指数与指数幂的运算(一)教案

合集下载

指数与指数幂的运算优秀教案

指数与指数幂的运算优秀教案

2.1.1 指数与指数幂的运算(2课时)第一课时 根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。

教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I )复习回顾引例:填空 *)n a a a n N ⋅∈个(; m n a += (m,n ∈Z); _____=; (II )讲授新课1.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n ba )(可看作m na a -⋅,所以n nn b a b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。

为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。

(2)填空(3),(4)复习了平方根、立方根这两个概念。

如:分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。

由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程:解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。

结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。

此时,a 的n 次方根可表示为n a x =。

从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。

最新人教版高中数学必修1第二章《指数与指数幂的运算》教案1

最新人教版高中数学必修1第二章《指数与指数幂的运算》教案1

《指数与指数幂的运算》教案1
教学目标:
1. 理解根式的概念;运用根式的性质进行简单的化简、求值;
2. 掌握由特殊到一般的归纳方法,培养学生观察、分析、抽象等认知能力.通过与初中所学的知识进行类比,理解根式的概念,培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
3. 通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生体验数学的简洁美和统一美.
教学重点难点:
1.重点:根式的概念 .
2.难点:根式的概念的理解.
教法与学法:
1.教法选择:讲授法、类比分析法.
2.学法指导:讨论法、发现法.
教学过程:
【设置情境,激发探索】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】
教学设计说明
1.教材地位分析:学生在初中已学习了数的开平方、开立方以及二次根式的概念,学习了正整数指数幂、零指数幂、负整数指数幂的概念,以及整数指数幂的运算法则.现是在此基础上,将平方根与立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,将整数指数幂扩充到有理指数幂,进一步将指数的取值范围扩充到实数.“根式”是“指数与指数幂的运算”第一课时,主要学习根式的概念和性质.根式是后面学习所必备的.
2.学生现实分析:学生在初中已经学习了二次、三次方根的概念和性质,根式的内容是这些内容的推广,方根和根式的概念和性质难以理解.所以要结合已学内容,列举具体实例,设计大量的类比和练习题目加以理解.。

《指数与指数幂的运算(1)》导学案

《指数与指数幂的运算(1)》导学案

2.1.1《指数与指数幂的运算(1)》导学案姓名: 班级: 组别: 组名: 【学习目标】1、理解根式的概念2、理解分数指数幂的概念3、能运用根式、指数幂的运算性质进行化简、求值 【重点难点】▲重点:根式、分数指数幂的概念 ▲难点:根式、指数幂的运算性质 【知识链接】1、二次根式的性质 a a =2)(,⎩⎨⎧<->==00||2a a a a a a2、整数指数幂及运算性质【学习过程】阅读课本P49,尝试回答以下问题 知识点一:根式的定义问题1:一般地,如果a x n=,那么 叫做 的 ,其中 。

①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数, 这时a 的n 次方根用符号______表示。

②当n 为偶数时,正数的n 次方根是____________,记为__________。

负数没有偶次方根 ,0的任何次方根都等于_____问题2:式子na 叫_______,其中n (1>n 且*∈N n )叫做________,a 叫做___________。

问题3:根据n 次方根的意义,可以得到:⑴()=nna ⑵为偶数为奇数n n a n n ⎩⎨⎧=问题4:计算 (1)=333(2)=-55)5.0((3)=-44)2((4)=-44)3(π阅读P50—52内容,尝试回答以下问题 知识点二:分数指数幂 问题1:当a >0时, ①5102510a a a==②==4312a a _________③47a 也能写成分数指数幂的形式么? 问题2:我们规定正分数指数幂的意义: =nm a______________________________________ (注意条件)我们规定负分数指数幂的定义:=-nm a______________________________________ (注意条件)0的正分数指数幂_______________,0的负分数指数幂_______________ 问题3:用分数指数幂表示下列各式(1)=32x __________(2)=+43)(b a __________(0>+b a )(3)=-6)(n m __________(n m >)问题4:有理数指数幂的运算性质是:(1)sra a =________(a >0,r 、s Q ∈) (2)s r a )(=________(a >0,r 、s Q ∈)(3)r ab )(=________(a >0,b >0,r Q ∈) 它可推广到无理数。

高中数学人教版必修指数与指数幂的运算教案(系列一)

高中数学人教版必修指数与指数幂的运算教案(系列一)

2.1.1 指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程备选例题例1 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈) (3)(1n >,且n N *∈) 解析(1)a a =33)(.(2)当n =3π-; 当n =3π-. (3)=||x y -, 当x y ≥时,x y -; 当x y <时,y x -. 小结(1)当n 为奇数时,a a nn=;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子nna 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用. 例2 求值:+分析需把各项被开方数变为完全平方形式,然后再利用根式运算性质;== |||2|2=++-2(2=---=小结开方后带上绝对值,然后根据正负去掉绝对值.。

高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案一、教学目标•理解指数幂的基本概念,掌握指数幂运算法则。

•掌握指数幂运算中的乘方运算法则、除法运算法则、幂运算法则等基本准则。

•掌握如何进行数学题目的化简与计算。

二、教学重点•理解指数幂的概念,掌握乘方运算、除法运算和幂运算的基本法则。

•熟练掌握指数幂的运算方法,能够灵活运用到数学题目计算及求解中。

三、教学内容1. 指数幂的基本概念•定义:指数是乘积的简写,指数幂就是一个数自乘的多次运算。

例如 aⁿ,其中 a 是底数,n 是指数。

•概念:底数与指数是幂的构成要素。

•特征:指数幂的幂次表示底数连续乘法的次数,指数为 0 的指数幂表示为 1。

•记忆技巧:底数 a 和指数 n 都可以从“按次数”这个概念入手去记。

2. 指数幂运算法则2.1 乘法运算法则指数相加,底数不变。

aⁿ × aⁿʸ = aⁿ⁺ʸ。

例如:2² × 2³ = 2⁵2.2 除法运算法则指数相减,底数不变。

aⁿ ÷ aⁿʸ = aⁿ⁻ʸ,其中 n 〉y。

例如:5⁴ ÷ 5² = 5²2.3 幂运算法则底数相同,指数相加。

aⁿ⁺ʸ = (aⁿ)ⁿʸ。

例如:2³⁺² = (2³)² = 8² = 643. 题目解析题目1$0.5^6 \\times 0.5^3 = 0.5^{6+3} = 0.5^9$题目2$4^3 \\div 4^2 = 4^{3-2} = 4^1 = 4$题目3$(3^4)^3 = (3^{4\\times3}) = 3^{12}$四、教学方法1.以练习为主,通过大量的例题和训练来加深学生对指数幂的认识。

