九年级数学下学期投影与视图单元教案人教版1(2021年)

合集下载

九年级数学下册《投影》教案、教学设计

九年级数学下册《投影》教案、教学设计
-鼓励学生遇到问题时主动寻求帮助,可以通过小组讨论、查阅资料或向老师提问。
-建议学生在完成作业后进行自我检查,确保理解正确,避免机械性错误。
我会鼓励学生在小组内进行讨论,分享各自的想法和发现。在讨论结束后,每个小组选代表进行汇报,分享他们的讨论成果。通过这种方式,学生能够相互学习,共同提高。
(四)课堂练习,500字
在课堂练习环节,我会设计一些具有针对性的题目,让学生及时巩固所学知识。这些题目包括:
1.基础题:要求学生根据给定的图形和投影条件,画出相应的投影图形。
3.研究性学习报告:学生可以自由组成小组,选择一个与投影相关的主题,如“投影技术在现代艺术中的应用”或“投影在建筑设计中的创新运用”,进行资料搜集、分析研究,并撰写一份研究报告。
4.创新设计题:鼓励学生发挥想象力,设计一个利用投影原理的小发明或小游戏,要求能够说明设计原理和实现方法,并在班级内进行分享。
1.针对不同学生的认知水平和学习兴趣,设计梯度性的问题和任务,使学生在探究过程中获得成功的体验,增强自信心。
2.注重培养学生的空间想象力,通过丰富的实例和直观的演示,帮助学生建立清晰的投影概念。
3.鼓励学生积极参与课堂讨论,充分表达自己的观点,提高他们的逻辑思维和表达能力。
4.对学习困难的学生给予个别辅导,关注他们的学习进度,及时调整教学策略,确保他们能够跟上教学进度。
3.对投影中涉及的几何变换和坐标变换的掌握,尤其是如何将变换过程可视化。
教学设想:
1.为了突破重点和难点,我设想通过以下教学策略来进行本章节的教学:
a.利用多媒体和实物模型,如幻灯片、建筑模型等,将抽象的投影概念具体化、形象化,帮助学生建立直观的认识。
b.设计一系列从简单到复杂的例题和练习,引导学生逐步掌握投影的计算方法,并能够将其应用到解决实际问题中。

人教版九年级下册数学《投影与视图》教案

人教版九年级下册数学《投影与视图》教案

投影与视图教案一、视图1.三种视图的内在联系主视图反映物体的长和高;俯视图反映物体的长和宽;左视图反映物体的宽和高.因此,在画三种视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等.2.三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右边画出左视图.3.三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.例1画出右图1所示的两个几何体的三种视图.分析:这两个几何体,一个是被切去一角的三棱柱,另一个是由两个圆柱体组成的复合体,画它们的三种视图相对复杂,因此要更加仔细观察原几何体及其画三种视图的原则.解:二、太阳光、灯光与影子1.太阳光与影子太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影. 物体在太阳光照射的不同时刻,不仅影子的长短在变化,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序.图1 (1) (2)俯视图主视图 左视图 (1)俯视图主视图左视图 (2)例2下面是一天中四个不同时刻两个建筑物的影子.(1)将它们按时间的先后顺序进行排列,并说明一下你的理由.(2)一天中物体在太阳光下的影子的方向是如何变化的?分析:(1)太阳在东方,刚升起不久,光线与地平面的夹角小,物体的影子应当长,且方向由东向西,所以C为早晨的影子;随着时间推移,到了上午影子渐短,影子方向北偏西,所以D是上午某时刻的影子;到了中午,物体的影子最短;而到了下午,物体的影子又逐渐变长,且方向为北偏东,所以A为下午某一时刻的影子;到了接近晚上时,太阳在西方,光线与地平面的夹角小,物体的影子长,且方向由西向东,所以B是接近晚上时的物体的影子.所以按时间的顺序进行排列为CDAB.(2)一天中,物体在阳光下的影子的方向是正西、北偏西、正北、北偏东、正东.D.C. B.A.2.灯光与影子灯光的光线可以看成是从一点发出的(即为点光源),像这样的光线所形成的投影称为中心投影.中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的交点即为光源的位置.例3与一盏路灯相对,有一玻璃幕墙,幕墙前面地面上有一盆花和一棵树,晚上,幕墙反射路灯灯光形成了那盆花的影子如图2,树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?分析:确定光源的问题,实际上是利用光线沿直线传播的性质进行作图.在这个问题中,应注意入射角等于反射角,如图3,可以确定光源的位置为P 点.3.如何判断平行投影与中心投影分别过每个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点就是光源的位置.例4(1)如图4是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置.(2)请判断如图5所示的两棵树的影子是在太阳光下形成的,还是灯光下图2 图3P分析:本题是由树及其影子寻找光线,具体方法是过树的顶端及其影子的顶端作两条直线作为光线,若两条直线平行,则是太阳光线;若两条直线相交,则是灯光光线,其交点就是光源的位置.解:(1)如图4所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置.(2)如图5所示,是太阳光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线平行.然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.4.视点与盲区如图6,盲区即为视觉看不到的区域.图6 图7 图8 例5晚上,如图7,圆桌上方有一盏灯泡,该灯发出的光线照在射桌面上,请画出灯光被桌面挡住所形成的盲区示意图.分析:如图8所示,地面上阴影部分即为盲区.。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影与视图的概念教学目标:1. 理解投影的概念,掌握平行投影和中心投影的性质。

