子时要把晶胞中的所有原子考虑在内。 • 结构因子表征了晶胞内原子的种类,原子的个数,原子的位置对衍射强 度的影响。
二、布拉格定律 布拉格方程一般形式
A B
λ θ
Q R
A ’ B’
d
θ
T
S
SR RT n SR RT 2d sin
2d sin n
二、布拉格定律 衍射角θ的解释
2d sin
sin
2d
通常透射电镜的加速电压为100-200KV, 电子波的波长λ在10-2-10-3nm左右 常见晶体的晶面间距d 在1nm左右 •所以Sinθ很小,也就是入射角θ很小.
一、电子衍射原理 透射电镜 单晶体 多晶体
非晶体
二、布拉格定律 样品对入射电子的散射 • 晶体物质是由原子、离子或原子团在三维空间按一定 规律周期性排列构成的。当具有一定波长的单色平面 电子波射入晶体时,这些规则排列的质点将对入射电 子束中与其靠近的电子产生散射,由于散射强度较大 ,于是各个质点作为新波源发射次级波.
晶带定律描述了晶带轴指数[uvw]与该晶带内所有晶面指数(hkl)之 间的关系。 例如 [001]晶带包括 (100)(010)(110)(210)等晶面 [110]晶带包括(001)(-110) (-111)(-112)等
五、晶带定律与零层倒易截面
若已知零层倒易面上任意二个倒易矢量的坐标,即 可求出晶带轴指数。只要通过电子衍射实验,测得 零层倒易面上任意两个g(hkl)矢量,即可求出正 空间内晶带轴指数。由
相机常数测定
• 利用金膜(面心立方)测定相机常数
由里至外测量R,找到对应的d,根据Rd= Lλ 测得
200KV得到金环,由内到外直径2R依次为:17.46 mm,20.06 mm,28.64 mm,33.48 mm; 对应指数(111),(200),(220),(311); 对应面间距d分别为0.2355 nm,0.2039 nm,0.1442 nm,0.1230 nm
K=Rd=(
) mm.nm
3.多晶体电子衍射花样
分析方法 A)晶体结构已知:测R、算R2、分析R2比值的递增规 律,定N,求(hkl)和a 。 如已知K,也可由d=K/R求d对照ASTM求(hkl)。 B)晶体结构未知:测R、算R2、R22/R12,找出最接近的整数比 规律、根据消光规律确定晶体结构类型、写出衍射环指数 (hkl),算a。 如已知K,也可由d=K/R求d对照ASTM求(hkl)和a,确定样品物相。 主要用途 已知晶体结构,标定相机常数,一般用Au, FCC, a=0.407nm,也可用内标。 物相鉴定:大量弥散的萃取复型粒子或其它粉末粒子。
c* b* O* a*
式中, V是正空间单位晶胞的体积。 V a (b c ) b (c a ) c (a b ) 某一倒易基矢垂直于正点阵中和自 己异名的二基矢所成平面。
四、倒易点阵与爱瓦尔德球图解法 倒易点阵的性质
1、正倒点阵异名基矢点乘为零,同名基矢点乘为一。 * * * * * * * * * a b a c b a b c c a c b 0 a a b b c c 1 2、在倒易空间中,任意矢量的大小和方向可以用倒易矢量g来表示。 * * * g ha kb lc
1)ghkl垂直于(hkl)晶面。平行与(hkl)晶面的 法线N(hkl)。 2)倒易点阵中的一个点代表的是正点阵中的一组晶面。
011
a=b=c=0.1nm
四、倒易点阵与爱瓦尔德球图解法 倒易点阵的性质
3、ghkl的长度为正点阵中(hkl)晶面间距的倒数。g =1/dhkl 4、对于正交点阵。
a*∥a, b*∥b, c*∥c a*=1/a , b*=1/b, c*=1/c
标定衍射花样时,根据对待标定相信息的了解程度,相应有不同的方法。 一般,主要有以下几种方法: 指数直接标定法:
已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法: 相机常数未知、晶体结构已知时衍射花样的标定
相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法: 相机常数未知、晶体结构未知时衍射花样的标定
5、只有在立方点阵中,晶面的法相和同指数的晶向是重合的。
四、倒易点阵与爱瓦尔德球图解法 爱瓦尔德球图解法 把布拉格方程变形为 Sinθ= (1/d) / (2/λ)
A
A
以O为球心,1/λ半径作 一个球,满足布拉格方程 的几何三角形一定在该 球的某一截面上,三角 形的三个顶点A,O*, G均落在球面上。
•平行四边形可用两边夹一角来表征。 •平行四边形的选择: •最短边原则:R1<R2<R3<R4 •锐角原则:60°≤θ≤90° •如图所示,选择平行四边形。
已知 h1k1l1 和 h2k2l2 可求 h3=h1+h2 k3=k1+k2
L3=L1+L2
• 表达花样对称性的基本单元为平行四边形。
七、单晶电子衍射花样的标定
四、倒易点阵与爱瓦尔德球图解法 倒易点阵 晶体的电子衍射(包括X射线单晶衍射)结果得到的是 一系列规则排列的斑点,电子衍射斑点就是与晶体相对应的 倒易点阵中某一截面上阵点排列的像。 倒易矢量g和衍射晶面间距的关系 ghkl= 1/dhkl 把倒易矢量 g 的端点叫倒易点, 倒易点的分布叫倒易点阵, 倒易点阵所在的空间叫倒易空间。
G
2d hkl
透 射 束
衍 射 束