2021新高考数学二轮总复习专题二函数与导数2.1函数概念性质图象专项练学案含解析.docx
高考数学大二轮复习 层级二 专题一 函数与导数 第1讲 函数的图象与性质教学案
第1讲 函数的图象与性质[考情考向·高考导航]1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.对函数性质的考查,主要是将单调性、奇偶性、周期性等综合在一起考查,既有具体函数也有抽象函数.常以选择题、填空题的形式出现,且常与新定义问题相结合,难度较大.[真题体验]1.(2018·全国Ⅲ卷)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:B [y =ln x 过点(1,0),(1,0)关于x =1的对称点是(1,0),而只有B 选项过此点,故选B.]2.(2019·全国Ⅱ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e x-1,则当x <0时,f (x )=( )A .e -x-1 B .e -x+1 C .-e -x -1D .-e -x+1解析:D [当x <0时,-x >0,∴f (-x )=e -x-1, 又∵f (-x )=-f (x ),∴-f (x )=e -x-1, 即f (x )=-e -x+1.]3.(2018·全国Ⅱ卷)函数f (x )=e x-e -xx2的图象大致为( ) 解析:B [∵f (-x )=e -x -e x -x 2=-e x -e -xx 2=-f (x ), ∴f (x )是奇函数,排除选项A ;又∵f (1)=e -1e>1,排除选项C 、D ,故选B.]4.(2018·全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)解析:D [画出函数f (x )的图象如图,①当2x <0,x +1≥0时f (x +1)<f (2x )成立,∴-1≤x <0.②当2x ≤0,x +1≤0时,要使f (x +1)<f (2x )成立,只需x +1>2x ,∴x ≤-1.由①②知满足f (x +1)<f (2x )的x 的取值范围是(-∞,0).][主干整合]1.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.函数的性质 (1)单调性对于函数y =f (x )定义域内某一区间D 上的任意x 1,x 2,(x 1-x 2)[f (x 1)-f (x 2)]>0(<0)⇔y =f (x )在D 上是增(减)函数;对于函数y =f (x )定义域内某一区间D 上的任意x 1,x 2,f x 1-f x 2x 1-x 2>0(<0)⇔y=f (x )在D 上是增(减)函数.(2)奇偶性对于定义域(关于原点对称)内的任意x ,f (x )+f (-x )=0⇔y =f (x )是奇函数; 对于定义域(关于原点对称)内的任意x ,f (x )-f (-x )=0⇔y =f (x )是偶函数. (3)周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )是周期函数,其中一个周期是T =2a (a ≠0);②若满足f (x +a )=-f (x ),则f (x )是周期函数,其中一个周期是T =2a (a ≠0); ③若满足f (x +a )=1f x,则f (x )是周期函数,其中一个周期是T =2a (a ≠0); ④若函数满足f (x +a )=-1f x,则f (x )是周期函数,其中一个周期是T =2a (a ≠0).(4)对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a .②若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.③若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.热点一 函数及其表示[题组突破]1.(2020·苏州模拟)函数f (x )的定义域是[0,3],则函数y =f 2x -1lg 2-x的定义域是____________________.解析:因为函数f (x )的定义域是[0,3],所以由⎩⎪⎨⎪⎧0≤2x -1≤3,2-x >0,lg 2-x ≠0,得⎩⎪⎨⎪⎧12≤x ≤2,x <2,x ≠1.即12≤x <2且x ≠1, 即函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x <2且x ≠1. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x <2且x ≠12.(2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.解析:因为f (x +4)=f (x ),函数的周期为4,所以y =sin(2x +4),f (15)=f (-1),f (-1)=⎪⎪⎪⎪⎪⎪-1+12=12,∴f (f (15))=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 答案:223.(2017·课标全国Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x的取值范围是________.解析:由题意:g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -12=⎩⎪⎨⎪⎧2x +32,x ≤02x+x +12,0<x ≤122+12x -1,x >12,函数g (x )在区间(-∞,0],⎝ ⎛⎦⎥⎤0,12,⎝ ⎛⎭⎪⎫12,+∞三段区间内均单调递增,且:g ⎝ ⎛⎭⎪⎫-14=1,20+0+12>1,(2+1)×20-1>1,据此x 的取值范围是:⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞4.(多选题)在下列四组函数中,f (x )与g (x )表示同一函数的是( )A .f (x )=x -1,g (x )=x 2-1x +1B .f (x )=|x +1|,g (x )=⎩⎪⎨⎪⎧x +1,x ≥-1,-1-x ,x <-1C .f (x )=1,g (x )=(x +1)0D .f (x )=x2x,g (x )=x x2解析:BD [本题考查判断两个函数是否相同.对于A ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一函数;对于B ,函数f (x )的定义域为R ,g (x )的定义域为R ,f (x )与g (x )的定义域相同,f (x )=|x +1|=⎩⎪⎨⎪⎧x +1,x ≥-1,-1-x ,x <-1,对应关系相同,则f (x )与g (x )是同一函数;对于C ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一函数;对于D ,函数f (x )=x2x=1(x >0),g (x )=x x2=1(x >0)的定义域与对应法则均相同,是同一函数.故选BD.]函数及其表示问题的注意点1.求函数的定义域时,要全面地列出不等式组,不可遗漏,并且要注意所列不等式中是否包含等号.2.对于分段函数解方程或不等式的问题,要注意在所应用函数解析式对应的自变量的范围这个大前提,要在这个前提条件下解决问题.热点二 函数的图象及其应用[例1] (1)(2019·全国Ⅰ卷)函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( ) [解析] D [∵f (-x )=sin -x -xcos -x +-x 2=-f (x ),∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C.故选D.](2)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A .{x |-1<x ≤0} B .{x |-1≤x ≤1} C .{x |-1<x ≤1} D .{x |-1<x ≤2} [解析]C [令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]识图、用图的方法技巧(1)识图:从图象与轴的交点及左、右、上、下分布范围,变化趋势、对称性等方面找准解析式与图象的对应关系.如例1(1)(2)用图:在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.如例1(2)(1)(2019·南昌三模)函数f (x )=x e -x -e x4x 2-1的部分图象大致是( ) 解析:B [因为函数f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,12∪⎝ ⎛⎭⎪⎫12,+∞,f (-x )=-xe x-e-x4x 2-1=x e -x -e x 4x 2-1=f (x ),所以f (x )为偶函数, 所以f (x )的图象关于y 轴对称,故排除A ,令f (x )=0,即x e -x -e x4x 2-1=0,解得x =0, 所以函数f (x )只有一个零点,故排除D , 当x =1时,f (1)=1e-e 3<0,故排除C ,综上所述,只有B 符合.](2)(2019·德州三模)用min{a ,b ,c }表示a ,b ,c 中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为________.解析:f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图中实线所示.令x +2=10-x ,得x =4.故当x =4时,f (x )取最大值,又f (4)=6,所以f (x )的最大值为6.答案:6热点三 函数的性质及其应用数学 抽象 素养数学抽象——抽象函数与函数的“三性”函数的周期性常常通过函数的奇偶性得到,函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性.确定函数的单调性、奇偶性、对称性等[例2] (1)(2019·唐山调研)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称[解析] C [由题意知,f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误;又f ′(x )=1x -12-x =21-xx 2-x (0<x <2),在(0,1)上单调递增,在[1,2)上单调递减,A 、B 错误.故选C.](2)(2019·大同三模)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ [解析] A [f (x )是偶函数,且在[0,+∞)上是增函数,所以f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇒|x |>|2x -1|⇒13<x <1.]函数性质的综合应用[例3] (1)(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50[解析] C [f (x )是奇函数,图象关于原点对称,又∵f (1-x )=f (1+x ),∴f (x )关于x =1对称,故知f (x )是周期函数,周期T =4. 又∵f (2)=f (0)=0,f (3)=f (4-1)=f (-1)=-f (1)=-2,f (4)=f (-2)=0,∴f (1)+f (2)+f (3)+f (4)=2+0+(-2)+0=0, ∴f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2+0=2.](2)(2019·武汉三模)已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎪⎫1-2e x +1,则( ) A .f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫52 B .f ⎝ ⎛⎭⎪⎫52<f (-3)<f (2) C .f (2)<f (-3)<f ⎝ ⎛⎭⎪⎫52 D .f (2)<f ⎝ ⎛⎭⎪⎫52<f (-3) [解析] D [因为f (x -1)=f (x +1),所以f (x )=f (x +2),即函数的周期是2, 当x ∈[-1,1]时,f (x )=x ⎝ ⎛⎭⎪⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x-1e -x +1=-x ·1-e x1+e x=x ·e x-1e x +1=f (x ),则函数f (x )为偶函数,当0≤x <1时,函数y =x 为增函数,y =1-2e x +1也为增函数,则函数f (x )=x ⎝ ⎛⎭⎪⎫1-2e x +1=x ·e x-1e x +1在0≤x <1为增函数,则f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫52-2=f ⎝ ⎛⎭⎪⎫12,f (-3)=f (-3+2)=f (-1)=f (1),f (2)=f (0),则f (0)<f ⎝ ⎛⎭⎪⎫12<f (1),即f (2)<f ⎝ ⎛⎭⎪⎫52<f (-3).]函数三个性质的应用(1)奇偶性:具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间上.尤其注意偶函数f (x )的性质:f (|x |)=f (x ).(2)单调性:可以比较大小,求函数最值,解不等式,证明方程根的唯一性. (3)周期性:利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.(1)(2019·贵阳调研)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1).又f (x )是定义在R 上偶函数, ∴f (1)=f (-1)=6,即f (919)=6. 答案:6(2)(2019·青岛三模)已知偶函数y =f (x )(x ∈R )在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0;②f (x )在[1,2]上是减函数;③函数y =f (x )没有最小值;④函数f (x )在x =0处取得最大值;⑤f (x )的图象关于直线x =1对称.其中正确的序号是________.解析:因为f (1-x )+f (1+x )=0,所以函数y =f (x )(x ∈R )关于点(1,0)对称,且周期为4,画出满足条件的图象,结合图象可知①②④正确.答案:①②④限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.(2020·湖北部分重点中学起点考试)已知函数f (x )=(e x +e -x)ln 1-x 1+x -1,若f (a )=1,则f (-a )=( )A .1B .-1C .3D .-3解析:D [解法一 由题意,f (a )+f (-a )=(e a +e -a )ln 1-a 1+a -1+(e a +e -a)ln 1+a 1-a -1=(e a +e -a )⎝ ⎛⎭⎪⎫ln 1-a 1+a +ln 1+a 1-a -2=-2,所以f (-a )=-2-f (a )=-3,故选D.解法二 令g (x )=f (x )+1=(e x +e -x )ln 1-x 1+x ,则g (-x )=(e -x +e x )ln 1+x 1-x=-(e x+e-x)ln 1-x1+x=-g (x ),所以g (x )为奇函数,所以f (-a )=g (-a )-1=-g (a )-1=-f (a )-2=-3,故选D.]2.(2020·唐山摸底)设函数f (x )=x (e x +e -x),则f (x )( ) A .是奇函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是增函数 C .是奇函数,且在(0,+∞)上是减函数 D .是偶函数,且在(0,+∞)上是减函数解析:A [通解 由已知可知,f (-x )=(-x )(e -x+e x )=-x (e x +e -x)=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x+e -x>0,所以f ′(x )>0,所以f (x )在(0,+∞)上是增函数,故选A.优解 根据题意知f (-x )=-f (x ),所以函数f (x )为奇函数.又f (1)<f (2),所以f (x )在(0,+∞)上是增函数,故选A.]3.(2019·合肥调研)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2x +1,x ≥0,g x ,x <0,则g (f (-7))=( )A .3B .-3C .2D .-2解析:D [函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2x +1,x ≥0,g x ,x <0,设x <0,则-x >0,则f (-x )=log 2(-x +1), 因为f (-x )=-f (x ),所以f (x )=-f (-x )=-log 2(-x +1), 所以g (x )=-log 2(-x +1)(x <0), 所以f (-7)=g (-7)=-log 2(7+1)=-3, 所以g (-3)=-log 2(3+1)=-2.]4.(2020·大连模拟)若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R ,都有f (-x )+f (x )=0; (2)∀x 1,x 2∈R ,且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ;④f (x )=ln(x 2+1+x ). 以上四个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3解析:B [由条件(1),得f (x )是奇函数,由条件(2),得f (x )是R 上的减函数. 对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”;对于④,易知f (x )在R 上单调递增,故不是“优美函数”.故选B.]5.(2020·辽宁五校协作体联考)已知函数f (x )是定义在R 上的奇函数,且x ≥0时,f (x )=(-x +a +1)log 2(x +2)+x +m ,其中a ,m 是常数,且a >0.若f (0)+f (a )=1,则f (m -3)=( )A .1B .-1C .6D .-6解析:C [由题意知f (0)=a +1+m =0,所以a +m =-1,又f (a )=log 2(a +2)+a +m ,f (0)+f (a )=1,所以log 2(a +2)=2,解得a =2,所以m =-3.于是,当x ≥0时,f (x )=(3-x)log2(x+2)+x-3.故f(m-3)=f(-6)=-f(6)=-(-3log28+3)=6.故选C.] 6.(组合型选择题)函数y=f(x)和y=g(x)在[-2,2]上的图象分别如图(1)(2)所示:给出下列四个命题:①方程f(g(x))=0有且仅有6个根;②方程g(f(x))=0有且仅有3个根;③方程f(f(x))=0有且仅有5个根;④方程g(f(g))=0有且仅有4个根;其中正确命题的个数是( )A.4 B.3C.2 D.1解析:B [由图象可得-2≤g(x)≤2,-2≤f(x)≤2.对于①,观察f(x)的图象,可知满足方程f(g(x))=0的g(x)有三个不同的值,一个值在-2或-1之间,一个值为0,一个值在1与2之间.再观察g(x)的图象,由图象知,g(x)的值在-2与-1之间时对应了2个x值,g(x)=0时对应了2个x值,g(x)的值在1与2之间时对应了2个x值,故方程f(g(x))=0有且仅有6个根,故①正确.对于②,观察g(x)的图象,可知满足g(f(x))=0的f(x)有两个不同的值,一个值处于-2与-1之间,另一个值处于0与1之间.观察f(x)的图象,知f(x)的值在-2与-1之间时对应了1个x值,f(x)的值在0与1之间时对应了3个x值,所以方程g(f(x))=0有且仅有4个根,故②不正确.对于③,观察f(x)的图象,可知满足方程f(f(x))=0的f(x)有3个不同的值,一个值在-2与-1之间,一个值为0,一个值在1与2之间.再观察f(x)的图象,由图象知f(x)的值在-2与-1之间时对应了1个x值,f(x)=0时对应了3个x值,f(x)的值在1与2之间时对应了1个x值,故方程f(f(x))=0有且仅有5个根,故③正确.对于④,观察g(x)的图象,可知满足方程g(g(x))=0的g(x)有2个不同的值,一个值在-2与-1之间,一个值在0与1之间.再观察g(x)的图象,由图象可知g(x)的值在-2与-1之间时对应了2个x值,g(x)的值在0与1之间时对应了2个x值,故方程g(g(x))=0有且仅有4个根,故④正确.综上所述,正确命题的个数是3.故选B.]7.(2019·广州二模)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2 022)的值为( ) A.2 018 B.