2. 理解视图的概念,掌握主视图、左视图和俯视图的定义及关系。

3. 学会用投影和视图的方式观察和描述几何体的形状。

教学内容:1. 投影的概念和分类2. 平行投影和中心投影的性质3. 视图的概念和分类4. 主视图、左视图和俯视图的定义及关系5. 用投影和视图观察和描述几何体的形状教学重点:投影与视图的概念及性质教学难点:用投影和视图观察和描述几何体的形状教学方法:采用问题驱动法、案例教学法和小组合作学习法。

教学过程:1. 引入新课:通过展示实际生活中的投影与视图现象,引发学生对投影与视图的兴趣。

2. 讲解投影的概念和分类,引导学生理解投影的性质。

3. 讲解视图的概念和分类,引导学生理解主视图、左视图和俯视图的定义及关系。

4. 通过实例演示,引导学生学会用投影和视图的方式观察和描述几何体的形状。

教学评价:1. 通过课堂问答,检查学生对投影与视图概念的理解程度。

2. 通过练习题,检查学生对投影与视图性质的掌握程度。

3. 通过小组合作学习,评估学生在实际操作中用投影和视图观察和描述几何体形状的能力。

第二章:三视图的绘制教学目标:1. 掌握三视图的绘制方法。

2. 学会通过三视图还原几何体的形状。

教学内容:1. 三视图的概念2. 三视图的绘制方法3. 通过三视图还原几何体的形状教学重点:三视图的绘制方法和通过三视图还原几何体的形状教学难点:通过三视图还原几何体的形状教学方法:采用案例教学法、小组合作学习和实践操作法。

教学过程:1. 引入新课:通过展示实际生活中的三视图现象,引发学生对三视图的兴趣。

2. 讲解三视图的概念,引导学生理解三视图的重要性。

3. 讲解三视图的绘制方法,引导学生学会正确绘制三视图。

4. 通过实例演示,引导学生学会通过三视图还原几何体的形状。

教学评价:1. 通过课堂问答,检查学生对三视图概念的理解程度。

数学人教版九年级下册九年级数学《视图与投影复习》教学设计

数学人教版九年级下册九年级数学《视图与投影复习》教学设计

九年级数学《第25讲视图与投影》教学设计
【课时目标】
1.掌握基本几何体(直棱柱、圆柱、圆锥、球)与其三视图之间的关系,能识别并且会画出基本几何体的三视图、展开图,并会根据视图描述筒单的几何体,能进行简单的计算.2.通过实例,了解三视图与展开图在现实生活中的应用.
3.通过丰富的实例,了解中心投影和平行投影的概念及性质.
【知识梳理】
考点一:投影
1、由_______光线形成的投影是平行投影.投影线_______ 投影面产生的投影叫做正投
影.物体在太阳光的照射下形成的影子就是_______投影
2、由_______发出的光线形成的投影是中心投影.如物体在灯光发出的光线照射下形成的
影子就是_______投影.
考点二:三视图
1、我们从不同的方向观察同一物体时,可能看到不同的图形,其中,把从_______看到的
图叫做主视图,从_______看到的图叫做左视图,从_______看到的图叫做俯视图.2、三视图画法:画三视图时要注意主视图、左视图、俯视图摆放的位置,主视图、俯视图
的_______相等,主视图、左视图的_______相等,左视图、俯视图的_______相等(填“长”、“宽”或“高”).
3、常见的几何图形的三视图
考点三:常见立体图形的展开与折叠
1、正方体:
2、圆柱:
3、圆锥:
4、三棱柱:
【课堂练习】
近几年各地中考题型。