2.实践与归纳相结合,提高学生思维水平与解题能力。

五、教学过程1.复习知识点和概念。

2.讲解指数幂运算法则,通过例题讲解并学生操作,带领学生掌握基本的指数幂运算方法。

2.1.1 指数与指数幂的运算(第一课时)

2.1.1 指数与指数幂的运算(第一课时)

新课讲解
1、n次方根、根式的概念
若xn=a,则x叫做a的n次方根,其中n>1且n∈N* 思考 :类比平方根、立方根,猜想:当n为奇数时,
一个数的n次方根有多少个?当n为偶数时呢? n ①当n为奇数时, a的n次方根只有1个,用 a 表示 ②当n为偶数时, 若a>0,则a的n次方根有2个, 用 n a ( a 0 ) 表 示
3、根式和分数指数幂的互化
m
a
n

n
a (a 0, m , n N )
m *
m
a
n

n
a (a 0, m , n N )
m *
(1)正数的定负分数指数幂的意义与负整数幂的意 m 1 义相同.即: n *
a
m
(a 0, m , n N )
a
n
(2)规定:0的正分数指数幂等于0, 0的负分数指数幂无意义. (3)运算性质仍然适用
例题分析
例3 根式与分数指数幂的互化


0 ±2 ±3
0 0
2
(2) 4
2
( 3) 9
2
-8 -1 0 8 27
-2
(2) 8
3
-1 0 2 3
( 1) 1
3
0 0
3
2 8
3
3 27
3
思考: ①已知(-2)5= -32,如何描述-2与-32的关系?
②已知(±2)4=16,如何描述±2与16的关系?
52
6 ?
尝试练习
1、 a 2 a 1 a 1, 求 a的 取 值 范 围
2
a 2a 1

指数与指数幂的运算教案

指数与指数幂的运算教案

指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。

2. 掌握指数幂的运算性质和运算法则。

3. 能够运用指数幂的运算性质解决实际问题。

过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。

2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。

情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。

2. 培养学生勇于探索、合作的科学精神。

二、教学重点与难点:重点:1. 指数与指数幂的概念。

2. 指数幂的运算性质和运算法则。

难点:1. 理解指数幂的运算性质和运算法则。

2. 运用指数幂的运算性质解决实际问题。

三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。

2. 教学课件或板书设计。

学生准备:1. 预习指数与指数幂的相关知识。

2. 准备好笔记本,用于记录重点知识和练习。

四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。

2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。

3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。

4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。

五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。

教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。

六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。

2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。

3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。

指数与指数幂的运算教案

指数与指数幂的运算教案

课题:指数与指数幂的运算第课时总序第个教案课型:新授课编写时间:年月日执行时间:年月日批注教学目标:1.知识与技能理解n次方根和根式的概念;理解有理数指数幂的意义,通过具体事例了解实数指数幂的意义,掌握幂的运算;培养学生观察、分析、抽象等认知能力。

2.过程与方法通过师生共同讨论和探究的方法,使得学生参与到指数范围的扩充和完善的过程中,从而领会类比、从特殊到一般、分类讨论等数学思想方法的运用和提高分析解决问题的能力。

3.情感态度与价值观体会数学模型与实际问题之间的关系,从而感受数学的应用价值;让学生体验数学的简洁美和统一美。

让学生学会用联系的观点看待问题。

教学重点: 本节的教学重点是理解有理数指数幂的意义、掌握幂的运算.教学难点:本节的教学难点是理解根式的概念、掌握根式与分数指数幂之间的转化、理解无理数指数幂的意义。

教学用具:黑板教学方法:根据本节课的特点,采用问题探究、引导发现和归纳概括相结合的教学方法。

教学过程:(一)导入新课1、引导学生回忆函数的概念,说明学习函数的必要性,引出实例。

2、以实例引入,让学生体会其中的函数模型的同时,激发学生探究分数指数幂的兴趣与欲望。

问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们想获得了生物体内碳14含量P与死亡年数t的关系。

引导学生得出关系式:573012t P ⎛⎫= ⎪⎝⎭总结关系式能解决实际问题,让学生体会数学的应用价值,同时指出为了更好地解决实际问题必须进一步深入学习函数。

基于时间的连续性和死亡生物体碳14含量变化的连续性,说明引进分数指数幂必要性,如6000573012P ⎛⎫= ⎪⎝⎭。

不断提出新问题,打开心理缺口,造成认知冲突,激起求知欲望,调动学生思维的活跃性。

(二)讲授新课2.1.1 指数与指数幂的运算1、根式回忆平方根与立方根的定义,引入n 次方根的定义,从已知到未知,符合认知规律。

指数与指数幂的运算优秀教案

指数与指数幂的运算优秀教案

2.1.1 指数与指数幂的运算( 2 课时)第一课时根式教案目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。

教案重点:根式的概念、分数指数幂的概念和运算性质教案难点:根式概念和分数指数幂概念的理解教案方法:学导式教案过程:(I)复习回顾引例:填空(1)0=1(a 0) ;0=1(a0) ;n * )a a a n N(; an a个a n1na(a 0, n N *)(2) m n m n m nmn n n na a a (m,n∈Z);(a ) a(m,n∈Z);(ab ) a b (n∈Z)(3)9 _____ ;- 9 _____ ;0 ______ (4)( a)2 _____( a 0) ;a2 ________(II )讲授新课1 / 151.引入:(1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m na a可看作m na a ,所以m n m na a a 可以归入性质m n m na a a ;又因为an( ) 可看作bm na a ,所以na an n n n( ) 可以归入性质( ab) a b (n∈Z)),这是为下面学习分nb b数指数幂的概念和性质做准备。