-2 018C.0 D.4解析:C [依题意得,函数y =f (x )的图象关于直线x =0对称,因此函数y =f (x )是偶函数,且f (-2+4)=f (-2)+f (2),即f (2)=f (2)+f (2),所以f (2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的函数,f (2 022)=f (4×505+2)=f (2)=0.]8.(2019·苏州调研)函数y =sin 2x1-cos x 的部分图象大致为( )解析:C [令f (x )=sin 2x1-cos x,∵f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,∴排除选项A ,D.由1-cos x ≠0得x ≠2k π(k ∈Z ), 故函数f (x )的定义域关于原点对称.又∵f (-x )=sin -2x 1-cos -x =-sin 2x1-cos x=-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除选项B.故选C.] 9.已知函数f (x )=x -4+9x +1,x ∈(0,4).当x =a 时,f (x )取得最小值b ,则函数g (x )=⎝ ⎛⎭⎪⎫1a |x +b |的图象为( )解析:B [因为x ∈(0,4),所以x +1>1,所以f (x )=x -4+9x +1=x +1+9x +1-5≥2 x +1×9x +1-5=1,当且仅当x =2时取等号,且f (x )的最小值为1,所以a =2,b=1,所以g (x )=⎝ ⎛⎭⎪⎫12|x +1|,其图象关于直线x =-1对称,又g (x )=⎝ ⎛⎭⎪⎫12|x +1|≤⎝ ⎛⎭⎪⎫120=1,所以B.]10.(2020·河北衡水中学模拟)已知函数f (x )=22 019x+1+sin x ,其中f ′(x )为函数f (x )的导数,则f (2 018)+f (-2 018)+f ′(2 019)-f ′(-2 019)等于( )A .2B .2 019C .2 018D .0解析:A [由题意得f (x )+f (-x )=2, ∴f (2 018)+f (-2 018)=2,由f (x )+f (-x )=2可得f (x )-1+f (-x )-1=0, ∴y =f (x )-1为奇函数, ∴y =f (x )-1的导函数为偶函数,即y =f ′(x )为偶函数,其图象关于y 轴对称,∴f ′(2 019)-f ′(-2 019)=0,∴f (2 018)+f (-2 018)+f ′(2 019)-f ′(-2 019)=2.故选A.]11.(2019·定州二模)已知a >0,设函数f (x )=2 019x +1+2 0172 019x+1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 017B .2 019C .4 040D .4 036解析:D [由题意得f (x )=2 019x +1+2 0172 019x +1=2 019-22 019x+1. 因为y =2 019x+1在[-a ,a ]上是单调递增的, 所以f (x )=2 019-22 019x+1在[-a ,a ]上是单调递增的,所以M =f (a ),N =f (-a ), 所以M +N =f (a )+f (-a )=4 038-22 019a +1-22 019-a+1=4 036.] 12.(2019·贵阳监测)已知函数f (x )=2xx -1,则下列结论正确的是( ) A .函数f (x )的图象关于点(1,2)中心对称 B .函数f (x )在(-∞,1)上是增函数C .函数f (x )的图象上存在不同的两点A 、B ,使得直线AB ∥x 轴D .函数f (x )的图象关于直线x =1对称 解析:A [因为f (x )=2x x -1=2x -1+2x -1=2x -1+2,所以该函数图象可以由y =2x的图象向右平移1个单位长度,向上平移2个单位长度得到,所以函数f (x )的图象关于点(1,2)中心对称,A 正确,D 错误;易知函数f (x )在(-∞,1)上单调递减,故B 错误;易知函数f (x )的图象是由y =2x的图象平移得到的,所以不存在不同的两点A 、B ,使得直线AB ∥x 轴,C 错误.故选A.]二、填空题(本大题共4小题,每小题5分,共20分)13.(2020·安徽江淮十校联考)函数f (x )=log 13(x 2+2)+13|x |+1,若f (2x +1)≥f (x ),则实数x 的取值范围是____________.解析:易知f (x )为偶函数,且在[0,+∞)上单调递减,∴|2x +1|≤|x |,解得-1≤x ≤-13,∴x ∈⎣⎢⎡⎦⎥⎤-1,-13.答案:⎣⎢⎡⎦⎥⎤-1,-1314.(2019·北京卷)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =____________;若f (x )是R 上的增函数,则a 的取值范围是____________.解析:若函数f (x )=e x +a e -x 为奇函数,则f (-x )=-f (x ),e -x +a e x =-(e x +a e -x)恒成立,即(a +1)(e x +e -x )=0恒成立,欲(a +1)(e x +e -x)=0对任意的x 恒成立.需a +1=0,即a =-1时,所以a =-1.若函数f (x )=e x +a e -x 是R 上的增函数,则f ′(x )=e x -a e -x ≥0恒成立,a ≤e 2x,a ≤0. 即实数a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]15.(2020·湖北省八校联考)已知函数f (x )=⎩⎪⎨⎪⎧ln x 2+a ln x +b ,x >0,e x +12,x ≤0,若f (e 2)=f (1),f (e)=43f (0),则函数f (x )的值域为________________.解析:由题意可得⎩⎪⎨⎪⎧4+2a +b =b ,1+a +b =2,解得⎩⎪⎨⎪⎧a =-2,b =3,∴当x >0时,f (x )=(ln x )2-2ln x +3=(ln x -1)2+2≥2;当x ≤0时,12<e x +12≤e 0+12=32,则函数f (x )的值域为⎝ ⎛⎦⎥⎤12,32∪[2,+∞).答案:⎝ ⎛⎦⎥⎤12,32∪[2,+∞)16.(2020·辽宁五校联考)如果定义在R 上的函数f (x )满足:对任意的x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),则称f (x )为“H 函数”,给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x )③y =1-e x ;④f (x )=⎩⎪⎨⎪⎧ln x x ≥1,0x <1;⑤y =xx 2+1.其中是“H 函数”的是________.(写出所有满足条件的函数的序号)解析:因为x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),所以f (x 1)(x 1-x 2)-f (x 2)(x 1-x 2)≥0,即[f (x 1)-f (x 2)](x 1-x 2)≥0,分析可得,若函数f (x )为“H 函数”,则函数f (x )为增函数或常函数.对于①,y =-x 3+x +1,则y ′=-3x 2+1,所以y =-x 3+x +1既不是R 上的增函数也不是常函数,故其不是“H 函数”;对于②,y =3x -2(sin x -cos x ),则y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎪⎫x +π4>0,所以y =3x -2(sin x -cos x )是R 上的增函数,故其是“H 函数”;对于③,y =1-e x是R 上的减函数,故其不是“H 函数”;对于④,f (x )=⎩⎪⎨⎪⎧ln x x ≥1,0x <1,当x <1时,是常函数,当x ≥1时,是增函数,且当x =1时,ln x=0,故其是“H函数”;对于⑤,y=xx2+1,当x≠0时,y=1x+1x,不是R上的增函数也不是常函数,故其不是“H函数”.所以满足条件的函数的序号是②④.答案:②④。
2021-2022年高考数学第二轮专题复习函数讲义教案
2021年高考数学第二轮专题复习函数讲义教案一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数.(4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。
以基本函数为背景的应用题和综合题是高考命题的新趋势。
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。
②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。
③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。
四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等; ⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。
2021新高考数学二轮总复习学案:2.4.1 函数的单调性、极值点、极值、最值含解析
2.4压轴题大题1导数在函数中的应用2.4.1函数的单调性、极值点、极值、最值必备知识精要梳理1.函数的导数与单调性的关系函数y=f(x)在(a,b)内可导,(1)若f'(x)>0在(a,b)内恒成立,则f(x)在(a,b)内单调递增;(2)若f'(x)<0在(a,b)内恒成立,则f(x)在(a,b)内单调递减.2.函数的导数与单调性的等价关系函数f(x)在(a,b)内可导,f'(x)在(a,b)任意子区间内都不恒等于0.f'(x)≥0⇔f(x)在(a,b)上为增函数.f'(x)≤0⇔f(x)在(a,b)上为减函数.3.函数的极值、最值(1)若在x0附近左侧f'(x)>0,右侧f'(x)<0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f'(x)<0,右侧f'(x)>0,则f(x0)为函数f(x)的极小值.(2)设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有最大值和最小值且在极值点或端点处取得.(3)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.4.两个常用结论(1)ln x≤x-1;(2)e x≥x+1.5.构造辅助函数的四种方法(1)移项法:不等式f(x)>g(x)(f(x)<g(x))⇔f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数;(3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主元,构造函数f(x,x2)(或f(x1,x));(4)放缩法:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.关键能力学案突破热点一求单调区间或讨论单调性(多维探究)类型一求不含参数的函数的单调区间【例1】已知函数h(x)=ln x-ax(a∈R).设f(x)=h(x)++(a+1)x,求函数f(x)的单调区间.解题心得求f(x)的单调区间,需知f'(x)的正负,若f'(x)不含参数,但又不好判断正负,将f'(x)中正负不定的部分设为g(x),对g(x)再进行一次或二次求导,由g'(x)的正负及g(x)的零点判断出g(x)的正负,进而得出f'(x)的正负.【对点训练1】设f(x)=ln x,g(x)=x|x|.令F(x)=xf(x)-g(x),求F(x)的单调区间.类型二讨论含参数的函数的单调性【例2】设a>0,讨论函数f(x)=ln x+a(1-a)x2-2(1-a)x的单调性.解题心得对于含参数的函数的单调性的讨论,常见的分类讨论点按讨论的先后顺序有以下三个:分类讨论点1:求导后,考虑f'(x)=0是否有实根,从而引起分类讨论;分类讨论点2:求导后,f'(x)=0=有实根,但不清楚f'(x)=0的实根是否落在定义域内,从而引起分类讨论;分类讨论点3:求导后,f'(x)=0=有实根,f'(x)=0的实根也落在定义域内,但不清楚这些实根的大小关系,从而引起分类讨论.【对点训练2】(2020全国Ⅱ,文21)已知函数f(x)=2ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=的单调性.热点讨论函数极值二点的个数【例3】设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个数,并说明理由.解题心得利用导数求含参数的原函数的单调区间→极值→最值→恒成立问题的步骤:1.求函数定义域;2.求导→通分或因式分解或二次求导(目的:把导函数“弄熟悉”);3.对参数分类,分类的层次:(1)按导函数的类型分大类;(2)按导函数是否有零点分小类;(3)在小类中再按导函数零点的大小分小类;(4)在小类的小类中再按零点是否在定义域中分小类.【对点训练3】设函数f(x)=x2+b ln(x+1),其中b≠0.(1)当b>时,判断函数f(x)在定义域上的单调性;(2)当b≠0时,求函数f(x)的极值点.热点三求函数的极值、最值【例4】已知函数f(x)=ln x-kx+k(k∈R),求f(x)在[1,2]上的最小值.解题心得求最值的常用方法是由导数确定单调性,由单调性确定极值,比较极值与定义域的端点值确定最值.若有唯一的极值点,则其为最值点.【对点训练4】(2020北京,19)已知函数f(x)=12-x2.(1)求曲线y=f(x)的斜率等于-2的切线方程;(2)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.热点四在恒成立中求参数的极值、最值【例5】设a>0,若ln≥a|x|对x∈(-1,1)恒成立,求a的最大值.解题心得洛比达法则:如果当x→x0(x0也可以是±∞)时,两个函数f(x)和g(x)都趋向于零或都趋向于无穷大,那么极限可能存在,也可能不存在.我们称这类极限为型或型不定式极限.对于这类极限,一般要用洛比达法则来求.定理1:若函数f(x)和g(x)满足条件:(1)f(x)和g(x)在x0的某个去心邻域内可导,且g'(x)≠0.(2)f(x)=g(x)=0.(3)=a,则有=a.定理2:若函数f(x)和g(x)满足条件:(1)f(x)和g(x)在x0的某个去心邻域内可导,且g'(x)≠0.(2)f(x)=g(x)=∞.(3)=a,则有=a.在定理1和定理2中,将分子、分母分别求导再求极限的方法称为洛比达法则.【对点训练5】(2020广东茂名一模,理20)设函数f(x)=e x-mx+n,曲线y=f(x)在点(ln 2,f(ln 2))处的切线方程为x-y-2ln 2=0.(1)求m,n的值;(2)当x>0时,若k为整数,且x+1>(k-x)[f(x)+x+1],求k的最大值.2.4压轴题大题1导数在函数中的应用2.4.1函数的单调性、极值点、极值、最值关键能力·学案突破【例1】解f(x)=h(x)++(a+1)x=ln x++x,定义域为(0,+∞),f'(x)=(x>0).令F(x)=1-ln x+x+x2(x>0),则F'(x)=(x>0).令F'(x)<0(x>0),得0<x<;令F'(x)>0(x>0),得x>所以函数F(x)=1-ln x+x+x2(x>0)在区间0,上单调递减,在区间,+∞上单调递增.所以F(x)min=F=1-ln+2=+ln2>0.所以F(x)=1-ln x+x+x2>0对任意(0,+∞)恒成立,所以f(x)=ln x++x的单调递增区间为(0,+∞),无单调递减区间.对点训练1解F(x)的定义域为(0,+∞),∴F(x)=x ln x-x2,则F'(x)=ln x+1-x,令G(x)=F'(x)=ln x+1-x,则G'(x)=-1,由G'(x)=-1>0得0<x<1,由G'(x)=-1<0得x>1,则G(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,即F'(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴F'(x)≤F'(1)=0,∴F(x)在定义域(0,+∞)上单调递减.【例2】解f(x)的定义域是(0,+∞).f'(x)=+2a(1-a)x-2(1-a)=令g(x)=2a(1-a)x2-2(1-a)x+1,为确定函数g(x)的函数类型对a进行分类讨论.(1)当a=1时,g(x)是常数函数,此时g(x)=1>0,f'(x)=>0,于是f(x)在(0,+∞)上单调递增.(2)当a≠1时,g(x)是二次函数,首先讨论f'(x)=0是否有实根,方程g(x)=0对应的Δ=4(a-1)(3a-1).①当Δ<0,即<a<1时,g(x)=0无实根,g(x)的图象在x轴上方,即f'(x)>0,f(x)在(0,+∞)上单调递增.②当Δ=0,即a=时,g(x)=0有两个相等的实根x1=x2=,于是f'(x)≥0,所以f(x)在(0,+∞)上单调递增.③当Δ>0,即0<a<或a>1时,g(x)=0有两个不相等的实根分别为x1=,x2=因为x1+x2=,x1x2=,所以当0<a<时,有x1+x2>0且x1x2>0,所以x1>0,x2>0.由x1与x2的表达式知x1<x2,由f'(x)>0,可得0<x<x1或x>x2,所以f(x)在(0,x1)和(x2,+∞)上单调递增;由f'(x)<0,可得x1<x<x2,所以f(x)在(x1,x2)上单调递减.当a>1时,有x1+x2>0且x1x2<0,此时x2<0<x1,由f'(x)>0,可得0<x<x1,所以f(x)在(0,x1)上单调递增;由f'(x)<0可得x>x1,所以f(x)在(x1,+∞)上单调递减.综上所述,当0<a<时,f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;当a≤1时,f(x)在(0,+∞)上单调递增;当a>1时,f(x)在(0,x1)上单调递增,在(x1,+∞)上单调递减.其中x1=,x2=对点训练2解设h(x)=f(x)-2x-c,则h(x)=2ln x-2x+1-c,其定义域为(0,+∞),h'(x)=-2.(1)当0<x<1时,h'(x)>0;当x>1时,h'(x)<0.所以h(x)在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x=1时,h(x)取得最大值,最大值为h(1)=-1-c.故当且仅当-1-c≤0,即c≥-1时,f(x)≤2x+c.所以c的取值范围为[-1,+∞).(2)g(x)=,x∈(0,a)∪(a,+∞).g'(x)=取c=-1得h(x)=2ln x-2x+2,h(1)=0,则由(1)知,当x≠1时,h(x)<0,即1-x+ln x<0.故当x∈(0,a)∪(a,+∞)时,1-+ln<0,从而g'(x)<0.所以g(x)在区间(0,a),(a,+∞)单调递减.【例3】解定义域为(-1,+∞),∴f'(x)=+a(2x-1)=(2ax2+ax+1-a),>0,令g(x)=2ax2+ax+1-a(x>-1),当a=0时,g(x)=1,则f'(x)>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上单调递增,即当a=0时,函数无极值点;当a>0时,由Δ=a(9a-8)≤0,得0<a,此时g(x)≥0,则f'(x)≥0,f(x)在(-1,+∞)上单调递增,即0<a,函数无极值点;当Δ>0时,得a>或a<0两个不同的范围,当a>时,设方程2ax2+ax+1-a=0的两根分别为x1,x2(x1<x2),∵x1+x2=-,函数g(x)的图象如右:x1,x2的中点为-,∴x1<-,x2>-,由g(-1)=1>0,可得-1<x1<-,则当x∈(-1,x1)时,g(x)>0,则f'(x)>0,f(x)单调递增,当x∈(x1,x2)时,g(x)<0,则f'(x)<0,f(x)单调递减,当x∈(x2,+∞)时,g(x)>0,则f'(x)>0,f(x)单调递增,因此,当a>,函数有两个极值点;当a<0时,Δ>0,函数g(x)的图象如下:由g(-1)=1>0,可得x1<-1,则当x∈(-1,x2)时,g(x)>0,则f'(x)>0,f(x)单调递增,x∈(x2,+∞)时,g(x)<0,则f'(x)<0,f(x)单调递减,因此,当a<0时,函数有一个极值点.综上所述,当a<0时,函数有一个极值点;当0<a,函数无极值点;当a>,函数有两个极值点.对点训练3解(1)函数f(x)=x2+b ln(x+1)的定义域为(-1,+∞),f'(x)=2x+令g(x)=2x2+2x+b,则Δ=4-8b.当b>时,Δ<0,所以g(x)在(-1,+∞)上恒大于0,所以f'(x)>0,于是当b>时,函数f(x)在定义域(-1,+∞)上单调递增.(2)首先考虑g(x)=0是否有实根.①当Δ<0,即b>时,由(1)知函数f(x)无极值点.②当Δ=0,即b=时,g(x)=0有两个相等的实根,g(x)≥0在(-1,+∞)上恒成立,于是f'(x)≥0在(-1,+∞)上恒成立,所以函数f(x)在(-1,+∞)上单调递增,从而函数f(x)在(-1,+∞)上无极值点.