平面向量基础知识复习+练习(含答案)
高中平面向量经典练习题1(含答案)
高中平面向量经典练习题【编著】黄勇权一、填空题1、已知向量a=a=((-2-2,,1),向量),向量|b|= 2|a||b|= 2|a|,若,若b ·(·(a-b a-b a-b))= -30,则向量,则向量b 的坐标坐标= =。
2、已知a=a=((2,1),),3a-2b=3a-2b=3a-2b=((4,-14,-1),则),则a ·b=。
3、向量a=(m ,-2-2)),向量b=(-6-6,,3),若a ∥b ,则(3a+4b 3a+4b))·(6a-5b 6a-5b))= 。
4、已知向量a 、b 满足满足|a|=2|a|=2|a|=2,,b=b=((-1-1,, 2),且(),且(),且(4a-b 4a-b 4a-b)·)·(a+b a+b))=22=22,则,则a 、b 的夹角的夹角。
5、在矩形ABCD 中,)3,1(-=AB ,)2,(-=k AC ,则实数=k 。
6、已知向量(1,),(,9)a t b t ==r r ,若→a ∥→b ,则t = _______。
7、已知、已知|||=1|=1,,||=, =0,点,点C 在∠在∠AOB AOB 内,且∠内,且∠AOC=30AOC=30AOC=30°,设°,设=m +n (m 、n ∈R ),则等于等于。
8、若、若||+|=|﹣|=2||,则向量+与的夹角为的夹角为 。
9、已知向量=(2,1),=10=10,,|+|=,则,则|||=|=(( )1010、已知平面向量、已知平面向量,,x ∈R ,若,则,则|||=______|=______。
二、选择题1、已知向量a=a=((2,1),向量b=b=((1,-1-1),那么),那么2a+b=。
A 、 (5,5,,,1) B 、(、(44,1) C 、(、(55,2) D 、(、(44,2)2、已知向量a=a=((2,4),向量b=b=((-3-3,,0),则b a 21+= 。
平面向量专题练习(带答案详解)
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量经典试题(含答案)
平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
平面向量经典练习题(含答案)
高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则|BD |的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角;(3)试求与垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==,向量垂直于向量,向量 平行于,试求,=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使 .,,)3(2t k t ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)°(21,321).6.73.7.(-3,2).8.-210.31-12. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7).∴ |2AB +AC |=227)1(+-=50.(2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos=||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 =(2-0,5-1)=(2,4),由⊥,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x Θ ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC Θ 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即Θ ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即Θ (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
初中数学平面向量基础专项练习题(含答案)
A.0 个 B.1 个 C.2 个 D.无数个
10.如图所示,已知点 G 是△ABC 的重心,过点 G 作直线与 AB,AC 两边分别交于 M,N 两
1
点,且
AM
xAB,
AN
yAC
,则
xy x y
的值为(
)
A...3. B...13. . C...2. D...12..
11.设 a , b 是两个非零向量,下列命题正确的是( ) A.若 a b a b ,则 a b B.若 a b ,则 a b a b
28.已知 e1 , e2 为不共线的单位向量,
m
1 4
,n
ke1 e2 (k R)
,若
mn
1 4
恒成
立,则 e1 , e2 的夹角的最小值为_________
29.(本小题满分 12 分)已知△ABC 在平面直角坐标系 xOy 中,其顶点 A,B,C 坐标分别
为 A(2,3) , B(1,6) , C(2 cos ,2sin ) .
可以唯一地表示成 c a b ( , 为实数),则实数 m 的取值范围是( )
A.(-∞,2)
B.
6 5
,
C.(-∞,-2)∪(-2,+∞)
D.
,
6 5
6 5
,
7.已知 RtABC ,点 D 为斜边 BC 的中点, AB 6
2,
AC 6 ,
AE
1
ED
,则
2
AE EB 等于 A. -14
∴ ( + )=2
故选 D.
19. 1
20.120° 由条件知|a|= 5 ,|b|=2 5 ,a+b=(-1,-2),∴|a+b|= 5 ,∵(a+b)·c= 5 ,
平面向量的运算 练习(含答案)
6.2平面向量的运算练习一、单选题1.化简OP PS QS +-的结果等于( ). A .QPB .OQC .SPD .SQ2.如图,M 在四面体OABC 的棱BC 的中点,点N 在线段OM 上,且13MN OM =,设OA a =,OB b =,OC c =,则下列向量与AN 相等的向量是( )A .1133a b c -++B .1133a b c ++C .1166a b c -++D .1166a b c ++3.如图,在四边形ABCD 中,AC 与BD 交于点O ,若AD BC =,则下面互为相反向量的是( )A .AC 与CBB .OB 与ODC .AB 与DCD .AO 与OC4.已知平行四边形ABCD 中,E 为边AD 的中点,AC 与BE 相交于点F ,若EF xAB y AD =+,则( )A .11,36x y ==-B .11,24x y ==-C .11,33x y ==-D .11,23x y ==-5.()()32a b a b a +---=( ) A .5aB .5bC .5a -D .5b -6.已知向量a ,b 不共线,若2AB a b =+,37BC a b =-+,45CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线7.