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。

这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。

本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。

但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。

另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。

三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。

2.让学生掌握视图的分类,学会画一视图、二视图、三视图。

3.培养学生空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。

2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。

3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。

六. 教学准备1.准备投影仪、实物、模型等教学道具。

2.准备相关的练习题和测试题。

3.准备黑板和粉笔。

七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。

2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。

3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。

教师巡回指导,解答学生疑问。

4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

新人教版九年级数学下册《投影与视图》全章教案第一章:投影的概念及分类教学目标:1. 了解投影的概念,掌握各种投影的分类。

2. 能够运用投影的知识解决实际问题。

教学内容:1. 投影的概念:平行投影、中心投影。

2. 投影的分类:正投影、斜投影。

教学步骤:1. 引入投影的概念,展示各种投影图片,让学生感受投影的特点。

2. 讲解平行投影和中心投影的定义,引导学生通过观察图片,理解两种投影的区别。

3. 介绍正投影和斜投影的概念,分析它们的优缺点。

4. 利用投影的知识解决实际问题,如建筑物立面图的绘制等。

巩固练习:1. 判断下列图片属于哪种投影方式?2. 请用投影的知识解释生活中遇到的投影现象。

第二章:视图的定义及分类教学目标:1. 理解视图的定义,掌握各种视图的分类。

2. 能够运用视图的知识解决实际问题。

教学内容:1. 视图的定义:主视图、左视图、俯视图。

2. 视图的分类:正视图、侧视图、俯视图。

教学步骤:1. 引入视图的概念,展示各种视图图片,让学生感受视图的特点。

2. 讲解主视图、左视图、俯视图的定义,引导学生通过观察图片,理解三种视图的关系。

3. 介绍正视图、侧视图、俯视图的概念,分析它们的优缺点。

4. 利用视图的知识解决实际问题,如根据三视图还原物体等。

巩固练习:1. 判断下列图片属于哪种视图?2. 请用视图的知识解释生活中遇到的视图现象。

第三章:投影与视图的变换教学目标:1. 理解投影与视图的变换规律。

2. 能够运用变换规律解决实际问题。

教学内容:1. 投影与视图的变换规律:旋转、平移、缩放。

教学步骤:1. 讲解投影与视图的变换规律,展示各种变换的图片,让学生感受变换的特点。

2. 引导学生通过观察图片,理解旋转、平移、缩放对投影与视图的影响。

3. 利用变换规律解决实际问题,如绘制物体的三视图等。

巩固练习:1. 请用变换规律解释下列图片的变换过程。

2. 请用变换规律绘制物体的三视图。

第四章:投影与视图的应用教学目标:1. 掌握投影与视图在实际中的应用。

九年级数学下册 第二十九章 视图与投影教案 (新版)新人教版 教案

九年级数学下册 第二十九章 视图与投影教案 (新版)新人教版 教案

视图与投影章节 第九章 课题课型复习课 教法 讲练结合 教学目标(知识、能力、教育) 1.通过实例能够判断简单物体的三视图,能根据三种视图描述基本几何或实物原型,实现简单物体与其三种视图之间的相互转化.2.通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体及其投影之间的相互转化.3.通过实例了解视点、视线、盲区的含义及其在生话中的应用教学重点 实现简单物体与其三种视图之间的相互转化.了解中心投影和平行投影的含义及其简单应用.教学难点根据三种视图描述基本几何或实物原型以及投影生话中简单应用. 教学媒体学案教学过程一:【课前预习】(一):【知识梳理】(1)主视图:从看到的图;(2)左视图:从看到的图;(3)俯视图:从看到的图;2.画三视图的原则(如图)长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线。

物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是;投影分投影和投影。

(1)平行投影:太阳光线可以看成光线,像这样的光线所形成的投影称为投影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投影。

(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样的光线所形成等相宽高平齐长对正左视图俯视图主视图的投影称为投影。

(3)像眼睛的位置称为,由视点出发的线称为,两条视线的夹角称为,看不到的地方称为。

(二):【课前练习】1.小明从正面观察图(1)所示的两个物体,看到的是图(2)中的()(图1)(图2)2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长; B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长; D.无法判断谁的影子长3.你在路灯下漫步时,越接近路灯,其影子成长度将()A.不变B.变短C.变长D.无法确定4.一个矩形窗框被太阳光照射后,留在地面上的影子是________5.将如图1-4-22所示放置的一个直角三角形ABC( ∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是图1-4-23四个图形中的_________(只填序号).二:【经典考题剖析】1.某物体的三视图是如图所示的3个图形,那么该物体的形状是()A.长方体B.圆锥体C.立方体D.圆柱体2.在同一时刻,身高1.6m的小强的影长是,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两X照片,那么下列说法正确的是()A.乙照片是参加100m的;B.甲照片是参加 400m的C.乙照片是参加 400m的;D.无法判断甲、乙两X照片4.已知:如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB 在阳光下的投影BC=3m .(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米15米处要盖一栋高20米的新楼,当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:531065sin32,cos32,tan32≈≈≈)1001258三:【课后训练】1.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A B C D2.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()。

人教版数学九年级下册《投影与视图》公开课教学设计

人教版数学九年级下册《投影与视图》公开课教学设计

人教版数学九年级下册《投影与视图》教学设计【教材分析】本节教材的主要内容是根据三视图还原几何体,并会求体积和表面积,介绍画三视图的规则和基本画法,能画简单几何体的三视图,求体积和表面积。

教材的地位、作用本节教材主要培养学生的空间想象能力,为今后进一步学习立体几何打下基础。

【教学目标】1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力;2.通过研究性学习,培养学生的整体性思维,情感态度价值观;3.通过研究利用三视图解决实际生活中面积、体积方面的用料问题,感受数学。

【教学重难点】重点:由空间几何体的三视图求其表面积和体积。

难点:引导学生进行合理的探究。

【教学方法】师生合作交流法、示范法等。

【教学过程】一、复习引入(复习三视图还原几何体,为后面求几何体的体积和表面积做准备)如图所示是一个立体图形的三视图,请根据三视图说出立体图形的名称。

二、合作探究(自主学习完成,课上交流展示)活动1:画一画根据下列几何体的三视图,画出它们的展开图。

(多媒体课件展示)活动2:算一算:根据如下几何体的展开图,求该几何体的体积和表面积。

(多媒体课件展示)三、巩固提升(多媒体课件展示练习及图形,课上完成并交流展示)1.一个几何体的三视图如图1所示,则这个几何体的表面积和体积分别是。

2.如图2是一个几何体的三视图.根据图示,可计算出该几何体的表面积为。

3.已知某几何体的三视图如3所示,其中俯视图为等边三角形,则该几何体的左视图面积为。

4.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)归纳总结:根据三视图求几何体的体积和表面积的一般步骤:1. ;2. ;3. ;四、课堂小结(梳理本节课所学知识)1.你学会了什么?2.你存有的问题?五、拓展延伸(多媒体课件展示,开动脑袋想一想吧!)如图是一个几何体的三视图(单位:厘米)(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.六、作业布置必做:课后练习第2、8、10题选做:课后练习第7题。