③当Δ>0,即b<时,g(x)=0有两个不相等的根x1=,x2=,其中x1<x2.为确定两个根是否都在定义域(-1,+∞)内需要对参数b分类讨论.当b<0时,x1=<-1,x2=>-1,由f'(x)>0,可得x>x2,由f'(x)<0,可得-1<x<x2,所以f(x)在(-1,x2)上单调递减,在(x2,+∞)上单调递增,所以当b<0时,f(x)在(-1,+∞)上有唯一极小值点x2=当0<b<时,x1=>-1,x2=>-1,由f'(x)>0,可得-1<x<x1或x>x2,由f'(x)<0,可得x1<x<x2,所以f(x)在(-1,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,所以当0<b<时,f(x)在(-1,+∞)上有一个极大值点x1=和一个极小值点x2=综上所述,当b<0时,f(x)在(-1,+∞)上有唯一的极小值点x2=;当0<b<时,f(x)有一个极大值点x1=和一个极小值点x2=;当b时,f(x)无极值点.【例4】解函数f(x)的定义域为(0,+∞),f'(x)=-k=①当k≤0时,f'(x)>0,函数f(x)在[1,2]为增函数,所以[f(x)]min=f(1)=0.②当k>0时,由f'(x)>0,可得0<x<,由f'(x)<0,可得x>,所以f(x)在上单调递增,在上单调递减.于是f(x)在[1,2]上的最小值为f(1)=0或f(2)=ln2-k.(ⅰ)当0<ln2-k,即0<k<ln2时,[f(x)]min=f(1)=0.(ⅱ)当0≥ln2-k,即k≥ln2时,[f(x)]min=f(2)=ln2-k.综上所述,当k<ln2时,[f(x)]min=f(1)=0;当k≥ln2时,[f(x)]min=f(2)=ln2-k.对点训练4解(1)因为f(x)=12-x2,所以f'(x)=-2x,设切点为(x0,12-x0),则-2x0=-2,即x0=1,所以切点为(1,11),由点斜式可得切线方程为y-11=-2(x-1),即2x+y-13=0.(2)显然t≠0,因为y=f(x)在点(t,12-t2)处的切线方程为y-(12-t2)=-2t(x-t),令x=0,得y=t2+12,令y=0,得x=,所以S(t)=(t2+12),不妨设t>0(t<0时,结果一样),则S(t)=,所以S'(t)=3t2+24-=,由S'(t)>0,得t>2,由S'(t)<0,得0<t<2,所以S(t)在(0,2)上单调递减,在(2,+∞)上单调递增,所以t=2时,S(t)取得极小值,也是最小值为S(2)==32.【例5】解令t=|x|∈[0,1),则ln a|x|对x∈(-1,1)恒成立等价于ln at对t∈[0,1)恒成立.方法一(分离参数法)当t=0时,不等式恒成立,当t>0时,有a对t∈(0,1)恒成立.令G(t)=,则G'(t)=,令H(t)=-ln,则H'(t)=>0,所以H(t)在(0,1)上单调递增,于是H(t)>H(0)=0,即G'(t)>0,所以G(t)在(0,1)上单调递增.由洛比达法则,可得G(t)==2,于是0<a≤2,所以a的最大值为2.方法二(最值法)构造函数F(t)=ln-at,则F'(t)=-a=①当2-a≥0,即a≤2时,F'(t)>0,所以函数F(t)在[0,1)上递增,所以F(t)≥F(0)=0.②当2-a<0,即a>2时,由F'(t)<0可得0≤t<,所以函数F(t)在上递减,所以F(t)≤F(0)=0,不合题意.综上所述,a的最大值为2.对点训练5解(1)由f'(x)=e x-m,由于x-y-2ln2=0的斜率为1,且过点(ln2,-ln2),得解得m=1,n=-2.(2)由(1)知f(x)=e x-x-2,由x+1>(k-x)[f(x)+x+1],得x+1>(k-x)(e x-1),故当x>0时,等价于k<+x(x>0),①令g(x)=+x,则g'(x)=+1=,令h(x)=e x-x-2,∵x>0,∴h'(x)=e x-1>0.∴函数h(x)=e x-x-2在(0,+∞)单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)存在唯一的零点,故g'(x)在(0,+∞)存在唯一的零点,设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0,g(x)单调递减;当x∈(α,+∞)时,g'(x)>0,g(x)单调递增;所以g(x)在(0,+∞)的最小值为g(α),又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3),故①等价于k<g(α),故整数k的最大值为2.。
2021-2022年高考数学二轮复习专题02函数与导数教学案文
2021年高考数学二轮复习专题02函数与导数教学案文一.考场传真1. 【xx年普通高等学校招生全国统一考试(湖南卷)文科】已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于()A.4B.3C.2D.12. 【xx年普通高等学校招生全国统一考试(安徽卷文科)】定义在上的函数满足.若当时.,则当时,=________________.3. 【xx年普通高等学校招生全国统一考试(四川卷)文科】设函数(,为自然对数的底数).若存在使成立,则的取值范围是()(A)(B)(C)(D)4. 【xx年全国高考统一考试天津数学(文)卷】设函数2f e+-=+-x x=.2,()ln)3(x x g x x若实数a, b满足, 则()(A) (B)(C) (D)5.【xx年普通高等学校招生全国统一考试(湖南卷)文科】函数的图像与函数的图像的交点个数为()A.0B.1C.2D.36. 【xx年高考新课标Ⅱ数学(文)卷】若存在正数x使2x(x-a)<1成立,则a 的取值范围是()(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)7. 【xx年普通高等学校招生全国统一考试(广东卷)文科】若曲线在点处的切线平行于轴,则.8. 【xx年普通高等学校招生全国统一考试(安徽卷文科)】已知函数有两个极值点,若,则关于的方程的不同实根个数为(A)3 (B) 4(C) 5 (D) 6如图则有3个交点,故选A.二.高考研究【考纲要求】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数与对数函数()互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.7.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背最②理解导数的几何意义.(2)导数的运算①能根据导数定义求函数y=C(C为常数),y=x,y=,y=的导数。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-
第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
高中总复习二轮文科数学精品课件 专题2 函数与导数 2.1 基本初等函数、函数的图象和性质
(2021全国乙,文9)
(2021全国甲,文6)
(2022全国乙,文8)
(2018全国Ⅰ,文13)
(2018全国Ⅱ,文12)
(2018全国Ⅲ,文9)
(2019全国Ⅰ,文3)
(2019全国Ⅱ,文6)
(2020全国Ⅰ,文8)
(2020全国Ⅱ,文12)
(2020全国Ⅲ,文12)
(2021全国甲,文4)
周期为2|a-b|;如果函数f(x)的图象关于直线x=a对称,关于点(b,0)(a≠b)对称,
则f(x)为周期函数,周期为4|a-b|.
对点训练2(1)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,
f(-x)=-f(x);当
A.-2
B.-1
C.0
D.2
1
x> 时,f
=1
=0+1-1-2-1=-3.
题后反思 1.单调性是函数在其定义域上的局部性质,函数的单调性使得自
变量的不等关系和函数值之间的不等关系可以“正逆互推”.
2.奇偶性和周期性是函数在定义域上的整体性质.偶函数的图象关于y轴对
称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象
关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调
所以函数为奇函数,排除B,D选项.
又f(1)=(3-3-1)cos 1>0,故选A.
(2)已知函数 f(x)=x
1
A.y=f(x)+g(x)4
1
B.y=f(x)-g(x)4
C.y=f(x)g(x)
()
D.y=
()
2
1
(山东专用)2021新高考数学一轮复习 第二章 函数、导数及其应用 2.1 函数及其表示学案(含解析
第二章函数、导数及其应用第一节函数及其表示课标要求考情分析1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.主要考查函数的概念、定义域及解析式的确定与应用,分段函数更是考查的热点.2.题型主要以选择题、填空题为主,要求相对较低,但内容很重要,特别是函数的解析式,对以后研究函数的性质有很重要的作用.知识点一函数函数两集合A,B设A,B是非空的数集对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应名称称f:A→B为从集合A到集合B的一个函数记法y=f(x),x∈A知识点二函数的有关概念1.函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.函数的三要素:定义域、值域和对应关系.3.相等函数:如果两个函数的定义域和对应关系完全一致,那么这两个函数相等,这是判断两函数相等的依据.4.函数的表示法:解析法、图象法、列表法.知识点三分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.1.分段函数虽由几个部分构成,但它表示同一个函数.2.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.各段函数的定义域不可以相交.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.(×)(2)对于函数f:A→B,其值域是集合B.(×)(3)f(x)=x-3+2-x是一个函数.(×)(4)若两个函数的定义域与值域相同,则这两个函数相等.(×)解析:(1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.(2)错误.值域C⊆B,不一定有C=B.(3)错误.f(x)=x-3+2-x中x不存在.(4)错误.当两个函数的定义域、对应法则均对应相同时,才是相等函数.2.小题热身(1)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是(B)(2)下列函数中,与函数y =x +1是相等函数的是( B ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1(3)已知f (x 5)=lg x ,则f (2)=( A ) A .15lg 2B .12lg 5C .13lg 2D .12lg 3(4)函数f (x )=4-4x +ln(x +4)的定义域为(-4,1]. (5)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =-2.解析:(1)A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. (2)对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应法则分别对应相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D ,定义域相同,但对应法则不同,不是相等函数.(3)令x 5=2,则x =2 15, ∴f (2)=lg 215 =15lg 2.(4)要使f (x )有意义,则⎩⎪⎨⎪⎧4-4x≥0,x +4>0,解得-4<x ≤1.(5)由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2.考点一 求函数的定义域命题方向1 已知函数解析式求定义域【例1】 (2019·江苏卷)函数y =7+6x -x 2的定义域是________.【解析】 要使函数有意义,则7+6x -x 2≥0,解得-1≤x ≤7,则函数的定义域是[-1,7].【答案】 [-1,7]命题方向2 求抽象函数的定义域【例2】 已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x +8-2x 的定义域为( ) A .[0,3] B .[0,2] C .[1,2]D .[1,3]【解析】 由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A .【答案】 A命题方向3 求参数取值范围【例3】 (1)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .⎝⎛⎦⎤0,34B .⎝⎛⎭⎫0,34 C .⎣⎡⎦⎤0,34 D .⎣⎡⎭⎫0,34 (2)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.【解析】 (1)∵函数y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3≠0,∴m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34,∴实数m 的取值范围是⎣⎡⎭⎫0,34. (2)∵函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},∴⎩⎪⎨⎪⎧a <0,f (1)=0,f (2)=0,解得⎩⎪⎨⎪⎧a =-32,b =-3,∴a +b =-92.【答案】 (1)D (2)-92方法技巧例1是根据具体的函数解析式求定义域,已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合,求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式(组)的解集即可.例2是求抽象函数的定义域,有如下解法:(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. 例3是例1的逆运用,通常是转化为含参数的不等式求解.1.(方向1)y =x -12x-log 2(4-x 2)的定义域是( C ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]解析:要使函数有意义,则⎩⎨⎧x -12x≥0,x ≠0,4-x 2>0,解得x ∈(-2,0)∪[1,2),即函数的定义域是(-2,0)∪[1,2).2.(方向2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为[-1,2].解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].3.(方向3)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为[-2,2]. 解析:若函数f (x )=x 2+ax +1的定义域为实数集R ,则x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2,即实数a 的取值范围是[-2,2].考点二 求函数的解析式【例4】 (1)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________. (2)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________. (3)已知f (x +1)=x +2x ,求f (x )的解析式.【解析】 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1,所以⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.所以f (x )=12x 2-32x +2.(2)在f (x )=2f ⎝⎛⎭⎫1x ·x -1中,将x 换成1x ,则1x 换成x ,得f ⎝⎛⎭⎫1x =2f (x )·1x-1,由⎩⎨⎧f (x )=2f ⎝⎛⎭⎫1x ·x -1,f ⎝⎛⎭⎫1x =2f (x )·1x-1,解得f (x )=23x +13.(3)设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1). 【答案】 (1)12x 2-32x +2(2)23x +13 (3)见解析 方法技巧 函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).1.已知函数f (2x -1)=4x +3,且f (t )=6,则t =( A ) A .12B .13C .14D .15解析:设t =2x -1,则x =t +12,故f (t )=4×t +12+3=2t +5,令2t +5=6,则t =12,故选A .2.若f (x )对于任意实数x 恒有3f (x )-2f (-x )=5x +1,则f (x )=( A ) A .x +1 B .x -1 C .2x +1D .3x +3解析:因为3f (x )-2f (-x )=5x +1①,所以3f (-x )-2f (x )=-5x +1②,联立①②,解得f (x )=x +1,故选A .3.若f (x )为一次函数,且f (f (x ))=4x +1,则f (x )=2x +13或-2x -1.解析:设f (x )=ax +b (a ≠0),由f (f (x ))=af (x )+b =a 2x +ab +b =4x +1,得a 2=4,ab +b =1,解得a =2,b =13或a =-2,b =-1,∴f (x )=2x +13或f (x )=-2x -1.考点三 分段函数命题方向1 分段函数求值问题【例5】 (1)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,12x ,x <0,则f (f (-1))=( )A .32B .2+1C .1D .3(2)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,f (x -1),x ≥2,则f (log 27)=________.【解析】 (1)由题意可得f (-1)=12-1=2,∴f (f (-1))=f (2)=3,故选D .(2)因为2<log 27<3,所以1<log 27-1<2,所以f (log 27)=f (log 27-1)=2log 27-1 =2log 27÷2=72.【答案】 (1)D (2)72命题方向2 分段函数与方程、不等式问题【例6】 (1)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(2)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a =________.【解析】 (1)∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示.要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D . (2)当a >0时,由f (a )+f (1)=0得2a +2=0,无实数解;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3,满足条件. 【答案】 (1)D (2)-3 方法技巧分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果整合起来.1.(方向1)已知函数f (x )=⎩⎪⎨⎪⎧e x +1,x ≤-1,lg (6-x )+lg (x +1),-1<x <6,则f (-1)+f (1)=( C )A .0B .1C .2D .e 2解析:f (-1)+f (1)=e -1+1+lg5+lg2=2,故选C.2.(方向2)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( A )A.⎩⎨⎧⎭⎬⎫14,4 B .{1,4} C.⎩⎨⎧⎭⎬⎫1,14D.⎩⎨⎧⎭⎬⎫1,14,4解析:由题意可知,f (x )=2,即⎩⎨⎧2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4.3.(方向1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x (x ≤0),f (x -3)(x >0),则f (5)的值为12.解析:由题意,得f (5)=f (2)=f (-1)=(-1)2-2-1=1-12=12.4.(方向2)设函数f (x )=⎩⎪⎨⎪⎧x +1x +1-12,x ≥1,1,x <1,则不等式f (6-x 2)>f (x )的解集为(-5,2).解析:易知函数f (x )在[1,+∞)上单调递增, 又f (1)=1,所以当x >1时,f (x )>1. 当x <1时,由6-x 2>1,得-5<x <5, 则-5<x <1;当x ≥1时,由6-x 2>x ,得-3<x <2, 则1≤x <2.综上,不等式的解集为(-5,2).函数的新定义问题【典例】 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin2x ;②g (x )=x 3;③h (x )=⎝⎛⎭⎫13x ;④φ(x )=ln x .其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④【分析】 根据新定义的一阶整点函数的含义,对四个函数一一分析,判断它们的图象是否恰好经过一个整点,即可得出正确的选项.【解析】 对于函数f (x )=sin2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点阶段,排除A ;对于函数h (x )=⎝⎛⎭⎫13x ,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.选C.【答案】 C【素养解读】 本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本示例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过一个整点,问题便迎刃而解.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +31+2x +1,则函数y =[f (x )]的值域为( C )A .⎝⎛⎭⎫12,3B .(0,2]C .{0,1,2}D .{0,1,2,3} 解析:因为f (x )=2x +31+2x +1=12(1+2x +1)+521+2x +1=12+52(1+2x +1),2x +1>0,所以0<11+2x +1<1,所以12<12+52(1+2x +1)<3,即12<f (x )<3,所以y =[f (x )]的值域为{0,1,2},故选C.。