已知向量a 、b 满足2a =,5b =,且a 与b 夹角的余弦值为15,则()()23a b a b +⋅-=( ) A .30-B .28-C .12D .728.如图,在ABC 中,12AN NC =,P 是BN 上的一点,若1139AP m AB AC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .29C .23D .13二、多选题9.如图,在平行四边形ABCD 中,下列计算正确的是A .AB AD AC += B .AC CD DO OA ++= C .++=AB AC CD ADD .0AC BA DA ++=10.如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则AF DB -等于( )A .FDB .EC C .BED .DF11.在ABC 中,12,33AE AB AD AC ==,记,BC a CA b ==,则下列结论中正确的是( ) A .()13AE a b =-- B .AD b =-C .()13DE b a =- D .AB a b =+12.设a ,b ,c 是三个非零向量,且相互不共线,则下列说法正确的是( ) A .若a b a b +=-,则a b ⊥ B .若a b =,则()()a b a b +⊥- C .若a c b c ⋅=⋅,则a b -不与c 垂直D .()()b c a a c b ⋅-⋅不与c 垂直三、填空题13.在ABC 中,,,D E F 分别是,,AB BC CA 的中点,则AE DB -=___________. 14.下列四个等式:①a +b =b +a ;①-(-a )=a ;①AB +BC +CA =0;①a +(-a )=0. 其中正确的是______(填序号).15.已知a ,b 是不共线的向量,OA a b λμ=+,32OB a b =-,23OC a b =+,若A ,B ,C 三点共线,则实数λ,μ满足__________.16.已知m 、n 是夹角为120°的两个单位向量,向量()1a tm t n =+-,若n a ⊥,则实数t =______.四、解答题17.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA 的中点,化简下列各式:(1)DG EA CB ++; (2)EG CG DA EB +++.18.化简:(1)BA BC-;(2)AB BC AD+-;(3)AB DA BD BC CA++--.19.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个三等分点(靠近点B),设AB=a→,AO=b→.(1)用向量a→与b→表示向量OC;(2)若35OE OA=,判断C,D,E是否共线,并说明理由.20.已知2,3,,a b a b ==的夹角为60︒,53,3c a b d a kb =+=+,当实数k 为何值时, (1)→→d//c(2)c d ⊥21.已知向量a 与b 的夹角3π4θ=,且3a =,22b =. (1)求a b ⋅,()(2)a b a b +⋅-; (2)求a b +;(3)a 与a b +的夹角的余弦值.22.已知向量,,a b c 满足:2a =,()R c a tb t =-∈,,3a b π=.(1)若1a b ⋅=,求b 在a 方向上的投影向量; (2)求||c 的最小值.答案1.B 2.A 3.B 4.A 5.B 6.B 7.B 8.D 9.AD 10.BCD 11.AC 12.AB 13.AF 14.①①①① 15.513λμ+=. 16.2317.(1)DG EA CB GC BE CB GB BE GE +++++===; (2)0EG CG DA EB EG GD DA AE ED DE ==+=++++++. 18.(1)BA BC CA -=.(2)AB BC AD AC AD DC +-=-=.(3)AB DA BD BC CA AB BD AD AC CB AD AD AB AB ++--=+-++=-+=. 19.解(1)①AB =a →,AO =b →,点A 是BC 的中点,∴AC =-a →.①OC OA AC =+=-a →-b →. (2)假设存在实数λ,使CE =λCD .①CE CO OE =+=a →+b →+35(-b →)=a →+25b →,11(33CD CB BD CB BO CB BA AO =+=+=++)=2a →+13(-a →+b →)=53a →+13b →,①a →+25b →=λ5133a b →→⎛⎫+ ⎪⎝⎭,①5131235λλ⎧=⎪⎪⎨⎪=⎪⎩,,此方程组无解, ①不存在实数λ,满足CE =λCD . ①C ,D ,E 三点不共线. 20.(1)若→→d//c ,得c d λ=,即53(3)a b a kb λ+=+,即35,3,k λλ=⎧⎨=⎩解得53λ=,95k =.(2)若c d ⊥,则0c d ⋅=,即53)(3)0(a b a kb +⋅+=,得()22159530k k ++⋅+=a a b b , ()115495233902k k ⨯++⨯⨯⨯+⋅=,解得2914k =-. 21.(1)已知向量a 与b 的夹角3π4θ=,且3a =,22b =,则3πcos364a b a b ⎛⋅=⋅⋅=⨯=- ⎝⎭, 所以()22()(2)296281a b a b a a b b +⋅-=-⋅-=---⨯=-;(2)()(222292a b a b a ab b +=+=+⋅+=+⨯-(3)a 与a b +的夹角的余弦值为()296cos ,535a a baa ba ab a a ba a b⋅++⋅-+====⨯⋅+⋅+ 22.(1)由数量积的定义可知:cos ,a bb a b a⋅=,所以b 在a 方向上的投影向量为: 11||cos ,||||||224a ab a a b a b a a a a ⋅<>=⋅=⋅=; (2)()()2222c a tb a tb a ta b tb =-=-=-⋅+又2a =,,3a b π=,所以()224c t bt b =-+令R x t b =∈所以22c x =-=所以当1x t b ==时,c 取到最小值为。
平面向量专题复习练习(含解析)【最新】
14.已知 与 垂直,则实数 的值为()
A.1B. C.2D.
15.已知平面向量 , 满足 , ,且 ,则 ()
A.3B. C. D.5
16.已知向量 ,则向量 在向量 方向上的投影为()
A. B. C. D.
17.已知 , , =1,则向量 在 方向上的投影是()
A. B. C. D.1
2.下列命题正确的是()
A.单位向量都相等B.若 与 共线, 与 共线,则 与 共线
C.若 ,则 D.若 与 都是单位向量,则
3.在 中,点O满足 ,则 与 的面积比为()
A. B. C. D.
4.如图,在平行四边形 中,对角线 与 交于点 ,且 ,则 ()
A. B. C. D.
5.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 ()
A. B. C. D.
【答案】D
6、如图, , , , ,若m= ,那么n=( )