新人教版初中九年级数学下《投影与视图 数学活动》优质课教学设计_1

新人教版初中九年级数学下《投影与视图 数学活动》优质课教学设计_1

视图与投影教学设计【教学目标】1、了解视图与投影的基础知识,能判断简单物体的视图。

2、会根据三视图描述几何体的原型,能计算几何体表面积和体积。

【教学重点】了解视图与投影的基础知识,能判断简单物体的视图。

会根据三视图描述几何体的原型【教学难点】计算几何体的表面积和体积。

【教学过程】一、自主学习:考点知识梳理考点一:投影1、投影:光线照射物体,会在平面上(如地面、墙壁)留下它的,把物体映成它的影子叫做投影.2、平行投影:由形成的投影.例:阳光下树影的形成。

3、中心投影:从的光线形成的投影.例:灯光下物体影子的形成.考点二:三视图1、三视图的概念:在平行投影中,如果投影线与投影面互相垂直,就称为。

(1)主视图:从_____看到的图叫做主视图.(2)左视图:从左面看到的图叫做左视图.(3)俯视图:从____看到的图叫做俯视图.2. 三视图的原则(1)位置:俯视图在主视图的,左视图在主视图的。

(2)主视图的长与俯视图的,主视图的高与左视图的,左视图的宽与俯视图的.【注意】画三视图时,看得见部分的轮廓线通常画成;看不见部分的轮廓线通常画成.考点三:立体图形的展开与折叠1、常见几何体的展开图圆柱体的展开图是:;圆锥体的展开图是:;三棱柱的展开图是:。

2、正方体侧面展开图类型二.观看视频,中考典例精析。

三.基础巩固训练五、课堂小结1、你有什么收获?2、在画三视图时注意什么?六、作业布置1、完成视图与投影测试卷2、复习相似三角形的知识。

七、板书设计视图与投影中心投影圆锥侧面积公式投影平行投影正投影体积公式1.位置三视图 2.尺寸3.虚、实。

人教版九年级数学下册《第二十九章投影与视图》教学设计

人教版九年级数学下册《第二十九章投影与视图》教学设计

人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。

本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。

通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。

但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。

此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。

三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。

2.学会用三视图观察几何体,提高空间想象力。

3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。

4.能运用投影与视图的知识解决实际问题。

四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。

2.三视图的作法及应用。

3.斜二测画法的原理及应用。

五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。

2.采用示范法,展示三视图的作法,引导学生动手实践。

3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。

4.采用小组讨论法,分组探讨,提高学生的合作能力。

六. 教学准备1.准备投影仪、几何模型等教具。

2.制作多媒体课件,包括投影原理、三视图作法等教学内容。

3.准备实际问题案例,用于课堂讨论。

七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。

2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。

3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。

人教版九年级数学下册第29章视图与投影29.1投影优秀教学案例

人教版九年级数学下册第29章视图与投影29.1投影优秀教学案例
二、教学目标
(一)知识与技能
1.理解投影的定义和基本性质,掌握平行投影和中心投影的特点和区别。
2.学会运用投影的方法解决实际问题,提高空间想象能力和解决问题的能力。
3.熟练运用投影知识,进行几何图形的绘制和分析,提高绘制和解读图形的能力。
(二)过程与方法
1.通过观察和操作,培养学生对投影的直观感知,发展空间想象能力。
五、案例亮点
1.生活情境导入:本节课通过现实生活中的投影现象导入新课,激发学生的兴趣和好奇心,使学生能够更好地理解和贴近投影知识,体现了“从生活中来,到生活中去”的教学理念。
2.问题导向:本节课以问题为导向,引导学生主动思考和探究,激发学生的学习内驱力,培养学生的解决问题的能力。如在讲授新知环节,教师提出问题:“如何判断一个图形在不同投影下的形状变化?”引导学生进行小组讨论和探究。
(三)小组合作
1.组织学生进行小组讨论,分享各自对投影的理解和看法,促进学生之间的思维碰撞。
2.开展小组合作探究活动,如共同研究投影的规律、解决投影问题等,培养学生的团队协作能力。
3.鼓励学生进行小组交流和展示,提高学生的表达能力和沟通技巧。
(四)反思与评价
1.引导学生对所学知识进行反思,总结投影的基本性质和应用方法,提高学生的归纳总结能力。
三、教学策略
(一)情景创设
1.利用多媒体展示各种生活中的投影现象,如电影院投影、太阳能光伏板等,引发学生对投影的兴趣。
2.设计有趣的投影实践活动,如手电筒照射物体、投影仪展示等,让学生亲身体验投影的形成过程。
3.创设问题情境,如:“为什么电影院里的画面是倒立的?”“太阳能光伏板是如何将阳光转化为电能的?”引导学生思考和探讨。
(二)问题导向
1.提出问题:“什么是投影?投影有哪些基本性质?”引导学生回顾和巩固投影基础知识。

人教版九年级数学下册第29章投影与视图全章教案

人教版九年级数学下册第29章投影与视图全章教案

第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。

2、空间观念的形成是一个长期的过程。

本章是第七章内容的继续和发展。

二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。

2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。

3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。

4、能由三视图想象简单几何体。

难点:几何体与其投影的关系及由三视图想象几何体。

三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。

2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。

3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。

4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。

5、通过三视图的学习,培养学生识图、画图的基本技能。

6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。

四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。

很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。

在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。

(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。

九年级数学下学期投影与视图单元教案人教版

九年级数学下学期投影与视图单元教案人教版

投影与视图单元教案第1课时 投影(1)教学目标:1、知识目标经历实践探索,了解投影、投影面、平行投影和中心投影的概念;问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。

