高三数学一轮复习必备精品42:高考选作部分(4-1、4-4、4-5) 备注:【高三数学一轮复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第42讲 高考选做部分(4-1、4-4、4-5)
备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】(2007
广东理)
13.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为3
3x t y t =+⎧⎨=-⎩
(参数t ∈R ),
圆C 的参数方程为cos 2sin 2x y θ
θ=⎧⎨
=+⎩
(参数[0,2]θπ∈),则圆C 的圆心坐标为_______,圆心到直线l 的距离
为______.
答案:(0,2);22解析:直线的方程为x+y-6=0,222
=14.(不等式选讲选做题)设函数()|21|3,f x x x =-++则(2)f -=_____;若()5f x ≤,则x 的取值范围是
________; 答案:6;1[,1]2
-
15.几何证明选讲选做题]如图所示,圆O的直径为6,C为圆周上一点。BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为
D,则∠DAC=______;线段AE 的长为_______。
答案:6
π
;3。
解析:根据弦切角等于夹弧所对的圆周角及直角三角形两锐角互余,很容易得到答案; AE=EC=BC=3; (2007广东文)
14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为ρsinθ=3,则点(2,π/6)到直线l 的距离为. 【解析】法1:画出极坐标系易得答案2; 法2:化成直角方程3y =及直角坐标3,1)可得答案2.
15.(几何证明选讲选做题)如图4所示,圆O 的直径AB=6,C 为圆周上一点,BC=3过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC=.
【解析】由某定理可知60DCA B ∠=∠=︒,又AD l ⊥, 故30DAC ∠=︒.
(2007海南、宁夏)
22.请考生在A B C ,,三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.
22.A(本小题满分10分)选修4-1:几何证明选讲
如图,已知AP 是O 的切线,P 为切点,AC 是O
线,与
O 交于B C ,两点,圆心O 在PAC ∠的内部,
M 是BC 的中点.
(Ⅰ)证明A
P O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.
(Ⅰ)证明:连结OP
OM ,. 因为AP 与O 相切于点P ,所以OP AP ⊥.
l
O
D
C
B
A
A
P O
M
C
B P
因为M 是
O 的弦BC 的中点,所以OM BC ⊥.
于是180OPA OMA ∠+∠=°.
由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得A P O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.
由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°
22.B(本小题满分10分)选修4-4:坐标系与参数方程
1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.
(Ⅰ)把
1O 和2O 的极坐标方程化为直角坐标方程;
(Ⅱ)求经过
1O ,2O 交点的直线的直角坐标方程.
解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得2
4cos ρρθ=. 所以2
2
4x y x +=. 即2
240x y x +-=为
1O 的直角坐标方程. 同理2
2
40x y y ++=为
2O 的直角坐标方程.
(Ⅱ)由2222
4040
x y x x y y ⎧+-=⎪
⎨++=⎪⎩,解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即
1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-.
22.C(本小题满分10分)选修45-;不等式选讲 设函数()214f x x x =+--. (I )解不等式()2f x >; (II )求函数()y f x =的最小值. 解:
(Ⅰ)令214y x x =+--,则
1521334254x x y x x x x ⎧
---⎪⎪
⎪
=--<<⎨⎪
⎪+⎪⎩
, ,, ,, .≤≥...............3分
作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和5
23⎛⎫ ⎪⎝⎭
,
. 所以2142x x +-->的解集为5(7)3x x ⎛⎫
--+ ⎪⎝⎭
,
,. (Ⅱ)由函数214y x x =+--的图像可知,当12x =-
时,214y x x =+--取得最小值9
2
-. (2008广东理)13.(坐标系与参数方程选做题)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,
π4cos 002
ρθρθ⎛⎫
=< ⎪⎝
⎭
,≥≤,则曲线1C 与2C 交点的极坐标为.
【标准答案】(23,
)6
π
。
【试题解析】我们通过联立解方程组cos 3(0,0)4cos 2ρθπρθρθ=⎧≥≤<⎨=⎩解得23
6ρπθ⎧=⎪
⎨=
⎪⎩
,即两曲线的交点为(23,)6
π
。
【高考考点】极坐标、极坐标方程
14.(不等式选讲选做题)已知a ∈R ,若关于x 的方程2
1
04
x x a a ++-+=有实根,则a 的取值范围是.
【标准答案】10,4
⎡⎤⎢⎥⎣⎦
。
【试题解析】关于x 的二次方程的判别式1
14()4
a a ∆=--
+,方程有实根,那么 1
14()04
a a ∆=--
+≥。 即1144a a -
+≤,而11244a a a -+≤-,从而11244
a -≤, 解得1
04
a ≤≤
。 【高考考点】不等式选讲。
15.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R =.