A. B. C. D.
【解答】解:∵ ,故C为线段AB的中点,
故 = =2 ,∴ = ,
由 , ,
∴ , ,
∴ = ,
∵M,P,N三点共线,故 =1,当m= 时,n= ,故选:C
7、若向量a=(1,1),b=(-1,1),c=(4,2),则 c等于()
平面向量专题复习
一、基本概念与定理
1、定义:既有大小又有方向的量;向量的大小叫作向量的长度(或称模)
2、单位向量:长度等于1个单位的向量(与 同方向的单位向量为 )
3、零向量:长度为零的向量;其方向是任意的
4、平行、共线向量:同向或反向
5、相等向量:长度相等且方向相同的向量
6、相反向量:长度相等且方向相反的向量
高中数学平面向量专题复习(含例题练习)
平面向量专题复习一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如例1:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//ab bc ,则//a c 。
其中正确的是_______二、向量的表示1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
平面向量最全面基础题(含详解答案)
平面向量最全面基础题一、填空题1.下列命题中正确的有________.(填序号)①两个向量相等,则它们的起点相同,终点相同; ②若 =a b r r ,则a b =r r ;③若AB DC =u u u r u u u r ,则,,,A B C D 四点构成平行四边形;④在▱ABCD 中,一定有AB DC =u u u r u u u r ;⑤若a b =r r ,b c =r r ,则a c =r r; ⑥若//a b r r ,//b c r r ,则//a c r r ;2.已知点A(1,3),B(4,−1),则与向量AB⃗⃗⃗⃗⃗ 方向相同的单位向量的坐标为____________. 3.在等边三角形ABC 中,2AB =,E ,F 分别为AB ,BC 的中点,则CE AF ⋅=u u u r u u u r __________.4.已知矩形ABCD 的边长为2AB =,3BC =,E 为BC 边上靠近点B 的三等分点,则AE AC →→⋅=__________.5.如图,在平行四边形ABCD 中,AO a →→=,DO b →→=,用向量,a b →→表示向量CB →=______.6.已知|a r |=3,|b r |=4,求|a b -r r |的取值范围_____.7.设向量,a b v v 不平行,向量2a b λ-r r 与2a b +rr 平行,则实数λ=___________. 8.已知向量(),12OA k =u u u v ,()4,5OB =u u u v ,(),10OC k =-u u u v ,且A 、B 、C 三点共线,则k =_______9.已知向量()2,6a =-v ,()3,b m =v ,若a b a b +=-v v v v,则m =______. 10.如图,在ABC ∆中,13AD AB =u u u r u u u r ,点E 为CD 的中点.设CA a =u u r r ,CB b =u u u r r ,则AE =u u u r ______(用a r ,b r 表示).11.如图所示,直角坐标系中网格小正方形的边长为1,若向量a r 、b r 、c r 满足(2)0a tb c +⋅=r r r ,则实数t 的值为_______.12.已知向量a r 与b r 的夹角为60︒,2a =r ,3b =r ,则32a b -=r r __________.13.已知(2,1)a =r ,(3,4)b =r ,则a r 在b r 的方向上的投影为________.14.已知5,3a b ==r r ,且12a b ⋅=-r r ,则向量a r 在向量b r 上的投影等于______二、解答题15.已知向量()2,0a =r ,()1,4b =r .(1)若向量ka b +r r 与2a b +r r 垂直,求k 的值;(2)若向量ka b +r r 与2a b +r r 的夹角为锐角,求k 的取值范围; (3)求a b +r r 和2a b -r r夹角的余弦值. 16.已知向量()3,2a =v ,(1,3)b =v -,()5,2c =v .(1)求62a b c v v v +-;(2)求满足a mb nc v v v=+的实数m ,n ; (3)若()//(2)a kc b a v v v v +-,求实数k .17.在平面直角坐标系中,已知向量2a =r ,3b =r ,且326a b -=r r .(1)求向量,a b r r 的夹角θ;(2)求()()22a b a b +⋅-r r r r 的值.。
平面向量的基本定理及坐标表示 练习 含答案
平面向量的基本定理及坐标表示1.设是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A BC D2.已知向量a,b ,且AB =a+2b 5BC ,=-a +6b 7CD ,=a-2b,则一定共线的三点是( )A.A 、B 、DB.A 、B 、CC.B 、C 、DD.A 、C 、D3.已知平行四边形ABCD 中DA ,=a DC ,=b ,其对角线交点为O,则OB 等于( ) A.12a +bB.a 12+bC.12(a +b )D.a +b4.已知OA =a OB ,=b ,C 为AB 上距A 较近的一个三等分点,D 为CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( ) A.4+59a b B +7169a b . C. +32a b D. +43a b5.已知P 是△ABC 所在平面内的一点,若CB PA PB λ=+,其中λ∈R ,则点P 一定在( )A.△ABC 的内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上 6.在△ABC 中AB ,=c AC ,=b ,若点D 满足2BD DC =,则AD 等于( ) A.23b 13+ c B.53c 23-b C.23b 13- c D.13b 23+c7.在△ABC 中,设AB =m AC ,=n ,D 、E 是边BC 上的三等分点,即BD=DE=EC,则AD = AE ,= .8.设为内一点,且满足,则为的( )A 外心B 内心C 重心D 垂心9.已知△ABC 中,点D 在BC 边上,且CD =4DB ,CD =r AB +s AC ,则3r+s 的值为 .12,e e 1212e e e e +-和1221326e e e e --和4122122e e e e ++和212e e e +和O ABC ∆0AO BO CO ++=O ABC ∆10.计算下列各题:(1)3(3a -b )+4(b -2a );14(2)[(a +2b )+3a 13(6-a -12b )];(3)()(λμ+a +b )()(λμ--a -b ).11.已知M 是△ABC 的重心,设MA =a MB ,=b ,用a 、b 表示AC 、BC .12.已知a ,b 是两个不共线的非零向量,若a 与b 起点相同,则实数t 为何值时,a ,t b 13(,a +b )三向量的终点共线?13.(1)在△ABC 中,D 为BC 边上的中点. 求证:12()AD AB AC =+. (2)求证:G 为△ABC 重心,O 为平面内不同于G 的任意一点,则13()OG OA OB OC =++.平面向量的基本定理及坐标表示1.B 2. A 3. C 4.A 5.B 6. A 7. 23m n AD += 23n m AE += 8. C 9. 8510. (1) a +b (2)32a b +(3) 22b a λμ+ 11. 2AC a b =-- 82C a b =--12. 解:由已知,存在唯一实数λ,使a -t b [λ=a 13(-a +b )],化简得23(1)λ-a =3()t λ-b .由于a ,b 不共线,故 233100t λλ-=,⎧⎨-=,⎩ 解得 3212t λ=,⎧⎨=,⎩ 即12t =时,三向量的终点共线. 13.(1)证法一:AD AB BD AD AC CD =+,=+, 又D 为中点,∴BD CD +=0.∴2AD AB AC =+,即12()AD AB AC =+. 证法二:延长AD 至E,使DE=AD.∵BD=DC,∴四边形ABEC 为平行四边形.∴AE AB AC =+.又AE AD DE AD DE =+,=, ∴12()AD AB AC =+. (2)证明:∵OG OB BG =+,OG OA AG OG OC CG =+,=+,又∵G为△ABC的重心,∴AG CG++=0.∴OG OG OG OA OB OC ++=++,即13()OG OA OB OC=++.。