2021届高考数学(苏教版)二轮复习函数与导数 第1讲函数的图象、性质及应用 教案
第1讲 函数的图象、性质及应用热点一 函数的性质及应用1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则. 2.奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.3.周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.例1 (1)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32的值等于________. (2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.跟踪演练1 (1)已知函数f (x )是定义在R 上的奇函数,且对于任意x ∈R ,恒有f (x -1)=f (x +1)成立,当x ∈[-1,0]时,f (x )=2x -1,则f (2 017)=________.(2)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是________.热点二 基本初等函数的图象和性质1.指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. 2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例3 (1)(2015·山东改编)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是________.(2)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.思维升华 (1)指数函数、对数函数、幂函数是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.跟踪演练3 (1)(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是下列中的________.(2)已知函数y =f (x )是定义在R 上的函数,其图象关于坐标原点对称,且当x ∈(-∞,0)时,不等式f (x )+xf ′(x )<0恒成立,若a =20.2f (20.2),b =ln 2f (ln 2),c =-2f (-2),则a ,b ,c 的大小关系是________.热点三 函数的零点1.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.2.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.例1 (1)(2015·黄冈中学期中)函数f (x )=lg x -1x 的零点所在区间为________.①(0,1);②(1,2);③(2,3);④(3,10).(2)已知函数f (x )=e x +x ,g (x )=ln x +x ,h (x )=ln x -1的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________________________________________________________.思维升华 函数零点(即方程的根)的确定问题,常见的有(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.跟踪演练1 (1)函数f (x )=x 2-2x 在x ∈R 上的零点的个数是________.(2)已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为________.热点四 函数的零点与参数的范围解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.例2 (1)对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是________. (2)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是______________________. 思维升华 (1)f (x )=g (x )根的个数即为函数y =f (x )和y =g (x )图象交点的个数;(2)关于x 的方程f (x )-m =0有解,m 的范围就是函数y =f (x )的值域.跟踪演练2 (1)(2015·连云港模拟)若函数f (x )=m +log 2x (x ≥1)存在零点,则实数m 的取值范围是________.(2)(2015·湖南)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.1、(2018江苏高考)函数2()log 1f x x =-的定义域为 ▲ .2、(2017江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,⎩⎨⎧∉∈=Dx x D x x x f ,,)(2,其中集合⎭⎬⎫⎩⎨⎧∈-==*,1|N n n n x x D ,则方程0lg )(=-x x f 的解的个数是3、(2016江苏高考)函数y =的定义域是 ▲ .4、(南京市2018高三9月学情调研)已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是 ▲ .5、(南京市2018高三第三次(5月)模拟)若f (x )是定义在R 上的周期为3的函数,且f (x )=⎩⎪⎨⎪⎧x 2+x +a ,0≤x ≤2,-6x +18,2<x ≤3,则f (a+1)的值为▲________.6、(前黄高级中学、姜堰中学等五校2018高三上第一次学情监测)已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()8x f x =,则19()3f -的值为 ▲ . 7、(苏锡常镇2018高三3月教学情况调研(一))已知函数,1()4,1x a e x f x x x x ⎧-<⎪=⎨+≥⎪⎩(e 是自然对数的底).若函数()y f x =的最小值是4,则实数a 的取值范围为.8、(苏锡常镇2018高三5月调研(二模))已知函数1(|3|1),0()2ln ,0x x f x x x ⎧++≤⎪=⎨⎪>⎩ ,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值为. 9、(苏州市2018高三上期初调研)已知函数()22f x x abx a b =+++.若()04f =,则()1f 的最大值是.10、(无锡市2018高三上期中考试)若函数()()1,03,0x x f x f x x -≤⎧⎪=⎨->⎪⎩,则()5f =.11、(徐州市2018高三上期中考试)已知函数()e +1e x x f x -=-(e 为自然对数的底数),若2(21)42)(f x f x +->-,则实数x 的取值范围为 ▲ .12、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市2018高三第三次调研)函数2lg(43)y x x =--的定义域为▲.13、(镇江市2018届高三第一次模拟(期末)考试)已知函数 f (x ) x 2kx 4 对任意的 x 1,3,不等式 f (x ) 0 恒成立,则实数 k 的最大值为 14、(2018江苏高考)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为 ▲ .15、(2016江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -=,则(5)f a 的值是 ▲ . 16、(南京市2018高三9月学情调研)已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-ax>0成立,则实数a 的取值范围为 ▲ .17、(南京市2018高三第三次(5月)模拟)已知a ,b ∈R ,e 为自然对数的底数. 若存在b ∈[-3e ,-e 2],使得函数f (x )=e x-ax -b 在[1,3]上存在零点,则a 的取值范围为▲________.18、(前黄高级中学、姜堰中学等五校2018高三上第一次学情监测)已知函数()ln (e )+f x x a x b =+-,其中e 为自然对数的底数,若不等式()0f x ≤恒成立,则ba的最大值为 ▲ .19、(苏锡常镇2018高三3月教学情况调研(一))若二次函数2()f x ax bx c =++(0)a >在区间[1,2]上有两个不同的零点,则(1)f a的取值范围为.20、(苏州市2018高三上期初调研)已知函数()()0af x x a x=+>,当[]1,3x ∈时,函数()f x的值域为A ,若[]8,16A ⊆,则a 的值是.21、(无锡市2018高三上期中考试)已知函数()11212xf x =-+,则()()2110f a f a ++->的解为. 22、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市2018高三第三次调研)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值范围是▲.23、(镇江市2018届高三第一次模拟(期末)考试)已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为24、(苏州市2017届高三上学期期中调研)已知函数()33()x xf x λλ-=+⋅∈R(1)若()f x 为奇函数,求λ的值和此时不等式()1f x >的解集; (2)若不等式()6f x ≤对[0,2]x ∈恒成立,求实数λ的取值范围.25、已知a R ∈,函数()||f x x x a =-。
高考数学二轮复习 专题2 函数与导数 教案 文
高考数学二轮复习 专题2 函数与导数 教案 文专题二 函数与导数【重点知识回顾】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数部分考查的重点为:函数的定义域、值域、单调性、奇偶性、周期性对称性和函数的图象;指数函数、对数函数的概念、图象和性质;应用函数知识解决一些实际问题;导数的基本公式,复合函数的求导法则;可导函数的单调性与其导数的关系,求一些实际问题(一般指单峰函数)的最大值和最小值.【典型例题】 1.函数的性质与图象函数的性质是高考考查的重点内容.根据函数单调性和奇偶性的定义,能判断函数的奇偶性,以及函数在某一区间的单调性,从数形结合的角度认识函数的单调性和奇偶性,掌握求函数最大值和最小值的常用方法.函数的图象是函数性质的直观载体,能够利用函数的图象归纳函数的性质.对于抽象函数一类,也要尽量画出函数的大致图象,利用数形结合讨论函数的性质.例1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )答案:BA B C D解析:在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.点评:函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视.例2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=答案:-8解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知1212x x +=-,344x x +=.所以12341248x x x x +++=-+=-.点评:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.2.函数与解方程、不等式的综合问题函数与方程、不等式、数列是密切相关的几个部分,通过建立函数模型来解决有关他们的综合问题是高考的考查方向之一,解决该类问题要善于运用转化的思想方法,将问题进行不断转化,构建模型来解决问题.例2.x 为何值时,不等式()23log log 2-<x x m m 成立.解析:当1>m 时,212132023023022<<⇔⎪⎪⎩⎪⎪⎨⎧<<>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x . 当10<<m 时,21322132023023022><<⇔⎪⎪⎩⎪⎪⎨⎧><>≠⇔⎪⎩⎪⎨⎧-<>->x x x x x x x x x x 或或. 故1>m 时,21<<x .10<<m 时,2132><<x x 或为所求.点评:该题考查了对数不等式的解法,其基本的解题思路为将对数不等式转化为普通不等式,需要注意转化之后x 的范围发生了变化,因此最后要检验,或者转化时将限制条件联立.3.函数的实际应用函数的实际运用主要是指运用函数的知识、思想和方法综合解决问题.函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种刻画,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.掌握有关函数知识是运用函数思想的前提,考生应具备用初等数学思想方法研究函数的能力,运用函数思想解决有关数学问题的意识是运用函数思想的关键.例3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的 平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=建筑总面积购地总费用)解析:设楼房每平方米的平均综合费为y 元,依题意得:*21601000010800(56048)56048(10,)2000y x x x x N x x⨯=++=++≥∈.则21080048y x '=-,令0y '=,即210800480x -=,解得15x =. 当15x >时,0y '>;当015x <<时,0y '<, 因此,当15x =时,y 取得最小值,min 2000y =元.答:为了使楼房每平方米的平均综合费最少,该楼房应建为15层.点评:这是一题应用题,利用函数与导数的知识来解决问题.利用导数,求函数的单调性、求函数值域或最值是一种常用的方法.4.导数与单调性、极(最)值问题.导数作为工具来研究三次函数、指数函数、对数函数的单调性,极值、最值时,具有其独特的优越性,要理解导数的几何意义,熟练导数的运算公式,善于借助导数解决有关的问题.例4.已知函数321()33f x ax bx x =+++,其中0a ≠. (1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 解析: (1)由已知得2'()21f x ax bx =++,令0)('=x f ,得2210ax bx ++=,)(x f 要取得极值,方程2210ax bx ++=必须有解,所以△2440b a =->,即2b a >, 此时方程2210ax bx ++=的根为:122b b x a a ---==,222b b x a a--+==,所以12'()()()f x a x x x x =-- 当0>a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 当0<a 时,所以)(x f 在x 1, x 2处分别取得极大值和极小值. 综上,当b a ,满足2b a >时,)(x f 取得极值.(2)要使)(x f 在区间(0,1]上单调递增,需使2'()210f x ax bx =++≥在(0,1]上恒成立.即1,(0,1]22ax b x x ≥--∈恒成立,所以max 1()22ax b x≥--, 设1()22ax g x x =--,2221()1'()222a x a a g x x x -=-+=, 令'()0g x =得x =或x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x<,1()22ax g x x =--单调减函数,所以当x =()g x取得最大,最大值为g = 所以b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立, 所以1()22ax g x x=--在区间(0,1]上单调递增,当1x =时()g x 最大,最大值为1(1)2a g +=-,所以12a b +≥-.综上,当1>a 时, b ≥01a <≤时, 12a b +≥-.点评:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.【模拟演练】1.函数22log 2xy x-=+的图象( ) A . 关于原点对称 B .关于主线y x =-对称 C . 关于y 轴对称 D .关于直线y x =对称 2. 定义在R 上的偶函数()f x 的部分图象如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B . ||1y x =+C . 321,01,0x x y x x +≥⎧=⎨+<⎩D .,,0x x e x oy e x -⎧≥⎪=⎨<⎪⎩3.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A .(25)(11)(80)f f f -<<B . (80)(11)(25)f f f <<-C . (11)(80)(25)f f f <<-D . (25)(80)(11)f f f -<<4. 定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为 .5. 已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .6.已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ; (Ⅱ)求()f x 的单调区间;(Ⅲ)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点.7.已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.【参考答案】 1.答案:A解析:由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图象关于原点对称,选A . 2.答案:C解析:根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增.而函数21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数321,01,0x x y x x +>⎧=⎨+<⎩在(,0]-∞上单调递减,理由如下y '=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数,0,0x x e x y e x -⎧≥⎪=⎨<⎪⎩,有y '=-x e -<0(x<0),故其在(,0]-∞上单调递减,不符合题意,综上选C . 3. 