为了学习分数指数幂,先要学习n 次根式(n N* )的概念。

(2)填空(3),(4)复习了平方根、立方根这两个概念。

如:22=4 ,(-2)2=4 2,-2 叫4 的平方根23=8 2 叫8 的立方根;(-2)3=-8 -2 叫-8 的立方根25=32 2 叫32 的 5 次方根⋯2n=a 2 叫 a 的 n 次方根2=4,则2叫4 的平方根;若23=8,2 叫做 8 的立方根;若25=32,则分析:若 22 叫做 32 的 5次方根,类似地,若2n=a,则2叫a 的n 次方根。

由此,可有:2.n次方根的定义:(板书)一般地,如果nx a ,那么 x 叫做 a的 n 次方根(n th root),其中n 1,且n N 。

2.1.1指数与指数幂的运算(一)

2.1.1指数与指数幂的运算(一)

(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数).
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作:
a b c
4. 计算 5 2 6 .
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数.
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a .
( 8 ) ;
3
( 2)
4
( 10) ;
2
4
(3 ) ;
( 4)
(a b) (a b).
2
例2 求下列各式的值:
(1) ( 2)
(3)
7
( 2 ) ;
7
4
( 3a 3) ;
4
3
(8) (3 2) (2 3 ) .
3 4 4 3 3
例3 求出使下列各式成立的x的取值范围:
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a .
n
(3)性质 ①当n为奇数时:正数的n次方根为 正数,负数的n次方根为负数. 记作: x n a . ②当n为偶数时:正数的n次方根有 两个(互为相反数). 记作: x a . ③负数没有偶次方根.

人教A版高中数学必修一2.1.1.1指数与指数幂的运算(1)

人教A版高中数学必修一2.1.1.1指数与指数幂的运算(1)

(2)2 学科网 4
-8 -2
(2)3 8
9 ±3 00
(3)2 9 02 0
-1 -1
0
0
(1)3 1 03 0
-4 无
8
2
23 8
-9 无
27 3
33 27
类比分析, 可是个好 方法哟!
3.若x4=a, 则 x 叫做 a 的 四次方根(a≥0 )
4.若x5=a, 则 x 叫做 a 的五 次方根
(3)利用(2)的规律,你能表示下列式子吗?
4 53 , 5 a7
n xm (x 0, m, n N *,且n 1)
(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般情形吗?
讨论结果:形式变了,本质没变,方根的结 果和分数指数幂是相通的。综上我们得到正 数的正分数指数幂的意义。
提出问题
分数指数幂
(1).整数指数幂的运算性质是什么?
(2).观察以下式子,并总结出规律:

5 a10
10
5 (a2 )5 a2 a 5

8
a8 (a4)2 a4 a2

12
4 a12 4 (a3 )4 a3 a 4
④ 10
2 a10 2 (a5 )2 a5 a 2
高中数学课件
(金戈铁骑 整理制作)
第1课时
根式与分数指数幂
1. 理解n次方根与根式的概念;理解分数 指数幂的概念 2. 正确运用根式运算性质化简、求值;掌 握分数指数幂和根式之间的互化;分数指 数幂的运算性质。 3. 分类讨论思想,观察分析、抽象概括等 的能力。
(1) 整数指数幂的概念:

根式与分数指数幂计算

根式与分数指数幂计算

指数与指数幂的运算(一)一、学习目标1.了解指数函数的产生背景,认识学习指数与指数幂运算的必要性,理解根式的概念。

2.通过列举,认识根式产生的背景,理解根式的表示、含义,掌握根式化简公式与方法,培养观察、概括能力。

3.于学习过程中理解运算及其要义,建构正确的运算心理与观点。

二、学习过程(一)阅读课本,梳理知识1.阅读课本4750P P -的内容。

2.梳理知识:(1)n 次方根的定义:(2)____,它是____运算的结果,n 叫做____,a 叫做_______。

(3)乘方与开方互为逆运算。

因此:①_____n= ;②2_____= ,_____=。

(二)基础自测1.下列说法正确的是___________(符合条件的都填上)(1)加法运算的结果叫和;(2)减法运算的结果叫差;(3)乘法运算的结果叫商;(4)除法运算的结果叫积;(5)乘方运算的结果叫幂;(6)开方运算的结果叫方根。

____=,____=。

____=____=,____=。

4.2____=,(2____=,5____=,(5____=。

____=____=,____=,____=。

(三)疑惑摘要自学之后,你还有哪些没有弄清的问题请记在下面,课堂上我们共同探讨:三、课中互动 (一)概念形成1.本课时的核心概念是什么、它是如何产生的?2.小组合作,解决自学“疑惑”,举正、反例理解核心概念。

(二)展示交流例1 求下列各式的值:(1)(2); (3); (4)。

例2 设33x -<<例3 2x =-,求x 的取值范围。

(三)课堂小结四、课外延伸 (一)练习1.下列说法错误的是( )A .正数有两个偶次方根B .零的偶次方根是零C .负数只有一个偶次方根D .负数没有偶次方根2.已知53x =,则x = ________。

3.化简:2____= 。

4.已知0,1a b n <<>且n N *∈指数与指数幂的运算(二)一、学习目标1. 理解分数指数幂的概念,了解幂的运算性质由整数推广到实数的历程。

指数与指数幂的运算(第一课时)教案

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

指数函数与指数幂的运算(优秀经典导学案)

指数函数与指数幂的运算(优秀经典导学案)