平面向量专项训练(含答案)
si nt he i rb ei n ga re g平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言+=→--OA →--OB →--OC-=→--OB →--OA →--AB记=(x 1,y 1),=(x 1,y 2)→--OA →--OB 则+=(x 1+x 2,y 1+y 2)→--OA →--OB -=(x 2-x 1,y 2-AB OB --→= →--OA y 1)加法与减法+=→--OA →--AB →--OB实数与向量的乘积=λ→--AB →a λ∈R记=(x,y)→a 则λ=(λx,λy)→a 两个向量的数量积·=||||→a →b →a →b cos<,>→a →b 记=(x 1,y 1), =(x 2,y 2)→a →b 则·=x 1x 2+y 1y 2→a →b (3)两个向量平行 :设=(x 1,y 1),=(x 2,y 2),则∥ x 1y 2-x 2y 1=0→a →b →a →b ⇔a b λ=⇔(4)两个向量垂直:设=(x 1,y 1), =(x 2,y 2),则⊥x 1x 2+y 1y 2=0→a →b →a →b ⇔a 0b ∙= ⇔课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39-- C .77(,)39 D .77(,)93--E CBA3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( )A.(21)--, B.(21)-,C.(10)-, D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++= 6.已知向量a = (2,1), a·b = 10,︱a + b ︱= b ︱= ( )7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为( )A.2- 2-C.1-D.1-8已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD = C.3AO OD= D.2AO OD= 13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为()A.17-B.17C.16-D.1615.已知1,6,()2==-=Aa b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4πC .3πD .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是( )A .-2B .0C .1D .217.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC =,则BD = ( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=a ,)4,3(-=b ,)2,3(=c 则=⋅+c b a )2( ( )A.(15,12)-B.0C.3-D.11-二、填空题1.若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+A b a b 的值为4.已知平面向量(2,4)a = ,(1,2)b =- .若()c a a b b =-⋅,则||c = ____________.5.a ,b 的夹角为120︒,1a = ,3b = 则5a b -=.6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a = ,(1,3)b = , (,2)c k = ,若()a c b -⊥则k = .9.已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB∥DC,AD∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1. BA CD DB AC +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角;(3)试求与垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==OB OA ,向量垂直于向量,向量 平行于,试求OD OC OA OD ,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使 .,,)3(2y x b t a k y b t a x ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)3.74.90°(21,321).6.73.7.(-3,2).8.-29.1210.31-11.012. 90°13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2+=2(-1,1)+(1,5)=(-1,7).∴ |2+|=227)1(+-=50.(2)∵ ||=221)1(+-=2.||=2251+=26,·=(-1)×1+1×5=4. ∴ cos θ =||||AC AB ⋅=2624⋅=13132. (3)设所求向量为=(x ,y ),则x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0. ② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -=∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x Θ ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC Θ 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即Θ ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即Θ (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)
第六章 6.2 6.2.2A 级——基础过关练1.(多选)如图,在平行四边形ABCD 中,下列结论正确的是( )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0【答案】ABD 【解析】A 项显然正确;由平行四边形法则知B 正确;C 项中AB →-AD →=DB →,故C 错误;D 项中AD →+CB →=AD →+DA →=0.故选ABD .2.化简以下各式:①AB →+BC →+CA →;②AB →-AC →+BD →-CD →;③OA →-OD →+AD →;④NQ →+QP →+MN →-MP →.结果为零向量的个数是( )A .1B .2C .3D .4【答案】D 【解析】①AB →+BC →+CA →=AC →+CA →=AC →-AC →=0; ②AB →-AC →+BD →-CD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0; ③OA →-OD →+AD →=(OA →+AD →)-OD →=OD →-OD →=0; ④NQ →+QP →+MN →-MP →=NP →+PM →+MN →=NM →-NM →=0. 3.(2020年北京期末)如图,向量a -b 等于( )A .3e 1-e 2B .e 1-3e 2C .-3e 1+e 2D .-e 1+3e 2【答案】B 【解析】如图,设a -b =AB →=e 1-3e 2,∴a -b =e 1-3e 2.故选B .4.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4【答案】C 【解析】由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3.故选C .5.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)【答案】C 【解析】由于BC →=AC →-AB →,则有|AB →|-|AC →|≤|BC →|≤|AB →|+|AC →|,即3≤|BC →|≤13.6.