答案:D解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数,则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D . 4.答案:1解析:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1. 5.答案:21y x =-解析:由2()2(2)88f x f x x x =--+-得:2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =∴/()2f x x =, ∴切线方程为12(1)y x -=-,即210x y --=. 6.解析:(I )依题意,得2'()2f x x ax b =++, 由'(1)120f a b -=-+=得21b a =-. (Ⅱ)由(I )得321()(21)3f x x ax a x =++-, 故2'()221(1)(21)f x x ax a x x a =++-=++-, 令'()0f x =,则1x =-或12x a =-, ①当1a >时,121a -<-,当x 变化时,'()f x 与()f x 的变化情况如下表:由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --. ②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R ;③当1a <时,121a ->-,同理可得函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --.综上:当1a >时,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --;当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(1,12)a --(Ⅲ)当1a =-时,得321()33f x x x x x=--,由2'()230f x x x =--=,得121,3x x =-=.由(Ⅱ)得()f x 的单调增区间为(,1)-∞-和(3,)+∞,单调减区间为(1,3)-,所以函数()f x 在121,3x x =-=处取得极值,故5(1,),(3,9)3M N --,所以直线MN 的方程为813y x =--,由32133813y x x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩得32330x x x --+= 解得1231, 1.3x x x =-==,1233121135119,,33x x x y y y =-=⎧⎧=⎧⎪⎪∴⎨⎨⎨=-==-⎩⎪⎪⎩⎩, 所以线段MN 与曲线()f x 有异于,M N 的公共点11(1,)3-. 7.解析:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……① 又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =-=.所以函数的解析式为32()22f x x x x =-+-.(II )因为321()223g x x x x mx =-+-+.令21()34103g x x x m '=-++=.当函数有极值时,则0∆≥,方程2134103x x m -++=有实数解, 由4(1)0m ∆=-≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故函数()g x 无极值; ②当1m <时,()0g x '=有两个实数根1211(2(2x x =-=+(),()g x g x '情况如下表:所以在(,1)∈-∞m 时,函数()g x 有极值;当1(23=-x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值..精品资料。
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
2021版高考数学一轮复习 第二章 函数 2.1 函数及其表示教学案 苏教版
第二章函数全国卷五年考情图解高考命题规律把握1.考查形式本章在高考中一般为2~3个客观题.2.考查内容高考中基础题主要考查对基础知识和基本方法的掌握.主要涉及函数奇偶性的判断,函数的图象,函数的奇偶性、单调性及周期性综合,指数、对数运算以及指数、对数函数的图象与性质,分段函数求函数值等.3.备考策略(1)重视函数的概念和基本性质的理解:深刻把握函数的定义域、值域、单调性、奇偶性、零点等概念.研究函数的性质,注意分析函数解析式的特征,同时注意函数图象的作用. (2)重视对基本初等函数的研究,复习时通过选择、填空题加以训练和巩固,将问题和方法进行归纳整理.第一节函数及其表示[最新考纲] 1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).1.函数的概念函数映射两集合A,B设A,B是非空的数集设A,B是非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A 映射f:A→B(1)函数的定义域、值域:在函数y=f(x),x∈A中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.若A是函数y=f(x)的定义域,则对于A中的每一个x,都有一个输出值y与之对应.所有输出值y组成的集合称为函数的值域.函数的值域可以用集合{y|y=f(x),x∈A}表示.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内不同部分上,有不同的解析表达式,这样的函数叫做分段函数.分段函数虽然由几部分组成,但是它表示的是一个函数.[常用结论]1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域为R.(4)零次幂的底数不能为0.(5)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(6)y=log a x(a>0,a≠1)的定义域为{x|x>0}.(7)y=tan x的定义域为.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a .(3)y =k x(k ≠0)的值域是{y |y ≠0}.(4)y =a x(a >0且a ≠1)的值域是(0,+∞). (5)y =log a x (a >0且a ≠1)的值域是R .一、思考辨析(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B . ( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数. ( )(3)函数f (x )=x 2,x ∈[-1,2]的值域为[0,4]. ( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( )(5)分段函数是由两个或几个函数组成的. ( ) [答案](1)× (2)× (3)√ (4)× (5)× 二、教材改编1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )A B C DB [由函数定义可知,选项B 正确.] 2.函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.下列函数中,与函数y =x +1是相等函数的是( )A .y =(x +1)2B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1B [y =3x 3+1=x +1,且函数定义域为R ,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=49+1=139.]5.已知函数f (x )=2x +1,若f (a )=5,则实数a 的值为________. 12 [由f (a )=5得2a +1=5,解得a =12.]考点1 求函数的定义域已知函数解析式求定义域已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.1.(2019·济南模拟)函数y =x ln(2-x )的定义域为( )A .(0,2)B .[0,2)C .(0,1]D .[0,2]B [由题意知,x ≥0且2-x >0,解得0≤x <2, 故其定义域是[0,2).] 2.函数f (x )=1log 2x2-1的定义域为________.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) [要使函数f (x )有意义,则(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).][逆向问题] 若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.-92 [∵函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2}. ∴不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}. 可知a <0,不等式化为a (x -1)(x -2)≥0, 即ax 2-3ax +2a ≥0.∴⎩⎪⎨⎪⎧-3a =ab ,2a =b ,即⎩⎪⎨⎪⎧b =-3,a =-32.∴a +b =-92.]求函数定义域时,对函数解析式先不要化简,求出定义域后,一定要将其写成集合或区间的形式.若用区间表示,不能用“或”连接,而应该用并集符合“∪”连接.(如T 2).抽象函数的定义域 抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是________.[1,3] [由题意知⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].][逆向问题] 已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.[-1,2] [因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].]函数f (g (x ))的定义域指的是自变量x 的取值范围,而不是g (x )的取值范围.(如本例[逆向问题])1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,13A [由题意可知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得⎩⎪⎨⎪⎧x <1,x >-13,∴-13<x <1,故选A.]2.函数f (x -1)的定义域为[0,2 020],则函数g (x )=f x +1x -1的定义域为________.[-2,1)∪(1,2 018] [∵函数f (x -1)的定义域为[0,2 020],∴-1≤x -1≤2 019.∴要使函数g (x )有意义,则⎩⎪⎨⎪⎧-1≤x +1≤2 019,x -1≠0,解得-2≤x ≤2 018且x ≠1.∴函数g (x )的定义域为[-2,1)∪(1,2 018].]3.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为________. [-2,2] [∵函数f (x )=x 2+ax +1的定义域为R , ∴a 2-4≤0,即-2≤a ≤2.]考点2 求函数的解析式求函数解析式的4种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)[一题多解]已知二次函数f (2x +1)=4x 2-6x +5,求f (x );(2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). [解](1)法一:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x+1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 法二:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ), 所以f (x )=x 2-5x +9(x ∈R ). 法三:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).(2)(解方程组法) 由f (-x )+2f (x )=2x, ① 得f (x )+2f (-x )=2-x, ②①×2-②,得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3. 故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R ). 谨防求函数解析式的2种失误(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).1.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1B [(换元法求解)令1x =t ,得x =1t(t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1(t ≠0且t ≠1),∴f (x )=1x -1(x ≠0且x ≠1).] 2.已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2B .(x -1)2C .x 2-x +1D .x 2+x +1C [(配凑法求解)f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,所以f (x )=x 2-x +1.]3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________. 2x -1x(x ≠0) [(解方程组法求解)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f x +f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f x =3x ,解此方程组可得f (x )=2x -1x(x ≠0).]4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. [解] (待定系数法求解)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R ).考点3 分段函数求函数值解决分段函数有关问题的关键是“分段归类”,即自变量的取值属于哪一段范围,就用哪一段的解析式来解决问题.(1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11(2)(2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3(1)C (2)B [(1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C.(2)由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫12x+1,x ≤0,则f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,f (f (-3))=f (9)=log 39=2,故选B.] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值.(2)当出现f (f (a ))的形式时,应从内到外依次求值.(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.[教师备选例题]已知函数f (x )=⎩⎪⎨⎪⎧2c os πx ,x ≤0,f x -1+1,x >0,则f ⎝ ⎛⎭⎪⎫43的值为( )A .-1B .1 C.32 D.52B [依题意得f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫-23+1+1=2cos ⎝ ⎛⎭⎪⎫-2π3+2=2×⎝ ⎛⎭⎪⎫-12+2=1.故选B.]求参数或自变量的值解决此类问题时,先在分段函数的各段上分别求解,然后将求出的值或范围与该段函数的自变量的取值范围求交集,最后将各段的结果合起来(取并集)即可.(1)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(1)-32 (2)2 [(1)当a ≤1时,f (a )=2a-2=-3,无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8, 解得a =7,所以f (6-a )=f (-1)=2-1-2=-32.(2)当a >0时,f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a =2(a =0与a =-2舍去).当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.故a = 2.]求解本题的关键是就a 的取值讨论f (a )的情形,另本题也可作出f (x )的图象,数形结合求解,即f (a )=0或f (a )=-2,从而求得a 的值.分段函数与方程、不等式问题解由分段函数构成的不等式,一般要根据分段函数的不同分段区间进行分类讨论.如果分段函数的图象比较容易画出,也可以画出函数图象后,结合图象求解.(2019·深圳模拟)已知函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥2,x 2-4x +3,x <2.则不等式f (x )<0的解集是________.(1,4) [不等式f (x )<0等价于⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,即2≤x <4或1<x <2,故不等式f (x )<0的解集为(1,4).]本例借助图象较直观地求解得出不等式的解集,另注意求解时要思考全面,需考虑变量可能落在同一区间,也可能落在不同区间的情况.[教师备选例题]设函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,2x ,x >0则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.⎝ ⎛⎭⎪⎫-14,+∞ [根据分段函数的性质分情况讨论,当x ≤0时,则f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x -12+1>1,解得-14<x ≤0.当x >0时,根据指数函数的图象和性质以及一次函数的性质与图象可得,f (x )+f ⎝ ⎛⎭⎪⎫x -12>1恒成立,所以x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.] 1.已知f (x )=⎩⎪⎨⎪⎧ 2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( )A .-2B .4C .2D .-4B [由题意得f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43, 所以f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=4.] 2.已知函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( ) A.⎩⎨⎧⎭⎬⎫14,4 B .{1,4} C.⎩⎨⎧⎭⎬⎫1,14 D.⎩⎨⎧⎭⎬⎫1,14,4 A [由f (x )=2得①⎩⎪⎨⎪⎧ 2x =2,x ≤0或②⎩⎪⎨⎪⎧ |log 2x |=2,x >0.由①知无解.由②得x =14或x =4.故选A.]3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧ x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧ x +1≥0,2x <0,所以x <0,故选D.] 课外素养提升① 数学抽象——函数的新定义问题念,然后在快速理解的基础上,解决新问题.【典例】 (2019·深圳模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④ C [对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ; 对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.][评析] 本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过1个整点,问题便迎刃而解.【素养提升练习】 1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( ) A.1个B.2个 C.3个D.4个C[由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.]2.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是( )A.f(x)=cos x B.f(x)=sin xC.f(x)=x2-2x D.f(x)=x3-2xD[A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x =kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x =±2,满足题意,故选D.]。