必修一 第二章基本初等函数(Ι) 2. 1指数函数 2. 1. 1 指数与指数幂的运算第1课时 根式一、课时目标:1. 理解n 次方根及根式的概念.(重点)2.正确运用根式的运算性质进行根式运算.(重点、难点)预习案阅读教材P 48~P 50例1的有关内容,完成下列问题: 1.如果 ()*∈>Nn n ,1,那么x 叫做a 的n 次方根.2.式子n a 叫做 ,这里n 叫做 ,a 叫做 . 3.根式的性质:(1)n 0= (n ∈N *,且n >1); (2) ()nnaN n 时,*∈= ; (3) n a n=⎪⎩⎪⎨⎧为偶数)(为奇数)(n a n a .自测练习1.(1)若x 3=8,则x =________; (2)若x 2=4,则x =________. 2. 判断正误 (正确的打“√”,错误的打“×”):(1)(-2)2=-2 ( ) (2)(3a 3)=a ( ) (3)(416)=±2 ( ) 3.化简()()33233--+x x 得()A .6B .x 2C .6或-x 2D .-x 2或6或x 24.化简下列各式: (1)()332-; (2)327-; (3)()()4433238-+-; (4)()44b a -.互动探究例1.求下列各式的值.(1)(5)2; (2)(3-3)3; (3)4(-2)4; (4)(3-π)2.[变式训练1] 已知4(a +1)4=-a -1,则实数a 的取值范围是________.例2 . 若代数式2x -1+2-x 有意义,化简4x 2-4x +1+24(x -2)4.[变式训练2] 设9612,3322++-+-<<-x x x x x 求的值.课堂检测1.481的运算结果是( )A .3B .-3C .±3D .以上都不对2.m 是实数,则下列式子中可能没有意义的是( )A .4m 2B .5mC .6m D .5-m3.下列说法:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,na 对任意a ∈R 有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( ) A .①③④ B .②③④ C .②③ D .③④ 4.计算下列各式的值:(1)(3-5)3=________; (2)(-b )2=________. 5.当8< x <10时,化简:(x -8)2+(x -10)2.6.写出使下列各式成立的x 的取值范围. (1) 3⎝⎛⎭⎫1x -33=1x -3; (2) (x -5)(x 2-25)=(5-x )x +5.第2课时 指数幂及运算学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 理解分数指数幂的含义.(难点)2.掌握根式与分数指数幂的互化.(重点、易错点)3.掌握有理数指数幂的运算性质.(重点) 分数指数幂的意义预习案阅读教材P 50~P 53“思考”的有关内容,完成下列问题:1.(1)规定正数的正分数指数幂的意义是:nm a = ()1,0>∈>*n N m n a ,且、;(2)规定正数的负分数指数幂的意义是:nm a -= = ()1,0>∈>*n N m n a ,且、; (3)0的正分数指数幂为 ,0的负分数指数幂 . 2.有理数指数幂的运算性质:(1)=s r a a ()Q s r a ∈>、,0; (2)()=s ra ()Q s r a ∈>、,0;(3)()=rab ()Q r b a ∈>>,0,0.3. 一般地,无理数指数幂a α (a >0,α是无理数) 是一个确定的 , 的运算性质同样适用于无理数指数幂.自测练习1.用根式表示下列各式 (式中a 均为正数):(1) 31a =________; (2) 54a =________; (3) 23-a =________.2. 化简: (1) 12743aa ⋅=________; (2)b 2b=________; (3) 331)(ab =________.互动探究例1.将下列根式化成分数指数幂的形式:(1)a a (a >0); (2) 3252)(1x x ( x >0 ); (3) 32432)(--b( b >0 ).[变式训练1] (1)用根式表示下列各式:53x ,53-x ;(2)用分数指数幂表示下列各式:a 2a ,a . (式中a 均为正数)例2. 化简下列各式 (其中字母均表示正数): (1) 2175.034303101.016])2[()87()064.0(-++-+-----; (2))3(6)(2(656131212132b a b a b a -÷-.[变式训练2] 化简:4xy yx x 3234461)3(-÷⋅-⋅.例3. 已知21a +21-a=3,求下列各式的值:(1)a +a -1; (2)a 2+a -2; (3) 21212323----aa a a .[变式训练3] 已知21a +21-a =3,在题设条件不变的情况下,求a 2 -a-2的值.课堂检测1.下列运算正确的是( )A .a ·a 2= a 2B .(ab )3=ab 3C .(a 2)3=a 6D .a 10÷a 2=a 5 2.233可化为( )A . 2B .33C .327D .273. 41)62581(-的值是________. 4.化简下列各式 (a >0,b >0):(1)3a ·4a ; (2)a a a ; (3)3a 2·a 3; (4)(3a )2·ab 3.5.已知x +y =12,x y =9,且x < y ,求21212121yx y x +-的值.2.1.2 指数函数及其性质 第1课时 指数函数的图象和性质学校:澜沧一中 学科:数学 年级:高一主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解指数函数的概念和意义.(重点)2.能借助计算器或计算机画出指数函数的图象.(难点) 3.初步掌握指数函数的有关性质.(重点、难点)预习案阅读教材P 54~P 56的有关内容,完成下列问题:1.一般地,函数 叫做指数函数,其中x 是自变量,函数的定义域为 . 2.完成下表:a >1 0<a <1自测练习1.下列以x 为自变量的函数中,是指数函数的是( )A .(4)xy =- B .xy π= C .4xy =- D .2x y a +=()10≠>a a ,且2. 判断正误(正确的打“√”,错误的打“×”)(1)函数x y 2=的定义域为(0,+∞).( ) (2)函数xy -=2在定义域内是增函数.( )(3)函数x y 3=y =3x 与x y )31(=的图象关于y 轴对称.( )互动探究当底数a 大小不定时,必须分“a >1”和“0< a < 1”两种情形讨论.指数函数y =a x 的图象如图所示,由指数函数y =a x 的图象与x =1相交于点(1,a )可知:图中的底数的大小关系为0 < a 4 < a 3 < 1 < a 2 < a 1 .①在y 轴右侧,图象从上到下相应的底数由大变小,即当a >1时,底越大,图象越靠近y 轴; ②在y 轴左侧,图象从下到上相应的底数由大变小,即当0< a < 1时,底越小,图象越靠近y 轴. 例1.若指数函数f (x )的图象经过点(2, 9),求f (x )及f (-1).[变式训练1] 若函数y =(a 2-3a +3)·a x 是指数函数,则实数a =________.例2. 若函数y =a x +b -1 (a >0,且a ≠1) 的图象经过第二、三、四象限,则一定有( )A .0< a < 1,且b >0B .a >1,且b >0C .0< a < 1,且b < 0D .a >1,且b <0[变式训练2] 函数y =a x +3+2 (a >0,且a ≠1) 的图象过定点________.例3. 求下列函数的定义域与值域:(1) 114.0-=x y ; (2) 153-=x y ; (3) y =2x +1.[变式训练3] 求下列函数的定义域和值域:(1) 4-12x y =; (2) 2)31(-=x y .课堂检测1.下列函数是指数函数的是( )A .y =(-2)xB .y =x 3C .y =-2xD .y =2x 2.指数函数y =a x 与y =b x 的图象如图所示,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =a x +1 (a >0且a ≠1) 恒过定点 ________.4.下列函数是指数函数吗?分别求函数的定义域、值域:(1)y =165+x ; (2)y =x 3)21(; (3)y =x 17.0; (4)y =π-x ; (5)y =xa )12(- ⎝⎛⎭⎫a >12且a ≠1.第2课时 指数函数及其性质的应用学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 理解指数函数单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.