若非零向量a 与b 互为相反向量,给出下列结论:①a ∥b ;②a ≠b ;③|a|≠|b|;④b =-a.其中所有正确命题的序号为________.【答案】①②④ 【解析】非零向量a ,b 互为相反向量时,模一定相等,因此③不正确.7.若a ,b 为相反向量,且|a|=1,|b|=1,则|a +b|=________,|a -b|=________. 【答案】0 2 【解析】若a ,b 为相反向量,则a +b =0,所以|a +b|=0.又a =-b ,所以|a|=|-b|=1.因为a 与-b 共线,所以|a -b|=2.8.如图,已知向量a 和向量b ,用三角形法则作出a -b +a .解:如图所示,作向量OA →=a ,向量OB →=b ,则向量BA →=a -b ;作向量AC →=a ,则BC →=a -b +a .9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:AC →,AD →,AD →-AB →,AB →+CF →,BF →-BD →. 解:AC →=OC →-OA →=c -a . AD →=AO →+OD →=OD →-OA →=d -a . AD →-AB →=BD →=OD →-OB →=d -b .AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d .10.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12,求|DC →+BC →|与|CD →+BC →|.解:∵OA →+OC →=OB →+OD →=0, ∴OA →=CO →,OB →=DO →.∴四边形ABCD 为平行四边形.又|AB →|=|AD →|=1,∴▱ABCD 为菱形. ∵cos ∠DAB =12,∠DAB ∈(0,π),∴∠DAB =π3,∴△ABD 为正三角形.∴|DC →+BC →|=|AB →+BC →|=|AC →|=2|AO →|=3,|CD →+BC →|=|BD →|=|AB →|=1.B 级——能力提升练11.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →,若m 与n 的长度恰好相等,则有( )A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角D .△ABC 必为等腰直角三角形【答案】C 【解析】以BA →,BC →为邻边作平行四边形ABCD ,则m =AB →+BC →=AC →,n =AB →-BC →=AB →-AD →=DB →,由m ,n 的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C .12.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形【答案】B 【解析】因为OA →+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD →.所以AB CD .故四边形ABCD 是平行四边形.13.平面上有一个△ABC 和一点O ,设OA →=a ,OB →=b ,OC →=c .又OA →,BC →的中点分别为D ,E ,则向量DE →等于( )A .12(a +b +c )B .12(-a +b +c )C .12(a -b +c )D .12(a +b -c )【答案】B 【解析】DE →=DO →+OE →=-12a +12(b +c )=12(-a +b +c ).14.如图,在正六边形ABCDEF 中,与OA →-OC →+CD →相等的向量有________.①CF →;②AD →;③DA →;④BE →;⑤CE →+BC →;⑥CA →-CD →;⑦AB →+AE →.【答案】① 【解析】OA →-OC →+CD →=CA →+CD →=CF →;CE →+BC →=BC →+CE →=BE →≠CF →;CA →-CD →=DA →≠CF →;AB →+AE →=AD →≠CF →.15.已知|a|=7,|b|=2,且a ∥b ,则|a -b|的值为________.【答案】5或9 【解析】当a 与b 方向相同时,|a -b|=||a|-|b||=7-2=5;当a 与b 方向相反时,|a -b|=|a|+|b|=7+2=9.16.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.17.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,若AB →=a ,DA →=b ,OC →=c ,试证明:b +c -a =OA →.证明:(方法一)因为b +c =DA →+OC →=OC →+CB →=OB →,OA →+a =OA →+AB →=OB →,所以b +c =OA →+a ,即b +c -a =OA →.(方法二)OA →=OC →+CA →=OC →+CB →+CD →=c +DA →+BA →=b +c -AB →=b +c -a .(方法三)因为c -a =OC →-AB →=OC →-DC →=OC →+CD →=OD →=OA →+AD →=OA →-DA →=OA →-b ,所以b +c -a =OA →.C 级——探索创新练18.已知|a |=8,|b |=15. (1)求|a -b |的取值范围;(2)若|a -b |=17,则表示a ,b 的有向线段所在的直线所成的角是多少? 解:(1)由向量三角不等式||a |-|b ||≤|a -b |≤|a |+|b |,得7≤|a -b |≤23. 当a ,b 同向时,不等式左边取等号, 当a ,b 反向时,不等式右边取等号. (2)易知|a |2+|b |2=82+152=172=|a -b |2. 作OA →=a ,OB →=b ,则|BA →|=|a -b |=17, 所以△OAB 是直角三角形,其中∠AOB =90°. 所以表示a ,b 的有向线段所在的直线成90°角.。
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
平面向量专题练习(带答案详解) (3)
平面向量专题练习(带答案详解)一、单选题1.已知向量()1,2a =-,()1,1b =,则a b ⋅=( ) A .3B .2C .1D .02.已知向量()1,2a =-,()2,x b =,若//a b ,则x 的值是( ) A .-4B .-1C .1D .43.已知向量()()1,1,0,1,0,2a b ==-,且ka b +与2a b -互相垂直,则k 的值是( ) A .1B .15C .35D .754.等腰直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P 是斜边AB 上一点,且2BP PA =,那么CP CA CP CB ⋅+⋅=( ) A .4-B .2-C .2D .45.设,a b 是非零向量,则2a b =是a ba b=成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件6.在ABC ∆中,4,3A b c E F π=+=、为边BC 的三等分点,则AE AF ⋅的最小值为()A .932B .83C .269D .37.若2a =,2b =,且()-⊥a b a ,则a 与b 的夹角是( ) A .6πB .4πC .3πD .2π8.已知非零向量,a b 满足||6||a b =,,a b 的夹角的余弦值为13,且()a a kb ⊥-,则实数k 的值为( ) A .18B .24C .32D .369.已知向量, m n 的夹角为60︒,且13213m m n -==,,则n =( )A .3212-B .3212+C .2132-D .210.已知向量0.52logsin log cos OA OB OC θθ=⋅+⋅,若A 、B 、C 三点共线,则sin cos θθ+=( )A .355-B .355C .55-D .5511.在ABC ∆中,22AB AC ==,60BAC ∠=︒,且2BD DC =,则AD BC ⋅=( ). A .1-B .1C .7D .7212.已知椭圆222:19x y C b +=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅的取值范围为( )A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--13.