2021新高考数学二轮总复习专题二函数与导数学案含解析打包6套
专题二函数与导数考情分析函数与导数是高中数学的主干知识,是高考考查的重点内容,近几年高考命题的趋势是稳中求变、变中求新、新中求活,纵观近几年的高考题,对函数与导数的考查多数为“三小一大”或“四小一大”,题型遍布选择、填空与解答,难度上分层考查;基础题考查考生对必备知识和基本方法的掌握;中档题考查的是“数学抽象”“逻辑推理”和“数学运算”三大核心素养;导数与函数解答题综合考查多个核心素养以及综合应用能力,近两年的难度有所降低,题目所在试卷的位置有所提前,不再固定在最后压轴位置上,预计这一趋势会保持下去.2.1函数概念、性质、图象专项练必备知识精要梳理1.函数的概念(1)求函数的定义域的方法是依据含自变量x的代数式有意义来列出相应的不等式(组)求解.(2)求函数值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法、有界函数法(含有指、对数函数或正、余弦函数的式子).2.函数的性质(1)函数奇偶性:①定义:若函数的定义域关于原点对称,则有:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x).②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).(2)函数单调性判断方法:定义法、图象法、导数法.(3)函数周期性的常用结论:若f(x+a)=-f(x)或f(x+a)=±(a≠0),则T=2a;若f(x+a)=f(x-b),则T=a+b;若f(x)的图象有两条对称轴x=a和x=b(a≠b),则T=2|b-a|;若f(x)的图象有两个对称中心(a,0)和(b,0),则T=2|b-a|(类比正、余弦函数).3.函数的图象(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到.(2)若y=f(x)的图象关于直线x=a对称,则有f(a+x)=f(a-x)或f(2a-x)=f(x)或f(x+2a)=f(-x);若y=f(x)对∀x∈R,都有f(a-x)=f(b+x),则f(x)的图象关于直线x=对称;若y=f(x)对∀x∈R都有f(a-x)=b-f(x),即f(a-x)+f(x)=b,则f(x)的图象关于点对称.(3)函数y=f(x)与y=f(-x)的图象关于y轴对称,函数y=f(a-x)和y=f(b+x)的图象关于直线x=对称;y=f(x)与y=-f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象关于原点对称.(4)利用图象可解决函数的最值、方程与不等式的解以及求参数范围问题.考向训练限时通关考向一函数及其相关概念1.(2020安徽合肥一中模拟,理1)设集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},则A∩B等于()A.⌀B.RC.{x|x>3}D.{x|x>0}2.(多选)符号[x]表示不超过x的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f(x)=x-[x],则下列命题正确的是()A.f(-0.8)=0.2B.当1≤x<2时,f(x)=x-1C.函数f(x)的定义域为R,值域为[0,1)D.函数f(x)是增函数、奇函数3.(2020北京,11)函数f(x)=+ln x的定义域是.4.设函数f(x)=则f=,f(f(x))=1的解集为.考向二函数的性质5.(2020天津,6)设a=30.7,b=,c=log0.70.8,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.c<a<b6.(2020全国Ⅱ,理9)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减7.(2020全国Ⅲ,理12)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<cB.b<a<cC.b<c<aD.c<a<b8.(2020江西名校大联考,理13)已知函数f(x)=则f(5+log26)的值为.考向三函数的图象9.(2020天津,3)函数y=的图象大致为()10.(2020山西太原二模,理6)函数f(x)=的图象大致为()11.(2020山东济宁6月模拟,5)函数f(x)=cos x·sin的图象大致为()考向四函数的概念、性质、图象的综合12.(多选)(2020山东淄博4月模拟,12)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,则下列说法错误的是()A.f(x)在[1,3]上的图象是连续不断的B.f(x2)在[1,]上具有性质PC.若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]D.对任意x1,x2,x3,x4∈[1,3],有f[f(x1)+f(x2)+f(x3)+f(x4)]13.(2020北京海淀一模,15)如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记点P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是.专题二函数与导数2.1函数概念、性质、图象专项练考向训练·限时通关1.C解析A={x|y=lg(x-3)}={x|x-3>0}={x|x>3},B={y|y=2x,x∈R}={y|y>0}.∴A∩B={x|x>3},故选C.2.ABC解析f(x)=x-[x]表示数x的小数部分,则f(-0.8)=f(-1+0.2)=0.2,故A正确;当1≤x<2时,f(x)=x-[x]=x-1,故B正确;函数f(x)的定义域为R,值域为[0,1),故C正确;当0≤x<1时,f(x)=x-[x]=x.当1≤x<2时,f(x)=x-1.当x=0.5时,f(0.5)=0.5,当x=1.5时,f(1.5)=0.5,则f(0.5)=f(1.5),即f(x)不为增函数,由f(-1.5)=0.5,f(1.5)=0.5,可得f(-1.5)=f(1.5),即f(x)不为奇函数,故D不正确.故选ABC.3.(0,+∞)解析由题意得∴x>0,故答案为(0,+∞).4{1,e e}解析∵f=ln<0,∴f=fx<0时,0<e x<1,x=0时,e x=1,方程f(f(x))=1,可得f(x)=0,ln x=0,解得x=1,f(x)>0时,方程f(f(x))=1,可得ln[f(x)]=1,f(x)=e,即ln x=e,解得x=e e.5.D解析∵b==30.8>30.7=a>30=1,c=log0.70.8<log0.70.7=1,∴c<a<b.故选D.6.D解析由题意可知,f(x)的定义域为,关于原点对称.∵f(x)=ln|2x+1|-ln|2x-1|,∴f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数.当x时,f(x)=ln(2x+1)-ln(1-2x),∴f'(x)=>0,∴f(x)在区间内单调递增.同理,f(x)在区间内单调递减.故选D.7.A解析a=log53=lo34=log12581<1,∴a<b=log85=lo54=log512625>1,∴b>,∵55<84,b=log85=lo55<1,∴b<,∵134<85,c=log138=lo85>1,∴c>综上,a<b<c.8.12解析由题意当x>4时,函数f(x)=f(x-1),所以f(x)在(4,+∞)时,周期为1,因为2<log26<3,所以5+log26∈(7,10),1+log26∈(3,4),所以f(5+log26)=f(1+log26)==2×6=12.9.A解析∵函数y=为奇函数,∴排除C,D.再把x=1代入得y==2>0,排除B.故选A.10.A解析f(1)=>0,排除选项C,D;由f(x)==0,则方程无解,即函数没有零点,排除B,故选A.11.C解析显然函数f(x)的定义域是R,由f(x)=cos x·sin,得f(-x)=cos(-x)sin=cos x·sin=-f(x),即f(x)为奇函数,其图象关于原点对称,排除选项A,B;又f(1)=cos1·sin>0,可排除选项D,故选C.12.ABD解析对于A,函数f(x)=在[1,3]上具有性质P,但f(x)在[1,3]上的图象不连续,故选项A错;对于B,f(x)=-x在[1,3]上具有性质P,但f(x2)=-x2在[1,]上不满足性质P,故选项B 错;对于C,因f(x)在x=2处取得最大值1,所以f(x)≤1,设x∈[1,2],则4-x∈[2,3].由性质P可得1=f(2)[f(x)+f(4-x)],所以f(x)+f(4-x)≥2,因为f(x)≤1,f(4-x)≤1,所以f(x)+f(4-x)≤2,所以f(x)+f(4-x)=2,又f(x)≤1,f(4-x)≤1,所以f(x)=1,x∈[1,3],故选项C正确;对于D,有f=ff+f[f(x1)+f(x2)+f(x3)+f(x4)],故选项D错.故选ABD.13.①②解析由题可得函数f(x)=作出图象如图.则当点P与△ABC顶点重合时,即x的值分别是0,6,12,18时,f(x)取得最大值12,故①正确;又f(x)=f(18-x),所以函数f(x)的对称轴为x=9,故②正确;由图象可得,函数f(x)图象与y=kx+3的交点个数为6个,故方程有6个实根,故③错误.2.4.3利用导数证明问题及讨论零点个数必备知识精要梳理1.与e x、ln x有关的常用不等式的结论(1)由f(x)=e x图象上任一点(m,f(m))的切线方程为y-e m=e m(x-m),得e x≥e m(x+1)-m e m,当且仅当x=m时,等号成立.当m=0时,有e x≥x+1;当m=1时,有e x>e x.(2)由过函数f(x)=ln x图象上任一点(n,f(n))的切线方程为y-ln n=(x-n),得ln x≤x-1+ln n,当且仅当x=n时,等号成立.当n=1时,有ln x≤x-1;当n=e时,有ln x≤x.2.证明含参数的函数不等式,其关键在于将所给的不等式进行“改造”,得到“一平一曲”,然后运用导数求出“曲”的最值,将其与“平”进行比较即可.3.求解导数应用题宏观上的解题思想(1)借助导函数(正负)研究原函数(单调性);重点是把导函数先“弄熟悉”;(2)为了把导函数先“弄熟悉”采取的措施:①通分;②二次求导或三次求导;③能画出导函数草图是最好的!关键能力学案突破热点一利用导数证明不等式(多维探究)类型一单未知数函数不等式的证明【例1】已知函数f(x)=e x-ln(x+m).(1)略;(2)当m≤2时,证明f(x)>0.解题心得1.对于含有参数的一个未知数的函数不等式,其证明方法与不含参数的一个未知数的函数不等式证明大体一致.可以直接证明,也可以放缩后再证明,也可以分离参数后,利用导数求最值来证明.2.证法1与证法2中出现的x0的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.证法2比证法1简单,这是因为利用了函数单调性将命题e x-ln(x+m)>0加强为e x-ln(x+2)>0,转化为研究一个特例函数的问题,从而大大降低了题目的难度.证法2中,因为φ(x0)的表达式涉及、ln(x0+2),都是超越式,所以φ(x0)的值不好计算,由此,需要对“隐性零点”满足的式子=0进行变形,得到两个式子和ln(x0+2)=-x0,然后进行反代,从而将超越式转化为初等式.“反代”是处理“隐性零点”问题的常用策略.【对点训练1】已知函数f(x)=.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)求证:当a≥1时,f(x)+e≥0.【例2】已知函数f(x)=x+.(1)略;(2)设函数g(x)=ln x+1,证明:当x∈(0,+∞)且a>0时,f(x)>g(x).解题心得欲证函数不等式f(x)>g(x)(x∈I,I是区间),设h(x)=f(x)-g(x)(x∈I),即证h(x)>0,为此研究h(x)的单调性,先求h'(x)的零点,根据零点确定h(x)在给定区间I的正负,若h(x)在区间I内递增或递减或先递减后递增,只须h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),若h(x)在区间I内先递增后递减,只须区间I的端点的函数值大于或等于0;若h'(x)的零点不好求,可设出零点x0,然后确定零点的范围,进而确定h(x)的单调区间,求出h(x)的最小值h(x0),再研究h(x0)的正负.【对点训练2】(2020全国Ⅱ,理21)已知函数f(x)=sin2x sin 2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤;(3)设n∈N*,证明:sin2x sin22x sin24x…sin22n x≤.类型二双未知数函数不等式的证明【例3】已知函数f(x)=-x+a ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.解题心得对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数;方法2:利用未知数之间的关系消元,化归为一个未知数;方法3:分离未知数后构造函数,利用函数的单调性证明;方法4:利用主元法,构造函数证明.【对点训练3】(2020山东德州二模,21)已知函数f(x)=x2-ax+a ln 2x(a≠0).(1)若a<0时f(x)在[1,e]上的最小值是-ln 2,求a;(2)若a≥e,且x1,x2是f(x)的两个极值点,证明:f(x1)+f(x2)<)-2e(其中e为自然对数的底数).热点二判断、证明或讨论函数零点个数【例4】设函数f(x)=(x-1)e x-x2(其中k∈R).(1)略;(2)当k>0时,讨论函数f(x)的零点个数.解题心得有关函数的零点问题的解决方法主要是借助数形结合思想,利用导数研究函数的单调性和极值,利用函数的单调性模拟函数的图象,根据函数零点的个数的要求,控制极值点函数值的正负,从而解不等式求出参数的范围.【对点训练4】(2020湖南湘潭三模,理21)设函数f(x)=ln x,g(x)=.(1)当m=-1时,求函数F(x)=f(x)+g(x)的零点个数;(2)若∃x0∈[1,+∞),使得f(x0)<g(x0),求实数m的取值范围.热点三与函数零点有关的证明问题【例5】(2019全国Ⅰ,理20)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点.解题心得1.如果函数中没有参数,一阶导数求出函数的极值点,判断极值点大于0小于0的情况,进而判断函数零点的个数.2.如果函数中含有参数,往往一阶导数的正负不好判断,这时先对参数进行分类,再判断导数的符号,如果分类也不好判断,那么需要对一阶导函数进行求导,在判断二阶导数的正负时,也可能需要分类.【对点训练5】(2020安徽合肥二模,文21)已知函数f(x)=e x sin x.(e是自然对数的底数) (1)求f(x)的单调递减区间;(2)若函数g(x)=f(x)-2x,证明g(x)在(0,π)上只有两个零点.(参考数据:≈4.8)热点四利用导数解决存在性问题【例6】(2019全国Ⅲ,理20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.解题心得依据已知条件,判别某种数学对象是否存在的问题,由解答者去探索和确定,它的解法是:假设存在,直接推断,通过推理或计算,若推出合理的结果,则先前假设成立,对象存在;若推出矛盾,则否定先前假设,对象不存在.【对点训练6】(2020湖北名师联盟一模,文21)已知函数f(x)=ln x-ax2-x.(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;(2)若函数f(x)在x=1处的切线平行于x轴,是否存在整数k,使不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立?若存在,求出k的最大值;若不存在,请说明理由.2.4.3利用导数证明问题及讨论零点个数关键能力·学案突破【例1】解(1)略.(2)证法1:f(x)定义域为(-m,+∞),f'(x)=e x-,f″(x)=e x+>0,其中f″(x)是f'(x)的导函数,则f'(x)在(-m,+∞)上单调递增.又因为当x→-m+时,f'(x)→-∞,当x→+∞时,f'(x)→+∞,所以f'(x)=0在(-m,+∞)上有唯一的实根x0,当-m<x<x0时,f'(x)<0,当x>x0时,f'(x)>0,所以f(x)在(-m,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值.由f'(x0)=0可得=0,即ln(x0+m)=-x0,于是f(x0)=-ln(x0+m)=+x0=+x0+m-m≥2-m.当x<2时,f(x0)>0;当m=2时,等号成立的条件是x0=-1,但显然f(-1)=e-1-ln(-1+2)=-0≠0.所以等号不成立,即f(x0)>0.综上所述,当m≤2时,f(x)≥f(x0)>0.证法2:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明φ(x)=e x-ln(x+2)>0,x∈(-2,+∞).φ'(x)=e x-,φ″(x)=e x+>0,其中φ″(x)是φ'(x)的导函数.于是φ'(x)在(-2,+∞)上单调递增.又因为φ'(-1)=-1<0,φ'(0)=1->0,所以φ'(x)=0在(-2,+∞)上有唯一的实根x0,且x0∈(-1,0).当-2<x<x0时,φ'(x)<0,当x>x0时,φ'(x)>0,所以φ(x)在(-2,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,φ(x)取得最小值.由φ'(x0)=0可得=0,即ln(x0+2)=-x0,于是φ(x0)=-ln(x0+2)=+x0=>0,于是φ(x)≥φ(x0)>0.综上所述,当m≤2时,f(x)>0.证法3:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),于是f(x)≥e x-ln(x+2),所以只要证明e x-ln(x+2)>0(x>-2),就能证明当m≤2时,f(x)>0.由ln x≤x-1(x>0)可得ln(x+2)≤x+1(x>-2).又因为e x≥x+1(x∈R),且两个不等号不能同时成立,所以e x>ln(x+2),即e x-ln(x+2)>0(x>-2),所以当m≤2时,f(x)>0.对点训练1解(1)f'(x)=,因为(0,-1)在曲线y=f(x)上,且f'(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)f(x)+e≥0+e≥0⇔ax2+x-1+e x+1≥0.当a≥1时,ax2+x-1+e x+1≥x2+x-1+e x+1,因为e x≥1+x(x∈R),所以e x+1≥2+x,所以x2+x-1+e x+1≥x2+x-1+(2+x)=(x+1)2≥0.所以当a≥1时,f(x)+e≥0.【例2】解(1)略.(2)令h(x)=f(x)-g(x)=x+-ln x-1(x>0),h'(x)=1-,设p(x)=x2-x-a=0,函数p(x)的图象的对称轴为x=∵p(1)=1-1-a=-a<0,设p(x)=0的正根为x0,∴x0>1,由对称性知,p(x)=0的另一根小于0,h(x)在(0,x0)上为减函数,在(x0,+∞)上为增函数,h(x)min=h(x0)=x0+-ln x0-1=x0+-ln x0-1=2x0-ln x0-2,令F(x)=2x-ln x-2(x>1),F'(x)=2->0恒成立,所以F(x)在(1,+∞)上为增函数.又∵F(1)=2-0-2=0,∴F(x)>0,即h(x)min>0,故当x∈(0,+∞)时,f(x)>g(x).对点训练2(1)解f'(x)=cos x(sin x sin2x)+sin x(sin x sin2x)'=2sin x cos x sin2x+2sin2x cos2x=2sin x sin3x.当x时,f'(x)>0;当x时,f'(x)<0.所以f(x)在区间单调递增,在区间单调递减.(2)证明因为f(0)=f(π)=0,由(1)知,f(x)在区间[0,π]的最大值为f,最小值为f=-而f(x)是周期为π的周期函数,故|f(x)|(3)证明由于(sin2x sin22x…sin22n x=|sin3x sin32x…sin32n x|=|sin x||sin2x sin32x…sin32n-1x sin2n x||sin22n x|=|sin x||f(x)f(2x)…f(2n-1x)||sin22n x|≤|f(x)f(2x)…f(2n-1x)|,所以sin2x sin22x…sin22n x【例3】解(1)函数f(x)的定义域为(0,+∞),f'(x)=--1+=-①若a≤0,则f'(x)<0,f(x)在(0,+∞)上单调递减.