(重点、难点) 2.会解指数函数型的应用题.(重点) 3.掌握指数函数的图象变换.(易错点)预习案 阅读教材P 57~P 58的有关内容,完成下列问题:1.a >10<a <1R2.如图是指数函数 ①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c自测练习1.画出函数115,3,(),()35x x x x y y y y ====的图象,说出底数与函数图象的位置关系.2. 指数函数增长模型:原有量N ,平均最长率P ,则经过时间x 后的总量y = .3. 形如 (01a a >≠且)的函数是一种 ,这是非常有用的函数模型.互动探究例1.比较下列各组数的大小:(1)1.52.5和1.53.2; (2)0.6-1.2和0.6-1.5; (3)1.70.2和0.92.1; (4)0.60.4和0.70.4.[变式训练1] 已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m ) > f (n ),则m ,n 的大小关系为________.例2. 如果a -5x > a x +7(a > 0且a ≠1),求x 的取值范围.[变式训练2] 若a x +1> x a35)1(- (a >0,且a ≠1),求x 的取值范围.例3. 已知函数f (x )=a -12x +1(x ∈R ). (1)用定义证明:不论a 为何实数,f (x )在(-∞,+∞)上为增函数;(2)若f (x )为奇函数,求a 的值; (3)在(2)的条件下,求f (x )在区间 [1,5] 上的最小值.[变式训练3] 已知函数f (x )=3x -13x +1.(1)证明:f (x )为奇函数. (2)判断f (x )的单调性,并用定义加以证明. (3)求f (x )的值域.课堂检测1.若a =21)5.0(,b =31)5.0(,c =41)5.0(,则a ,b ,c 的大小关系是( )A .a >b >cB .a <b <cC .a >c >bD .b <c <a 2.若函数f (x )=x x -+33与g (x )=x x --33的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数 3.函数f (x )=x )21(在区间 [-1,2] 上的最大值是________.4.画出函数y =12+x 的图象,并根据图象指出它的单调区间.2.2 对数函数 2.2.1 对数与对数运算第1课时 对数学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解对数的概念,能进行指数式与对数式的互化.(重点) 2.理解对数的底数和真数的范围.(易混点) 3.掌握对数的基本性质及对数恒等式.(难点)预习案阅读教材P 62~P 63的有关内容,完成下列问题:1.定义:一般地,如果 (0,1)a a >≠,那么x 叫做 ,记作 ,其中a 叫做对数的 ,N 叫做 .2. 定义: 我们通常将以10为底的对数叫做 , 并把常用对数 简记作 ;在科学技术中常使用以无理数e = 2.71828……为底的对数,以e 为底的对数叫 ,并把自然对数 简记作 .3.指数与对数间的关系: 当0,1a a >≠时, ⇔ .4.对数的性质: ⑴ 没有对数; ⑵ ; ⑶ =a a log .自测练习1.(1) 2x =3,则x =________; (2) 10x =5,则x =________; (3)4log 3=b a ,则 . 2. 判断正误 ( 正确的打“√”,错误的打“×”)(1)(-2)3=-8可化为log (-2)(-8)=3( ) (2)对数运算的实质是求幂指数( ) 3. (1)2713=x 的对数表达式为 ,x = ;(2) x =16log 2的指数表达式为 ,x = .4.计算:21log 16= , 2.5log 2.5= ,0.4log 1= . 互动探究例1.求下列各式中x 的值:(1) 2327log =x ; (2) 32log 2-=x ; (3) 91log 27=x ; (4) 16log 21=x .[变式训练1] 求下列各式中x 的值:(1) log x 81=2; (2) x =log 8 4; (3) lg x =-2; (4) 5 lg x =25.例2. 求下列各式中x 的值:(1) log 2 (log 5 x )=0; (2) log 3 (lg x )=1; (3) x =+-2231log )12(.[变式训练2] 若lg (ln x )=1,则x =________.课堂检测1.下列指数式与对数式互化不正确的一组是( )A .010=1与lg1=0 B .312731=-与3131log 27-= C .9log 3=2与219=3 D .5log 5=1与51=5 2.在b =log 3 (m -1) 中,实数m 的取值范围是( )A .RB .(0,+∞)C .(-∞,1)D .(1,+∞)3.ln e + lg 1=____ ____.4.若312log 19x-=,则x = .5.求下列各式的值:(1) log 3 27; (2) 1)3-2()32(log -+.第2课时 对数的运算学校:澜沧一中 学科:数学 年级:高一主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解并掌握对数的运算性质,并能运用运算性质进行对数的有关运算.(重点) 2.能用换底公式将一般对数化成自然对数或常用对数解题.(难点)预习案阅读教材P 64~P 67“思考”的有关内容,完成下列问题: 1.对数的运算性质:如果0,0,1,0>>≠>N M a a ,那么(1)a log (MN)= ; (2)aMlog =N; (3)n a log M = . 2. 换底公式: (1) = log c b log c a (a >0,且a ≠1;c >0,且c ≠1); (2)log log m n a a nb b m =;(3) log a b ·log b a = (a >0,且a ≠1;b >0,且b ≠1).自测练习1.判断正误 (正确的打“√”,错误的打“×”):(1)log a (-2)+log a (-4) =log a 8 ( ) (2)log a b 2 =2log a b ( )(3)log a (M +N ) =log a M +log a N ( ) (4)log a M N=log a M ÷log a N ( )2. 若lg 2=a ,lg 3=b ,则log 2 3=________.互动探究 例1.求下列各式的值:(1)2log 32-log 3329+log 38-5 log 53; (2)lg 25+23lg 8+lg 5·lg 20+(lg 2)2.[变式训练1] 计算:(1)2log 122+log 123; (2)lg 500-lg 5; (3)已知lg 2=0.301 0,lg 3=0.477 1,求lg 45.例2. 已知log 189=a ,18b =5,则a ,b 表示log 3645的值.[变式训练2] (1) (log 29)·(log 34)=( )A .14B .12C .2D .4(2) 已知2m =5n =10,则1m +1n=________.例3. 一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字) (lg 2≈0.301 0,lg 3≈0.477 1)?[变式训练3] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0).课堂检测1.log 23·log 32的值为( )A .1B .-1C .2D .-2 2.设a >0,a ≠1,且x > y >0,n ≥2,n ∈N *,考虑下列等式:①(log a x )n =n log a x ; ②log a (xy )=(log a x )(log a y ); ③log a x y =log a x log a y ; ④log a nx =1nlog a x ; ⑤a log a x =x ;⑥log a (x +y )=log a x +log a y ; ⑦log a x -y x +y =-log a x +yx -y.其中正确等式的个数为( )A .2B .3C .4D .5 3.若3a =2,则2log 36-log 38=________.4.求下列各式的值:(1)lg 25+lg 2·lg 5+lg 2; (2)12lg 3249-43lg 8+lg 245; (3)log 535+2log 122-log 5150-log 514.2. 2. 2 对数函数及其性质 第1课时 对数函数的图象及性质学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、 课时目标:1. 