已知向量()2,a m =-,()1,b n =,若a b b ∥,且2b =,则实数m 的值为( ) A .2B .4C .2-或2D .4-或414.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-15.已知向量a ,b 满足22a a b a b =⋅=-,,当a ,b 的夹角最大时,则a b ⋅=( ) A .0B .2C .22D .416.已知O 是ABC ∆的重心,且20OA OB BC λ++=,则实数λ=( )A .3B .2C .1D .1217.设a ,e 均为单位向量,当a ,e 的夹角为4π时,a 在e 方向上的投影为( )A .22-B .12C .22D .3218.若向量a ,b 满足||3a =,||26b =,且满足(2)a b a +⊥,则a 与b 的夹角为( )A .3πB .23πC .4πD .34π19.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6 D .8二、填空题20.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ,则3r s +的值为__________.21.已知1a =,2b =,且()a ab ⊥-,则向量a 与向量b 的夹角是________. 22.已知在Rt △ABC 中,AC ⊥BC ,()()()1,,3,1,4,AC m AB BD n ===,若B 、C 、D 三点共线,则m +n =_____.23.ABC △中,2A B =,1BC =,则AC 的取值范围是__________,BA BC ⋅的取值范围是__________.24.已知向量(4,3)a =-,若向量(2,1)b =-,则向量a 在向量b 方向上的投影是_____. 25.已知()3,4a =,()2,1b =,则a 在b 方向上的投影为______.26.设向量(1,)AB m =,(2,1)BC m =-,其中[1,)m ∈-+∞,则AB AC ⋅的最小值为__________.27.设向量a ,b 满足10a b +=,6a b -=,则⋅=a b ___________28.已知||1,||2,0,()()0a b a b a c b c ==⋅=-⋅-=,则||c 的最大值为_________________.三、解答题29.已知以F 为焦点的抛物线2:2(0)C y px p =>过点(1,2)P -,直线l 与C 交于A ,B 两点,M 为AB 中点,且OM OP OF λ+=.(1)当3λ=时,求点M 的坐标; (2)当12OA OB ⋅=时,求直线l 的方程.30.已知OA a OB b ==,,对于任意点M ,点M 关于点A 的对称点为点S ,点S 关于点B 的对称点为点N . (1)用a ,b 表示向量MN ;(2)设122327a b MN ⎡⎤==∈⎣⎦,,,,求a 与b 的夹角θ的取值范围.参考答案1.C直接根据向量数量积的坐标表示即可得出结果. 【详解】∵()1,2a =-,()1,1b = ∴11211a b ⋅=-⨯+⨯=, 故选:C . 【点睛】本题主要考查了平面向量数量积的坐标表示,属于基础题. 2.A利用向量平行的坐标表示直接求解即可. 【详解】∵向量()1,2a =-,()2,x b =,//a b , ∴()122x ⨯=-⨯,解得4x =-, ∴x 的值为4-, 故选:A . 【点睛】本题主要考查向量平行的坐标表示,属于基础题. 3.D由ka b +与2a b -互相垂直得()()20a b ka b +⋅=-,再代入()()1,1,0,1,0,2a b ==-求解即可. 【详解】由题()()20a b ka b +⋅=-,即()()31,,202,,2k k --⋅=.故7332405k k k -+-=⇒= .故选:D 【点睛】本题主要考查了空间向量的基本运算与垂直的运用,属于基础题型. 4.D 【解析】【分析】将CP 用CA 与CB 进行表示,代入可得答案. 【详解】解:由题意得:1121()3333CP CA AP CA AB CA AC CB CA CB =+=+=++=+22218443333CP CA CP CB CA CB ⋅+⋅=+=+=,故选:D. 【点睛】本题主要考查平面向量的基本定理及平面向量的数量积,相对不难. 5.B利用||aa 的意义,即a 方向上的单位向量,再根据充分条件与必要条件的定义,即可求得答案. 【详解】由2a b =可知,a b 方向相同,||a a ,||b b 表示,a b 方向上的单位向量,所以||||a ba b =成立;反之不成立. 故选:B . 【点睛】本题考查单位向量的概念、向量共线、简易逻辑知识,考查逻辑推理能力和运算求解能力,求解时注意向量的方向. 6.C 【解析】()22122125 (33339)9AE AF AB AC AB AC AB AC AB AC ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭()()()()22222251212126992969649b c c b bc b c bc b c +=++⨯=+-≥+-⨯=(b c = 时等号成立),即AB AC 的最小值为269, 故选C. 【易错点晴】本题主要考查平面向量的基本运算以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.B根据相互垂直的向量数量积为零,求出a 与b 的夹角. 【详解】由题有()20a b a a b a -⋅=-⋅=,即22b a a ⋅==,故2cos 2cos 2b a a b θθ⋅=⨯⨯=⇒=,因为[]0,θπ∈,所以4πθ=.故选:B. 【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题. 8.A根据向量垂直关系和数量积运算公式()0a a kb ⋅-=,可得关于k 的方程,解得k . 【详解】由||6||a b =可设||b t =,则||6(0)a t t =>.因为221()||36603a a kb a ka b t k t t ⋅-=-⋅=-⨯⨯⨯=,所以18k =.故选:A . 【点睛】本题考查平面向量数量积及其运算,同时考查向量垂直关系的运算,属于简单题. 9.D把向量的模用向量的数量积表示出来,由数量积的定义求解. 【详解】222232(32)912cos 60413m n m n m m n n︒-=-=-+=,又1m=,∴22320n n--=,解得2n=,故选:D【点睛】本题考查求向量模,掌握数量积的定义和性质是解题关键.10.B由A、B、C三点共线和对数的运算性质,可得sin1cos2θθ=,再结合三角函数的基本关系式,求得12sin,cos55θθ==,即可求解.【详解】由题意,向量0.52log sin log cosOA OB OCθθ=⋅+⋅,若A、B、C三点共线,根据平面向量的基本定理,可得0.52log sin log cos1θθ+=,即0.50.5log sin log cos1θθ-=,即0.5sinlog1cosθθ=,可得sin1cos2θθ=,且sin0,cos0θθ,又由22sin cos1θθ+=,解得12sin,cos55θθ==,所以sin cosθθ+=355.故选:B.【点睛】本题主要考查了向量的共线定理,以及同角三角函数的基本关系式的应用,着重考查了推理与运算能力,属于基础题.11.A由向量的运算法则,可得1233AD AB AC=+,BC AC AB=-,结合向量的数量积的运算,即可求解,得到答案.【详解】由向量的运算法则,可得2212()3333AD AB BC AB AC AB AB AC=+=+-=+,BC AC AB =-,又由22AB AC ==,60BAC ∠=︒,所以AD BC ⋅=2212112()()33333AB AC AC AB AB AB AC AC +⋅-=--⋅+22112221cos6011333=-⨯-⨯⨯⨯+⨯=-.故选:A . 【点睛】本题主要考查了平面向量的基本定理,以及向量的数量积的运算,其中解答中熟记向量的基本定理,以及向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 12.A根据椭圆的离心率,求出b 的值,得到椭圆的标准方程,然后根据()PM MN PM PN PM ⋅=⋅-,结合PM PN ⊥,得到PM MN ⋅的坐标表示,得到关于x 的函数,结合x 的范围,得到答案. 