一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.4、请观察平行投影和中心投影,它们有什么相同点与不同点?平行投影与中心投影的区别与联系第2课时投影(二)教学目标:1、知识目标了解正投影的概念;能根据正投影的性质画出简单的平面图形的正投影一、复习引入新课下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。

二、合作学习,探究新知1、如图,把一根直的细铁丝(记为安线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状通过观察,我们可以发现;(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB = A1B1(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB > A2B2(3)当线段AB垂直于投影面P时,它的正投影是一个点A32、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面结论:(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小一样;(2)当纸板P倾斜于投影面Q时. P的正投影与P的形状、大小发生变化;(3)当纸板P垂直于投影面Q时. P的正投影成为一条线段.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.3、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).第3课时三视图(一)教学目标1、知识目标会从投影的角度理解视图的概念会画简单几何体的三视图二、应用新知例1画出下图2所示的一些基本几何体的三视图.分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”。

人教版初中数学九年级下册第二十九章:投影与视图(全章教案)

人教版初中数学九年级下册第二十九章:投影与视图(全章教案)

第二十九章投影与视图教材简析本章的主要内容有:(1)平行投影、中心投影的概念和简单应用以及正投影的成像规律;(2)三视图的概念、画法以及根据三视图描述基本几何体或实物原型;(3)直棱柱、圆锥的侧面展开图,以及根据平面展开图判断和制作立体模型.本章内容在数学学习中起着承上启下的作用,学生已经学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何作了铺垫.教学指导【本章重点】1.掌握平行投影和中心投影的简单应用.2.会画简单图形的三视图.3.能根据三视图描述基本几何体或实物的原型.【本章难点】根据三视图描述基本几何体或实物原型,理解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.【本章思想方法】1.体会转化思想.在本章的学习中,把立体图形的问题通过三视图转化为平面图形的问题,实物的投影也是立体图形与平面图形的相互转化,这都体现了转化思想.同时还要注重空间想象力的培养.2.体会方程思想.在根据平行投影或中心投影的性质,结合三角形建立比例式构造方程进行相关计算时,体现了方程思想的应用.课时计划29.1投影2课时29.2三视图3课时29.3课题学习制作立体模型1课时29.1投影第1课时投影教学目标一、基本目标【知识与技能】1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.【过程与方法】通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.【情感态度与价值观】使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.二、重难点目标【教学重点】理解平行投影和中心投影的特征.【教学难点】在投影面上画出平面图形的平行投影或中心投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P87~P88的内容,完成下面练习.【3 min反馈】1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.皮影戏是利用平行投影(填“平行投影”或“中心投影”)的一种表演艺术.4.如图,在灯光下,四个选项中,灯光与物体的影子最合理的是(A)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【互动探索】(引发学生思考)灯光的照射属于中心投影还是平行投影?其投影有什么特征?【分析】晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.【答案】B【互动总结】(学生总结,老师点评)中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.【例2】如图所示,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.【互动探索】(引发学生思考)阳光下的投影属于中心投影还是平行投影?其投影有什么特征?【解答】(1)如图所示,连结AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,即5DE=36,∴DE=10 m.【互动总结】(学生总结,老师点评)在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.活动2 巩固练习(学生独学) 1.下列结论正确的有( B )①同一时刻物体在阳光照射下影子的方向是相同的; ②物体在任何光线照射下影子的方向都是相同的; ③物体在路灯照射下,影子的方向与路灯的位置有关; ④物体在光线照射下,影子的长短仅与物体的长短有关. A .1个 B .2个 C .3个D .4个2.如图所示,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,则AB 与CD 之间的距离是1.8m.3.李航想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2 m ,CE =0.6 m ,CA =30 m(点A 、E 、C 在同一直线上).已知李航的身高EF 是1.6 m ,请你帮李航求出楼高A B.解:如图,过点D 作DN ⊥AB ,垂足为N ,交EF 于点M ,则四边形CDME 、ACDN 是矩形.∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m , ∴MF =EF -ME =1.6-1.2=0.4(m). ∵EF ∥AB , ∴△DFM ∽△DBN , ∴DM DN =MF BN ,即0.630=0.4BN, ∴BN =20 m ,∴AB =BN +AN =20+1.2=21.2(m).即楼高为21.2 m.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影.2.⎩⎪⎨⎪⎧平行投影:由平行光线形成的投影中心投影:由同一点(点光源)发出的光线形 成的投影练习设计请完成本课时对应练习!第2课时正投影教学目标一、基本目标【知识与技能】1.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.2.掌握线段、正方形、正方体的正投影的特征.【过程与方法】1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.【情感态度与价值观】感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.二、重难点目标【教学重点】1.正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.【教学难点】归纳正投影的性质,正确画出简单平面图形的正投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P91的内容,完成下面练习.【3 min反馈】1.(1)投影线垂直于投影面产生的投影叫做正投影.(2)正投影是一种特殊的平行投影,它区别于一般的平行投影的不同之处是投影线垂直于投影面.(3)平行投影与中心投影的主要区别是光线是平行还是交于一点.(4)平行投影有两种情况:一种是投影线倾斜着照射投影面;另一种是投影线垂直照射投影面,这种投影就是正投影.教师点拨:注意区分正投影与平行投影之间的区别与联系,掌握正投影是特殊的平行投影,是光线垂直于投影面的特殊情况.2.线段的正投影是(D)A.直线B.线段C.射线D.线段或点环节2合作探究,解决问题活动1小组讨论(师生互学)(一)关于线段的正投影【例1】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情况下铁丝的正投影各是什么形状?【互动探索】(引发学生思考)(1)铁丝平行于投影面时,它的正投影的形状跟大小与它本身完全相等;(2)铁丝倾斜于投影面,它的正投影仍然是一条线段,但长度变短了;(3)铁丝垂直于投影面,它的正投影变成了一个点.【解答】(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1.(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2.(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.【教师点拨】以上的规律可以通过用铅笔作投影试验得出.(二)关于平面的正投影【例2】如图,把一块正方形硬纸板Q(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情况下纸板的正投影各是什么形状?【互动探索】(引发学生思考)(1)纸板Q平行于投影面P时,Q的正投影与Q形状、大小一样(即全等);(2)纸板Q倾斜于投影面P时,Q的正投影与Q的形状、大小发生变化(面积变小);(3)纸板Q垂直于投影面P时,Q的正投影成为一条线段.【教师点拨】用作业本做一个投影试验就可得出结论.【互动总结】(学生总结,老师点评)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(三)有关立体图形的正投影【例3】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面,如图1;(2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影面,并且上底面的对角线AE垂直于投影面,如图2.【互动探索】详细见教材P90~P91分析.【解答】(1)如图1,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图2,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB 及它所对的另一条侧棱EH的投影.【互动总结】(学生总结,老师点评)因为影子是光线被物体遮挡所形成的,所以要考虑到面与面,线与线的遮挡问题.【例4】如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()【互动探索】(引发学生思考)依题意,光线是垂直照下的,故只有D符合.【答案】D【互动总结】(学生总结,老师点评)当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形;若投影面不是平面,则投影形状要复杂得多.活动2巩固练习(学生独学)1.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的(B)2.