理解对数函数的概念.(易错点)2. 掌握对数函数的图象及性质.(重点、难点)预习案阅读教材P 70~P 71的有关内容,完成下列问题:1. 一般地,函数 叫做对数函数,其中x 是自变量,函数的定义域为 . 2 a >1 0< a<1定义域为 ,值域为 .自测练习1.下列函数中,是对数函数的是________(1) y =log a x (a >0,且a ≠1); (2) y =log 2 x +2; (3) y =8log 2 (x +1); (4) y =log x 6 (x >0,且x ≠1); (5) y =log 6x .2. 判断正误 (正确的打“√”,错误的打“×”): (1)若f (x )是对数函数,则f (1)=0 ( ) (2)函数y =log 2 x 在R 上是增函数 ( )(3)函数y =log a x (a >0,且a ≠1) 的图象一定位于y 轴的右侧 ( )互动探究当底数a 大小不定时,必须分“a >1”和“0< a < 1”两种情形讨论.对数函数y =log a x 的图象如图所示,由对数函数y =log a x 的图象与y =1相交于点(a ,1)可知:图中的底数的大小关系为0 < c < d < 1 < a < b .① 在x 轴上侧,图象从右到左相应的底数由大变小,即当a >1时,底越大,图象越靠近x 轴;② 在x 轴下侧,图象从下左到右相应的底数由大变小,即当0< a < 1时,底越小,图象越靠近x 轴. 例1.求下列函数的定义域:(1) y =lg (2-x ); (2) y =1log 3(3x -2); (3) y =log (2x -1) (-4x +8).y=log b x y=log c x[变式训练1] 函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞) 例2. 画出下列函数的图象,并根据图象写出函数的定义域、值域以及单调区间:(1) y =log 3(x -2); (2) y =|x 21log |.[变式训练2] (1) 函数y =log 2|x |的图象大致是( )(2) 函数y=log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.课堂检测1.下列函数是对数函数的是( )A .y =log a (2x ) (a >0,且a ≠1)B .y =log a (x 2+1) (a >0,且a ≠1)C .y =x a1log (a >0,且a ≠1) D .y =2lg x2.图中曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于曲线C 1,C 2,C 3,C 4的a 值依次为( )A .3,43,35,110B .3,43,110,35C . 43,3,35,110D . 43,3,110,353.函数y =log a (x -2) (a >0,且a ≠1)的图象恒过定点________. 4.求下列函数的定义域:(1) f (x )=lg (4-x )x -3; (2) y =log 0.1(4x -3).第2课时 对数函数及其性质的应用学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(易混点) 2.理解并掌握对数函数的性质.(重点、难点)预习案 阅读教材P 72~P 73的有关内容,完成下列问题:1.对数函数log (0,1)a y x a a =>≠且和指数函数(0,1)x y a a a =>≠且互为 . 特点是: .2. 互为反函数的两个函数的图象关于直线 对称.3. 若函数y =f (x )图象上有一点 (a ,b ), 则 (b ,a ) 必在其反函数图象上.反之,若 (b ,a ) 在反函数图象上,则 (a ,b ) 必在原函数图象上.自测练习 1.(1)y =10x 的反函数是________; (2)y =x )54(的反函数是________; (3)y =x 31log 的反函数是________; (4)y =log 2 x 的反函数是________.2.若函数x y lg =与函数y =x a 的图象关于直线x y =对称,则a =______.互动探究例1.比较下列各组数的大小.(1)log 1245与log 1267; (2)log 123与log 153; (3)log a 2与log a 3; (4)log 120.4与log 40.6.[变式训练1] 设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b例2. 解下列不等式:(1) log 2 (2x +3) > log 2 (5x -6); (2) log x 12 >1.[变式训练2] 若实数a 满足log a 23< 1,求a 的取值范围.例3. 已知函数f (x )=log a 1-mxx -1(a >0,且a ≠1,m ≠1) 是奇函数.(1)求实数m 的值; (2)探究函数f (x )在 (1,+∞) 上的单调性; (3)若a =2,试求函数f (x )在 [3,5] 上的值域.[变式训练3] 若函数f (x )=log a x (a >0,且a ≠1) 在区间 [a ,2a ] 上的最大值是最小值的3倍,求a 的值.课堂检测1.函数y =x 21log (x >0)的反函数是( )A .y =21x ,x >0 B .y =x )21(,x ∈R C .y =x 2,x ∈R D .y =2x ,x ∈R 2.函数y =log 3 x (1≤ x ≤ 9) 的值域为( )A .[0,+∞)B .RC .(-∞,2]D .[0,2]3.比较下列各组数的大小:(1)log 22________log 23; (2)log 32________1;(3)log 134________0;(4)log 43________log 34.4.若log a 25< 1 (a >0,且a ≠1),求a 的取值范围.2. 3 幂函数学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 了解幂函数的概念.(易错点)2.结合函数y =x ,y =x 2,y =x 3,y =x -1,y =21x 的图象,了解它们的变化情况.(重点)预习案阅读教材P 77~P 78的有关内容,完成下列问题:1.幂函数的概念:形如 的函数称为幂函数,其中 是自变量, 是常数.2321-1y =x3.(1)幂函数的图象不过第 象限,都过点 ; (2)当α>0时,幂函数在上是 ;当α< 0时,幂函数在上是 ;(3)当时,幂函数是 ;当时,幂函数是 .自测练习1.下列函数是幂函数的是________.①y =2x 2 ②y =2x ③y =x 3 ④y =x -1 2.如图所示是幂函数αx y =在第一象限的图象, 比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<< 互动探究例1.已知函数y =(m 2+2m -2) x m +2+2n -3是幂函数,求m ,n 的值.[变式训练1] 已知函数f (x )=(m 2+2m )xm 2+m -1,m 为何值时,f (x )是:(1)正比例函数? (2)反比例函数? (3)二次函数? (4)幂函数?例2. 已知幂函数的图象过点P ⎝⎛⎭⎫12,4. 讨论y =f (x )的定义域、值域、奇偶性、单调性,并画出草图.[0,)+∞(0,)+∞2,2α=-11,1,3,3α=-α[变式训练2] 已知函数y =32x .(1)求定义域; (2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.例3. 比较下列各组数中两个数的大小.(1)5.0)52(与5.0)31(; (2) 1)32(--与1)53(--; (3) 43)32(与32)43(.[变式训练3] 比较大小:(1) 535.1________537.1; (2)0.71.5________0.61.5; (3) 32-2.2________32-8.1; (4)0.15-1.2________0.17-1.2;(5)0.20.6________0.30.4;(6) 87-9________76)98(.课堂检测1.下列函数中是幂函数的是( )A .y =x 2xB .y =2xC .y =x 2D .y =3x +22.函数y =35x 的图象大致是图中的( )3.下列结论中,正确的是( )A .幂函数的图象都通过点(0,0),(1,1)B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数4.比较下列各题中数值的大小:(1)1.33,1.43; (2)0.26-1,0.27-1; (3)(-5.2)2,(-5.3)2; (4)2,3,0.72.。