②若Δ=a2-4≤0,即0<a≤2时,f'(x)≤0,f(x)在(0,+∞)上单调递减.③若Δ=a2-4>0,即a>2时,由f'(x)>0,可得<x<,由f'(x)<0,可得0<x<或x>,所以f(x)在上单调递减,在上单调递增.综上所述,当a≤2时,f(x)在(0,+∞)上单调递减;当a>2时,f(x)在0,,,+∞上单调递减,在上单调递增.(2)证法1:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,所以x1+x2=a,x1x2=1,不妨设0<x1<1<x2.==--1+=-2+, 于是<a-2⇔-2+<a-2<1<1⇔2ln x2+-x2 <0.构造函数g(x)=2ln x+-x,x>1,由(1)知,g(x)在(1,+∞)上单调递减,所以g(x)<g(1)=0,所以原不等式获证.证法2:由(1)知,f(x)存在两个极值点,则a>2.因为x1,x2是f(x)的两个极值点,所以x1,x2满足x2-ax+1=0,不妨设0<x1<1<x2,则x2-x1=,x1x2=1.==--1+=-2-,于是<a-2⇔-2-<a-2⇔ln lnln设t=,则a=,构造函数φ(t)=t-ln(+t),t>0,则φ'(t)=1-=1->0,所以φ(t)在(0,+∞)上单调递增,于是φ(t)>φ(0)=0,原不等式获证.证法3:仿照证法1,可得<a-2<1,设0<x1<1<x2,因为x1x2=1, 所以<1ln x1-ln x2>ln,令t=(0,1),构造函数h(t)=2ln t+-t,由(1)知,h(t)在(0,1)上单调递减,所以h(t)>h(1)=0,原不等式获证.对点训练3解(1)f(x)定义域是(0,+∞),f'(x)=-a+令g(x)=x2-2ax+2a,对称轴x0=a<0,因为1>a,g(1)=1>0,所以当x∈[1,e]时,g(x)>0,即f'(x)=>0.所以f(x)在[1,e]上单调递增.f(x)min=f(1)=-a+a ln2=-ln2,解得a=-1.(2)由f(x)有两个极值点x1,x2,则f'(x)=0在(0,+∞)有2个不相等的实根,即x2-2ax+2a=0在(0,+∞)有2个不相等的实根, 则解得a>2.x1+x2=2a,x1x2=2a,=(x1+x2)2-2x1x2=4a2-4a.当a≥e时,f(x1)+f(x2)-)+2e=a ln(4x1x2)-a(x1+x2)-)+2e=a ln8a-2a2-(4a2-4a)+2e=a ln8a-3a2+a+2e(a≥e).令g(a)=a ln8a-3a2+a+2e(a≥e),g'(a)=ln8a-6a+2(a≥e),令h(a)=g'(a)=ln8a-6a+2,h'(a)=-6=,当a≥e时,h'(a)<0,所以h(a)在[e,+∞)单调递减.所以h(a)≤h(e).即g'(a)≤g'(e)=ln8e-6e+2=(1+3ln2)-6e+2=3ln2-6e+3<3-6e+3=6-6e<0,所以g(a)在[e,+∞)单调递减,g(a)≤g(e)=eln8e-3e2+3e=e(1+3ln2)-3e2+3e=e(3ln2-3e+4)<e(3-3e+4)=e(7-3e)<0,所以g(a)<0,所以原不等式成立.【例4】解(1)略.(2)函数f(x)的定义域为R,f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),当0<k≤1时,令f'(x)>0,解得x<ln k或x>0.∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在[ln k,0]上单调递减.由f(0)=-1,当x∈(-∞,0)时,f(x)≤f(x)max=f(ln k)=(ln k-1)k-ln2k=-[(ln k-1)2+1]<0,此时f(x)无零点,当x∈[0,+∞)时,f(2)=e2-2k≥e2-2>0.又f(x)在[0,+∞)上单调递增,∴f(x)在[0,+∞)上有唯一的零点,∴函数f(x)在定义域(-∞,+∞)上有唯一的零点.②当k>1时,令f'(x)>0,解得x<0或x>ln k,∴f(x)在(-∞,0)和(ln k,+∞)上单调递增,在[0,ln k]上单调递减.当x∈(-∞,ln k)时,f(x)≤f(x)max=f(0)=-1<0,此时f(x)无零点.当x∈[ln k,+∞)时,f(ln k)<f(0)=-1<0,f(k+1)=k e k+1-=k e k+1-.令g(t)=e t-t2,t=k+1>2,则g'(t)=e t-t,g″(t)=e t-1,∵t>2,g″(t)>0,g'(t)在(2,+∞)上单调递增,g'(t)>g'(2)=e2-2>0,∴g(t)在(2,+∞)上单调递增,得g(t)>g(2)=e2-2>0,即f(k+1)>0.∴f(x)在[ln k,+∞]上有唯一的零点,故函数f(x)在定义域(-∞,+∞)上有唯一的零点.综合①②可知,当k>0时,函数f(x)在定义域(-∞,+∞)上有且只有一个零点.对点训练4解(1)F(x)=ln x-,即F(x)=ln x+(x>0),则F'(x)=,令F'(x)=0,解得x=当x,F'(x)<0,F(x)在上单调递减;当x∈,+∞,F'(x)>0,F(x)在上单调递增.所以当x=时,F(x)min=F-ln2.因为-ln2=ln-ln2<0,所以F(x)min<0.又F=-2+>0,F(e)=1+>0,所以F F<0,F(e)·F<0,所以F(x)分别在区间上各存在一个零点,函数F(x)存在两个零点.(2)假设f(x)≥g(x)对任意x∈[1,+∞)恒成立,即ln x-0对任意x∈[1,+∞)恒成立.令h(x)=ln x-(x≥1),则h'(x)=①当m≤2,即2x-m≥0时,则h'(x)≥0且h'(x)不恒为0,所以函数h(x)=ln x-在区间[1,+∞)上单调递增.又h(1)=ln1-=0,所以h(x)≥0对任意x∈[1,+∞)恒成立.故m≤2不符合题意;②当m>2时,令h'(x)=<0,得1≤x<;令h'(x)=>0,得x>所以函数h(x)=ln x-在区间上单调递减,在区间上单调递增,所以h<h(1)=0,即当m>2时,存在x0≥1,使h(x0)<0,即f(x0)<g(x0).故m>2符合题意.综上可知,实数m的取值范围是(2,+∞).【例5】解(1)设g(x)=f'(x),则g(x)=cos x-,g'(x)=-sin x+当x时,g'(x)单调递减,而g'(0)>0,g'<0,可得g'(x)在区间内有唯一零点,设为α.则当x∈(-1,α)时,g'(x)>0;当x时,g'(x)<0.所以g(x)在区间(-1,α)内单调递增,在区间内单调递减,故g(x)在区间内存在唯一极大值点,即f'(x)在区间内存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f'(x)在区间(-1,0)内单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0]上的唯一零点.(ⅱ)当x时,由(1)知,f'(x)在区间(0,α)内单调递增,在区间内单调递减,而f'(0)=0,f'<0,所以存在,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x时,f'(x)<0.故f(x)在区间(0,β)内单调递增,在区间内单调递减.又f(0)=0,f=1-ln1+>0,所以当x时,f(x)>0.从而,f(x)在区间上没有零点.(ⅲ)当x时,f'(x)<0,所以f(x)在区间内单调递减.而f>0,f(π)<0,所以f(x)在区间上有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在区间(π,+∞)内没有零点.综上,f(x)有且仅有2个零点.对点训练5解(1)f(x)=e x sin x,定义域为R.f'(x)=e x(sin x+cos x)=e x sin x+.由f'(x)<0得sin<0,解得2kπ+<x<2kπ+(k∈Z).∴f(x)的单调递减区间为2kπ+,2kπ+(k∈Z).(2)∵g'(x)=e x(sin x+cos x)-2,∴g″(x)=2e x cos x,g″(x)是g'(x)的导函数.∵x∈(0,π),∴当x时,g″(x)>0;当x ∈,π时,g″(x)<0.∴g'(x)在上单调递增,在上单调递减,又∵g'(0)=1-2<0,g'-2>0,g'(π)=-eπ-2<0,∴g'(x)在(0,π)上图象大致如图.∴∃x1,x2,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1)或x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.∴g(x)在(0,x1)和(x2,π)上单调递减,在(x1,x2)上单调递增.∵g(0)=0,∴g(x1)<0.∵g-π>0,∴g(x2)>0.又∵g(π)=-2π<0,由零点存在性定理得,g(x)在(x1,x2)和(x2,π)内各有一个零点,∴函数g(x)在(0,π)上有两个零点.【例6】解(1)f'(x)=6x2-2ax=2x(3x-a).令f'(x)=0,得x=0或x=若a>0,则当x∈(-∞,0)时,f'(x)>0;当x时,f'(x)<0.故f(x)在(-∞,0),单调递增,在单调递减;若a=0,f(x)在(-∞,+∞)单调递增;若a<0,则当x(0,+∞)时,f'(x)>0;当x时,f'(x)<0.故f(x)在,(0,+∞)单调递增,在单调递减.(2)满足题设条件的a,b存在.(ⅰ)当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.(ⅱ)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.(ⅲ)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f=-+b,最大值为b或2-a+b.若-+b=-1,b=1,则a=3,与0<a<3矛盾.若-+b=-1,2-a+b=1,则a=3或a=-3或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.对点训练6解(1)∵函数f(x)在[1,+∞)上单调递增,∴f'(x)=-ax-1≥0在[1,+∞)上恒成立.∴a,∴当x=2时,有最小值-,∴a≤-(2)∵f'(x)=-ax-1,∴f'(1)=1-a-1=-a.∵函数f(x)在x=1处的切线平行于x轴,∴a=0,∴f(x)=ln x-x.∵不等式x[f(x)+x-1]>k(x-2)在x>1时恒成立,∴x ln x-x>k(x-2)在x>1时恒成立,即x ln x-(k+1)x+2k>0在x>1时恒成立,令g(x)=x ln x-(k+1)x+2k,x>1,∴g'(x)=ln x-k,当k≤0时,g'(x)>0在(1,+∞)上恒成立, 即g(x)在(1,+∞)上单调递增,g(x)>g(1)=k-1>0,则k>1,矛盾,当k>0时,令g'(x)>0,解得x>e k,令g'(x)<0,解得1<x<e k, ∴g(x)在(1,e k)单调递减,在(e k,+∞)单调递增.∴g(x)min=g(e k)=k e k-(k+1)e k+2k=2k-e k>0,令h(k)=2k-e k,k>0,则h'(k)=2-e k,∵当k<ln2时,h'(k)>0,函数h(k)单调递增,当k>ln2时,h'(k)<0,函数h(k)单调递减,∴h(k)max=h(ln2)=2ln2-2=2(ln2-1)<0,∴不存在整数k使得2k-e k>0恒成立.综上所述不存在满足条件的整数k.。
2021-2022年高三数学二轮复习 专题2函数性质及应用教案 苏教版
2021年高三数学二轮复习 专题2函数性质及应用教案 苏教版【高考趋势】函数的刻划一般是从两个方面:一是式,二是形,两者常需相互转化,互要呼应,对于基本等函数的组合与复合,若作图较为方便,一般最好借助图象直观解题;若作其图象较为困难,则要挖掘问题的内在性质解题。
由于新课程中导数的内容更加丰富,因此利用导数研究诸如y=x-lnx 的单调性、最值及解(或证)不等式等问题,是学会研究函数的重要方法之一,也是近年来高考命题的主要方向之一。
【考点展示】1、定义在R 上的函数f(x)既是奇函数,又是周期函数,T 是它的一个正周期,若将方程f(x)=0在闭区间[-T ,T]上的根的个数记为n ,则n 至少为 。
2、设f(x)是定义在R 上的函数,若f(x)=f(xx-x),则f(x)有对称轴为 ;若f(xx-x)=-f(xx+x),则f(x)有对称中心为3、若f(x)=lnx+2x 2+mx+1在(0,+∞)内单调递增,则m 的取值范围是4、若对任意x ∈R ,不等式|x|≥ax 恒成立,则实数a 的取值范围是5、函数y=f(1+x)的图象与y=f(1-x)的图象关于 对称。
6.函数对于任意实数满足条件,若则_______________。
7、若⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(-∞,+∞)上的减函数, 则a 的取值范围是【样题剖析】 例1、定义在R 上的函数f(x), 对于任意x ,yR ,均有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0。
(1)求证:f(0)=1;(2)求证:y=f(x)是偶函数;(3)若存在常数c ,使f()=0成立,求证:函数y=f(x)是周期函数。
例2、已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围。
例3、已知函数f(x)=e x-kx, xR(1) 若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x≥0,f(x)>0恒成立,试确定函数k的取值范围。
2021年高考数学二轮复习专题二函数与导数2.1函数概念、性质、图象专项练课件文
图象关于直线x=1对称,故排除选项D.应选C.
-12-
- 2 + 2, ≤ 0,
f(x)=
假设|f(x)|≥ax,那么a的取值范围是
ln( + 1), > 0,
8.函数
1, > 0,
的x的取值范围是( D )
A.(-∞,-1]
B.(0,+∞)
C.(-1,0)
D.(-∞,0)
解析 画出函数f(x)的图象如下图,由图可知:
①当x+1≥0且2x≥0,即x≥0时,f(2x)=f(x+1),不满足题意;
②当x+1>0且2x<0,即-1<x<0时,f(x+1)<f(2x)显然成立;
域一样的是(D
)
A.y=x B.y=lg x
1
C.y=2x D.y=
解析 y=10lg x=x,定义域与值域均为(0,+∞).
y=x的定义域和值域均为R;
y=lg x的定义域为(0,+∞),值域为R;
y=2x的定义域为R,值域为(0,+∞);
1
y=
的定义域与值域均为(0,+∞).
应选D.
-9-
14.函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,那么
f(2)=
12
.
解析 因为f(x)是奇函数,
所以f(-x)=-f(x).
又因为当x∈(-∞,0)时,f(x)=2x3+x2,
2021-2022年高三数学总复习专题一第2讲函数的概念、图象与性质(1)教学案
2021年高三数学总复习专题一第2讲函数的概念、图象与性质(1)教学案复备栏教学内容:函数的概念、图象与性质(1)教学目标:理解函数及其表示,掌握函数的图象;掌握函数的性质。
教学重点:一是识图,二是用图,通过数形结合的思想解决问题。
教学难点:单调性、奇偶性、周期性等综合应用.教学过程:一、知识点复习:1.必记的概念与定理(1)若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.(2)单调性:利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.由几个函数构成的函数的单调性遵循“同增异减”的原则.(3)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(4)周期性:周期性是函数在定义域上的整体性质.若函数满足f(x+T)=f(x)(T≠0),由函数周期性的定义可知T是函数的一个周期;应注意nT(n∈Z且n≠0)也是函数的周期.2.记住几个常用的公式与结论图象变换规则(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.(3)y=f(-x)与y=f(x)的图象关于y轴对称.(4)y=-f(x)与y=f(x)的图象关于x轴对称.(5)y=-f(-x)与y=f(x)的图象关于原点对称.(6)要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(7)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.(8)若奇函数f(x)在x=0处有定义,则f(0)=0;(9)奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反之亦然;利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y 轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.3.需要关注的易错易混点(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值集合的并集.(2)从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.(3)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.(4)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件.二、基础训练:1.(教材习题改编)若f(x)=x2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3. 即f(x)=x2-4x +3.所以f(-1)=(-1)2-4×(-1)+3=8.答案:82.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着惟一一个y ,据此排除①④,③中值域为{y|0≤y≤3}不合题意.答案:②3.(xx·常州模拟)设函数f(x)=⎩⎪⎨⎪⎧ x2+1,x≤1,2x,x>1,则f(f(3))=________. 解析:f(3)=23,f(f(3))=⎝⎛⎭⎫232+1=139. 答案:1394.已知f(x)=ax2+bx 是定义在[a -1,2a]上的偶函数,那么a +b 的值是________. 解析:∵f(x)=ax2+bx 是定义在[a -1,2a]上的偶函数,∴a -1+2a =0,∴a =13.又f(-x)=f(x),∴b =0,∴a +b =13.答案:13 三、例题教学: 例1 (xx·苏州调研)若函数y =f(x)的定义域是[0,8],则函数g(x)=f 2x ln x 的定义域是________.[解析] 由函数y =f(x)的定义域是[0,8]得,函数g(x)有意义的条件为0≤2x≤8且x>0,x≠1,故x ∈(0,1)∪(1,4][答案] (0,1)∪(1,4 [方法归纳] 求函数定义域的类型和相应方法(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可,函数f(g(x))的定义域应由不等式a≤g(x)≤b 解出([a ,b]为g(x)的值域).(2)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义.变式训练:若函数y =f(2x)的定义域是[0,8],则函数g(x)=f x 2x 的定义域是________.解析:由函数y =f(2x)的定义域是[0,8]得,函数g(x)有意义的条件为0≤2x≤16,所以g(x)=f x 2x 的定义域是[0,16].答案:[0,16]例2 (1)(xx·高考江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=x2-2x +12 .若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________.(2) (xx·南昌模拟)已知函数y =f(x)的周期为2,当x ∈[-1,1]时f(x)=x2,那么函数y =f(x)的图象与函数y =|lg x|的图象的交点共有________个.[解析] (1)作出函数y =f(x)在[-3,4]上的图象,f(-3)=f(-2)=f(-1)=f(0)=f(1)=f(2)=f(3)=f(4)=12,观察图象可得0<a<12.(2)根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x =10时,y =|lg 10|=1;1<x<10时,|lg x|<1;x>10时|lg x|>1.结合图象知y =f(x)与y =|lg x|的图象交点共有10个.[答案] (1)⎝⎛⎭⎫0,12 (2) 10 [方法归纳] 作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f(x)与y =f(-x)、y =-f(x)、y =-f(-x)、y =f(|x|)、y =|f(x)|及y =af(x)+b 的相互关系.识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.变式训练:(1)若本例(2)中y =f(x)变为f(x)=|x|,其他条件不变,则交点个数为________.(2)如图,函数f(x)的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f 3的值等于________.解析:(1)根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:由图象知共10个交点 (2)∵由图象知f(3)=1,∴1f3=1. ∴f ⎝⎛⎭⎫1f 3=f(1)=2.答案:(1)10 (2)2巩固练习:1.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(x)=________.解析:由题意知2f(x)-f(-x)=3x +1.①将①中x 换为-x ,则有2f(-x)-f(x)=-3x +1.②①×2+②得3f(x)=3x +3,即f(x)=x +1.答案:x +12.(教材习题改编)已知定义在R 上的奇函数f(x),满足f(x +4)=f(x),则f(8)的值为课后反思:________.解析:∵f(x)为奇函数且f(x +4)=f(x),∴f(0)=0,T =4.∴f(8)=f(0)=0.答案:03.(xx·台州模拟)若函数y =|2x -1|在(-∞,m]上单调递减,则m 的取值范围是________.解析:画出图象易知y =|2x -1|的递减区间是(-∞,0],依题意应有m≤0. 答案:(-∞,0]4.(xx·南京调研)若f(x)=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.解析:设x1>x2>-2,则f(x1)>f(x2),而f(x1)-f(x2)=ax1+1x1+2-ax2+1x2+2=2ax1+x2-2ax2-x1x1+2x2+2=x1-x22a -1x1+2x2+2>0,则2a -1>0.得a>12. 答案:⎝⎛⎭⎫12,+∞。