【详解】椭圆222:19x y C b +=的3a =, 其离心率为223,所以223c a =,所以22c =,所以2221b a c =-=,所以椭圆标准方程为22+19x y =,设(),P x y ,[]3,3x ∈-,则()PM MN PM PN PM ⋅=⋅-2PM PN PM=⋅-因为PM PN ⊥,所以0PM PN ⋅=,所以()2222PM MN PM x y ⎡⎤⋅=-=--+⎣⎦()22219x x ⎡⎤=--+-⎢⎥⎣⎦2891942x ⎛⎫=--- ⎪⎝⎭所以PM MN ⋅是关于x 的二次函数,开口向下,对称轴为94x =,所以当94x =时,取得最大值为12-当3x =-时,取得最小值为25-,所以125,2PM MN ⎡⎤⋅∈--⎢⎥⎣⎦.故选:A. 【点睛】本题考查根据离心率求椭圆的标准方程,向量数量积的坐标表示,二次函数求值域,属于中档题. 13.C根据已知得到a b -的坐标,然后根据a b b ∥,2b =得到关于m ,n 的方程组,从而得到答案. 【详解】向量()2,a m =-,()1,b n =, 所以()3,a b m n -=--, 因为a b b ∥,2b =,所以()2312n m n n ⎧-=-⎨+=⎩,解得21m n =-⎧⎨=⎩或21m n =⎧⎨=-⎩ 所以m 的值为2-或2. 故选:C. 【点睛】本题考查根据向量平行求参数的值,根据向量的模长求参数的值,属于简单题. 14.D构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点, 又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.15.D先建系, 设(2,0),(,)OA a OB b x y ====,再结合平面向量数量积的坐标及运算性质,将a ,b 的夹角最大转化为直线OB 与抛物线相切,利用0∆=求出,即可(,)b x y =,即可解得所求.【详解】设(2,0),(,)OA a OB b x y ====,因为2||a b a b ⋅=-,所以2222(2)x x y =-+,即24(1)y x =-,为点B 的轨迹方程. 由上图易知,当直线OB 与抛物线相切时,,a b 的夹角最大.由24(1)y kx y x =⎧⎨=-⎩消去y 得22244016160,1k x x k k -+=∆=-==±,. 所以2x =,即点(2,2)B 或1(2,2)B -时,即(2,2)b =或(2,2)b =-时,,a b 的夹角最大.此时,4a b ⋅=.故选:D .【点睛】本题考查平面向量数量积的坐标运算,考查转化与化归思想, ,将a ,b 的夹角最大转化为直线OB 与抛物线相切,考查数形结合的解题思想,难度一般.16.C 将BC 用OA ,OB 表示出来,根据O 是重心,即可列方程求得参数的值.【详解】()()2220OA OB BC OA OB OC OB OA OB OC λλλλ++=++-=+-+= 因为O 是ABC ∆的重心,所以211λλ-=⎧⎨=⎩,解得1λ=. 故选:C.【点睛】本题考查向量的线性运算,涉及三角形重心的向量表示,属基础题.17.C 利用向量投影公式,结合向量数量积的运算,求得a 在e 方向上的投影.【详解】a 在e 方向上的投影为2cos 42a e a eπ⋅=⋅=. 故选:C【点睛】本小题主要考查向量投影的计算,属于基础题.18.D【解析】利用向量垂直关系,可得a b ⋅,然后根据向量夹角公式,可得结果.【详解】由(2)a b a +⊥,所以(2)0a b a +⋅=则220a a b +⋅=,又||3a =,所以6a b ⋅=-,由||26b =则2cos ,2ab ab a b⋅==-, 又[],0,a b π∈,所以3,4a b π= 故选:D【点睛】本题考查向量的垂直关系以及向量的夹角公式,掌握公式,细心计算,属基础题. 19.D由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】 ∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8. 故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 20.85根据4CD DB =得到4455CD AB AC ,再由CD r AB sAC =+,根据平面向量的基本定理,求得,r s 的值,代入即可求解.【详解】如图所示,由4CD DB =,可得444555CD CB AB AC ==-,又由CD r AB sAC =+,所以44,55r s ==-,所以44833555r s +=⨯-=, 故答案为:85. 【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中熟记向量的运算法则,以及平面向量的基本定理是解答的关键.着重考查了推理与计算能力,属于基础题. 21.4π根据()a a b ⊥-得到1a b =,再带入夹角公式即可.【详解】因为()a a b ⊥-,所以()0a a b ⋅-=.即20a a b -⋅=,10a b -⋅=,1a b ⋅=. 12cos 22a b a b θ===.所以夹角是4π. 故答案为:4π【点睛】本题主要考查向量的夹角公式,熟练掌握夹角公式为解题的关键,属于简单题。
平面向量复习(含练习+答案)
向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c r r rL 等.⑵几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.⑶坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量ar与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。
研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言 符号语言 坐标语言加法与减法 OA --→+OB --→=OC --→ OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2) 则OA OB +uu u r uuu r =(x 1+x 2,y 1+y 2)OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积 AB --→=λa → λ∈R 记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积 cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r 则a →·b →=x 1x 2+y 1y 2 加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r(结合律)实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量
1. 基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1)A] A2 A2A3 A n i A n A1A n .
⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量
AC = a + b, BD=b —a,DB = a —b
且有丨a I —I b I <| a b I <| a I + I b I .
向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V-
a + 0= a a + (—a )=0.
3 .实数与向量的积:实数与向量a的积是一个向量。
(1) I a I = I I・I a I ;
(2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时,
—t
a = 0.
(3) 若a= ( X i, y i),则a= ( X i, y i).
两个向量共线的充要条件:
(1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a .
―b- —te-
(2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 .
平面向量基本定理:
若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有
—*■
一对实数i, 2,使得a = i e i+ 2 e2.