若木棒长1.2米,则它的正投影的长一定(D)A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米活动3拓展延伸(学生对学)【例5】在长、宽都为4 m,高为3 m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8 cm,灯泡离地面2 m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)【互动探索】根据题意可知,AN=0.08 m,AM=2 m,由房间的地面为边长为4 m的正方形可算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.【解答】如图,光线恰好照在墙角D、E处.由题意可知,AN=0.08 m,AM=2 m.∵房间的地面为边长为4 m的正方形,∴DE=4 2 m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23 m.即灯罩的直径BC约为0.23 m.【互动总结】(学生总结,老师点评)解此题的关键是画出图形,合理使用相似的知识进行有关计算,计算时注意单位要统一.环节3课堂小结,当堂达标(学生总结,老师点评)1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.练习设计请完成本课时对应练习!29.2三视图第1课时几何体的三视图教学目标一、基本目标【知识与技能】1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念,明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【过程与方法】通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.【情感态度与价值观】通过探究物体的三视图,学会多角度看问题,激发学生学习数学的热情.二、重难点目标【教学重点】从投影的角度理解三视图的概念,会画简单的三视图.【教学难点】对三视图概念理解的升华及正确画出三棱柱的三视图.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P97的内容,完成下面练习.【3 min反馈】1.当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个视图,也可以看作物体在某一角度的光线下的投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在主视图下方,左视图在主视图的右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出如图所示一些基本几何体的三视图.【互动探索】(引发学生思考)根据三视图的定义解决问题.【解答】如图所示:【互动总结】(学生总结,老师点评)画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法如下:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.【例2】画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【互动探索】(引发学生思考)支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置.【解答】如图是支架的三视图.【互动总结】(学生总结,老师点评)对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.活动2巩固练习(学生独学)1.如图所示的物体的主视图为(B)2.下列几何体中,左视图是圆的是(D)3.在下列几何体:①长方体;②球;③圆锥;④竖放的圆柱;⑤竖放的正三棱柱中,其主视图、左视图、俯视图都完全相同的是②.(填序号)4.如图所示的是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体的主视图改变,左视图不变,俯视图改变.(填“改变”或“不变”)活动3拓展延伸(学生对学)【例3】如图是一根钢管的直观图,画出它的三视图.【互动探索】钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.【解答】如图是钢管的三视图,其中的虚线表示钢管的内壁.【互动总结】(学生总结,老师点评)画三视图的步骤如下:(1)确定主视图位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见部分的轮廓线画成虚线.环节3课堂小结,当堂达标(学生总结,老师点评)1.主视图、俯视图和左视图的概念.2.三视图的画法.练习设计请完成本课时对应练习!第2课时由三视图确定几何体教学目标一、基本目标【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象力.【情感态度与价值观】通过对三视图的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.二、重难点目标【教学重点】根据物体的三视图描述出几何体的基本形状或实物原型.【教学难点】根据物体的三视图想象几何体的形状.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P98~P99的内容,完成下面练习.【3 min反馈】1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形的前面、上面、侧面,然后再结合起来考虑整体图形.2.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥3.如图所给的三视图表示的几何体是(B)A.长方体B.圆柱C.圆锥D.圆台环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】分别根据三视图(1)(2)说出立体图形的名称.【互动探索】(引发学生思考)由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整个图形.【解答】详细内容见教材P98例3.【例2】见教材P98~P99例4.【例3】一个物体的三视图如下图所示,请描述该物体的形状.【互动探索】(引发学生思考)由一个物体的三视图描述该物体的形状,关键是能想象出三视图和立体图形之间的联系,从而描述该物体的形状.【解答】该物体是一个圆柱体被左右两侧平面及水平平面切成缺口面形成的几何图形,它的形状如图所示.【互动总结】(学生总结,老师点评)根据主视图、俯视图和左视图想象几何体的正面、上面和左面的形状以及几何体的长、宽、高;从实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.活动2巩固练习(学生独学)1.由下列三视图想象出实物形状.解:A是四棱锥,B是球,C是三棱柱.2.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱,如图.活动3拓展延伸(学生对学)【例4】某几何体的主视图和俯视图如图.(1)请你画出符合如图所示的几何体的两种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.【互动探索】(1)由俯视图可得该几何体有2行,则左视图应有2列.由主视图可得该几何体共有3层,那么其中一列必有3个正方体,另一列最少是1个,最多是3个;(2)由俯视图可得该几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得该几何体从左边数第2列第2层最少有1个正方体,最多有2个正方体,第3列第2层最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成该几何体的最少个数及最多个数,即可得到n的可能值.【解答】(1)如图所示:(2)∵俯视图有5个正方形,∴最底层有5个正方体.由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;或第2层最多有4个正方体,第3层最多有2个正方体,∴该几何体最少有5+2+1=8(个)正方体,最多有5+4+2=11(个)正方体,∴n可能为8或9或10或11.【互动总结】(学生总结,老师点评)解决本题要明确俯视图中正方形的个数是几何体最底层正方体的个数.环节3课堂小结,当堂达标(学生总结,老师点评)由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高;(2)从实线和虚线想象几何体看得见的部分和看不见部分的轮廓线.练习设计请完成本课时对应练习!第3课时由三视图确定几何体的表面积教学目标一、基本目标【知识与技能】1.根据三视图求几何体的侧面积、表面积和体积等.2.解决实际生活中的面积、体积方面的用料问题.【过程与方法】通过探究由物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系,提高学生的空间想象力.【情感态度与价值观】培养学生自主学习与合作交流的学习方式,加强学生从生活中发现数学的能力.二、重难点目标【教学重点】根据三视图求几何体的侧面积、表面积和体积.【教学难点】解决实际生活中的面积、体积方面的用料问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P99~P100的内容,完成下面练习.【3 min反馈】1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)【温馨提示】详细解答过程见教材P99~P100例5.【例2】如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.【互动探索】(引发学生思考)先由三视图得到两个长方体的长、宽、高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.【解答】根据三视图,得上面的长方体长6 mm、高6 mm、宽3 mm,下面的长方体长10 mm、宽8 mm、高3 mm,∴这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=376( mm2).【互动总结】(学生总结,老师点评)由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律——“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.另外,求组合体的表面积时重叠部分不应计算在内.活动2巩固练习(学生独学)1.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图所示(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是20 000π mm2.2.如图所示的是一个几何体的三视图,其中主视图、左视图都是腰长为13 cm,底边长为10 cm的等腰三角形,则这个几何体的侧面积是65π cm2.3.如图所示的是一个几何体的三视图,则这个几何体的表面积是 5π+3π.4.已知某几何体的三视图如图所示,求该几何体的表面积.解:由三视图可知,该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S 表面积=4×2×4+4×4+4×12×4×22=48+16 2.活动3 拓展延伸(学生对学)【例3】杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8 g/cm 3,1 kg 防锈漆可以涂4 m 2的铁器面,三视图单位为cm)?。