2021新高考数学二轮总复习专题二函数与导数2.2热点小专题一函数的零点及函数的应用学案含解析
2.2热点小专题一、函数的零点及函数的应用必备知识精要梳理1.零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是一条连续曲线,且有f(a)f(b)<0,那么函数y=f(x)在区间[a,b]内有零点,即存在c∈(a,b),使得f(c)=0,此时这个c就是方程f(x)=0的根.2.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)与y=g(x)的图象交点的横坐标.3.判断函数零点个数的方法:(1)利用零点存在性定理判断法;(2)代数法:求方程f(x)=0的实数根;(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.关键能力学案突破热点一判断函数零点所在的区间【例1】(1)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=e x+f'(x)的零点所在的大致区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(2)(2020湖北恩施高中月考,理11)已知单调函数f(x)的定义域为(0,+∞),对于定义域内任意x,f([f(x)-log2x])=3,则函数g(x)=f(x)+x-7的零点所在的区间为()A.(1,2)B.(2,3)C.(3,4)D.(4,5)解题心得判断函数y=f(x)在某个区间上是否存在零点,主要利用函数零点的存在性定理进行判断.首先看函数y=f(x)在区间[a,b]上的图象是否连续,然后看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.【对点训练1】设定义域为(0,+∞)的单调函数f(x)对任意的x∈(0,+∞),都有f[f(x)-ln x]=e+1,若x0是方程f(x)-f'(x)=e的一个解,则x0可能存在的区间是() A.(0,1) B.(e-1,1) C.(0,e-1) D.(1,e)热点二判断函数零点的个数【例2】函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4 解题心得判断函数y=f(x)的零点个数时,常用以下方法:(1)解方程:当对应方程易解时,可通过解方程,判断函数零点的个数; (2)根据函数的性质结合已知条件进行判断;(3)通过数形结合进行判断,画函数图象,观察图象与x 轴交点的个数来判断. 【对点训练2】(2020山东滨州二模改编,16)设f (x )是定义在R 上且周期为6的周期函数,若函数y=f (x-1)的图象关于点(1,0)对称,函数y=f (x )在区间[-n ,n ](其中n ∈N *)上的零点的个数的最小值为a n ,则a 11= .热点三 已知函数零点个数求参数范围【例3】(2020山东潍坊二模,16)已知函数f (x )={lnx ,x ≥1,2x 3-3x 2+1,x <1,当x ∈[-1,e]时,f (x )的最小值为 ,设g (x )=[f (x )]2-f (x )+a ,若函数g (x )有6个零点,则实数a 的取值范围是 .解题心得已知函数有零点(方程有根),求参数的取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,再转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,再数形结合求解. 【对点训练3】(2020山东淄博4月模拟,7)已知函数f (x )={e x ,x ≤0,lnx ,x >0,g (x )=f (x )+x+a.若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[-1,+∞) C.[0,+∞) D.[1,+∞)热点四 函数的应用【例4】(2020山东,6)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT.有学者基于已有数据估计出R 0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( ) A.1.2天 B.1.8天 C.2.5天 D.3.5天 解题心得解决函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.【对点训练4】(2020全国Ⅲ,理4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e -0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60B.63C.66D.69核心素养微专题(一)例析“逻辑推理”在函数零点问题上的应用【例1】已知函数f (x )={|x +3|,x ≤0,x 3-12x +3,x >0,设g (x )=kx+1,且函数φ(x )=f (x )-g (x )的图象经过四个象限,则实数k 的取值范围为 . 核心素养分析解题的“逻辑推理”过程如下:函数φ(x )=f (x )-g (x )的图象经过四个象限等价于φ(x )在x>0和x<0时函数值有正有负,若φ(x )连续,则在y 轴两侧有变号的零点,即f (x )与g (x )的图象在y 轴两侧存在交点,且在交点处一个函数的图象穿过了另一个函数的图象.抓住临界情形:当k>0时,过定点(0,1)的直线g (x )要在y 轴左侧有交点,则k<13当k=13,且x<0时,f (x )≥g (x )恒成立,φ(x )不过第三象限,即此时k ∈(0,13);当k<0时,过定点(0,1)的直线要在y 轴右侧有交点,则k>-9(当k=-9时,直线g (x )与曲线f (x )相切,同样k=-9不符合题意),即k ∈(-9,0);k=0也符合题意.综上可知,k ∈(-9,13).【例2】已知函数f (x )={x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x <a ,若存在x 0<0,使得f (x 0)=0,则实数a 的取值范围是 .核心素养分析解题的“逻辑推理”过程如下:函数f (x )={x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x <a 的零点⇔f (x )=x 3-3|x-a|-a 的零点(分段函数⇒一般函数)⇔方程x 3=3|x-a|+a 的根⇔函数y=x 3与y=3|x-a|+a 的图象的交点的横坐标(零点⇒交点).所以由题意知,能让函数y=x 3与y=3|x-a|+a 的图象的交点的横坐标是负数的,a 的取值满足题意. 画图:y=3|x-a|+a 是顶点(a ,a )在第一、三象限角平分线上“移动”,且开口向上的“V 字形”,当a ≥0时,因为3|x-a|+a>0,所以不符合题意,当a<0时,若x ≥a ,则有x 3=3x-2a ,若x<a ,则有x 3=-3x+4a ,由图可知只需讨论射线y=3x-2a ,x ≥a 与y=x 3相切的临界情形即可.设切点为(m ,n )(m<0),由y=x 3,得y'=3x 2,所以有3m 2=3,得m=-1,所以n=(-1)3=-1,将切点坐标(-1,-1)代入直线方程y=3x-2a ,得a=-1.从而a 的取值范围是[-1,0).【跟踪训练】(2019浙江,9)设a ,b ∈R ,函数f (x )={x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y=f (x )-ax-b 恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>02.2 热点小专题一、函数的零点及函数的应用 关键能力·学案突破【例1】(1)B (2)C 解析(1)由图象知12<b2<1,得1<b<2,f'(x )=2x-b ,所以g (x )=e x +f'(x )=e x +2x-b ,则g (-1)=1e -2-b<0,g (0)=1-b<0,g (1)=e +2-b>0,所以g (0)g (1)<0.故选B .(2)因f (x )在(0,+∞)上单调,且f ([f (x )-log 2x ])=3,设t=f (x )-log 2x ,则f (x )=log 2x+t , 又由f (t )=3,∴f (t )=log 2t+t=3,观察易知t=2,所以f (x )=log 2x+2,所以g (x )=log 2x+x-5,因为g (3)<0,g (4)>0,所以零点所在的区间为(3,4). 对点训练1D 解析令f (x )-ln x=k ,则f (x )=ln x+k.由f [f (x )-ln x ]=e +1,得f (k )=e +1.又f (k )=ln k+k=e +1,可知k=e .故f (x )=ln x+e,所以f'(x )=1x ,x>0.所以f (x )-f'(x )=ln x-1x +e .令g (x )=ln x-1x +e -e =ln x-1x ,x ∈(0,+∞).因为g (x )=ln x-1x 在(0,+∞)内的图象是连续的,且g (1)=-1<0,g (e)=1-1e >0,所以存在x 0∈(1,e),使g (x 0)=0.故选D .【例2】B 解析函数f (x )=2x |log 0.5x|-1的零点也就是方程2x |log 0.5x|-1=0的根,即2x |log 0.5x|=1,整理得|log 0.5x|=(12)x.令g (x )=|log 0.5x|,h (x )=(12)x,画出g (x ),h (x )的图象如图所示.因为两个函数的图象有两个交点,所以f (x )有两个零点.故选B .对点训练27 解析由y=f (x-1)的图象关于点(1,0)对称,得y=f (x )为奇函数,易知f (0)=0.可令x=-3,则f (-3+6)=f (-3), 即f (3)=f (-3)=-f (3), 可得f (-3)=f (3)=0,当n=1,2时,f (x )在[-n ,n ]上,有f (0)=0;当n=3,4,5时,f (x )在[-n ,n ]上,有f (0)=0,f (3)=f (-3)=0;当n=6,7,8时,f (x )在[-n ,n ]上,有f (0)=0,f (3)=f (-3)=0,f (6)=f (-6)=0;当n=9,10,11时,f (x )在[-n ,n ]上,有f (0)=0,f (3)=f (-3)=0,f (6)=f (-6)=0,f (9)=f (-9)=0,即a 11=7. 【例3】-4 (0,14) 解析当x ∈[1,e]时,f (x )=ln x ,f (x )为增函数,所以,f (x )min =f (1)=ln1=0,当x ∈[-1,1)时,f (x )=2x 3-3x 2+1, 令f'(x )=6x 2-6x=0,解得x 1=1(舍)或x 2=0,且有f (x )在(-1,0)上单调递增,在(0,1)上单调递减, 因为f (-1)=-2-3+1=-4<f (1),故函数f (x )在[-1,e]上的最小值为-4;令t=f (x ),由g (x )=0,得t 2-t=-a ,作出函数y=f (x )的图象,如图所示:直线y=t 与函数y=f (x )的图象最多只有三个交点,所以0<t<1, 即说明方程t 2-t=-a 有两个(0,1)内的不等实根,亦即函数y=t 2-t 在(0,1)内的图象与直线y=-a 有两个交点, 因为y=t 2-t=(t -12)2−14,根据y=t 2-t 的图象可知,-14<-a<0,即实数a 的取值范围为0<a<14.对点训练3B 解析要使得方程g (x )=f (x )+x+a 有两个零点,等价于方程f (x )=-x-a 有两个实根,即函数y=f (x )的图象与直线y=-x-a 的图象有两个交点,从函数图象可知,必须使得直线y=-x-a 位于直线y=-x+1的下方,所以-a ≤1,即a ≥-1.故选B .【例4】B 解析由R 0=3.28,T=6,R 0=1+rT 得3.28=1+6r ,∴r=2.286=0.38,∴e 0.38t =2,即0.38t=ln2,0.38t ≈0.69,∴t ≈0.690.38≈1.8(天),故选B .对点训练4C 解析由K1+e -0.23(t *-53)=0.95K ,得e -0.23(t*-53)=119,两边取以e 为底的对数,得-0.23(t *-53)=-ln19≈-3,所以t *≈66.核心素养微专题(一)【例1】(-9,13) 【例2】[-1,0)跟踪训练C 解析当x<0时,由x=ax+b ,得x=b 1-a,最多一个零点取决于x=b1-a与0的大小,所以关键研究当x ≥0时,方程13x 3-12(a+1)x 2+ax=ax+b 的解的个数,令b=13x 3-12(a+1)x 2=13x 2x-32(a+1)=g (x ).画出三次函数g (x )的图象如图所示,可以发现分类讨论的依据是32(a+1)与0的大小关系.①若32(a+1)<0,即a<-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,显然在x ≥0时g (x )单调递增,故与y=b 最多只能有一个交点,不符合题意.②若32(a+1)=0,即a=-1,0处为3次零点穿过,也不符合题意.③若32(a+1)>0,即a>-1时,x=0处为偶重零点反弹,x=32(a+1)为奇重零点穿过,当b<0时g (x )与y=b 可以有两个交点,且此时要求x=b1-a <0,故-1<a<1,b<0,选C .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 函数与导数
2.1 函数概念、性质、图象专项练
必备知识精要梳理
1.函数的概念
(1)求函数的定义域的方法是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解. (2)求函数值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法、有界函数法(含有指、对数函数或正、余弦函数的式子). 2.函数的性质
(1)函数奇偶性:①定义:若函数的定义域关于原点对称,则有: f (x )是偶函数⇔f (-x )=f (x )=f (|x|); f (x )是奇函数⇔f (-x )=-f (x ).
②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). (2)函数单调性判断方法:定义法、图象法、导数法. (3)函数周期性的常用结论:若f (x+a )=-f (x )或f (x+a )=±
1f (x )
(a ≠0),则T=2a ;若f (x+a )=f (x-b ),则
T=a+b ;若f (x )的图象有两条对称轴x=a 和x=b (a ≠b ),则T=2|b-a|;若f (x )的图象有两个对称中心(a ,0)和(b ,0),则T=2|b-a|(类比正、余弦函数). 3.函数的图象
(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到.
(2)若y=f (x )的图象关于直线x=a 对称,则有f (a+x )=f (a-x )或f (2a-x )=f (x )或f (x+2a )=f (-x );若y=f (x )对∀x ∈R ,都有f (a-x )=f (b+x ),则f (x )的图象关于直线
x=a+b 2
对称;若y=f (x )对∀x ∈R 都有
f (a-x )=b-f (x ),即f (a-x )+f (x )=b ,则f (x )的图象关于点
a 2,
b 2
对称.
(3)函数y=f (x )与y=f (-x )的图象关于y 轴对称,函数y=f (a-x )和y=f (b+x )的图象关于直线x=a -b 2
对
称;y=f (x )与y=-f (x )的图象关于x 轴对称;y=f (x )与y=-f (-x )的图象关于原点对称. (4)利用图象可解决函数的最值、方程与不等式的解以及求参数范围问题.
考向训练限时通关
考向一 函数及其相关概念
1.(2020安徽合肥一中模拟,理1)设集合A={x|y=lg(x-3)},B={y|y=2x ,x ∈R },则A ∩B 等于( ) A.⌀ B.R C.{x|x>3} D.{x|x>0}
2.(多选)符号[x ]表示不超过x 的最大整数,如[
3.14]=3,[-1.6]=-2,定义函数:f (x )=x-[x ],则下列命题正确的是( ) A.f (-0.8)=0.2
B.当1≤x<2时,f (x )=x-1
C.函数f (x )的定义域为R ,值域为[0,1)
D.函数f (x )是增函数、奇函数
3.(2020北京,11)函数f (x )=1
x+1+ln x 的定义域是 .
4.设函数f (x )={e x ,x ≤0,lnx ,x >0,则f (f (1
2))= ,f (f (x ))=1的解集为 .
考向二 函数的
性质
5.(2020天津,6)设a=30.7,b=(13
)
-0.8,c=log 0.70.8,则a ,b ,c 的大小关系为( )
A.a<b<c
B.b<a<c
C.b<c<a
D.c<a<b
6.(2020全国Ⅱ,理9)设函数f (x )=ln |2x+1|-ln |2x-1|,则f (x )( ) A.是偶函数,且在(1
2,+∞)单调递增
B.是奇函数,且在(-12,1
2)单调递减 C.是偶函数,且在(-∞,-1
2)单调递增 D.是奇函数,且在(-∞,-12
)单调递减
7.(2020全国Ⅲ,理12)已知55<84,134<85.设a=log 53,b=log 85,c=log 138,则( ) A.a<b<c B.b<a<c C.b<c<a D.c<a<b 8.(2020江西名校大联考,理13)已知函数f (x )={2x ,x ≤4,f (x -1),x >4,则f (5+log 26)的值
为 .
考向三函数的图象
9.(2020天津,3)函数y=4x
x2+1
的图象大致为()
10.(2020山西太原二模,理6)函数f(x)=1
x-ln(x+1)
的图象大致为()
11.(2020山东济宁6月模拟,5)函数f(x)=cos x·sin(e x-1
e x+1
)的图象大致为()
考向四函数的概念、性质、图象的综合
12.(多选)(2020山东淄博4月模拟,12)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有
f(x1+x2
2)≤1
2
[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,则下列说法
错误的是()
A.f(x)在[1,3]上的图象是连续不断的
B.f(x2)在[1,√3]上具有性质P
C.若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3]
D.对任意x1,x2,x3,x4∈[1,3],有f(x1+x2+x3+x4
4)≤1
2
[f(x1)+f(x2)+f(x3)+f(x4)]
13.。