4. P分有向线段P i P2所成的比:
设P l 、P 2是直线l 上两个点,点P 是I 上不同于P l 、P 2的任意一点,则存在一个实数 使PP = PF 2, 叫做点P 分有向线段P 1P 2所成的比。
X i X 2
X 2
( 工一1 ),中点坐标公式: y 丫1 J 2
2
5. 向量的数量积: (1)向量的夹角:
—*■
----- *- ―I- !- —F-
已知两个非零向量 a 与b ,作OA = a , OB =b,则/ AOB= ( 00 180°)叫做向量a
与b 的夹角。
(2)两个向量的数量积: 已知两个非零向量a 与b ,它们的夹角为,则a •= 1 a 丨• b 丨cos 其中丨b I cos 称为向量b 在a 方向上的投影. (3) 向量的数量积的性质:
右 a = ( x 1, y 1) ,b= ( x 2, y 2 )贝9 e a = a •= I a I cos
X 1X 2 y 』2
2
2 2
2
.X 1 y 1
、X 2 y 2
⑷向量的数量积的运算律:
a b=
b a ;( a ) b =
(a b)=a ( 6. 主要思想与方法:
本章主要树立数形转化和结合的观点, 以数代形,以形观数,用代数的运算处理几何问
题,特别是处理向量的相关位置关系,
正确运用共线向量和平面向量的基本定理,
计算向量
的模、两点的距离、向量的夹角,判断两向量是否垂直等。
由于向量是一新的工具,它往往 会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
分点坐标公若 PP = P P 2 ; R, P, P 2 的坐标分别为(X 1, y 1) , ( X , y ) , ( x ?, y ?);
y 2
(e 为单位向量); a b =0
X 1X 2 y 1y 2
0 ( a , b 为非零向量)
;I a I = a?a
cos
=a?b =a ? b
b);(a + b) c= a c+b c .
当点P 在线段RF 2上时, > 0;当点P 在线段PP 2或P 2P 1的延长线上时, v 0;
x 2^
课本题
1 已知 |a| |b| |a b| 1,则 |a b|= _ ”3 _______________
2•若非零向量’,' 满足「
' |,则•与—所成角的大小为 —90° ______
3•已知|a| |b| 2,a 与b 的夹角为—,则a b 在a 上的投影为
3
3
4•在直角坐标平面上,向量
OA (4,1),向量OB (2, 3),两向量在直线|上的正射影长
1 度相等,则直线I 的斜率为
3或-- 2
5 •设平面向量a =(-2,1) , b =(1,),若a 与b 的夹角为钝角,贝U
的取值范围是
1 1
(
,2)
(
2,2) °
6.已知向量 OB (2,0),OC
(2,2),CA G 2cos ,-. 2 sin ),则向量OA,OB 的夹角范围是
a 平移后得到y 2x 6的图象,给出以下四个命题:
上述说法正确的是 ①②③④
7•将函数y 2x 的图象按向量 ①a 的坐标可以是(3,0); ②a 的坐标可以是(3,0)和(0,6); ③a 的坐标可以是(0,6);
④a 的坐标可以有无数种情况。
&已知 ABC 中,CB a,CA b,a b 0,S ABC
匹,2| 3, |b | 5,则a 与b 的夹角为150。
° 4
9•在△ ABC 中,BC=1,/ B=-,当△ ABC的面积为3时,tanC
10 .若△ ABC 三边长AB=5 , BC=7, AC=8,贝U AB BC 等于______ 5 __________ 高考题
umr uuur 1.在厶ABC 中,AB c , AC
uuur
b •若点D满足BD
uuu
2DC ,
unr 则
AD 2 b 1 c
33
uuu
2.在平行四边形ABCD中, AC为一条对角线,若AB
uuur
(2,4) , AC
uur
(1,3),则BD
(—3,- 5)
3. 设a (1, 2), b ( 3,4), c (3,2)则(a 2b) c 二3 ___________________
uuur uuir uuu uun 4. 设D E F分别是△ ABC勺三边BC CA AB上的点,且DC 2BD, CE 2E代
等于_、2
UJU
6.若过两点R(-1,2),
R(5,6)的直线与x 轴相交于点P,则点P 分有向线段RP 2所成的比
=
_ 1
3
7.在厶ABC 中,角ABC 勺对边分别为 a 、b 、c ,若(a 2+c 2- b 2)tan B = •.为ac ,则角B 的值为
8. 在平行四边形 ABCD 中,AC 与BD 交于点O , E 是线段OD 的中点,AE 的延长线与
uuiir uur uuu 2
1 CD 交于点 F •若 AC a , BD b ,则 AF a b
3
3
9. 已知
a ,
b 是平面内两个互相垂直的单位向量, 若向量
c 满足(a c) (b c) 0,则c 的
最大值是
十:2 __
10. 将函数y 2X 1的图象按向量a 平移得到函数y 2x 1的图象,贝U a ( 1, 1) 11. 如果等腰三角形的周长是底边长的
5倍,那么它的顶角的余弦值为
7/8 12. 若向量a ,b 满足a 1,b 2且a 与b 的夹角为一,贝卩a b 苗
3
—
13. 设向量a (1,2, b (2,3),若向量 a b 与向量c ( 4, 7)共线,贝U
_2 ___
14. 已知向量a 与b 的夹角为120°,且a b 4,那么b (2a b)的值为0 __________________ •
r
r
r r r r r r «■—
15. 已知平面向量 a
(2,4) ,b ( 1,2) •若 c a (ab)b ,则 |c| _____ W 2 ________ •
16. a , b 的夹角为
120 , a 1
, b 3 则5; b _7 __ •
17. 若 AB=2, AC=&BC ,则 s ABC 的最大值—2 2 __________ •
18. 直角坐标平面上三点 A(1,2)、B(3, 2)、C(9,7),若E 、F 为线段BC 的三等分点,贝U
uuu uuu
AE AF =
___ •
19. 在△ ABC 中,三个角A, B,C 的对边边长分别为a 3,b
4,c
6 ,则
5. uur AF
uuu uuir 2FB,则 AD uuu UJU uuu
BE CF 与BC 反向平行
△ ABC 的内角A , B , C 的对边分别为
a, b, c ,若 c
,6, B 120°,则 a
be cos A ca cos B ab cosC 的值为_____
20.已知a >0,若平面内二点
2
A( 1, - a) ,B(2, a2), C(3, a3)共线,则a=__1丘o
24.在厶ABC中,角A、B C所对的边分别为a、b、c,若,3b c cosA a cosC,贝U
cosA 旦o
3。