29.1投影(教案)-2021-2022学年人教版九年级数学下册

29.1投影(教案)-2021-2022学年人教版九年级数学下册
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“投影在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-投影的性质:掌握投影变换下图形的面积比、角度关系等不变性质,并能应用于具体问题。
-投影的应用:学会将投影知பைடு நூலகம்应用于解决实际问题,如建筑设计、地图绘制等。
举例解释:
-通过对比正投影和斜投影的直观图,让学生感受它们在视觉效果上的差异,理解其应用场景。
-通过具体实例,如建筑物在不同角度的阳光下的影子,使学生理解投影变换下图形性质的不变性。
3.提高学生的数据分析能力:在实际问题中,运用投影知识进行分析和计算,培养学生的数据处理和问题解决能力,增强数学应用意识。
4.培养学生的创新意识:鼓励学生在解决投影相关问题时,提出不同的方法和观点,激发创新思维,提高解决问题的灵活性和创造性。
三、教学难点与重点
1.教学重点
-投影的定义及其分类:理解正投影和斜投影的概念,明确它们在实际应用中的区别和联系。
3.重点难点解析:在讲授过程中,我会特别强调投影的定义和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与投影相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示投影的基本原理。
五、教学反思
今天在讲解《投影》这一章节时,我发现学生们对投影的基本概念掌握得还算不错,但在将投影知识应用于实际问题时,部分学生还是显得有些吃力。这可能是因为空间想象能力和问题解决能力还有待提高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别及性质.温故知新知识链接你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。

皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。

29-1-1 29-1-2北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.自主学习新知探究1、__________________叫做投影.2、请你举出在日常生活中的一些投影现象.光线.由_________________形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由_________________形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.研讨交流答疑解惑1、探究平行投影和中心投影和性质和区别2、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。

3、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?29-1-34、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。

如图4-14,当线段AB与投影面平行时,AB的中心投影A‘B’把线段AB放大了,且AB∥A’B‘,△OAB~OA‘B’.又如图4-15,当△ABC所在的平面与投影面平行时,△ABC的中心投影△A‘B’C‘也把△ABC放大了,从△ABC到△A‘B’C‘是我们熟悉的位似变换。

数学2020-2021九年级下册29-1-46、请观察平行投影和中心投影,它们有什么相同点与不同点?平行投影与中心投影的区别与联系区别联系光线 物体与投影面平行时的投影平行投影中心投影总结反思 拓展延伸我们这节课学习了什么知识?(1)地面上直立一根标杆AB 如图,杆长为2cm 。

①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;29-1-4 29-1-5(3)两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。

29-1-6课堂练习1.物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________.2.手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影.3.将一个三角形放在太阳光下,它所形成的投影的形状是__________________.4.小明从正面观察下图所示的两个物体,看到的是()A.相交B.平行C.垂直D.无法确定7.一只小狗在平面镜前欣赏自己(如图所示),它所看到的全身像是)(1.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6米,5米,4米 B.4米,5米,6米C.4米,6米,5米 D.5米,6米,4米2.一组平行的栏杆,被太阳光照射到地面上后,它们的位置关系是______.3.当太阳光线与地面成______度角时,站在树下肯定不会看到自己的影子.4.如图所示是一球吊地空中,当发光的手电筒由远及近时,•落在竖直木板上的影子会逐渐_________.7.分别画出下列几个几何体从正面和上面看的正投影.29-1-729-1-8第2课时投影(二)学习目标1、了解正投影的概念;能根据正投影的性质画出简单的平面图形的正投影2、培养动手实践能力,发展空间想象能力。

温故知新知识链接下图表示一块三角尺在光线照射下形成投影,其中______是平行投影______是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?总结:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。

(2)铁丝倾斜于投影面,(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状29-1-9通过观察,我们可以发现;(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB_____A1B1(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB_____A2B2(3)当线段AB垂直于投影面P时,它的正投影是一个_____2、如图,把一块正方形硬纸板P(例如正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面29-1-10结论:(1)当纸板P平行于投影面Q时. P的正投影与P的形状、大小_____(2)当纸板P倾斜于投影面Q时. P的正投影与P的形状、大小_____;(3)当纸板P垂直于投影面Q时. P的正投影成为_____.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小_____(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).总结反思拓展延伸谈谈你本节课的收获课堂练习能力提升一、选择题1.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是____________ (填“背向太阳”或“面向太阳”),小宁比小勇(填“高”、“矮”、或“一样高”).2.一根竿子高1.5m,影长1m,同一时刻,某塔影长是20m,则塔的高度是______m.二、选择题3.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A.先变短后变长 B.先变长后变短C.逐渐变短D.逐渐变长4.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )A.③④②①B.②④③①C.③④①②D.③①②④5.如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径是1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积是)(A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2三、解答题6.平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴于D,C(3,1),求:(1)CD在x轴上的影长;(2)点C的影子的坐标.29-1-117.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻.小明竖起1m高的直杆,量得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子CD的高为2m,2020-2021九年级下册29-1-12.课后作业1.在同一时刻,一棵高5米的树的影长为2米,此时2米高的小树的影子长为( )A .45米 B .54米 C .1米 D .2米 2.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形 3.太阳光线与地面成45°角,一棵倾斜的树与地面的夹角为60°,若树高10m ,则树影的长为______ 4.一根长为2.5米的铁栏杆直立在地面上,它在地上的影长为532时,•太阳光线与地面的夹角为________. 5.一个圆柱形的茶叶盒在太阳光下旋转,其影子的变化过程可能是( ) A .矩形、矩形、圆 B .正方形、圆、矩形下的影子BE如图所示,请你在图中画出此时木棒CD的影子.29-1-13第3课时三视图(一)教学目标1、知识目标会从投影的角度理解视图的概念会画简单几何体的三视图2、能力目标通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。

3、情感目标使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

重点:从投影的角度加深对三视图的理解和会画简单的三视图难点:对三视图概念理解的升华及正确画出三棱柱的三视图教学过程一、创设情境,引入新课这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。

如图(1),我们用三个互相垂直的平面作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体(例如一个长方体)在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图,在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到由左向右观察物体的视图,叫做左视图.如图(2),将三个投影面展开在一个平面内,得到这一物体的一张三视图(由主视图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小通过以上的学习,你有什么发现?物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图二、应用新知.例1画出下图2所示的一些基本几何体的三视图分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为:1.确定主视图的位置,画出主视图;2.在主视图正下方画出俯视图,注意与主视图“长对正”。

3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.解:三、练习:1、2、你能画出下图1中几何体的三视图吗小明画出了它们的三种视图(图2),他画的对吗请你判断一下.四、小结1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。

2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

五、作业:2020-2021九年级下册教学目标:1、知识目标进一步明确正投影与三视图的关系2、能力目标经历探索简单立体图形的三视图的画法,能识别物体的三视图;培养动手实践能力,发展空间想象能力。

相关文档
最新文档