高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修

高中数学 第2章 基本初等函数(1)(1.1 指数与指数幂的运算 第1课时)示范教案 新人教A版必修

某某省青龙满族自治县逸夫中学高中数学必修1第2章 基本初等函数〔1〕-1.示X 教案〔1.1 指数与指数幂的运算 第1课时〕本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质〔单调性、值域、特别点〕,通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质〔单调性、值域、特殊点〕;知道指数函数y=a x 与对数函数y=log a x 互为反函数〔a >0,a≠1〕,初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考〞的内容,有利于加强数学文化的教育,应指导学生认真研读.2.1 指数函数2.1.1 指数与指数幂的运算整体设计我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,表达数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化〞的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算. 推进新课提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维. 讨论结果:(1)假设x2=a,那么x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,假设x3=a,那么x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,那么这个数叫a的四次方根.一个数的五次方等于a,那么这个数叫a的五次方根.一个数的六次方等于a,那么这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,那么这个数叫a的n次方根.(4)用一个式子表达是,假设x n=a,那么x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出以下数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题〔2〕中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题〔2〕中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:〔1〕因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.〔2〕方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.〔3〕一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.〔4〕任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n 次方根的性质:①当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题. 解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n na =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质: ①(n a )n=a.先开方,再乘方〔同次〕,结果为被开方数. ②n 为奇数,n n a =a.先奇次乘方,再开方〔同次〕,结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方〔同次〕,结果为被开方数的绝对值.应用示例思路1例1求以下各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求以下各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数. 解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出以下各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:此题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1以下各式中正确的选项是( ) (1)44a =a; (2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,此题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故此题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故此题错.(3)a 0=1是有条件的,即a≠0,故此题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故此题正确.所以答案选(4).点评:此题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,此题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 假设12a -a 2+=a-1,求a 的取值X 围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的选项是( )n a 表示(以上n >1且n∈N *).答案:C2.化简以下各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++=5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a 〔n >1,n∈N 〕哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①〔n a 〕n =a 〔n >1,n∈N 〕.如果x n =a 〔n >1,且n∈N 〕有意义,那么无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以〔n a 〕n =a 恒成立.例如:〔43〕4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a 443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即〔n a na 〕n =a 〔n >1,n∈N 〕是恒等式,n n a =a 〔n >1,n∈N〕是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. n =a,那么x 叫a 的n 次方根,其中n >1且n∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简以下各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.假设5<a<8,那么式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23. 答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.。

高中数学必修1第二章2.1.1《指数与指数幂的运算》--(第一课时)

高中数学必修1第二章2.1.1《指数与指数幂的运算》--(第一课时)

③ 5 (3)5 3
④ 5 (3)10 3
⑤ 4 (3)4 3
2022/1/18
练一练
【2】求以下各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
Hale Waihona Puke ⑶ ( 2 3)2 ;⑷
2022/1/18
52 6.
本节课我们有哪些收获?
达标检测
(1)7 27 ;
(4) 210
(2)3 3a 33 ,a 1; (5)3 (3)9
2022/1/18
(三)根式的概念
根指数
a n 被开方数
2022/1/18
根式
探究四:n次方根的运算性质
2
(1) 6 ;
(2) 5 5 5
(3) 3 7 3
=6
= -5
= -7
a 结论: n a n
2022/1/18
求出下列根式的值
13 83 , 23 83 , 3 102 , 4 102
2022/1/18
学习目标:
1. 理解n次方根的概念; 2. 掌握n次方根的性质. 3. 体会分类讨论思想的运用.。
探究一:n次方根的概念
回忆知识,平方根,立方根是如何定义
的?有哪些规定?
①如果一个数的平方等于a,那么这个数叫做 a的平
方根.
正实数的平方根有两个,
22=4 (-2)2=4
它们互为相反数
2,-2叫4的平方根.
②如果一个数的立方等于a,那么这个数叫做a 的立 方根.
23=8 (-2) =-8 3
2022/1/18
2叫8的立方根. 一个数的立方 -2叫-8的立方根. 根只有一个
24=16
(-2)4=16

【参考教案】《指数与指数幂的运算》(人教)

【参考教案】《指数与指数幂的运算》(人教)

《指数与指数幂的运算》从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。

进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。

【知识与能力目标】1、掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2、了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3、理解有理数指数幂和无理数指数幂的含义及其运算性质。

【过程与方法目标】具体习题,灵活运用根式运算。

由整数指数幂的运算性质理解有理数指数幂的运算性质。

【情感态度价值观目标】1、通过学习n次方根的概念及根式的运算,提高学生的运算能力和逻辑思维。

2、通过分数指数幂的学习,让学生体会严谨的求学态度。

【教学重点】根式与分数指数幂之间的互相转化。

【教学难点】根式运算与有理数指数幂的运算。

通过本节导学案的使用,引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础。

(一)创设情景,揭示课题1、以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性。

2、由实例引入,了解指数概念提出的背景,体会引入指数的必要性;(1)据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%。

那么在2010年, 我国的GDP 可望为2000年的多少倍?(2)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的系573012tp⎛⎫= ⎪⎝⎭,那么当生物体死亡了1万年后,它体内碳14的含量为多少?(3)对1.07310,10000573012p⎛⎫= ⎪⎝⎭这两个数的意义如何?怎样运算?3、初中根式的概念思考1:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个?思考2:-27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?思考3:一般地,实常数a的平方根、立方根是什么概念?思考4:如果x4=a,x5=a,x6=a,参照上面的说法,这里的x分别叫什么名称?思考5:推广到一般情形,a的n次方根是一个什么概念?试给出其定义。

指数与指数幂的运算教学设计

指数与指数幂的运算教学设计

指数与指数幂的运算教学设计教学设计:指数与指数幂的运算一、教学目标1.知识与技能:-理解指数的概念;-掌握指数幂与指数的运算规则;-能够用运算规则计算简单的指数幂与指数运算;-能够解决一些实际问题。

2.过程与方法:-采用启发引导和演绎法讲解指数与指数幂的概念和运算规则;-结合实际问题进行训练和应用;-培养学生的逻辑思维和抽象推理能力;-通过合作学习和小组活动提高学生的学习兴趣和合作意识。

3.情感态度价值观:-培养学生的数学兴趣和创新精神;-培养学生的逻辑思维和抽象推理能力;-加强学生的团队协作和沟通能力。

二、教学重点和难点1.教学重点:-指数的概念和运算规则;-指数幂的概念和运算规则。

2.教学难点:-运用运算规则解决一些实际问题。

三、教学准备1.教学材料:教科书、习题集、挂图等;2.教学工具:黑板、彩色粉笔、计算器等;3.教学环境:课堂、实验室等;4.学生准备:认真预习教材内容。

四、教学过程本教学设计采用扩展和巩固知识点相结合的教学方法,具体分为以下几个步骤:步骤一:导入(5分钟)利用个案讨论的方式引入指数的概念和应用。

例如,陈述一个实际问题:“假设你投资1000元,年利率为3%,每年复利计算,5年后你的本金和利息总共是多少?”让学生思考并讨论。

步骤二:探究指数的概念与性质(15分钟)1.通过观察和分析,引导学生总结指数的概念和性质。

例如,通过做一些实际问题,引导学生找到指数的共同规律和特点,如指数是正整数、底数相同则指数相加等。

2.教师给出正确的定义和公式,并对概念进行解释和说明。

步骤三:研究指数幂的意义(20分钟)1.通过具体例子,引导学生理解指数幂的概念和意义。

例如,计算2的3次方,是指底数2乘以自己三次的结果。

2.结合实际问题,让学生分组进行小组活动,解决有关指数幂的实际问题,并向全班汇报和分享。

步骤四:掌握指数幂的运算规则(20分钟)1.通过实际例子和计算,引导学生总结指数幂的运算规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.1 指数
一.教学目标:
1.知识与技能:(1)理解分数指数幂和根式的概念;
(2)掌握分数指数幂和根式之间的互化;
(3)掌握分数指数幂的运算性质;
(4)培养学生观察分析、抽象等的能力.
2.过程与方法:
通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.
3.情态与价值
(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;
(3)让学生体验数学的简洁美和统一美.
二.重点、难点
1.教学重点:(1)分数指数幂和根式概念的理解;
(2)掌握并运用分数指数幂的运算性质;
2.教学难点:分数指数幂及根式概念的理解
三.学法与教具
1.学法:讲授法、讨论法、类比分析法及发现法
2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.
根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.
二、新课讲解
类比平方根、立方根的概念,归纳出n 次方根的概念.
n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n
叫做根式.n 为奇数时,a 的n
表示,其中n 称为根指数,a 为被开方数.
类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?
n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为
n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.
零的n
0=
举例:16的次方根为2±
,275-的27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.
根据n 次方根的意义,可得:
n a =
n a =
a n 的n
a =一定成立吗?如果不一
让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论.
通过探究得到:n
a =
n 为偶数
, ,0||,0a a a a a ≥⎧==⎨-<⎩
|8|8==-=-=
小结:当n
就避免出现错误:
例题:求下列各式的值
(1
)(1)
(2)
(3)
(4) 分析:当n
||a =,然后再去绝对值.
n =是否成立,举例说明.
课堂练习:1. 求出下列各式的值
1)a ≤2
1,a a =-求的取值范围.
3
三.归纳小结:
1.根式的概念:若n >1且*n N ∈
,则n x a x 是的次方根,n 为奇数时,
n为偶数时,x=
2.掌握两个公式:
(0)
,||
(0)
n
a a
n n a
a a


==⎨
-<

为奇数时为偶数时
3.作业:P69习题2.1 A组第1题。

相关文档
最新文档